1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *	 Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *	 Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *     		(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  *  Add Nand Flash Controller support for SAMA5 SoC
22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/of_mtd.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
43 
44 #include <linux/delay.h>
45 #include <linux/dmaengine.h>
46 #include <linux/gpio.h>
47 #include <linux/interrupt.h>
48 #include <linux/io.h>
49 #include <linux/platform_data/atmel.h>
50 
51 static int use_dma = 1;
52 module_param(use_dma, int, 0);
53 
54 static int on_flash_bbt = 0;
55 module_param(on_flash_bbt, int, 0);
56 
57 /* Register access macros */
58 #define ecc_readl(add, reg)				\
59 	__raw_readl(add + ATMEL_ECC_##reg)
60 #define ecc_writel(add, reg, value)			\
61 	__raw_writel((value), add + ATMEL_ECC_##reg)
62 
63 #include "atmel_nand_ecc.h"	/* Hardware ECC registers */
64 #include "atmel_nand_nfc.h"	/* Nand Flash Controller definition */
65 
66 struct atmel_nand_caps {
67 	bool pmecc_correct_erase_page;
68 };
69 
70 /* oob layout for large page size
71  * bad block info is on bytes 0 and 1
72  * the bytes have to be consecutives to avoid
73  * several NAND_CMD_RNDOUT during read
74  */
75 static struct nand_ecclayout atmel_oobinfo_large = {
76 	.eccbytes = 4,
77 	.eccpos = {60, 61, 62, 63},
78 	.oobfree = {
79 		{2, 58}
80 	},
81 };
82 
83 /* oob layout for small page size
84  * bad block info is on bytes 4 and 5
85  * the bytes have to be consecutives to avoid
86  * several NAND_CMD_RNDOUT during read
87  */
88 static struct nand_ecclayout atmel_oobinfo_small = {
89 	.eccbytes = 4,
90 	.eccpos = {0, 1, 2, 3},
91 	.oobfree = {
92 		{6, 10}
93 	},
94 };
95 
96 struct atmel_nfc {
97 	void __iomem		*base_cmd_regs;
98 	void __iomem		*hsmc_regs;
99 	void			*sram_bank0;
100 	dma_addr_t		sram_bank0_phys;
101 	bool			use_nfc_sram;
102 	bool			write_by_sram;
103 
104 	struct clk		*clk;
105 
106 	bool			is_initialized;
107 	struct completion	comp_ready;
108 	struct completion	comp_cmd_done;
109 	struct completion	comp_xfer_done;
110 
111 	/* Point to the sram bank which include readed data via NFC */
112 	void			*data_in_sram;
113 	bool			will_write_sram;
114 };
115 static struct atmel_nfc	nand_nfc;
116 
117 struct atmel_nand_host {
118 	struct nand_chip	nand_chip;
119 	struct mtd_info		mtd;
120 	void __iomem		*io_base;
121 	dma_addr_t		io_phys;
122 	struct atmel_nand_data	board;
123 	struct device		*dev;
124 	void __iomem		*ecc;
125 
126 	struct completion	comp;
127 	struct dma_chan		*dma_chan;
128 
129 	struct atmel_nfc	*nfc;
130 
131 	struct atmel_nand_caps	*caps;
132 	bool			has_pmecc;
133 	u8			pmecc_corr_cap;
134 	u16			pmecc_sector_size;
135 	bool			has_no_lookup_table;
136 	u32			pmecc_lookup_table_offset;
137 	u32			pmecc_lookup_table_offset_512;
138 	u32			pmecc_lookup_table_offset_1024;
139 
140 	int			pmecc_degree;	/* Degree of remainders */
141 	int			pmecc_cw_len;	/* Length of codeword */
142 
143 	void __iomem		*pmerrloc_base;
144 	void __iomem		*pmecc_rom_base;
145 
146 	/* lookup table for alpha_to and index_of */
147 	void __iomem		*pmecc_alpha_to;
148 	void __iomem		*pmecc_index_of;
149 
150 	/* data for pmecc computation */
151 	int16_t			*pmecc_partial_syn;
152 	int16_t			*pmecc_si;
153 	int16_t			*pmecc_smu;	/* Sigma table */
154 	int16_t			*pmecc_lmu;	/* polynomal order */
155 	int			*pmecc_mu;
156 	int			*pmecc_dmu;
157 	int			*pmecc_delta;
158 };
159 
160 static struct nand_ecclayout atmel_pmecc_oobinfo;
161 
162 /*
163  * Enable NAND.
164  */
atmel_nand_enable(struct atmel_nand_host * host)165 static void atmel_nand_enable(struct atmel_nand_host *host)
166 {
167 	if (gpio_is_valid(host->board.enable_pin))
168 		gpio_set_value(host->board.enable_pin, 0);
169 }
170 
171 /*
172  * Disable NAND.
173  */
atmel_nand_disable(struct atmel_nand_host * host)174 static void atmel_nand_disable(struct atmel_nand_host *host)
175 {
176 	if (gpio_is_valid(host->board.enable_pin))
177 		gpio_set_value(host->board.enable_pin, 1);
178 }
179 
180 /*
181  * Hardware specific access to control-lines
182  */
atmel_nand_cmd_ctrl(struct mtd_info * mtd,int cmd,unsigned int ctrl)183 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
184 {
185 	struct nand_chip *nand_chip = mtd->priv;
186 	struct atmel_nand_host *host = nand_chip->priv;
187 
188 	if (ctrl & NAND_CTRL_CHANGE) {
189 		if (ctrl & NAND_NCE)
190 			atmel_nand_enable(host);
191 		else
192 			atmel_nand_disable(host);
193 	}
194 	if (cmd == NAND_CMD_NONE)
195 		return;
196 
197 	if (ctrl & NAND_CLE)
198 		writeb(cmd, host->io_base + (1 << host->board.cle));
199 	else
200 		writeb(cmd, host->io_base + (1 << host->board.ale));
201 }
202 
203 /*
204  * Read the Device Ready pin.
205  */
atmel_nand_device_ready(struct mtd_info * mtd)206 static int atmel_nand_device_ready(struct mtd_info *mtd)
207 {
208 	struct nand_chip *nand_chip = mtd->priv;
209 	struct atmel_nand_host *host = nand_chip->priv;
210 
211 	return gpio_get_value(host->board.rdy_pin) ^
212                 !!host->board.rdy_pin_active_low;
213 }
214 
215 /* Set up for hardware ready pin and enable pin. */
atmel_nand_set_enable_ready_pins(struct mtd_info * mtd)216 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
217 {
218 	struct nand_chip *chip = mtd->priv;
219 	struct atmel_nand_host *host = chip->priv;
220 	int res = 0;
221 
222 	if (gpio_is_valid(host->board.rdy_pin)) {
223 		res = devm_gpio_request(host->dev,
224 				host->board.rdy_pin, "nand_rdy");
225 		if (res < 0) {
226 			dev_err(host->dev,
227 				"can't request rdy gpio %d\n",
228 				host->board.rdy_pin);
229 			return res;
230 		}
231 
232 		res = gpio_direction_input(host->board.rdy_pin);
233 		if (res < 0) {
234 			dev_err(host->dev,
235 				"can't request input direction rdy gpio %d\n",
236 				host->board.rdy_pin);
237 			return res;
238 		}
239 
240 		chip->dev_ready = atmel_nand_device_ready;
241 	}
242 
243 	if (gpio_is_valid(host->board.enable_pin)) {
244 		res = devm_gpio_request(host->dev,
245 				host->board.enable_pin, "nand_enable");
246 		if (res < 0) {
247 			dev_err(host->dev,
248 				"can't request enable gpio %d\n",
249 				host->board.enable_pin);
250 			return res;
251 		}
252 
253 		res = gpio_direction_output(host->board.enable_pin, 1);
254 		if (res < 0) {
255 			dev_err(host->dev,
256 				"can't request output direction enable gpio %d\n",
257 				host->board.enable_pin);
258 			return res;
259 		}
260 	}
261 
262 	return res;
263 }
264 
265 /*
266  * Minimal-overhead PIO for data access.
