1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *	- SMMUv1 and v2 implementations
23  *	- Stream-matching and stream-indexing
24  *	- v7/v8 long-descriptor format
25  *	- Non-secure access to the SMMU
26  *	- Context fault reporting
27  */
28 
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30 
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 
45 #include <linux/amba/bus.h>
46 
47 #include "io-pgtable.h"
48 
49 /* Maximum number of stream IDs assigned to a single device */
50 #define MAX_MASTER_STREAMIDS		MAX_PHANDLE_ARGS
51 
52 /* Maximum number of context banks per SMMU */
53 #define ARM_SMMU_MAX_CBS		128
54 
55 /* Maximum number of mapping groups per SMMU */
56 #define ARM_SMMU_MAX_SMRS		128
57 
58 /* SMMU global address space */
59 #define ARM_SMMU_GR0(smmu)		((smmu)->base)
60 #define ARM_SMMU_GR1(smmu)		((smmu)->base + (1 << (smmu)->pgshift))
61 
62 /*
63  * SMMU global address space with conditional offset to access secure
64  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
65  * nsGFSYNR0: 0x450)
66  */
67 #define ARM_SMMU_GR0_NS(smmu)						\
68 	((smmu)->base +							\
69 		((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)	\
70 			? 0x400 : 0))
71 
72 /* Configuration registers */
73 #define ARM_SMMU_GR0_sCR0		0x0
74 #define sCR0_CLIENTPD			(1 << 0)
75 #define sCR0_GFRE			(1 << 1)
76 #define sCR0_GFIE			(1 << 2)
77 #define sCR0_GCFGFRE			(1 << 4)
78 #define sCR0_GCFGFIE			(1 << 5)
79 #define sCR0_USFCFG			(1 << 10)
80 #define sCR0_VMIDPNE			(1 << 11)
81 #define sCR0_PTM			(1 << 12)
82 #define sCR0_FB				(1 << 13)
83 #define sCR0_BSU_SHIFT			14
84 #define sCR0_BSU_MASK			0x3
85 
86 /* Identification registers */
87 #define ARM_SMMU_GR0_ID0		0x20
88 #define ARM_SMMU_GR0_ID1		0x24
89 #define ARM_SMMU_GR0_ID2		0x28
90 #define ARM_SMMU_GR0_ID3		0x2c
91 #define ARM_SMMU_GR0_ID4		0x30
92 #define ARM_SMMU_GR0_ID5		0x34
93 #define ARM_SMMU_GR0_ID6		0x38
94 #define ARM_SMMU_GR0_ID7		0x3c
95 #define ARM_SMMU_GR0_sGFSR		0x48
96 #define ARM_SMMU_GR0_sGFSYNR0		0x50
97 #define ARM_SMMU_GR0_sGFSYNR1		0x54
98 #define ARM_SMMU_GR0_sGFSYNR2		0x58
99 
100 #define ID0_S1TS			(1 << 30)
101 #define ID0_S2TS			(1 << 29)
102 #define ID0_NTS				(1 << 28)
103 #define ID0_SMS				(1 << 27)
104 #define ID0_ATOSNS			(1 << 26)
105 #define ID0_CTTW			(1 << 14)
106 #define ID0_NUMIRPT_SHIFT		16
107 #define ID0_NUMIRPT_MASK		0xff
108 #define ID0_NUMSIDB_SHIFT		9
109 #define ID0_NUMSIDB_MASK		0xf
110 #define ID0_NUMSMRG_SHIFT		0
111 #define ID0_NUMSMRG_MASK		0xff
112 
113 #define ID1_PAGESIZE			(1 << 31)
114 #define ID1_NUMPAGENDXB_SHIFT		28
115 #define ID1_NUMPAGENDXB_MASK		7
116 #define ID1_NUMS2CB_SHIFT		16
117 #define ID1_NUMS2CB_MASK		0xff
118 #define ID1_NUMCB_SHIFT			0
119 #define ID1_NUMCB_MASK			0xff
120 
121 #define ID2_OAS_SHIFT			4
122 #define ID2_OAS_MASK			0xf
123 #define ID2_IAS_SHIFT			0
124 #define ID2_IAS_MASK			0xf
125 #define ID2_UBS_SHIFT			8
126 #define ID2_UBS_MASK			0xf
127 #define ID2_PTFS_4K			(1 << 12)
128 #define ID2_PTFS_16K			(1 << 13)
129 #define ID2_PTFS_64K			(1 << 14)
130 
131 /* Global TLB invalidation */
132 #define ARM_SMMU_GR0_TLBIVMID		0x64
133 #define ARM_SMMU_GR0_TLBIALLNSNH	0x68
134 #define ARM_SMMU_GR0_TLBIALLH		0x6c
135 #define ARM_SMMU_GR0_sTLBGSYNC		0x70
136 #define ARM_SMMU_GR0_sTLBGSTATUS	0x74
137 #define sTLBGSTATUS_GSACTIVE		(1 << 0)
138 #define TLB_LOOP_TIMEOUT		1000000	/* 1s! */
