1 /*
2  * Freescale QuadSPI driver.
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/errno.h>
15 #include <linux/platform_device.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/timer.h>
24 #include <linux/jiffies.h>
25 #include <linux/completion.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/mutex.h>
30 #include <linux/pm_qos.h>
31 #include <linux/sizes.h>
32 
33 /* Controller needs driver to swap endian */
34 #define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
35 /* Controller needs 4x internal clock */
36 #define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
37 /*
38  * TKT253890, Controller needs driver to fill txfifo till 16 byte to
39  * trigger data transfer even though extern data will not transferred.
40  */
41 #define QUADSPI_QUIRK_TKT253890		(1 << 2)
42 /* Controller cannot wake up from wait mode, TKT245618 */
43 #define QUADSPI_QUIRK_TKT245618         (1 << 3)
44 
45 /* The registers */
46 #define QUADSPI_MCR			0x00
47 #define QUADSPI_MCR_RESERVED_SHIFT	16
48 #define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
49 #define QUADSPI_MCR_MDIS_SHIFT		14
50 #define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
51 #define QUADSPI_MCR_CLR_TXF_SHIFT	11
52 #define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
53 #define QUADSPI_MCR_CLR_RXF_SHIFT	10
54 #define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
55 #define QUADSPI_MCR_DDR_EN_SHIFT	7
56 #define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
57 #define QUADSPI_MCR_END_CFG_SHIFT	2
58 #define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
59 #define QUADSPI_MCR_SWRSTHD_SHIFT	1
60 #define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
61 #define QUADSPI_MCR_SWRSTSD_SHIFT	0
62 #define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)
63 
64 #define QUADSPI_IPCR			0x08
65 #define QUADSPI_IPCR_SEQID_SHIFT	24
66 #define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)
67 
68 #define QUADSPI_BUF0CR			0x10
69 #define QUADSPI_BUF1CR			0x14
70 #define QUADSPI_BUF2CR			0x18
71 #define QUADSPI_BUFXCR_INVALID_MSTRID	0xe
72 
73 #define QUADSPI_BUF3CR			0x1c
74 #define QUADSPI_BUF3CR_ALLMST_SHIFT	31
75 #define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
76 #define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
77 #define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
78 
79 #define QUADSPI_BFGENCR			0x20
80 #define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
81 #define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
82 #define QUADSPI_BFGENCR_SEQID_SHIFT	12
83 #define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
84 
85 #define QUADSPI_BUF0IND			0x30
86 #define QUADSPI_BUF1IND			0x34
87 #define QUADSPI_BUF2IND			0x38
88 #define QUADSPI_SFAR			0x100
89 
90 #define QUADSPI_SMPR			0x108
91 #define QUADSPI_SMPR_DDRSMP_SHIFT	16
92 #define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
93 #define QUADSPI_SMPR_FSDLY_SHIFT	6
94 #define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
95 #define QUADSPI_SMPR_FSPHS_SHIFT	5
96 #define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
97 #define QUADSPI_SMPR_HSENA_SHIFT	0
98 #define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)
99 
100 #define QUADSPI_RBSR			0x10c
101 #define QUADSPI_RBSR_RDBFL_SHIFT	8
102 #define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
103 
104 #define QUADSPI_RBCT			0x110
105 #define QUADSPI_RBCT_WMRK_MASK		0x1F
106 #define QUADSPI_RBCT_RXBRD_SHIFT	8
107 #define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
108 
109 #define QUADSPI_TBSR			0x150
110 #define QUADSPI_TBDR			0x154
111 #define QUADSPI_SR			0x15c
112 #define QUADSPI_SR_IP_ACC_SHIFT		1
113 #define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
114 #define QUADSPI_SR_AHB_ACC_SHIFT	2
115 #define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
116 
117 #define QUADSPI_FR			0x160
118 #define QUADSPI_FR_TFF_MASK		0x1
119 
120 #define QUADSPI_SFA1AD			0x180
121 #define QUADSPI_SFA2AD			0x184
122 #define QUADSPI_SFB1AD			0x188
123 #define QUADSPI_SFB2AD			0x18c
124 #define QUADSPI_RBDR			0x200
125 
126 #define QUADSPI_LUTKEY			0x300
127 #define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
128 
129 #define QUADSPI_LCKCR			0x304
130 #define QUADSPI_LCKER_LOCK		0x1
131 #define QUADSPI_LCKER_UNLOCK		0x2
132 
133 #define QUADSPI_RSER			0x164
134 #define QUADSPI_RSER_TFIE		(0x1 << 0)
135 
136 #define QUADSPI_LUT_BASE		0x310
137 
138 /*
139  * The definition of the LUT register shows below:
140  *
141  *  ---------------------------------------------------
142  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
143  *  ---------------------------------------------------
144  */
145 #define OPRND0_SHIFT		0
146 #define PAD0_SHIFT		8
147 #define INSTR0_SHIFT		10
148 #define OPRND1_SHIFT		16
149 
150 /* Instruction set for the LUT register. */
151 #define LUT_STOP		0
152 #define LUT_CMD			1
153 #define LUT_ADDR		2
154 #define LUT_DUMMY		3
155 #define LUT_MODE		4
156 #define LUT_MODE2		5
157 #define LUT_MODE4		6
158 #define LUT_FSL_READ		7
159 #define LUT_FSL_WRITE		8
160 #define LUT_JMP_ON_CS		9
161 #define LUT_ADDR_DDR		10
162 #define LUT_MODE_DDR		11
163 #define LUT_MODE2_DDR		12
164 #define LUT_MODE4_DDR		13
165 #define LUT_FSL_READ_DDR		14
166 #define LUT_FSL_WRITE_DDR		15
167 #define LUT_DATA_LEARN		16
168 
169 /*
170  * The PAD definitions for LUT register.