267  */
atmel_read_buf8(struct mtd_info * mtd,u8 * buf,int len)268 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
269 {
270 	struct nand_chip	*nand_chip = mtd->priv;
271 	struct atmel_nand_host *host = nand_chip->priv;
272 
273 	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
274 		memcpy(buf, host->nfc->data_in_sram, len);
275 		host->nfc->data_in_sram += len;
276 	} else {
277 		__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
278 	}
279 }
280 
atmel_read_buf16(struct mtd_info * mtd,u8 * buf,int len)281 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
282 {
283 	struct nand_chip	*nand_chip = mtd->priv;
284 	struct atmel_nand_host *host = nand_chip->priv;
285 
286 	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
287 		memcpy(buf, host->nfc->data_in_sram, len);
288 		host->nfc->data_in_sram += len;
289 	} else {
290 		__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
291 	}
292 }
293 
atmel_write_buf8(struct mtd_info * mtd,const u8 * buf,int len)294 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
295 {
296 	struct nand_chip	*nand_chip = mtd->priv;
297 
298 	__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
299 }
300 
atmel_write_buf16(struct mtd_info * mtd,const u8 * buf,int len)301 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
302 {
303 	struct nand_chip	*nand_chip = mtd->priv;
304 
305 	__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
306 }
307 
dma_complete_func(void * completion)308 static void dma_complete_func(void *completion)
309 {
310 	complete(completion);
311 }
312 
nfc_set_sram_bank(struct atmel_nand_host * host,unsigned int bank)313 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
314 {
315 	/* NFC only has two banks. Must be 0 or 1 */
316 	if (bank > 1)
317 		return -EINVAL;
318 
319 	if (bank) {
320 		/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
321 		if (host->mtd.writesize > 2048)
322 			return -EINVAL;
323 		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
324 	} else {
325 		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
326 	}
327 
328 	return 0;
329 }
330 
nfc_get_sram_off(struct atmel_nand_host * host)331 static uint nfc_get_sram_off(struct atmel_nand_host *host)
332 {
333 	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
334 		return NFC_SRAM_BANK1_OFFSET;
335 	else
336 		return 0;
337 }
338 
nfc_sram_phys(struct atmel_nand_host * host)339 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
340 {
341 	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
342 		return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
343 	else
344 		return host->nfc->sram_bank0_phys;
345 }
346 
atmel_nand_dma_op(struct mtd_info * mtd,void * buf,int len,int is_read)347 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
348 			       int is_read)
349 {
350 	struct dma_device *dma_dev;
351 	enum dma_ctrl_flags flags;
352 	dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
353 	struct dma_async_tx_descriptor *tx = NULL;
354 	dma_cookie_t cookie;
355 	struct nand_chip *chip = mtd->priv;
356 	struct atmel_nand_host *host = chip->priv;
357 	void *p = buf;
358 	int err = -EIO;
359 	enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
360 	struct atmel_nfc *nfc = host->nfc;
361 
362 	if (buf >= high_memory)
363 		goto err_buf;
364 
365 	dma_dev = host->dma_chan->device;
366 
367 	flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
368 
369 	phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
370 	if (dma_mapping_error(dma_dev->dev, phys_addr)) {
371 		dev_err(host->dev, "Failed to dma_map_single\n");
372 		goto err_buf;
373 	}
374 
375 	if (is_read) {
376 		if (nfc && nfc->data_in_sram)
377 			dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
378 				- (nfc->sram_bank0 + nfc_get_sram_off(host)));
379 		else
380 			dma_src_addr = host->io_phys;
381 
382 		dma_dst_addr = phys_addr;
383 	} else {
384 		dma_src_addr = phys_addr;
385 
386 		if (nfc && nfc->write_by_sram)
387 			dma_dst_addr = nfc_sram_phys(host);
388 		else
389 			dma_dst_addr = host->io_phys;
390 	}
391 
392 	tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
393 					     dma_src_addr, len, flags);
394 	if (!tx) {
395 		dev_err(host->dev, "Failed to prepare DMA memcpy\n");
396 		goto err_dma;
397 	}
398 
399 	init_completion(&host->comp);
400 	tx->callback = dma_complete_func;
401 	tx->callback_param = &host->comp;
402 
403 	cookie = tx->tx_submit(tx);
404 	if (dma_submit_error(cookie)) {
405 		dev_err(host->dev, "Failed to do DMA tx_submit\n");
406 		goto err_dma;
407 	}
408 
409 	dma_async_issue_pending(host->dma_chan);
410 	wait_for_completion(&host->comp);
411 
412 	if (is_read && nfc && nfc->data_in_sram)
413 		/* After read data from SRAM, need to increase the position */
414 		nfc->data_in_sram += len;
415 
416 	err = 0;
417 
418 err_dma:
419 	dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
420 err_buf:
421 	if (err != 0)
422 		dev_dbg(host->dev, "Fall back to CPU I/O\n");
423 	return err;
424 }
425 
atmel_read_buf(struct mtd_info * mtd,u8 * buf,int len)426 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
427 {
428 	struct nand_chip *chip = mtd->priv;
429 	struct atmel_nand_host *host = chip->priv;
430 
431 	if (use_dma && len > mtd->oobsize)
432 		/* only use DMA for bigger than oob size: better performances */
433 		if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
434 			return;
435 
436 	if (host->board.bus_width_16)
437 		atmel_read_buf16(mtd, buf, len);
438 	else
439 		atmel_read_buf8(mtd, buf, len);
440 }
441 
atmel_write_buf(struct mtd_info * mtd,const u8 * buf,int len)442 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
443 {
444 	struct nand_chip *chip = mtd->priv;
445 	struct atmel_nand_host *host = chip->priv;
446 
447 	if (use_dma && len > mtd->oobsize)
448 		/* only use DMA for bigger than oob size: better performances */
449 		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
450 			return;
451 
452 	if (host->board.bus_width_16)
453 		atmel_write_buf16(mtd, buf, len);
454 	else
455 		atmel_write_buf8(mtd, buf, len);
456 }
457 
458 /*
459  * Return number of ecc bytes per sector according to sector size and
460  * correction capability
461  *
462  * Following table shows what at91 PMECC supported:
463  * Correction Capability	Sector_512_bytes	Sector_1024_bytes
464  * =====================	================	=================
465  *                2-bits                 4-bytes                  4-bytes
466  *                4-bits                 7-bytes                  7-bytes
467  *                8-bits                13-bytes                 14-bytes
468  *               12-bits                20-bytes                 21-bytes
469  *               24-bits                39-bytes                 42-bytes
470  */
pmecc_get_ecc_bytes(int cap,int sector_size)471 static int pmecc_get_ecc_bytes(int cap, int sector_size)
472 {
473 	int m = 12 + sector_size / 512;
474 	return (m * cap + 7) / 8;
475 }
476 
pmecc_config_ecc_layout(struct nand_ecclayout * layout,int oobsize,int ecc_len)477 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
478 				    int oobsize, int ecc_len)
479 {
480 	int i;
481 
482 	layout->eccbytes = ecc_len;
483 
484 	/* ECC will occupy the last ecc_len bytes continuously */
485 	for (i = 0; i < ecc_len; i++)
486 		layout->eccpos[i] = oobsize - ecc_len + i;
487 
488 	layout->oobfree[0].offset = PMECC_OOB_RESERVED_BYTES;
489 	layout->oobfree[0].length =
490 		oobsize - ecc_len - layout->oobfree[0].offset;
491 }
492 
pmecc_get_alpha_to(struct atmel_nand_host * host)493 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
494 {
495 	int table_size;
496 
497 	table_size = host->pmecc_sector_size == 512 ?
498 		PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
499 
500 	return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
501 			table_size * sizeof(int16_t);
502 }
503 
pmecc_data_alloc(struct atmel_nand_host * host)504 static int pmecc_data_alloc(struct atmel_nand_host *host)
505 {
506 	const int cap = host->pmecc_corr_cap;
507 	int size;
508 
509 	size = (2 * cap + 1) * sizeof(int16_t);
510 	host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
511 	host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
512 	host->pmecc_lmu = devm_kzalloc(host->dev,
513 			(cap + 1) * sizeof(int16_t), GFP_KERNEL);
514 	host->pmecc_smu = devm_kzalloc(host->dev,
515 			(cap + 2) * size, GFP_KERNEL);
516 
517 	size = (cap + 1) * sizeof(int);
518 	host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
519 	host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
520 	host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
521 
522 	if (!host->pmecc_partial_syn ||
523 		!host->pmecc_si ||
524 		!host->pmecc_lmu ||
525 		!host->pmecc_smu ||
526 		!host->pmecc_mu ||
527 		!host->pmecc_dmu ||
528 		!host->pmecc_delta)
529 		return -ENOMEM;
530 
531 	return 0;
532 }
533 
pmecc_gen_syndrome(struct mtd_info * mtd,int sector)534 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
535 {
536 	struct nand_chip *nand_chip = mtd->priv;
537 	struct atmel_nand_host *host = nand_chip->priv;
538 	int i;
539 	uint32_t value;
540 
541 	/* Fill odd syndromes */
542 	for (i = 0; i < host->pmecc_corr_cap; i++) {
543 		value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
544 		if (i & 1)
545 			value >>= 16;
546 		value &= 0xffff;
547 		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
548 	}
549 }
550 
pmecc_substitute(struct mtd_info * mtd)551 static void pmecc_substitute(struct mtd_info *mtd)
552 {
553 	struct nand_chip *nand_chip = mtd->priv;
554 	struct atmel_nand_host *host = nand_chip->priv;
555 	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
556 	int16_t __iomem *index_of = host->pmecc_index_of;
557 	int16_t *partial_syn = host->pmecc_partial_syn;
558 	const int cap = host->pmecc_corr_cap;
559 	int16_t *si;
560 	int i, j;
561 
562 	/* si[] is a table that holds the current syndrome value,
563 	 * an element of that table belongs to the field
564 	 */
565 	si = host->pmecc_si;
566 
567 	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
568 
569 	/* Computation 2t syndromes based on S(x) */
570 	/* Odd syndromes */
571 	for (i = 1; i < 2 * cap; i += 2) {
572 		for (j = 0; j < host->pmecc_degree; j++) {
573 			if (partial_syn[i] & ((unsigned short)0x1 << j))