139 
140 /* Stream mapping registers */
141 #define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
142 #define SMR_VALID			(1 << 31)
143 #define SMR_MASK_SHIFT			16
144 #define SMR_MASK_MASK			0x7fff
145 #define SMR_ID_SHIFT			0
146 #define SMR_ID_MASK			0x7fff
147 
148 #define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
149 #define S2CR_CBNDX_SHIFT		0
150 #define S2CR_CBNDX_MASK			0xff
151 #define S2CR_TYPE_SHIFT			16
152 #define S2CR_TYPE_MASK			0x3
153 #define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
154 #define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
155 #define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)
156 
157 /* Context bank attribute registers */
158 #define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
159 #define CBAR_VMID_SHIFT			0
160 #define CBAR_VMID_MASK			0xff
161 #define CBAR_S1_BPSHCFG_SHIFT		8
162 #define CBAR_S1_BPSHCFG_MASK		3
163 #define CBAR_S1_BPSHCFG_NSH		3
164 #define CBAR_S1_MEMATTR_SHIFT		12
165 #define CBAR_S1_MEMATTR_MASK		0xf
166 #define CBAR_S1_MEMATTR_WB		0xf
167 #define CBAR_TYPE_SHIFT			16
168 #define CBAR_TYPE_MASK			0x3
169 #define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
170 #define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
171 #define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
172 #define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
173 #define CBAR_IRPTNDX_SHIFT		24
174 #define CBAR_IRPTNDX_MASK		0xff
175 
176 #define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
177 #define CBA2R_RW64_32BIT		(0 << 0)
178 #define CBA2R_RW64_64BIT		(1 << 0)
179 
180 /* Translation context bank */
181 #define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
182 #define ARM_SMMU_CB(smmu, n)		((n) * (1 << (smmu)->pgshift))
183 
184 #define ARM_SMMU_CB_SCTLR		0x0
185 #define ARM_SMMU_CB_RESUME		0x8
186 #define ARM_SMMU_CB_TTBCR2		0x10
187 #define ARM_SMMU_CB_TTBR0_LO		0x20
188 #define ARM_SMMU_CB_TTBR0_HI		0x24
189 #define ARM_SMMU_CB_TTBR1_LO		0x28
190 #define ARM_SMMU_CB_TTBR1_HI		0x2c
191 #define ARM_SMMU_CB_TTBCR		0x30
192 #define ARM_SMMU_CB_S1_MAIR0		0x38
193 #define ARM_SMMU_CB_S1_MAIR1		0x3c
194 #define ARM_SMMU_CB_PAR_LO		0x50
195 #define ARM_SMMU_CB_PAR_HI		0x54
196 #define ARM_SMMU_CB_FSR			0x58
197 #define ARM_SMMU_CB_FAR_LO		0x60
198 #define ARM_SMMU_CB_FAR_HI		0x64
199 #define ARM_SMMU_CB_FSYNR0		0x68
200 #define ARM_SMMU_CB_S1_TLBIVA		0x600
201 #define ARM_SMMU_CB_S1_TLBIASID		0x610
202 #define ARM_SMMU_CB_S1_TLBIVAL		0x620
203 #define ARM_SMMU_CB_S2_TLBIIPAS2	0x630
204 #define ARM_SMMU_CB_S2_TLBIIPAS2L	0x638
205 #define ARM_SMMU_CB_ATS1PR_LO		0x800
206 #define ARM_SMMU_CB_ATS1PR_HI		0x804
207 #define ARM_SMMU_CB_ATSR		0x8f0
208 
209 #define SCTLR_S1_ASIDPNE		(1 << 12)
210 #define SCTLR_CFCFG			(1 << 7)
211 #define SCTLR_CFIE			(1 << 6)
212 #define SCTLR_CFRE			(1 << 5)
213 #define SCTLR_E				(1 << 4)
214 #define SCTLR_AFE			(1 << 2)
215 #define SCTLR_TRE			(1 << 1)
216 #define SCTLR_M				(1 << 0)
217 #define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)
218 
219 #define CB_PAR_F			(1 << 0)
220 
221 #define ATSR_ACTIVE			(1 << 0)
222 
223 #define RESUME_RETRY			(0 << 0)
224 #define RESUME_TERMINATE		(1 << 0)
225 
226 #define TTBCR2_SEP_SHIFT		15
227 #define TTBCR2_SEP_UPSTREAM		(0x7 << TTBCR2_SEP_SHIFT)
228 
229 #define TTBRn_HI_ASID_SHIFT            16
230 