171  *
172  * The pad stands for the lines number of IO[0:3].
173  * For example, the Quad read need four IO lines, so you should
174  * set LUT_PAD4 which means we use four IO lines.
175  */
176 #define LUT_PAD1		0
177 #define LUT_PAD2		1
178 #define LUT_PAD4		2
179 
180 /* Oprands for the LUT register. */
181 #define ADDR24BIT		0x18
182 #define ADDR32BIT		0x20
183 
184 /* Macros for constructing the LUT register. */
185 #define LUT0(ins, pad, opr)						\
186 		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
187 		((LUT_##ins) << INSTR0_SHIFT))
188 
189 #define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)
190 
191 /* other macros for LUT register. */
192 #define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
193 #define QUADSPI_LUT_NUM		64
194 
195 /* SEQID -- we can have 16 seqids at most. */
196 #define SEQID_QUAD_READ		0
197 #define SEQID_WREN		1
198 #define SEQID_WRDI		2
199 #define SEQID_RDSR		3
200 #define SEQID_SE		4
201 #define SEQID_CHIP_ERASE	5
202 #define SEQID_PP		6
203 #define SEQID_RDID		7
204 #define SEQID_WRSR		8
205 #define SEQID_RDCR		9
206 #define SEQID_EN4B		10
207 #define SEQID_BRWR		11
208 
209 #define QUADSPI_MIN_IOMAP SZ_4M
210 
211 enum fsl_qspi_devtype {
212 	FSL_QUADSPI_VYBRID,
213 	FSL_QUADSPI_IMX6SX,
214 	FSL_QUADSPI_IMX7D,
215 	FSL_QUADSPI_IMX6UL,
216 };
217 
218 struct fsl_qspi_devtype_data {
219 	enum fsl_qspi_devtype devtype;
220 	int rxfifo;
221 	int txfifo;
222 	int ahb_buf_size;
223 	int driver_data;
224 };
225 
226 static struct fsl_qspi_devtype_data vybrid_data = {
227 	.devtype = FSL_QUADSPI_VYBRID,
228 	.rxfifo = 128,
229 	.txfifo = 64,
230 	.ahb_buf_size = 1024,
231 	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
232 };
233 
234 static struct fsl_qspi_devtype_data imx6sx_data = {
235 	.devtype = FSL_QUADSPI_IMX6SX,
236 	.rxfifo = 128,
237 	.txfifo = 512,
238 	.ahb_buf_size = 1024,
239 	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
240 		       | QUADSPI_QUIRK_TKT245618,
241 };
242 
243 static struct fsl_qspi_devtype_data imx7d_data = {
244 	.devtype = FSL_QUADSPI_IMX7D,
245 	.rxfifo = 512,
246 	.txfifo = 512,
247 	.ahb_buf_size = 1024,
248 	.driver_data = QUADSPI_QUIRK_TKT253890
249 		       | QUADSPI_QUIRK_4X_INT_CLK,
250 };
251 
252 static struct fsl_qspi_devtype_data imx6ul_data = {
253 	.devtype = FSL_QUADSPI_IMX6UL,
254 	.rxfifo = 128,
255 	.txfifo = 512,
256 	.ahb_buf_size = 1024,
257 	.driver_data = QUADSPI_QUIRK_TKT253890
258 		       | QUADSPI_QUIRK_4X_INT_CLK,
259 };
260 
261 #define FSL_QSPI_MAX_CHIP	4
262 struct fsl_qspi {
263 	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
264 	void __iomem *iobase;
265 	void __iomem *ahb_addr;
266 	u32 memmap_phy;
267 	u32 memmap_offs;
268 	u32 memmap_len;
269 	struct clk *clk, *clk_en;
270 	struct device *dev;
271 	struct completion c;
272 	struct fsl_qspi_devtype_data *devtype_data;
273 	u32 nor_size;
274 	u32 nor_num;
275 	u32 clk_rate;
276 	unsigned int chip_base_addr; /* We may support two chips. */
277 	bool has_second_chip;
278 	struct mutex lock;
279 	struct pm_qos_request pm_qos_req;
280 };
281 
needs_swap_endian(struct fsl_qspi * q)282 static inline int needs_swap_endian(struct fsl_qspi *q)
283 {
284 	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
285 }
286 
needs_4x_clock(struct fsl_qspi * q)287 static inline int needs_4x_clock(struct fsl_qspi *q)
288 {
289 	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
290 }
291 
needs_fill_txfifo(struct fsl_qspi * q)292 static inline int needs_fill_txfifo(struct fsl_qspi *q)
293 {
294 	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
295 }
296 
needs_wakeup_wait_mode(struct fsl_qspi * q)297 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
298 {
299 	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
300 }
301 
302 /*
303  * An IC bug makes us to re-arrange the 32-bit data.