574 				si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
575 		}
576 	}
577 	/* Even syndrome = (Odd syndrome) ** 2 */
578 	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
579 		if (si[j] == 0) {
580 			si[i] = 0;
581 		} else {
582 			int16_t tmp;
583 
584 			tmp = readw_relaxed(index_of + si[j]);
585 			tmp = (tmp * 2) % host->pmecc_cw_len;
586 			si[i] = readw_relaxed(alpha_to + tmp);
587 		}
588 	}
589 
590 	return;
591 }
592 
pmecc_get_sigma(struct mtd_info * mtd)593 static void pmecc_get_sigma(struct mtd_info *mtd)
594 {
595 	struct nand_chip *nand_chip = mtd->priv;
596 	struct atmel_nand_host *host = nand_chip->priv;
597 
598 	int16_t *lmu = host->pmecc_lmu;
599 	int16_t *si = host->pmecc_si;
600 	int *mu = host->pmecc_mu;
601 	int *dmu = host->pmecc_dmu;	/* Discrepancy */
602 	int *delta = host->pmecc_delta; /* Delta order */
603 	int cw_len = host->pmecc_cw_len;
604 	const int16_t cap = host->pmecc_corr_cap;
605 	const int num = 2 * cap + 1;
606 	int16_t __iomem	*index_of = host->pmecc_index_of;
607 	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
608 	int i, j, k;
609 	uint32_t dmu_0_count, tmp;
610 	int16_t *smu = host->pmecc_smu;
611 
612 	/* index of largest delta */
613 	int ro;
614 	int largest;
615 	int diff;
616 
617 	dmu_0_count = 0;
618 
619 	/* First Row */
620 
621 	/* Mu */
622 	mu[0] = -1;
623 
624 	memset(smu, 0, sizeof(int16_t) * num);
625 	smu[0] = 1;
626 
627 	/* discrepancy set to 1 */
628 	dmu[0] = 1;
629 	/* polynom order set to 0 */
630 	lmu[0] = 0;
631 	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
632 
633 	/* Second Row */
634 
635 	/* Mu */
636 	mu[1] = 0;
637 	/* Sigma(x) set to 1 */
638 	memset(&smu[num], 0, sizeof(int16_t) * num);
639 	smu[num] = 1;
640 
641 	/* discrepancy set to S1 */
642 	dmu[1] = si[1];
643 
644 	/* polynom order set to 0 */
645 	lmu[1] = 0;
646 
647 	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
648 
649 	/* Init the Sigma(x) last row */
650 	memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
651 
652 	for (i = 1; i <= cap; i++) {
653 		mu[i + 1] = i << 1;
654 		/* Begin Computing Sigma (Mu+1) and L(mu) */
655 		/* check if discrepancy is set to 0 */
656 		if (dmu[i] == 0) {
657 			dmu_0_count++;
658 
659 			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
660 			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
661 				tmp += 2;
662 			else
663 				tmp += 1;
664 
665 			if (dmu_0_count == tmp) {
666 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
667 					smu[(cap + 1) * num + j] =
668 							smu[i * num + j];
669 
670 				lmu[cap + 1] = lmu[i];
671 				return;
672 			}
673 
674 			/* copy polynom */
675 			for (j = 0; j <= lmu[i] >> 1; j++)
676 				smu[(i + 1) * num + j] = smu[i * num + j];
677 
678 			/* copy previous polynom order to the next */
679 			lmu[i + 1] = lmu[i];
680 		} else {
681 			ro = 0;
682 			largest = -1;
683 			/* find largest delta with dmu != 0 */
684 			for (j = 0; j < i; j++) {
685 				if ((dmu[j]) && (delta[j] > largest)) {
686 					largest = delta[j];
687 					ro = j;
688 				}
689 			}
690 
691 			/* compute difference */
692 			diff = (mu[i] - mu[ro]);
693 
694 			/* Compute degree of the new smu polynomial */
695 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
696 				lmu[i + 1] = lmu[i];
697 			else
698 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
699 
700 			/* Init smu[i+1] with 0 */
701 			for (k = 0; k < num; k++)
702 				smu[(i + 1) * num + k] = 0;
703 
704 			/* Compute smu[i+1] */
705 			for (k = 0; k <= lmu[ro] >> 1; k++) {
706 				int16_t a, b, c;
707 
708 				if (!(smu[ro * num + k] && dmu[i]))
709 					continue;
710 				a = readw_relaxed(index_of + dmu[i]);
711 				b = readw_relaxed(index_of + dmu[ro]);
712 				c = readw_relaxed(index_of + smu[ro * num + k]);
713 				tmp = a + (cw_len - b) + c;
714 				a = readw_relaxed(alpha_to + tmp % cw_len);
715 				smu[(i + 1) * num + (k + diff)] = a;
716 			}
717 
718 			for (k = 0; k <= lmu[i] >> 1; k++)
719 				smu[(i + 1) * num + k] ^= smu[i * num + k];
720 		}
721 
722 		/* End Computing Sigma (Mu+1) and L(mu) */
723 		/* In either case compute delta */
724 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
725 
726 		/* Do not compute discrepancy for the last iteration */
727 		if (i >= cap)
728 			continue;
729 
730 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
731 			tmp = 2 * (i - 1);
732 			if (k == 0) {
733 				dmu[i + 1] = si[tmp + 3];
734 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
735 				int16_t a, b, c;
736 				a = readw_relaxed(index_of +
737 						smu[(i + 1) * num + k]);
738 				b = si[2 * (i - 1) + 3 - k];
739 				c = readw_relaxed(index_of + b);
740 				tmp = a + c;
741 				tmp %= cw_len;
742 				dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
743 					dmu[i + 1];
744 			}
745 		}
746 	}
747 
748 	return;
749 }
750 
pmecc_err_location(struct mtd_info * mtd)751 static int pmecc_err_location(struct mtd_info *mtd)
752 {
753 	struct nand_chip *nand_chip = mtd->priv;
754 	struct atmel_nand_host *host = nand_chip->priv;
755 	unsigned long end_time;
756 	const int cap = host->pmecc_corr_cap;
757 	const int num = 2 * cap + 1;
758 	int sector_size = host->pmecc_sector_size;
759 	int err_nbr = 0;	/* number of error */
760 	int roots_nbr;		/* number of roots */
761 	int i;
762 	uint32_t val;
763 	int16_t *smu = host->pmecc_smu;
764 
765 	pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
766 
767 	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
768 		pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
769 				      smu[(cap + 1) * num + i]);
770 		err_nbr++;
771 	}
772 
773 	val = (err_nbr - 1) << 16;
774 	if (sector_size == 1024)
775 		val |= 1;
776 
777 	pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
778 	pmerrloc_writel(host->pmerrloc_base, ELEN,
779 			sector_size * 8 + host->pmecc_degree * cap);
780 
781 	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
782 	while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
783 		 & PMERRLOC_CALC_DONE)) {
784 		if (unlikely(time_after(jiffies, end_time))) {
785 			dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
786 			return -1;
787 		}
788 		cpu_relax();
789 	}
790 
791 	roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
792 		& PMERRLOC_ERR_NUM_MASK) >> 8;
793 	/* Number of roots == degree of smu hence <= cap */
794 	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
795 		return err_nbr - 1;
796 
797 	/* Number of roots does not match the degree of smu
798 	 * unable to correct error */
799 	return -1;
800 }
801 
pmecc_correct_data(struct mtd_info * mtd,uint8_t * buf,uint8_t * ecc,int sector_num,int extra_bytes,int err_nbr)802 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
803 		int sector_num, int extra_bytes, int err_nbr)
804 {
805 	struct nand_chip *nand_chip = mtd->priv;
806 	struct atmel_nand_host *host = nand_chip->priv;
807 	int i = 0;
808 	int byte_pos, bit_pos, sector_size, pos;
809 	uint32_t tmp;
810 	uint8_t err_byte;
811 
812 	sector_size = host->pmecc_sector_size;
813 
814 	while (err_nbr) {
815 		tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
816 		byte_pos = tmp / 8;
817 		bit_pos  = tmp % 8;
818 
819 		if (byte_pos >= (sector_size + extra_bytes))
820 			BUG();	/* should never happen */
821 
822 		if (byte_pos < sector_size) {
823 			err_byte = *(buf + byte_pos);
824 			*(buf + byte_pos) ^= (1 << bit_pos);
825 
826 			pos = sector_num * host->pmecc_sector_size + byte_pos;
827 			dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
828 				pos, bit_pos, err_byte, *(buf + byte_pos));
829 		} else {
830 			/* Bit flip in OOB area */
831 			tmp = sector_num * nand_chip->ecc.bytes
832 					+ (byte_pos - sector_size);
833 			err_byte = ecc[tmp];
834 			ecc[tmp] ^= (1 << bit_pos);
835 
836 			pos = tmp + nand_chip->ecc.layout->eccpos[0];
837 			dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
838 				pos, bit_pos, err_byte, ecc[tmp]);
839 		}
840 
841 		i++;
842 		err_nbr--;
843 	}
844 
845 	return;
846 }
847 
pmecc_correction(struct mtd_info * mtd,u32 pmecc_stat,uint8_t * buf,u8 * ecc)848 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
849 	u8 *ecc)
850 {
851 	struct nand_chip *nand_chip = mtd->priv;
852 	struct atmel_nand_host *host = nand_chip->priv;
853 	int i, err_nbr;
854 	uint8_t *buf_pos;
855 	int max_bitflips = 0;
856 
857 	/* If can correct bitfilps from erased page, do the normal check */
858 	if (host->caps->pmecc_correct_erase_page)
859 		goto normal_check;
860 
861 	for (i = 0; i < nand_chip->ecc.total; i++)
862 		if (ecc[i] != 0xff)
863 			goto normal_check;
864 	/* Erased page, return OK */
865 	return 0;
866 
867 normal_check:
868 	for (i = 0; i < nand_chip->ecc.steps; i++) {
869 		err_nbr = 0;
870 		if (pmecc_stat & 0x1) {
871 			buf_pos = buf + i * host->pmecc_sector_size;
872 
873 			pmecc_gen_syndrome(mtd, i);
874 			pmecc_substitute(mtd);
875 			pmecc_get_sigma(mtd);
876 
877 			err_nbr = pmecc_err_location(mtd);
878 			if (err_nbr == -1) {
879 				dev_err(host->dev, "PMECC: Too many errors\n");
880 				mtd->ecc_stats.failed++;
881 				return -EIO;
882 			} else {
883 				pmecc_correct_data(mtd, buf_pos, ecc, i,
884 					nand_chip->ecc.bytes, err_nbr);
885 				mtd->ecc_stats.corrected += err_nbr;
886 				max_bitflips = max_t(int, max_bitflips, err_nbr);
887 			}
888 		}
889 		pmecc_stat >>= 1;
890 	}
891 
892 	return max_bitflips;
893 }
894 
pmecc_enable(struct atmel_nand_host * host,int ecc_op)895 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
896 {
897 	u32 val;
898 
899 	if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
900 		dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
901 		return;
902 	}
903 
904 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
905 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
906 	val = pmecc_readl_relaxed(host->ecc, CFG);
907 
908 	if (ecc_op == NAND_ECC_READ)
909 		pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
910 			| PMECC_CFG_AUTO_ENABLE);
911 	else
912 		pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
913 			& ~PMECC_CFG_AUTO_ENABLE);
914 
915 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
916 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
917 }
918 
atmel_nand_pmecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)919 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