231 #define FSR_MULTI			(1 << 31)
232 #define FSR_SS				(1 << 30)
233 #define FSR_UUT				(1 << 8)
234 #define FSR_ASF				(1 << 7)
235 #define FSR_TLBLKF			(1 << 6)
236 #define FSR_TLBMCF			(1 << 5)
237 #define FSR_EF				(1 << 4)
238 #define FSR_PF				(1 << 3)
239 #define FSR_AFF				(1 << 2)
240 #define FSR_TF				(1 << 1)
241 
242 #define FSR_IGN				(FSR_AFF | FSR_ASF | \
243 					 FSR_TLBMCF | FSR_TLBLKF)
244 #define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT | \
245 					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
246 
247 #define FSYNR0_WNR			(1 << 4)
248 
249 static int force_stage;
250 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
251 MODULE_PARM_DESC(force_stage,
252 	"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
253 
254 enum arm_smmu_arch_version {
255 	ARM_SMMU_V1 = 1,
256 	ARM_SMMU_V2,
257 };
258 
259 struct arm_smmu_smr {
260 	u8				idx;
261 	u16				mask;
262 	u16				id;
263 };
264 
265 struct arm_smmu_master_cfg {
266 	int				num_streamids;
267 	u16				streamids[MAX_MASTER_STREAMIDS];
268 	struct arm_smmu_smr		*smrs;
269 };
270 
271 struct arm_smmu_master {
272 	struct device_node		*of_node;
273 	struct rb_node			node;
274 	struct arm_smmu_master_cfg	cfg;
275 };
276 
277 struct arm_smmu_device {
278 	struct device			*dev;
279 
280 	void __iomem			*base;
281 	unsigned long			size;
282 	unsigned long			pgshift;
283 
284 #define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
285 #define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
286 #define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
287 #define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
288 #define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
289 #define ARM_SMMU_FEAT_TRANS_OPS		(1 << 5)
290 	u32				features;
291 
292 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
293 	u32				options;
294 	enum arm_smmu_arch_version	version;
295 
296 	u32				num_context_banks;
297 	u32				num_s2_context_banks;
298 	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
299 	atomic_t			irptndx;
300 
301 	u32				num_mapping_groups;
302 	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
303 
304 	unsigned long			va_size;
305 	unsigned long			ipa_size;
306 	unsigned long			pa_size;
307 
308 	u32				num_global_irqs;
309 	u32				num_context_irqs;
310 	unsigned int			*irqs;
311 
312 	struct list_head		list;
313 	struct rb_root			masters;
314 };
315 
316 struct arm_smmu_cfg {
317 	u8				cbndx;
318 	u8				irptndx;
319 	u32				cbar;
320 };
321 #define INVALID_IRPTNDX			0xff
322 
323 #define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
324 #define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)
325 
326 enum arm_smmu_domain_stage {
327 	ARM_SMMU_DOMAIN_S1 = 0,
328 	ARM_SMMU_DOMAIN_S2,
329 	ARM_SMMU_DOMAIN_NESTED,
330 };
331 
332 struct arm_smmu_domain {
333 	struct arm_smmu_device		*smmu;
334 	struct io_pgtable_ops		*pgtbl_ops;
335 	spinlock_t			pgtbl_lock;
336 	struct arm_smmu_cfg		cfg;
337 	enum arm_smmu_domain_stage	stage;
338 	struct mutex			init_mutex; /* Protects smmu pointer */
339 	struct iommu_domain		domain;
340 };
341 
342 static struct iommu_ops arm_smmu_ops;
343 
344 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
345 static LIST_HEAD(arm_smmu_devices);
346 
347 struct arm_smmu_option_prop {
348 	u32 opt;
349 	const char *prop;
350 };
351 
352 static struct arm_smmu_option_prop arm_smmu_options[] = {