304  * The following chips, such as IMX6SLX, have fixed this bug.
305  */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)306 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
307 {
308 	return needs_swap_endian(q) ? __swab32(a) : a;
309 }
310 
fsl_qspi_unlock_lut(struct fsl_qspi * q)311 static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
312 {
313 	writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
314 	writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
315 }
316 
fsl_qspi_lock_lut(struct fsl_qspi * q)317 static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
318 {
319 	writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
320 	writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
321 }
322 
fsl_qspi_irq_handler(int irq,void * dev_id)323 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
324 {
325 	struct fsl_qspi *q = dev_id;
326 	u32 reg;
327 
328 	/* clear interrupt */
329 	reg = readl(q->iobase + QUADSPI_FR);
330 	writel(reg, q->iobase + QUADSPI_FR);
331 
332 	if (reg & QUADSPI_FR_TFF_MASK)
333 		complete(&q->c);
334 
335 	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
336 	return IRQ_HANDLED;
337 }
338 
fsl_qspi_init_lut(struct fsl_qspi * q)339 static void fsl_qspi_init_lut(struct fsl_qspi *q)
340 {
341 	void __iomem *base = q->iobase;
342 	int rxfifo = q->devtype_data->rxfifo;
343 	u32 lut_base;
344 	u8 cmd, addrlen, dummy;
345 	int i;
346 
347 	fsl_qspi_unlock_lut(q);
348 
349 	/* Clear all the LUT table */
350 	for (i = 0; i < QUADSPI_LUT_NUM; i++)
351 		writel(0, base + QUADSPI_LUT_BASE + i * 4);
352 
353 	/* Quad Read */
354 	lut_base = SEQID_QUAD_READ * 4;
355 
356 	if (q->nor_size <= SZ_16M) {
357 		cmd = SPINOR_OP_READ_1_1_4;
358 		addrlen = ADDR24BIT;
359 		dummy = 8;
360 	} else {
361 		/* use the 4-byte address */
362 		cmd = SPINOR_OP_READ_1_1_4;
363 		addrlen = ADDR32BIT;
364 		dummy = 8;
365 	}
366 
367 	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
368 			base + QUADSPI_LUT(lut_base));
369 	writel(LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
370 			base + QUADSPI_LUT(lut_base + 1));
371 
372 	/* Write enable */
373 	lut_base = SEQID_WREN * 4;
374 	writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
375 
376 	/* Page Program */
377 	lut_base = SEQID_PP * 4;
378 
379 	if (q->nor_size <= SZ_16M) {
380 		cmd = SPINOR_OP_PP;
381 		addrlen = ADDR24BIT;
382 	} else {
383 		/* use the 4-byte address */
384 		cmd = SPINOR_OP_PP;
385 		addrlen = ADDR32BIT;
386 	}
387 
388 	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
389 			base + QUADSPI_LUT(lut_base));
390 	writel(LUT0(FSL_WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
391 
392 	/* Read Status */
393 	lut_base = SEQID_RDSR * 4;
394 	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1),
395 			base + QUADSPI_LUT(lut_base));
396 
397 	/* Erase a sector */
398 	lut_base = SEQID_SE * 4;
399 
400 	cmd = q->nor[0].erase_opcode;
401 	addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
402 
403 	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
404 			base + QUADSPI_LUT(lut_base));
405 
406 	/* Erase the whole chip */
407 	lut_base = SEQID_CHIP_ERASE * 4;
408 	writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
409 			base + QUADSPI_LUT(lut_base));
410 
411 	/* READ ID */
412 	lut_base = SEQID_RDID * 4;
413 	writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8),
414 			base + QUADSPI_LUT(lut_base));
415 
416 	/* Write Register */
417 	lut_base = SEQID_WRSR * 4;
418 	writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2),
419 			base + QUADSPI_LUT(lut_base));
420 
421 	/* Read Configuration Register */
422 	lut_base = SEQID_RDCR * 4;
423 	writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1),
424 			base + QUADSPI_LUT(lut_base));
425 
426 	/* Write disable */
427 	lut_base = SEQID_WRDI * 4;
428 	writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
429 
430 	/* Enter 4 Byte Mode (Micron) */
431 	lut_base = SEQID_EN4B * 4;