920 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
921 {
922 	struct atmel_nand_host *host = chip->priv;
923 	int eccsize = chip->ecc.size * chip->ecc.steps;
924 	uint8_t *oob = chip->oob_poi;
925 	uint32_t *eccpos = chip->ecc.layout->eccpos;
926 	uint32_t stat;
927 	unsigned long end_time;
928 	int bitflips = 0;
929 
930 	if (!host->nfc || !host->nfc->use_nfc_sram)
931 		pmecc_enable(host, NAND_ECC_READ);
932 
933 	chip->read_buf(mtd, buf, eccsize);
934 	chip->read_buf(mtd, oob, mtd->oobsize);
935 
936 	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
937 	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
938 		if (unlikely(time_after(jiffies, end_time))) {
939 			dev_err(host->dev, "PMECC: Timeout to get error status.\n");
940 			return -EIO;
941 		}
942 		cpu_relax();
943 	}
944 
945 	stat = pmecc_readl_relaxed(host->ecc, ISR);
946 	if (stat != 0) {
947 		bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
948 		if (bitflips < 0)
949 			/* uncorrectable errors */
950 			return 0;
951 	}
952 
953 	return bitflips;
954 }
955 
atmel_nand_pmecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)956 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
957 		struct nand_chip *chip, const uint8_t *buf, int oob_required)
958 {
959 	struct atmel_nand_host *host = chip->priv;
960 	uint32_t *eccpos = chip->ecc.layout->eccpos;
961 	int i, j;
962 	unsigned long end_time;
963 
964 	if (!host->nfc || !host->nfc->write_by_sram) {
965 		pmecc_enable(host, NAND_ECC_WRITE);
966 		chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
967 	}
968 
969 	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
970 	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
971 		if (unlikely(time_after(jiffies, end_time))) {
972 			dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
973 			return -EIO;
974 		}
975 		cpu_relax();
976 	}
977 
978 	for (i = 0; i < chip->ecc.steps; i++) {
979 		for (j = 0; j < chip->ecc.bytes; j++) {
980 			int pos;
981 
982 			pos = i * chip->ecc.bytes + j;
983 			chip->oob_poi[eccpos[pos]] =
984 				pmecc_readb_ecc_relaxed(host->ecc, i, j);
985 		}
986 	}
987 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
988 
989 	return 0;
990 }
991 
atmel_pmecc_core_init(struct mtd_info * mtd)992 static void atmel_pmecc_core_init(struct mtd_info *mtd)
993 {
994 	struct nand_chip *nand_chip = mtd->priv;
995 	struct atmel_nand_host *host = nand_chip->priv;
996 	uint32_t val = 0;
997 	struct nand_ecclayout *ecc_layout;
998 
999 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1000 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1001 
1002 	switch (host->pmecc_corr_cap) {
1003 	case 2:
1004 		val = PMECC_CFG_BCH_ERR2;
1005 		break;
1006 	case 4:
1007 		val = PMECC_CFG_BCH_ERR4;
1008 		break;
1009 	case 8:
1010 		val = PMECC_CFG_BCH_ERR8;
1011 		break;
1012 	case 12:
1013 		val = PMECC_CFG_BCH_ERR12;
1014 		break;
1015 	case 24:
1016 		val = PMECC_CFG_BCH_ERR24;
1017 		break;
1018 	}
1019 
1020 	if (host->pmecc_sector_size == 512)
1021 		val |= PMECC_CFG_SECTOR512;
1022 	else if (host->pmecc_sector_size == 1024)
1023 		val |= PMECC_CFG_SECTOR1024;
1024 
1025 	switch (nand_chip->ecc.steps) {
1026 	case 1:
1027 		val |= PMECC_CFG_PAGE_1SECTOR;
1028 		break;
1029 	case 2:
1030 		val |= PMECC_CFG_PAGE_2SECTORS;
1031 		break;
1032 	case 4:
1033 		val |= PMECC_CFG_PAGE_4SECTORS;
1034 		break;
1035 	case 8:
1036 		val |= PMECC_CFG_PAGE_8SECTORS;
1037 		break;
1038 	}
1039 
1040 	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1041 		| PMECC_CFG_AUTO_DISABLE);
1042 	pmecc_writel(host->ecc, CFG, val);
1043 
1044 	ecc_layout = nand_chip->ecc.layout;
1045 	pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1046 	pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1047 	pmecc_writel(host->ecc, EADDR,
1048 			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1049 	/* See datasheet about PMECC Clock Control Register */
1050 	pmecc_writel(host->ecc, CLK, 2);
1051 	pmecc_writel(host->ecc, IDR, 0xff);
1052 	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1053 }
1054 
1055 /*
1056  * Get minimum ecc requirements from NAND.
1057  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1058  * will set them according to minimum ecc requirement. Otherwise, use the
1059  * value in DTS file.
1060  * return 0 if success. otherwise return error code.
1061  */
pmecc_choose_ecc(struct atmel_nand_host * host,int * cap,int * sector_size)1062 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1063 		int *cap, int *sector_size)
1064 {
1065 	/* Get minimum ECC requirements */
1066 	if (host->nand_chip.ecc_strength_ds) {
1067 		*cap = host->nand_chip.ecc_strength_ds;
1068 		*sector_size = host->nand_chip.ecc_step_ds;
1069 		dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1070 				*cap, *sector_size);
1071 	} else {
1072 		*cap = 2;
1073 		*sector_size = 512;
1074 		dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1075 	}
1076 
1077 	/* If device tree doesn't specify, use NAND's minimum ECC parameters */
1078 	if (host->pmecc_corr_cap == 0) {
1079 		/* use the most fitable ecc bits (the near bigger one ) */
1080 		if (*cap <= 2)
1081 			host->pmecc_corr_cap = 2;
1082 		else if (*cap <= 4)
1083 			host->pmecc_corr_cap = 4;
1084 		else if (*cap <= 8)
1085 			host->pmecc_corr_cap = 8;
1086 		else if (*cap <= 12)
1087 			host->pmecc_corr_cap = 12;
1088 		else if (*cap <= 24)
1089 			host->pmecc_corr_cap = 24;
1090 		else
1091 			return -EINVAL;
1092 	}
1093 	if (host->pmecc_sector_size == 0) {
1094 		/* use the most fitable sector size (the near smaller one ) */
1095 		if (*sector_size >= 1024)
1096 			host->pmecc_sector_size = 1024;
1097 		else if (*sector_size >= 512)
1098 			host->pmecc_sector_size = 512;
1099 		else
1100 			return -EINVAL;
1101 	}
1102 	return 0;
1103 }
1104 
deg(unsigned int poly)1105 static inline int deg(unsigned int poly)
1106 {
1107 	/* polynomial degree is the most-significant bit index */
1108 	return fls(poly) - 1;
1109 }
1110 
build_gf_tables(int mm,unsigned int poly,int16_t * index_of,int16_t * alpha_to)1111 static int build_gf_tables(int mm, unsigned int poly,
1112 		int16_t *index_of, int16_t *alpha_to)
1113 {
1114 	unsigned int i, x = 1;
1115 	const unsigned int k = 1 << deg(poly);
1116 	unsigned int nn = (1 << mm) - 1;
1117 
1118 	/* primitive polynomial must be of degree m */
1119 	if (k != (1u << mm))
1120 		return -EINVAL;
1121 
1122 	for (i = 0; i < nn; i++) {
1123 		alpha_to[i] = x;
1124 		index_of[x] = i;
1125 		if (i && (x == 1))
1126 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1127 			return -EINVAL;
1128 		x <<= 1;
1129 		if (x & k)
1130 			x ^= poly;
1131 	}
1132 	alpha_to[nn] = 1;
1133 	index_of[0] = 0;
1134 
1135 	return 0;
1136 }
1137 
create_lookup_table(struct device * dev,int sector_size)1138 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1139 {
1140 	int degree = (sector_size == 512) ?
1141 			PMECC_GF_DIMENSION_13 :
1142 			PMECC_GF_DIMENSION_14;
1143 	unsigned int poly = (sector_size == 512) ?
1144 			PMECC_GF_13_PRIMITIVE_POLY :
1145 			PMECC_GF_14_PRIMITIVE_POLY;
1146 	int table_size = (sector_size == 512) ?
1147 			PMECC_LOOKUP_TABLE_SIZE_512 :
1148 			PMECC_LOOKUP_TABLE_SIZE_1024;
1149 
1150 	int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1151 			GFP_KERNEL);
1152 	if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1153 		return NULL;
1154 
1155 	return addr;
1156 }
1157 
atmel_pmecc_nand_init_params(struct platform_device * pdev,struct atmel_nand_host * host)1158 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1159 					 struct atmel_nand_host *host)
1160 {
1161 	struct mtd_info *mtd = &host->mtd;
1162 	struct nand_chip *nand_chip = &host->nand_chip;
1163 	struct resource *regs, *regs_pmerr, *regs_rom;
1164 	uint16_t *galois_table;
1165 	int cap, sector_size, err_no;
1166 
1167 	err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1168 	if (err_no) {
1169 		dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1170 		return err_no;
1171 	}
1172 
1173 	if (cap > host->pmecc_corr_cap ||
1174 			sector_size != host->pmecc_sector_size)
1175 		dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1176 
1177 	cap = host->pmecc_corr_cap;
1178 	sector_size = host->pmecc_sector_size;
1179 	host->pmecc_lookup_table_offset = (sector_size == 512) ?
1180 			host->pmecc_lookup_table_offset_512 :
1181 			host->pmecc_lookup_table_offset_1024;
1182 
1183 	dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1184 		 cap, sector_size);
1185 
1186 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1187 	if (!regs) {
1188 		dev_warn(host->dev,
1189 			"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1190 		nand_chip->ecc.mode = NAND_ECC_SOFT;
1191 		return 0;
1192 	}
1193 
1194 	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1195 	if (IS_ERR(host->ecc)) {
1196 		err_no = PTR_ERR(host->ecc);
1197 		goto err;
1198 	}
1199 
1200 	regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1201 	host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1202 	if (IS_ERR(host->pmerrloc_base)) {
1203 		err_no = PTR_ERR(host->pmerrloc_base);
1204 		goto err;
1205 	}
1206 
1207 	if (!host->has_no_lookup_table) {
1208 		regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1209 		host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
1210 								regs_rom);
1211 		if (IS_ERR(host->pmecc_rom_base)) {
1212 			dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1213 			host->has_no_lookup_table = true;
1214 		}
1215 	}
1216 
1217 	if (host->has_no_lookup_table) {
1218 		/* Build the look-up table in runtime */
1219 		galois_table = create_lookup_table(host->dev, sector_size);
1220 		if (!galois_table) {
1221 			dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1222 			err_no = -EINVAL;
1223 			goto err;
1224 		}
1225 
1226 		host->pmecc_rom_base = (void __iomem *)galois_table;
1227 		host->pmecc_lookup_table_offset = 0;
1228 	}
1229 
1230 	nand_chip->ecc.size = sector_size;
1231 
1232 	/* set ECC page size and oob layout */
1233 	switch (mtd->writesize) {
1234 	case 512:
1235 	case 1024:
1236 	case 2048:
1237 	case 4096:
1238 	case 8192:
1239 		if (sector_size > mtd->writesize) {
1240 			dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1241 			err_no = -EINVAL;
1242 			goto err;
1243 		}
1244 
1245 		host->pmecc_degree = (sector_size == 512) ?
1246 			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1247 		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1248 		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1249 		host->pmecc_index_of = host->pmecc_rom_base +
1250 			host->pmecc_lookup_table_offset;
1251 
1252 		nand_chip->ecc.strength = cap;
1253 		nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1254 		nand_chip->ecc.steps = mtd->writesize / sector_size;
1255 		nand_chip->ecc.total = nand_chip->ecc.bytes *
1256 			nand_chip->ecc.steps;
1257 		if (nand_chip->ecc.total >
1258 				mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
1259 			dev_err(host->dev, "No room for ECC bytes\n");
1260 			err_no = -EINVAL;
1261 			goto err;
1262 		}
1263 		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1264 					mtd->oobsize,
1265 					nand_chip->ecc.total);
1266 
1267 		nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1268 		break;
1269 	default:
1270 		dev_warn(host->dev,
1271 			"Unsupported page size for PMECC, use Software ECC\n");
1272 		/* page size not handled by HW ECC */
1273 		/* switching back to soft ECC */
1274 		nand_chip->ecc.mode = NAND_ECC_SOFT;
1275 		return 0;
1276 	}
1277 
1278 	/* Allocate data for PMECC computation */
1279 	err_no = pmecc_data_alloc(host);
1280 	if (err_no) {
1281 		dev_err(host->dev,
1282 				"Cannot allocate memory for PMECC computation!\n");
1283 		goto err;
1284 	}
1285 
1286 	nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1287 	nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1288 	nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1289 
1290 	atmel_pmecc_core_init(mtd);
1291 
1292 	return 0;
1293 
1294 err:
1295 	return err_no;
1296 }
1297 
1298 /*
1299  * Calculate HW ECC
1300  *
1301  * function called after a write
1302  *
1303  * mtd:        MTD block structure
1304  * dat:        raw data (unused)
1305  * ecc_code:   buffer for ECC
1306  */
atmel_nand_calculate(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)1307 static int atmel_nand_calculate(struct mtd_info *mtd,
1308 		const u_char *dat, unsigned char *ecc_code)
1309 {
1310 	struct nand_chip *nand_chip = mtd->priv;
1311 	struct atmel_nand_host *host = nand_chip->priv;
1312 	unsigned int ecc_value;
1313 
1314 	/* get the first 2 ECC bytes */
1315 	ecc_value = ecc_readl(host->ecc, PR);
1316 
1317 	ecc_code[0] = ecc_value & 0xFF;
1318 	ecc_code[1] = (ecc_value >> 8) & 0xFF;
1319 
1320 	/* get the last 2 ECC bytes */
1321 	ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1322 
1323 	ecc_code[2] = ecc_value & 0xFF;
1324 	ecc_code[3] = (ecc_value >> 8) & 0xFF;
1325 
1326 	return 0;
1327 }
1328 
1329 /*
1330  * HW ECC read page function
1331  *
1332  * mtd:        mtd info structure
1333  * chip:       nand chip info structure
1334  * buf:        buffer to store read data
1335  * oob_required:    caller expects OOB data read to chip->oob_poi
1336  */
atmel_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1337 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1338 				uint8_t *buf, int oob_required, int page)
1339 {
1340 	int eccsize = chip->ecc.size;
1341 	int eccbytes = chip->ecc.bytes;
1342 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1343 	uint8_t *p = buf;
1344 	uint8_t *oob = chip->oob_poi;
1345 	uint8_t *ecc_pos;
1346 	int stat;
1347 	unsigned int max_bitflips = 0;
1348 
1349 	/*
1350 	 * Errata: ALE is incorrectly wired up to the ECC controller
1351 	 * on the AP7000, so it will include the address cycles in the
1352 	 * ECC calculation.
1353 	 *
1354 	 * Workaround: Reset the parity registers before reading the
1355 	 * actual data.
1356 	 */
1357 	struct atmel_nand_host *host = chip->priv;
1358 	if (host->board.need_reset_workaround)
1359 		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1360 
1361 	/* read the page */
1362 	chip->read_buf(mtd, p, eccsize);
1363 
1364 	/* move to ECC position if needed */
1365 	if (eccpos[0] != 0) {
1366 		/* This only works on large pages
1367 		 * because the ECC controller waits for
1368 		 * NAND_CMD_RNDOUTSTART after the
1369 		 * NAND_CMD_RNDOUT.
1370 		 * anyway, for small pages, the eccpos[0] == 0
1371 		 */
1372 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1373 				mtd->writesize + eccpos[0], -1);
1374 	}
1375 
1376 	/* the ECC controller needs to read the ECC just after the data */
1377 	ecc_pos = oob + eccpos[0];
1378 	chip->read_buf(mtd, ecc_pos, eccbytes);
1379 
1380 	/* check if there's an error */
1381 	stat = chip->ecc.correct(mtd, p, oob, NULL);
1382 
1383 	if (stat < 0) {
1384 		mtd->ecc_stats.failed++;
1385 	} else {
1386 		mtd->ecc_stats.corrected += stat;
1387 		max_bitflips = max_t(unsigned int, max_bitflips, stat);
1388 	}
1389 
1390 	/* get back to oob start (end of page) */
1391 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1392 
1393 	/* read the oob */
1394 	chip->read_buf(mtd, oob, mtd->oobsize);
1395 
1396 	return max_bitflips;
1397 }
1398 
1399 /*
1400  * HW ECC Correction
1401  *
1402  * function called after a read
1403  *
1404  * mtd:        MTD block structure
1405  * dat:        raw data read from the chip
1406  * read_ecc:   ECC from the chip (unused)
1407  * isnull:     unused
1408  *
1409  * Detect and correct a 1 bit error for a page
1410  */
atmel_nand_correct(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)1411 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1412 		u_char *read_ecc, u_char *isnull)
1413 {
1414 	struct nand_chip *nand_chip = mtd->priv;
1415 	struct atmel_nand_host *host = nand_chip->priv;
1416 	unsigned int ecc_status;
1417 	unsigned int ecc_word, ecc_bit;
1418 
1419 	/* get the status from the Status Register */
1420 	ecc_status = ecc_readl(host->ecc, SR);
1421 
1422 	/* if there's no error */
1423 	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1424 		return 0;
1425 
1426 	/* get error bit offset (4 bits) */
1427 	ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1428 	/* get word address (12 bits) */
1429 	ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1430 	ecc_word >>= 4;
1431 
1432 	/* if there are multiple errors */
1433 	if (ecc_status & ATMEL_ECC_MULERR) {
1434 		/* check if it is a freshly erased block
1435 		 * (filled with 0xff) */
1436 		if ((ecc_bit == ATMEL_ECC_BITADDR)
1437 				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1438 			/* the block has just been erased, return OK */
1439 			return 0;
1440 		}
1441 		/* it doesn't seems to be a freshly
1442 		 * erased block.
1443 		 * We can't correct so many errors */
1444 		dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1445 				" Unable to correct.\n");
1446 		return -EIO;
1447 	}
1448 
1449 	/* if there's a single bit error : we can correct it */
1450 	if (ecc_status & ATMEL_ECC_ECCERR) {
1451 		/* there's nothing much to do here.
1452 		 * the bit error is on the ECC itself.
1453 		 */
1454 		dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1455 				" Nothing to correct\n");
1456 		return 0;
1457 	}
1458 
1459 	dev_dbg(host->dev, "atmel_nand : one bit error on data."
1460 			" (word offset in the page :"
1461 			" 0x%x bit offset : 0x%x)\n",
1462 			ecc_word, ecc_bit);
1463 	/* correct the error */
1464 	if (nand_chip->options & NAND_BUSWIDTH_16) {
1465 		/* 16 bits words */
1466 		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1467 	} else {
1468 		/* 8 bits words */
1469 		dat[ecc_word] ^= (1 << ecc_bit);
1470 	}
1471 	dev_dbg(host->dev, "atmel_nand : error corrected\n");
1472 	return 1;
1473 }
1474 
1475 /*
1476  * Enable HW ECC : unused on most chips
1477  */
atmel_nand_hwctl(struct mtd_info * mtd,int mode)1478 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1479 {
1480 	struct nand_chip *nand_chip = mtd->priv;
1481 	struct atmel_nand_host *host = nand_chip->priv;
1482 
1483 	if (host->board.need_reset_workaround)
1484 		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1485 }
1486 
1487 static const struct of_device_id atmel_nand_dt_ids[];
1488 
atmel_of_init_port(struct atmel_nand_host * host,struct device_node * np)1489 static int atmel_of_init_port(struct atmel_nand_host *host,
1490 			      struct device_node *np)
1491 {
1492 	u32 val;
1493 	u32 offset[2];
1494 	int ecc_mode;
1495 	struct atmel_nand_data *board = &host->board;
1496 	enum of_gpio_flags flags = 0;
1497 
1498 	host->caps = (struct atmel_nand_caps *)
1499 		of_match_device(atmel_nand_dt_ids, host->dev)->data;
1500 
1501 	if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1502 		if (val >= 32) {
1503 			dev_err(host->dev, "invalid addr-offset %u\n", val);
1504 			return -EINVAL;
1505 		}
1506 		board->ale = val;
1507 	}
1508 
1509 	if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1510 		if (val >= 32) {
1511 			dev_err(host->dev, "invalid cmd-offset %u\n", val);
1512 			return -EINVAL;
1513 		}
1514 		board->cle = val;
1515 	}
1516 
1517 	ecc_mode = of_get_nand_ecc_mode(np);
1518 
1519 	board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1520 
1521 	board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1522 
1523 	board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1524 
1525 	if (of_get_nand_bus_width(np) == 16)
1526 		board->bus_width_16 = 1;
1527 
1528 	board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1529 	board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1530 
1531 	board->enable_pin = of_get_gpio(np, 1);
1532 	board->det_pin = of_get_gpio(np, 2);
1533 
1534 	host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1535 
1536 	/* load the nfc driver if there is */
1537 	of_platform_populate(np, NULL, NULL, host->dev);
1538 
1539 	if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1540 		return 0;	/* Not using PMECC */
1541 
1542 	/* use PMECC, get correction capability, sector size and lookup
1543 	 * table offset.