432 	writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
433 
434 	/* Enter 4 Byte Mode (Spansion) */
435 	lut_base = SEQID_BRWR * 4;
436 	writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
437 
438 	fsl_qspi_lock_lut(q);
439 }
440 
441 /* Get the SEQID for the command */
fsl_qspi_get_seqid(struct fsl_qspi * q,u8 cmd)442 static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
443 {
444 	switch (cmd) {
445 	case SPINOR_OP_READ_1_1_4:
446 		return SEQID_QUAD_READ;
447 	case SPINOR_OP_WREN:
448 		return SEQID_WREN;
449 	case SPINOR_OP_WRDI:
450 		return SEQID_WRDI;
451 	case SPINOR_OP_RDSR:
452 		return SEQID_RDSR;
453 	case SPINOR_OP_SE:
454 		return SEQID_SE;
455 	case SPINOR_OP_CHIP_ERASE:
456 		return SEQID_CHIP_ERASE;
457 	case SPINOR_OP_PP:
458 		return SEQID_PP;
459 	case SPINOR_OP_RDID:
460 		return SEQID_RDID;
461 	case SPINOR_OP_WRSR:
462 		return SEQID_WRSR;
463 	case SPINOR_OP_RDCR:
464 		return SEQID_RDCR;
465 	case SPINOR_OP_EN4B:
466 		return SEQID_EN4B;
467 	case SPINOR_OP_BRWR:
468 		return SEQID_BRWR;
469 	default:
470 		if (cmd == q->nor[0].erase_opcode)
471 			return SEQID_SE;
472 		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
473 		break;
474 	}
475 	return -EINVAL;
476 }
477 
478 static int
fsl_qspi_runcmd(struct fsl_qspi * q,u8 cmd,unsigned int addr,int len)479 fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
480 {
481 	void __iomem *base = q->iobase;
482 	int seqid;
483 	u32 reg, reg2;
484 	int err;
485 
486 	init_completion(&q->c);
487 	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
488 			q->chip_base_addr, addr, len, cmd);
489 
490 	/* save the reg */
491 	reg = readl(base + QUADSPI_MCR);
492 
493 	writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
494 	writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
495 			base + QUADSPI_RBCT);
496 	writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
497 
498 	do {
499 		reg2 = readl(base + QUADSPI_SR);
500 		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
501 			udelay(1);
502 			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
503 			continue;
504 		}
505 		break;
506 	} while (1);
507 
508 	/* trigger the LUT now */
509 	seqid = fsl_qspi_get_seqid(q, cmd);
510 	writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
511 
512 	/* Wait for the interrupt. */
513 	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
514 		dev_err(q->dev,
515 			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
516 			cmd, addr, readl(base + QUADSPI_FR),
517 			readl(base + QUADSPI_SR));
518 		err = -ETIMEDOUT;
519 	} else {
520 		err = 0;
521 	}
522 
523 	/* restore the MCR */
524 	writel(reg, base + QUADSPI_MCR);
525 
526 	return err;
527 }
528 
529 /* Read out the data from the QUADSPI_RBDR buffer registers. */
fsl_qspi_read_data(struct fsl_qspi * q,int len,u8 * rxbuf)530 static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
531 {
532 	u32 tmp;
533 	int i = 0;
534 
535 	while (len > 0) {
536 		tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
537 		tmp = fsl_qspi_endian_xchg(q, tmp);
538 		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
539 				q->chip_base_addr, tmp);
540 
541 		if (len >= 4) {
542 			*((u32 *)rxbuf) = tmp;
543 			rxbuf += 4;
544 		} else {
545 			memcpy(rxbuf, &tmp, len);
546 			break;
547 		}
548 
549 		len -= 4;
550 		i++;
551 	}
552 }
553 
554 /*
555  * If we have changed the content of the flash by writing or erasing,
556  * we need to invalidate the AHB buffer. If we do not do so, we may read out
557  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
558  * domain at the same time.
559  */
fsl_qspi_invalid(struct fsl_qspi * q)560 static inline void fsl_qspi_invalid(struct fsl_qspi *q)
561 {
562 	u32 reg;
563 
564 	reg = readl(q->iobase + QUADSPI_MCR);
565 	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
566 	writel(reg, q->iobase + QUADSPI_MCR);
567 
568 	/*
569 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
570 	 * Delay 1 us is enough.