1544 	 * If correction bits and sector size are not specified, then find
1545 	 * them from NAND ONFI parameters.
1546 	 */
1547 	if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1548 		if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1549 				(val != 24)) {
1550 			dev_err(host->dev,
1551 				"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1552 				val);
1553 			return -EINVAL;
1554 		}
1555 		host->pmecc_corr_cap = (u8)val;
1556 	}
1557 
1558 	if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1559 		if ((val != 512) && (val != 1024)) {
1560 			dev_err(host->dev,
1561 				"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1562 				val);
1563 			return -EINVAL;
1564 		}
1565 		host->pmecc_sector_size = (u16)val;
1566 	}
1567 
1568 	if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1569 			offset, 2) != 0) {
1570 		dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1571 		host->has_no_lookup_table = true;
1572 		/* Will build a lookup table and initialize the offset later */
1573 		return 0;
1574 	}
1575 	if (!offset[0] && !offset[1]) {
1576 		dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1577 		return -EINVAL;
1578 	}
1579 	host->pmecc_lookup_table_offset_512 = offset[0];
1580 	host->pmecc_lookup_table_offset_1024 = offset[1];
1581 
1582 	return 0;
1583 }
1584 
atmel_hw_nand_init_params(struct platform_device * pdev,struct atmel_nand_host * host)1585 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1586 					 struct atmel_nand_host *host)
1587 {
1588 	struct mtd_info *mtd = &host->mtd;
1589 	struct nand_chip *nand_chip = &host->nand_chip;
1590 	struct resource		*regs;
1591 
1592 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1593 	if (!regs) {
1594 		dev_err(host->dev,
1595 			"Can't get I/O resource regs, use software ECC\n");
1596 		nand_chip->ecc.mode = NAND_ECC_SOFT;
1597 		return 0;
1598 	}
1599 
1600 	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1601 	if (IS_ERR(host->ecc))
1602 		return PTR_ERR(host->ecc);
1603 
1604 	/* ECC is calculated for the whole page (1 step) */
1605 	nand_chip->ecc.size = mtd->writesize;
1606 
1607 	/* set ECC page size and oob layout */
1608 	switch (mtd->writesize) {
1609 	case 512:
1610 		nand_chip->ecc.layout = &atmel_oobinfo_small;
1611 		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1612 		break;
1613 	case 1024:
1614 		nand_chip->ecc.layout = &atmel_oobinfo_large;
1615 		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1616 		break;
1617 	case 2048:
1618 		nand_chip->ecc.layout = &atmel_oobinfo_large;
1619 		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1620 		break;
1621 	case 4096:
1622 		nand_chip->ecc.layout = &atmel_oobinfo_large;
1623 		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1624 		break;
1625 	default:
1626 		/* page size not handled by HW ECC */
1627 		/* switching back to soft ECC */
1628 		nand_chip->ecc.mode = NAND_ECC_SOFT;
1629 		return 0;
1630 	}
1631 
1632 	/* set up for HW ECC */
1633 	nand_chip->ecc.calculate = atmel_nand_calculate;
1634 	nand_chip->ecc.correct = atmel_nand_correct;
1635 	nand_chip->ecc.hwctl = atmel_nand_hwctl;
1636 	nand_chip->ecc.read_page = atmel_nand_read_page;
1637 	nand_chip->ecc.bytes = 4;
1638 	nand_chip->ecc.strength = 1;
1639 
1640 	return 0;
1641 }
1642 
nfc_read_status(struct atmel_nand_host * host)1643 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1644 {
1645 	u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1646 	u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1647 
1648 	if (unlikely(nfc_status & err_flags)) {
1649 		if (nfc_status & NFC_SR_DTOE)
1650 			dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1651 		else if (nfc_status & NFC_SR_UNDEF)
1652 			dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1653 		else if (nfc_status & NFC_SR_AWB)
1654 			dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1655 		else if (nfc_status & NFC_SR_ASE)
1656 			dev_err(host->dev, "NFC: Access memory Size Error\n");
1657 	}
1658 
1659 	return nfc_status;
1660 }
1661 
1662 /* SMC interrupt service routine */
hsmc_interrupt(int irq,void * dev_id)1663 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1664 {
1665 	struct atmel_nand_host *host = dev_id;
1666 	u32 status, mask, pending;
1667 	irqreturn_t ret = IRQ_NONE;
1668 
1669 	status = nfc_read_status(host);
1670 	mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1671 	pending = status & mask;
1672 
1673 	if (pending & NFC_SR_XFR_DONE) {
1674 		complete(&host->nfc->comp_xfer_done);
1675 		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1676 		ret = IRQ_HANDLED;
1677 	}
1678 	if (pending & NFC_SR_RB_EDGE) {
1679 		complete(&host->nfc->comp_ready);
1680 		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1681 		ret = IRQ_HANDLED;
1682 	}
1683 	if (pending & NFC_SR_CMD_DONE) {
1684 		complete(&host->nfc->comp_cmd_done);
1685 		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1686 		ret = IRQ_HANDLED;
1687 	}
1688 
1689 	return ret;
1690 }
1691 
1692 /* NFC(Nand Flash Controller) related functions */
nfc_prepare_interrupt(struct atmel_nand_host * host,u32 flag)1693 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1694 {
1695 	if (flag & NFC_SR_XFR_DONE)
1696 		init_completion(&host->nfc->comp_xfer_done);
1697 
1698 	if (flag & NFC_SR_RB_EDGE)
1699 		init_completion(&host->nfc->comp_ready);
1700 
1701 	if (flag & NFC_SR_CMD_DONE)
1702 		init_completion(&host->nfc->comp_cmd_done);
1703 
1704 	/* Enable interrupt that need to wait for */
1705 	nfc_writel(host->nfc->hsmc_regs, IER, flag);
1706 }
1707 
nfc_wait_interrupt(struct atmel_nand_host * host,u32 flag)1708 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1709 {
1710 	int i, index = 0;
1711 	struct completion *comp[3];	/* Support 3 interrupt completion */
1712 
1713 	if (flag & NFC_SR_XFR_DONE)
1714 		comp[index++] = &host->nfc->comp_xfer_done;
1715 
1716 	if (flag & NFC_SR_RB_EDGE)
1717 		comp[index++] = &host->nfc->comp_ready;
1718 
1719 	if (flag & NFC_SR_CMD_DONE)
1720 		comp[index++] = &host->nfc->comp_cmd_done;
1721 
1722 	if (index == 0) {
1723 		dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
1724 		return -EINVAL;
1725 	}
1726 
1727 	for (i = 0; i < index; i++) {
1728 		if (wait_for_completion_timeout(comp[i],
1729 				msecs_to_jiffies(NFC_TIME_OUT_MS)))
1730 			continue;	/* wait for next completion */
1731 		else
1732 			goto err_timeout;
1733 	}
1734 
1735 	return 0;
1736 
1737 err_timeout:
1738 	dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1739 	/* Disable the interrupt as it is not handled by interrupt handler */
1740 	nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1741 	return -ETIMEDOUT;
1742 }
1743 
nfc_send_command(struct atmel_nand_host * host,unsigned int cmd,unsigned int addr,unsigned char cycle0)1744 static int nfc_send_command(struct atmel_nand_host *host,
1745 	unsigned int cmd, unsigned int addr, unsigned char cycle0)
1746 {
1747 	unsigned long timeout;
1748 	u32 flag = NFC_SR_CMD_DONE;
1749 	flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1750 
1751 	dev_dbg(host->dev,
1752 		"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1753 		cmd, addr, cycle0);
1754 
1755 	timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1756 	while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
1757 		if (time_after(jiffies, timeout)) {
1758 			dev_err(host->dev,
1759 				"Time out to wait for NFC ready!\n");
1760 			return -ETIMEDOUT;
1761 		}
1762 	}
1763 
1764 	nfc_prepare_interrupt(host, flag);
1765 	nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1766 	nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1767 	return nfc_wait_interrupt(host, flag);
1768 }
1769 
nfc_device_ready(struct mtd_info * mtd)1770 static int nfc_device_ready(struct mtd_info *mtd)
1771 {
1772 	u32 status, mask;
1773 	struct nand_chip *nand_chip = mtd->priv;
1774 	struct atmel_nand_host *host = nand_chip->priv;
1775 
1776 	status = nfc_read_status(host);
1777 	mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1778 
1779 	/* The mask should be 0. If not we may lost interrupts */
1780 	if (unlikely(mask & status))
1781 		dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1782 				mask & status);
1783 
1784 	return status & NFC_SR_RB_EDGE;
1785 }
1786 
nfc_select_chip(struct mtd_info * mtd,int chip)1787 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1788 {
1789 	struct nand_chip *nand_chip = mtd->priv;
1790 	struct atmel_nand_host *host = nand_chip->priv;
1791 
1792 	if (chip == -1)
1793 		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1794 	else
1795 		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1796 }
1797 
nfc_make_addr(struct mtd_info * mtd,int command,int column,int page_addr,unsigned int * addr1234,unsigned int * cycle0)1798 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1799 		int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1800 {
1801 	struct nand_chip *chip = mtd->priv;
1802 
1803 	int acycle = 0;
1804 	unsigned char addr_bytes[8];
1805 	int index = 0, bit_shift;
1806 
1807 	BUG_ON(addr1234 == NULL || cycle0 == NULL);
1808 
1809 	*cycle0 = 0;
1810 	*addr1234 = 0;
1811 
1812 	if (column != -1) {
1813 		if (chip->options & NAND_BUSWIDTH_16 &&
1814 				!nand_opcode_8bits(command))
1815 			column >>= 1;
1816 		addr_bytes[acycle++] = column & 0xff;
1817 		if (mtd->writesize > 512)
1818 			addr_bytes[acycle++] = (column >> 8) & 0xff;
1819 	}
1820 
1821 	if (page_addr != -1) {
1822 		addr_bytes[acycle++] = page_addr & 0xff;
1823 		addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1824 		if (chip->chipsize > (128 << 20))
1825 			addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1826 	}
1827 
1828 	if (acycle > 4)
1829 		*cycle0 = addr_bytes[index++];
1830 
1831 	for (bit_shift = 0; index < acycle; bit_shift += 8)
1832 		*addr1234 += addr_bytes[index++] << bit_shift;
1833 
1834 	/* return acycle in cmd register */
1835 	return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1836 }
1837 
nfc_nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)1838 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1839 				int column, int page_addr)
1840 {
1841 	struct nand_chip *chip = mtd->priv;
1842 	struct atmel_nand_host *host = chip->priv;
1843 	unsigned long timeout;
1844 	unsigned int nfc_addr_cmd = 0;
1845 
1846 	unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1847 
1848 	/* Set default settings: no cmd2, no addr cycle. read from nand */
1849 	unsigned int cmd2 = 0;
1850 	unsigned int vcmd2 = 0;
1851 	int acycle = NFCADDR_CMD_ACYCLE_NONE;
1852 	int csid = NFCADDR_CMD_CSID_3;
1853 	int dataen = NFCADDR_CMD_DATADIS;
1854 	int nfcwr = NFCADDR_CMD_NFCRD;
1855 	unsigned int addr1234 = 0;
1856 	unsigned int cycle0 = 0;
1857 	bool do_addr = true;
1858 	host->nfc->data_in_sram = NULL;
1859 
1860 	dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1861 	     __func__, command, column, page_addr);
1862 
1863 	switch (command) {
1864 	case NAND_CMD_RESET:
1865 		nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1866 		nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1867 		udelay(chip->chip_delay);
1868 
1869 		nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1870 		timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1871 		while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1872 			if (time_after(jiffies, timeout)) {
1873 				dev_err(host->dev,
1874 					"Time out to wait status ready!\n");
1875 				break;
1876 			}
1877 		}
1878 		return;
1879 	case NAND_CMD_STATUS:
1880 		do_addr = false;
1881 		break;
1882 	case NAND_CMD_PARAM:
1883 	case NAND_CMD_READID:
1884 		do_addr = false;
1885 		acycle = NFCADDR_CMD_ACYCLE_1;
1886 		if (column != -1)
1887 			addr1234 = column;
1888 		break;
1889 	case NAND_CMD_RNDOUT:
1890 		cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1891 		vcmd2 = NFCADDR_CMD_VCMD2;
1892 		break;
1893 	case NAND_CMD_READ0:
1894 	case NAND_CMD_READOOB:
1895 		if (command == NAND_CMD_READOOB) {
1896 			column += mtd->writesize;
1897 			command = NAND_CMD_READ0; /* only READ0 is valid */
1898 			cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1899 		}
1900 		if (host->nfc->use_nfc_sram) {
1901 			/* Enable Data transfer to sram */
1902 			dataen = NFCADDR_CMD_DATAEN;
1903 
1904 			/* Need enable PMECC now, since NFC will transfer
1905 			 * data in bus after sending nfc read command.
1906 			 */
1907 			if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1908 				pmecc_enable(host, NAND_ECC_READ);
1909 		}
1910 
1911 		cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1912 		vcmd2 = NFCADDR_CMD_VCMD2;
1913 		break;
1914 	/* For prgramming command, the cmd need set to write enable */
1915 	case NAND_CMD_PAGEPROG:
1916 	case NAND_CMD_SEQIN:
1917 	case NAND_CMD_RNDIN:
1918 		nfcwr = NFCADDR_CMD_NFCWR;
1919 		if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1920 			dataen = NFCADDR_CMD_DATAEN;
1921 		break;
1922 	default:
1923 		break;
1924 	}
1925 
1926 	if (do_addr)
1927 		acycle = nfc_make_addr(mtd, command, column, page_addr,
1928 				&addr1234, &cycle0);
1929 
1930 	nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1931 	nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1932 
1933 	/*
1934 	 * Program and erase have their own busy handlers status, sequential
1935 	 * in, and deplete1 need no delay.
1936 	 */
1937 	switch (command) {
1938 	case NAND_CMD_CACHEDPROG:
1939 	case NAND_CMD_PAGEPROG:
1940 	case NAND_CMD_ERASE1:
1941 	case NAND_CMD_ERASE2:
1942 	case NAND_CMD_RNDIN:
1943 	case NAND_CMD_STATUS:
1944 	case NAND_CMD_RNDOUT:
1945 	case NAND_CMD_SEQIN:
1946 	case NAND_CMD_READID:
1947 		return;
1948 
1949 	case NAND_CMD_READ0:
1950 		if (dataen == NFCADDR_CMD_DATAEN) {
1951 			host->nfc->data_in_sram = host->nfc->sram_bank0 +
1952 				nfc_get_sram_off(host);
1953 			return;
1954 		}
1955 		/* fall through */
1956 	default:
1957 		nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1958 		nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1959 	}
1960 }
1961 
nfc_sram_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int cached,int raw)1962 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1963 			uint32_t offset, int data_len, const uint8_t *buf,
1964 			int oob_required, int page, int cached, int raw)
1965 {
1966 	int cfg, len;
1967 	int status = 0;
1968 	struct atmel_nand_host *host = chip->priv;
1969 	void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1970 
1971 	/* Subpage write is not supported */
1972 	if (offset || (data_len < mtd->writesize))
1973 		return -EINVAL;
1974 
1975 	len = mtd->writesize;
1976 	/* Copy page data to sram that will write to nand via NFC */
1977 	if (use_dma) {
1978 		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1979 			/* Fall back to use cpu copy */
1980 			memcpy(sram, buf, len);
1981 	} else {
1982 		memcpy(sram, buf, len);
1983 	}
1984 
1985 	cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1986 	if (unlikely(raw) && oob_required) {
1987 		memcpy(sram + len, chip->oob_poi, mtd->oobsize);
1988 		len += mtd->oobsize;
1989 		nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1990 	} else {
1991 		nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1992 	}
1993 
1994 	if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1995 		/*
1996 		 * When use NFC sram, need set up PMECC before send
1997 		 * NAND_CMD_SEQIN command. Since when the nand command
1998 		 * is sent, nfc will do transfer from sram and nand.
1999 		 */
2000 		pmecc_enable(host, NAND_ECC_WRITE);
2001 
2002 	host->nfc->will_write_sram = true;
2003 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2004 	host->nfc->will_write_sram = false;
2005 
2006 	if (likely(!raw))
2007 		/* Need to write ecc into oob */
2008 		status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2009 
2010 	if (status < 0)
2011 		return status;
2012 
2013 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2014 	status = chip->waitfunc(mtd, chip);
2015 
2016 	if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2017 		status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2018 
2019 	if (status & NAND_STATUS_FAIL)
2020 		return -EIO;
2021 
2022 	return 0;
2023 }
2024 
nfc_sram_init(struct mtd_info * mtd)2025 static int nfc_sram_init(struct mtd_info *mtd)
2026 {
2027 	struct nand_chip *chip = mtd->priv;
2028 	struct atmel_nand_host *host = chip->priv;
2029 	int res = 0;
2030 
2031 	/* Initialize the NFC CFG register */
2032 	unsigned int cfg_nfc = 0;
2033 
2034 	/* set page size and oob layout */
2035 	switch (mtd->writesize) {
2036 	case 512:
2037 		cfg_nfc = NFC_CFG_PAGESIZE_512;
2038 		break;
2039 	case 1024:
2040 		cfg_nfc = NFC_CFG_PAGESIZE_1024;
2041 		break;
2042 	case 2048:
2043 		cfg_nfc = NFC_CFG_PAGESIZE_2048;
2044 		break;
2045 	case 4096:
2046 		cfg_nfc = NFC_CFG_PAGESIZE_4096;
2047 		break;
2048 	case 8192:
2049 		cfg_nfc = NFC_CFG_PAGESIZE_8192;
2050 		break;
2051 	default:
2052 		dev_err(host->dev, "Unsupported page size for NFC.\n");
2053 		res = -ENXIO;
2054 		return res;
2055 	}
2056 
2057 	/* oob bytes size = (NFCSPARESIZE + 1) * 4
2058 	 * Max support spare size is 512 bytes. */
2059 	cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2060 		& NFC_CFG_NFC_SPARESIZE);
2061 	/* default set a max timeout */
2062 	cfg_nfc |= NFC_CFG_RSPARE |
2063 			NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2064 
2065 	nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2066 
2067 	host->nfc->will_write_sram = false;
2068 	nfc_set_sram_bank(host, 0);
2069 
2070 	/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2071 	if (host->nfc->write_by_sram) {
2072 		if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2073 				chip->ecc.mode == NAND_ECC_NONE)
2074 			chip->write_page = nfc_sram_write_page;
2075 		else
2076 			host->nfc->write_by_sram = false;
2077 	}
2078 
2079 	dev_info(host->dev, "Using NFC Sram read %s\n",
2080 			host->nfc->write_by_sram ? "and write" : "");
2081 	return 0;
2082 }
2083 
2084 static struct platform_driver atmel_nand_nfc_driver;
2085 /*
2086  * Probe for the NAND device.