571 	 */
572 	udelay(1);
573 
574 	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
575 	writel(reg, q->iobase + QUADSPI_MCR);
576 }
577 
fsl_qspi_nor_write(struct fsl_qspi * q,struct spi_nor * nor,u8 opcode,unsigned int to,u32 * txbuf,unsigned count,size_t * retlen)578 static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
579 				u8 opcode, unsigned int to, u32 *txbuf,
580 				unsigned count, size_t *retlen)
581 {
582 	int ret, i, j;
583 	u32 tmp;
584 
585 	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
586 		q->chip_base_addr, to, count);
587 
588 	/* clear the TX FIFO. */
589 	tmp = readl(q->iobase + QUADSPI_MCR);
590 	writel(tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
591 
592 	/* fill the TX data to the FIFO */
593 	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
594 		tmp = fsl_qspi_endian_xchg(q, *txbuf);
595 		writel(tmp, q->iobase + QUADSPI_TBDR);
596 		txbuf++;
597 	}
598 
599 	/* fill the TXFIFO upto 16 bytes for i.MX7d */
600 	if (needs_fill_txfifo(q))
601 		for (; i < 4; i++)
602 			writel(tmp, q->iobase + QUADSPI_TBDR);
603 
604 	/* Trigger it */
605 	ret = fsl_qspi_runcmd(q, opcode, to, count);
606 
607 	if (ret == 0 && retlen)
608 		*retlen += count;
609 
610 	return ret;
611 }
612 
fsl_qspi_set_map_addr(struct fsl_qspi * q)613 static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
614 {
615 	int nor_size = q->nor_size;
616 	void __iomem *base = q->iobase;
617 
618 	writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
619 	writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
620 	writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
621 	writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
622 }
623 
624 /*
625  * There are two different ways to read out the data from the flash:
626  *  the "IP Command Read" and the "AHB Command Read".
627  *
628  * The IC guy suggests we use the "AHB Command Read" which is faster
629  * then the "IP Command Read". (What's more is that there is a bug in
630  * the "IP Command Read" in the Vybrid.)
631  *
632  * After we set up the registers for the "AHB Command Read", we can use
633  * the memcpy to read the data directly. A "missed" access to the buffer
634  * causes the controller to clear the buffer, and use the sequence pointed
635  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
636  */
fsl_qspi_init_abh_read(struct fsl_qspi * q)637 static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
638 {
639 	void __iomem *base = q->iobase;
640 	int seqid;
641 
642 	/* AHB configuration for access buffer 0/1/2 .*/
643 	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
644 	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
645 	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
646 	/*
647 	 * Set ADATSZ with the maximum AHB buffer size to improve the
648 	 * read performance.
649 	 */
650 	writel(QUADSPI_BUF3CR_ALLMST_MASK | ((q->devtype_data->ahb_buf_size / 8)
651 			<< QUADSPI_BUF3CR_ADATSZ_SHIFT), base + QUADSPI_BUF3CR);
652 
653 	/* We only use the buffer3 */
654 	writel(0, base + QUADSPI_BUF0IND);
655 	writel(0, base + QUADSPI_BUF1IND);
656 	writel(0, base + QUADSPI_BUF2IND);
657 
658 	/* Set the default lut sequence for AHB Read. */
659 	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
660 	writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
661 		q->iobase + QUADSPI_BFGENCR);
662 }
663 
664 /* This function was used to prepare and enable QSPI clock */
fsl_qspi_clk_prep_enable(struct fsl_qspi * q)665 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
666 {
667 	int ret;
668 
669 	ret = clk_prepare_enable(q->clk_en);
670 	if (ret)
671 		return ret;
672 
673 	ret = clk_prepare_enable(q->clk);
674 	if (ret) {
675 		clk_disable_unprepare(q->clk_en);
676 		return ret;
677 	}
678 
679 	if (needs_wakeup_wait_mode(q))
680 		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
681 
682 	return 0;
683 }
684 
685 /* This function was used to disable and unprepare QSPI clock */
fsl_qspi_clk_disable_unprep(struct fsl_qspi * q)686 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
687 {
688 	if (needs_wakeup_wait_mode(q))
689 		pm_qos_remove_request(&q->pm_qos_req);
690 
691 	clk_disable_unprepare(q->clk);
692 	clk_disable_unprepare(q->clk_en);
693 
694 }
695 
696 /* We use this function to do some basic init for spi_nor_scan(). */
fsl_qspi_nor_setup(struct fsl_qspi * q)697 static int fsl_qspi_nor_setup(struct fsl_qspi *q)
698 {
699 	void __iomem *base = q->iobase;
700 	u32 reg;
701 	int ret;
702 
703 	/* disable and unprepare clock to avoid glitch pass to controller */
704 	fsl_qspi_clk_disable_unprep(q);
705 
706 	/* the default frequency, we will change it in the future. */
707 	ret = clk_set_rate(q->clk, 66000000);
708 	if (ret)
709 		return ret;
710 
711 	ret = fsl_qspi_clk_prep_enable(q);
712 	if (ret)
713 		return ret;
714 
715 	/* Reset the module */
716 	writel(QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
717 		base + QUADSPI_MCR);
718 	udelay(1);
719 
720 	/* Init the LUT table. */
721 	fsl_qspi_init_lut(q);
722 
723 	/* Disable the module */
724 	writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
725 			base + QUADSPI_MCR);
726 
727 	reg = readl(base + QUADSPI_SMPR);
728 	writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
729 			| QUADSPI_SMPR_FSPHS_MASK
730 			| QUADSPI_SMPR_HSENA_MASK
731 			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
732 
733 	/* Enable the module */
734 	writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
735 			base + QUADSPI_MCR);
736 
737 	/* clear all interrupt status */
738 	writel(0xffffffff, q->iobase + QUADSPI_FR);
739 
740 	/* enable the interrupt */
741 	writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
742 
743 	return 0;
744 }
745 
fsl_qspi_nor_setup_last(struct fsl_qspi * q)746 static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
747 {
748 	unsigned long rate = q->clk_rate;
749 	int ret;
750 
751 	if (needs_4x_clock(q))
752 		rate *= 4;
753 
754 	/* disable and unprepare clock to avoid glitch pass to controller */
755 	fsl_qspi_clk_disable_unprep(q);
756 
757 	ret = clk_set_rate(q->clk, rate);
758 	if (ret)
759 		return ret;
760 
761 	ret = fsl_qspi_clk_prep_enable(q);
762 	if (ret)
763 		return ret;
764 
765 	/* Init the LUT table again. */
766 	fsl_qspi_init_lut(q);
767 
768 	/* Init for AHB read */
769 	fsl_qspi_init_abh_read(q);
770 
771 	return 0;
772 }
773 
774 static const struct of_device_id fsl_qspi_dt_ids[] = {
775 	{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
776 	{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
777 	{ .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
778 	{ .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
779 	{ /* sentinel */ }
780 };
781 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
782 
fsl_qspi_set_base_addr(struct fsl_qspi * q,struct spi_nor * nor)783 static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
784 {
785 	q->chip_base_addr = q->nor_size * (nor - q->nor);
786 }
787 
fsl_qspi_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)788 static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
789 {
790 	int ret;
791 	struct fsl_qspi *q = nor->priv;
792 
793 	ret = fsl_qspi_runcmd(q, opcode, 0, len);
794 	if (ret)
795 		return ret;
796 
797 	fsl_qspi_read_data(q, len, buf);
798 	return 0;
799 }
800 
fsl_qspi_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)801 static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
802 {
803 	struct fsl_qspi *q = nor->priv;
804 	int ret;
805 
806 	if (!buf) {
807 		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
808 		if (ret)
809 			return ret;
810 
811 		if (opcode == SPINOR_OP_CHIP_ERASE)
812 			fsl_qspi_invalid(q);
813 
814 	} else if (len > 0) {
815 		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
816 					(u32 *)buf, len, NULL);
817 	} else {
818 		dev_err(q->dev, "invalid cmd %d\n", opcode);
819 		ret = -EINVAL;
820 	}
821 
822 	return ret;
823 }
824 
fsl_qspi_write(struct spi_nor * nor,loff_t to,size_t len,size_t * retlen,const u_char * buf)825 static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
826 		size_t len, size_t *retlen, const u_char *buf)
827 {
828 	struct fsl_qspi *q = nor->priv;
829 
830 	fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
831 				(u32 *)buf, len, retlen);
832 
833 	/* invalid the data in the AHB buffer. */
834 	fsl_qspi_invalid(q);
835 }
836 
fsl_qspi_read(struct spi_nor * nor,loff_t from,size_t len,size_t * retlen,u_char * buf)837 static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
838 		size_t len, size_t *retlen, u_char *buf)
839 {
840 	struct fsl_qspi *q = nor->priv;
841 	u8 cmd = nor->read_opcode;
842 
843 	/* if necessary,ioremap buffer before AHB read, */
844 	if (!q->ahb_addr) {
845 		q->memmap_offs = q->chip_base_addr + from;
846 		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
847 
848 		q->ahb_addr = ioremap_nocache(
849 				q->memmap_phy + q->memmap_offs,
850 				q->memmap_len);
851 		if (!q->ahb_addr) {
852 			dev_err(q->dev, "ioremap failed\n");
853 			return -ENOMEM;
854 		}
855 	/* ioremap if the data requested is out of range */
856 	} else if (q->chip_base_addr + from < q->memmap_offs
857 			|| q->chip_base_addr + from + len >
858 			q->memmap_offs + q->memmap_len) {
859 		iounmap(q->ahb_addr);
860 
861 		q->memmap_offs = q->chip_base_addr + from;
862 		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
863 		q->ahb_addr = ioremap_nocache(
864 				q->memmap_phy + q->memmap_offs,
865 				q->memmap_len);
866 		if (!q->ahb_addr) {
867 			dev_err(q->dev, "ioremap failed\n");
868 			return -ENOMEM;
869 		}
870 	}
871 
872 	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
873 		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
874 		len);
875 
876 	/* Read out the data directly from the AHB buffer.*/
877 	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
878 		len);
879 
880 	*retlen += len;