2087  */
atmel_nand_probe(struct platform_device * pdev)2088 static int atmel_nand_probe(struct platform_device *pdev)
2089 {
2090 	struct atmel_nand_host *host;
2091 	struct mtd_info *mtd;
2092 	struct nand_chip *nand_chip;
2093 	struct resource *mem;
2094 	struct mtd_part_parser_data ppdata = {};
2095 	int res, irq;
2096 
2097 	/* Allocate memory for the device structure (and zero it) */
2098 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2099 	if (!host)
2100 		return -ENOMEM;
2101 
2102 	res = platform_driver_register(&atmel_nand_nfc_driver);
2103 	if (res)
2104 		dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2105 
2106 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2107 	host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2108 	if (IS_ERR(host->io_base)) {
2109 		res = PTR_ERR(host->io_base);
2110 		goto err_nand_ioremap;
2111 	}
2112 	host->io_phys = (dma_addr_t)mem->start;
2113 
2114 	mtd = &host->mtd;
2115 	nand_chip = &host->nand_chip;
2116 	host->dev = &pdev->dev;
2117 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2118 		/* Only when CONFIG_OF is enabled of_node can be parsed */
2119 		res = atmel_of_init_port(host, pdev->dev.of_node);
2120 		if (res)
2121 			goto err_nand_ioremap;
2122 	} else {
2123 		memcpy(&host->board, dev_get_platdata(&pdev->dev),
2124 		       sizeof(struct atmel_nand_data));
2125 	}
2126 
2127 	nand_chip->priv = host;		/* link the private data structures */
2128 	mtd->priv = nand_chip;
2129 	mtd->owner = THIS_MODULE;
2130 
2131 	/* Set address of NAND IO lines */
2132 	nand_chip->IO_ADDR_R = host->io_base;
2133 	nand_chip->IO_ADDR_W = host->io_base;
2134 
2135 	if (nand_nfc.is_initialized) {
2136 		/* NFC driver is probed and initialized */
2137 		host->nfc = &nand_nfc;
2138 
2139 		nand_chip->select_chip = nfc_select_chip;
2140 		nand_chip->dev_ready = nfc_device_ready;
2141 		nand_chip->cmdfunc = nfc_nand_command;
2142 
2143 		/* Initialize the interrupt for NFC */
2144 		irq = platform_get_irq(pdev, 0);
2145 		if (irq < 0) {
2146 			dev_err(host->dev, "Cannot get HSMC irq!\n");
2147 			res = irq;
2148 			goto err_nand_ioremap;
2149 		}
2150 
2151 		res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2152 				0, "hsmc", host);
2153 		if (res) {
2154 			dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2155 				irq);
2156 			goto err_nand_ioremap;
2157 		}
2158 	} else {
2159 		res = atmel_nand_set_enable_ready_pins(mtd);
2160 		if (res)
2161 			goto err_nand_ioremap;
2162 
2163 		nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2164 	}
2165 
2166 	nand_chip->ecc.mode = host->board.ecc_mode;
2167 	nand_chip->chip_delay = 40;		/* 40us command delay time */
2168 
2169 	if (host->board.bus_width_16)	/* 16-bit bus width */
2170 		nand_chip->options |= NAND_BUSWIDTH_16;
2171 
2172 	nand_chip->read_buf = atmel_read_buf;
2173 	nand_chip->write_buf = atmel_write_buf;
2174 
2175 	platform_set_drvdata(pdev, host);
2176 	atmel_nand_enable(host);
2177 
2178 	if (gpio_is_valid(host->board.det_pin)) {
2179 		res = devm_gpio_request(&pdev->dev,
2180 				host->board.det_pin, "nand_det");
2181 		if (res < 0) {
2182 			dev_err(&pdev->dev,
2183 				"can't request det gpio %d\n",
2184 				host->board.det_pin);
2185 			goto err_no_card;
2186 		}
2187 
2188 		res = gpio_direction_input(host->board.det_pin);
2189 		if (res < 0) {
2190 			dev_err(&pdev->dev,
2191 				"can't request input direction det gpio %d\n",
2192 				host->board.det_pin);
2193 			goto err_no_card;
2194 		}
2195 
2196 		if (gpio_get_value(host->board.det_pin)) {
2197 			dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2198 			res = -ENXIO;
2199 			goto err_no_card;
2200 		}
2201 	}
2202 
2203 	if (host->board.on_flash_bbt || on_flash_bbt) {
2204 		dev_info(&pdev->dev, "Use On Flash BBT\n");
2205 		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2206 	}
2207 
2208 	if (!host->board.has_dma)
2209 		use_dma = 0;
2210 
2211 	if (use_dma) {
2212 		dma_cap_mask_t mask;
2213 
2214 		dma_cap_zero(mask);
2215 		dma_cap_set(DMA_MEMCPY, mask);
2216 		host->dma_chan = dma_request_channel(mask, NULL, NULL);
2217 		if (!host->dma_chan) {
2218 			dev_err(host->dev, "Failed to request DMA channel\n");
2219 			use_dma = 0;
2220 		}
2221 	}
2222 	if (use_dma)
2223 		dev_info(host->dev, "Using %s for DMA transfers.\n",
2224 					dma_chan_name(host->dma_chan));
2225 	else
2226 		dev_info(host->dev, "No DMA support for NAND access.\n");
2227 
2228 	/* first scan to find the device and get the page size */
2229 	if (nand_scan_ident(mtd, 1, NULL)) {
2230 		res = -ENXIO;
2231 		goto err_scan_ident;
2232 	}
2233 
2234 	if (nand_chip->ecc.mode == NAND_ECC_HW) {
2235 		if (host->has_pmecc)
2236 			res = atmel_pmecc_nand_init_params(pdev, host);
2237 		else
2238 			res = atmel_hw_nand_init_params(pdev, host);
2239 
2240 		if (res != 0)
2241 			goto err_hw_ecc;
2242 	}
2243 
2244 	/* initialize the nfc configuration register */
2245 	if (host->nfc && host->nfc->use_nfc_sram) {
2246 		res = nfc_sram_init(mtd);
2247 		if (res) {
2248 			host->nfc->use_nfc_sram = false;
2249 			dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2250 		}
2251 	}
2252 
2253 	/* second phase scan */
2254 	if (nand_scan_tail(mtd)) {
2255 		res = -ENXIO;
2256 		goto err_scan_tail;
2257 	}
2258 
2259 	mtd->name = "atmel_nand";
2260 	ppdata.of_node = pdev->dev.of_node;
2261 	res = mtd_device_parse_register(mtd, NULL, &ppdata,
2262 			host->board.parts, host->board.num_parts);
2263 	if (!res)
2264 		return res;
2265 
2266 err_scan_tail:
2267 	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2268 		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2269 err_hw_ecc:
2270 err_scan_ident:
2271 err_no_card:
2272 	atmel_nand_disable(host);
2273 	if (host->dma_chan)
2274 		dma_release_channel(host->dma_chan);
2275 err_nand_ioremap:
2276 	return res;
2277 }
2278 
2279 /*
2280  * Remove a NAND device.
2281  */
atmel_nand_remove(struct platform_device * pdev)2282 static int atmel_nand_remove(struct platform_device *pdev)
2283 {
2284 	struct atmel_nand_host *host = platform_get_drvdata(pdev);
2285 	struct mtd_info *mtd = &host->mtd;
2286 
2287 	nand_release(mtd);
2288 
2289 	atmel_nand_disable(host);
2290 
2291 	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2292 		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2293 		pmerrloc_writel(host->pmerrloc_base, ELDIS,
2294 				PMERRLOC_DISABLE);
2295 	}
2296 
2297 	if (host->dma_chan)
2298 		dma_release_channel(host->dma_chan);
2299 
2300 	platform_driver_unregister(&atmel_nand_nfc_driver);
2301 
2302 	return 0;
2303 }
2304 
2305 static struct atmel_nand_caps at91rm9200_caps = {
2306 	.pmecc_correct_erase_page = false,
2307 };
2308 
2309 static struct atmel_nand_caps sama5d4_caps = {
2310 	.pmecc_correct_erase_page = true,
2311 };
2312 
2313 static const struct of_device_id atmel_nand_dt_ids[] = {
2314 	{ .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
2315 	{ .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
2316 	{ /* sentinel */ }
2317 };
2318 
2319 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2320 
atmel_nand_nfc_probe(struct platform_device * pdev)2321 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2322 {
2323 	struct atmel_nfc *nfc = &nand_nfc;
2324 	struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2325 	int ret;
2326 
2327 	nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2328 	nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2329 	if (IS_ERR(nfc->base_cmd_regs))
2330 		return PTR_ERR(nfc->base_cmd_regs);
2331 
2332 	nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2333 	nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2334 	if (IS_ERR(nfc->hsmc_regs))
2335 		return PTR_ERR(nfc->hsmc_regs);
2336 
2337 	nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2338 	if (nfc_sram) {
2339 		nfc->sram_bank0 = (void * __force)
2340 				devm_ioremap_resource(&pdev->dev, nfc_sram);
2341 		if (IS_ERR(nfc->sram_bank0)) {
2342 			dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2343 					PTR_ERR(nfc->sram_bank0));
2344 		} else {
2345 			nfc->use_nfc_sram = true;
2346 			nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2347 
2348 			if (pdev->dev.of_node)
2349 				nfc->write_by_sram = of_property_read_bool(
2350 						pdev->dev.of_node,
2351 						"atmel,write-by-sram");
2352 		}
2353 	}
2354 
2355 	nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2356 	nfc_readl(nfc->hsmc_regs, SR);	/* clear the NFC_SR */
2357 
2358 	nfc->clk = devm_clk_get(&pdev->dev, NULL);
2359 	if (!IS_ERR(nfc->clk)) {
2360 		ret = clk_prepare_enable(nfc->clk);
2361 		if (ret)
2362 			return ret;
2363 	} else {
2364 		dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2365 	}
2366 
2367 	nfc->is_initialized = true;
2368 	dev_info(&pdev->dev, "NFC is probed.\n");
2369 
2370 	return 0;
2371 }
2372 
atmel_nand_nfc_remove(struct platform_device * pdev)2373 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2374 {
2375 	struct atmel_nfc *nfc = &nand_nfc;
2376 
2377 	if (!IS_ERR(nfc->clk))
2378 		clk_disable_unprepare(nfc->clk);
2379 
2380 	return 0;
2381 }
2382 
2383 static const struct of_device_id atmel_nand_nfc_match[] = {
2384 	{ .compatible = "atmel,sama5d3-nfc" },
2385 	{ /* sentinel */ }
2386 };
2387 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2388 
2389 static struct platform_driver atmel_nand_nfc_driver = {
2390 	.driver = {
2391 		.name = "atmel_nand_nfc",
2392 		.of_match_table = of_match_ptr(atmel_nand_nfc_match),
2393 	},
2394 	.probe = atmel_nand_nfc_probe,
2395 	.remove = atmel_nand_nfc_remove,
2396 };
2397 
2398 static struct platform_driver atmel_nand_driver = {
2399 	.probe		= atmel_nand_probe,
2400 	.remove		= atmel_nand_remove,
2401 	.driver		= {
2402 		.name	= "atmel_nand",
2403 		.of_match_table	= of_match_ptr(atmel_nand_dt_ids),
2404 	},
2405 };
2406 
2407 module_platform_driver(atmel_nand_driver);
2408 
2409 MODULE_LICENSE("GPL");
2410 MODULE_AUTHOR("Rick Bronson");
2411 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2412 MODULE_ALIAS("platform:atmel_nand");
2413