881 	return 0;
882 }
883 
fsl_qspi_erase(struct spi_nor * nor,loff_t offs)884 static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
885 {
886 	struct fsl_qspi *q = nor->priv;
887 	int ret;
888 
889 	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
890 		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
891 
892 	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
893 	if (ret)
894 		return ret;
895 
896 	fsl_qspi_invalid(q);
897 	return 0;
898 }
899 
fsl_qspi_prep(struct spi_nor * nor,enum spi_nor_ops ops)900 static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
901 {
902 	struct fsl_qspi *q = nor->priv;
903 	int ret;
904 
905 	mutex_lock(&q->lock);
906 
907 	ret = fsl_qspi_clk_prep_enable(q);
908 	if (ret)
909 		goto err_mutex;
910 
911 	fsl_qspi_set_base_addr(q, nor);
912 	return 0;
913 
914 err_mutex:
915 	mutex_unlock(&q->lock);
916 	return ret;
917 }
918 
fsl_qspi_unprep(struct spi_nor * nor,enum spi_nor_ops ops)919 static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
920 {
921 	struct fsl_qspi *q = nor->priv;
922 
923 	fsl_qspi_clk_disable_unprep(q);
924 	mutex_unlock(&q->lock);
925 }
926 
fsl_qspi_probe(struct platform_device * pdev)927 static int fsl_qspi_probe(struct platform_device *pdev)
928 {
929 	struct device_node *np = pdev->dev.of_node;
930 	struct mtd_part_parser_data ppdata;
931 	struct device *dev = &pdev->dev;
932 	struct fsl_qspi *q;
933 	struct resource *res;
934 	struct spi_nor *nor;
935 	struct mtd_info *mtd;
936 	int ret, i = 0;
937 	const struct of_device_id *of_id =
938 			of_match_device(fsl_qspi_dt_ids, &pdev->dev);
939 
940 	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
941 	if (!q)
942 		return -ENOMEM;
943 
944 	q->nor_num = of_get_child_count(dev->of_node);
945 	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
946 		return -ENODEV;
947 
948 	q->dev = dev;
949 	q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
950 	platform_set_drvdata(pdev, q);
951 
952 	/* find the resources */
953 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
954 	q->iobase = devm_ioremap_resource(dev, res);
955 	if (IS_ERR(q->iobase))
956 		return PTR_ERR(q->iobase);
957 
958 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
959 					"QuadSPI-memory");
960 	if (!devm_request_mem_region(dev, res->start, resource_size(res),
961 				     res->name)) {
962 		dev_err(dev, "can't request region for resource %pR\n", res);
963 		return -EBUSY;
964 	}
965 
966 	q->memmap_phy = res->start;
967 
968 	/* find the clocks */
969 	q->clk_en = devm_clk_get(dev, "qspi_en");
970 	if (IS_ERR(q->clk_en))
971 		return PTR_ERR(q->clk_en);
972 
973 	q->clk = devm_clk_get(dev, "qspi");
974 	if (IS_ERR(q->clk))
975 		return PTR_ERR(q->clk);
976 
977 	ret = fsl_qspi_clk_prep_enable(q);
978 	if (ret) {
979 		dev_err(dev, "can not enable the clock\n");
980 		goto clk_failed;
981 	}
982 
983 	/* find the irq */
984 	ret = platform_get_irq(pdev, 0);
985 	if (ret < 0) {
986 		dev_err(dev, "failed to get the irq: %d\n", ret);
987 		goto irq_failed;
988 	}
989 
990 	ret = devm_request_irq(dev, ret,
991 			fsl_qspi_irq_handler, 0, pdev->name, q);
992 	if (ret) {
993 		dev_err(dev, "failed to request irq: %d\n", ret);
994 		goto irq_failed;
995 	}
996 
997 	ret = fsl_qspi_nor_setup(q);
998 	if (ret)
999 		goto irq_failed;
1000 
1001 	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1002 		q->has_second_chip = true;
1003 
1004 	mutex_init(&q->lock);
1005 
1006 	/* iterate the subnodes. */
1007 	for_each_available_child_of_node(dev->of_node, np) {
1008 		/* skip the holes */
1009 		if (!q->has_second_chip)
1010 			i *= 2;
1011 
1012 		nor = &q->nor[i];
1013 		mtd = &nor->mtd;
1014 
1015 		nor->dev = dev;
1016 		nor->flash_node = np;
1017 		nor->priv = q;
1018 
1019 		/* fill the hooks */
1020 		nor->read_reg = fsl_qspi_read_reg;
1021 		nor->write_reg = fsl_qspi_write_reg;
1022 		nor->read = fsl_qspi_read;
1023 		nor->write = fsl_qspi_write;
1024 		nor->erase = fsl_qspi_erase;
1025 
1026 		nor->prepare = fsl_qspi_prep;
1027 		nor->unprepare = fsl_qspi_unprep;
1028 
1029 		ret = of_property_read_u32(np, "spi-max-frequency",
1030 				&q->clk_rate);
1031 		if (ret < 0)
1032 			goto mutex_failed;
1033 
1034 		/* set the chip address for READID */
1035 		fsl_qspi_set_base_addr(q, nor);
1036 
1037 		ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1038 		if (ret)
1039 			goto mutex_failed;
1040 
1041 		ppdata.of_node = np;
1042 		ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1043 		if (ret)
1044 			goto mutex_failed;
1045 
1046 		/* Set the correct NOR size now. */
1047 		if (q->nor_size == 0) {
1048 			q->nor_size = mtd->size;
1049 
1050 			/* Map the SPI NOR to accessiable address */
1051 			fsl_qspi_set_map_addr(q);
1052 		}
1053 
1054 		/*
1055 		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1056 		 * may writes 265 bytes per time. The write is working in the
1057 		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1058 		 * size.
1059 		 *
1060 		 * So shrink the spi_nor->page_size if it is larger then the
1061 		 * TX FIFO.
1062 		 */
1063 		if (nor->page_size > q->devtype_data->txfifo)
1064 			nor->page_size = q->devtype_data->txfifo;
1065 
1066 		i++;
1067 	}
1068 
1069 	/* finish the rest init. */
1070 	ret = fsl_qspi_nor_setup_last(q);
1071 	if (ret)
1072 		goto last_init_failed;
1073 
1074 	fsl_qspi_clk_disable_unprep(q);
1075 	return 0;
1076 
1077 last_init_failed:
1078 	for (i = 0; i < q->nor_num; i++) {
1079 		/* skip the holes */
1080 		if (!q->has_second_chip)
1081 			i *= 2;
1082 		mtd_device_unregister(&q->nor[i].mtd);
1083 	}
1084 mutex_failed:
1085 	mutex_destroy(&q->lock);
1086 irq_failed:
1087 	fsl_qspi_clk_disable_unprep(q);
1088 clk_failed:
1089 	dev_err(dev, "Freescale QuadSPI probe failed\n");
1090 	return ret;
1091 }
1092 
fsl_qspi_remove(struct platform_device * pdev)1093 static int fsl_qspi_remove(struct platform_device *pdev)
1094 {
1095 	struct fsl_qspi *q = platform_get_drvdata(pdev);
1096 	int i;
1097 
1098 	for (i = 0; i < q->nor_num; i++) {
1099 		/* skip the holes */
1100 		if (!q->has_second_chip)
1101 			i *= 2;
1102 		mtd_device_unregister(&q->nor[i].mtd);
1103 	}
1104 
1105 	/* disable the hardware */
1106 	writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
1107 	writel(0x0, q->iobase + QUADSPI_RSER);
1108 
1109 	mutex_destroy(&q->lock);
1110 
1111 	if (q->ahb_addr)
1112 		iounmap(q->ahb_addr);
1113 
1114 	return 0;
1115 }
1116 
fsl_qspi_suspend(struct platform_device * pdev,pm_message_t state)1117 static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
1118 {
1119 	return 0;
1120 }
1121 
fsl_qspi_resume(struct platform_device * pdev)1122 static int fsl_qspi_resume(struct platform_device *pdev)
1123 {
1124 	int ret;
1125 	struct fsl_qspi *q = platform_get_drvdata(pdev);
1126 
1127 	ret = fsl_qspi_clk_prep_enable(q);
1128 	if (ret)
1129 		return ret;
1130 
1131 	fsl_qspi_nor_setup(q);
1132 	fsl_qspi_set_map_addr(q);
1133 	fsl_qspi_nor_setup_last(q);
1134 
1135 	fsl_qspi_clk_disable_unprep(q);
1136 
1137 	return 0;
1138 }
1139 
1140 static struct platform_driver fsl_qspi_driver = {
1141 	.driver = {
1142 		.name	= "fsl-quadspi",
1143 		.bus	= &platform_bus_type,
1144 		.of_match_table = fsl_qspi_dt_ids,
1145 	},
1146 	.probe          = fsl_qspi_probe,
1147 	.remove		= fsl_qspi_remove,
1148 	.suspend	= fsl_qspi_suspend,
1149 	.resume		= fsl_qspi_resume,
1150 };
1151 module_platform_driver(fsl_qspi_driver);
1152 
1153 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1154 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1155 MODULE_LICENSE("GPL v2");
1156