353 	{ ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
354 	{ 0, NULL},
355 };
356 
to_smmu_domain(struct iommu_domain * dom)357 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
358 {
359 	return container_of(dom, struct arm_smmu_domain, domain);
360 }
361 
parse_driver_options(struct arm_smmu_device * smmu)362 static void parse_driver_options(struct arm_smmu_device *smmu)
363 {
364 	int i = 0;
365 
366 	do {
367 		if (of_property_read_bool(smmu->dev->of_node,
368 						arm_smmu_options[i].prop)) {
369 			smmu->options |= arm_smmu_options[i].opt;
370 			dev_notice(smmu->dev, "option %s\n",
371 				arm_smmu_options[i].prop);
372 		}
373 	} while (arm_smmu_options[++i].opt);
374 }
375 
dev_get_dev_node(struct device * dev)376 static struct device_node *dev_get_dev_node(struct device *dev)
377 {
378 	if (dev_is_pci(dev)) {
379 		struct pci_bus *bus = to_pci_dev(dev)->bus;
380 
381 		while (!pci_is_root_bus(bus))
382 			bus = bus->parent;
383 		return bus->bridge->parent->of_node;
384 	}
385 
386 	return dev->of_node;
387 }
388 
find_smmu_master(struct arm_smmu_device * smmu,struct device_node * dev_node)389 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
390 						struct device_node *dev_node)
391 {
392 	struct rb_node *node = smmu->masters.rb_node;
393 
394 	while (node) {
395 		struct arm_smmu_master *master;
396 
397 		master = container_of(node, struct arm_smmu_master, node);
398 
399 		if (dev_node < master->of_node)
400 			node = node->rb_left;
401 		else if (dev_node > master->of_node)
402 			node = node->rb_right;
403 		else
404 			return master;
405 	}
406 
407 	return NULL;
408 }
409 
410 static struct arm_smmu_master_cfg *
find_smmu_master_cfg(struct device * dev)411 find_smmu_master_cfg(struct device *dev)
412 {
413 	struct arm_smmu_master_cfg *cfg = NULL;
414 	struct iommu_group *group = iommu_group_get(dev);
415 
416 	if (group) {
417 		cfg = iommu_group_get_iommudata(group);
418 		iommu_group_put(group);
419 	}
420 
421 	return cfg;
422 }
423 
insert_smmu_master(struct arm_smmu_device * smmu,struct arm_smmu_master * master)424 static int insert_smmu_master(struct arm_smmu_device *smmu,
425 			      struct arm_smmu_master *master)
426 {
427 	struct rb_node **new, *parent;
428 
429 	new = &smmu->masters.rb_node;
430 	parent = NULL;
431 	while (*new) {
432 		struct arm_smmu_master *this
433 			= container_of(*new, struct arm_smmu_master, node);
434 
435 		parent = *new;
436 		if (master->of_node < this->of_node)
437 			new = &((*new)->rb_left);
438 		else if (master->of_node > this->of_node)
439 			new = &((*new)->rb_right);
440 		else
441 			return -EEXIST;
442 	}
443 
444 	rb_link_node(&master->node, parent, new);
445 	rb_insert_color(&master->node, &smmu->masters);
446 	return 0;
447 }
448 
register_smmu_master(struct arm_smmu_device * smmu,struct device * dev,struct of_phandle_args * masterspec)449 static int register_smmu_master(struct arm_smmu_device *smmu,
450 				struct device *dev,
451 				struct of_phandle_args *masterspec)
452 {
453 	int i;
454 	struct arm_smmu_master *master;
455 
456 	master = find_smmu_master(smmu, masterspec->np);
457 	if (master) {
458 		dev_err(dev,
459 			"rejecting multiple registrations for master device %s\n",
460 			masterspec->np->name);
461 		return -EBUSY;
462 	}
463 
464 	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
465 		dev_err(dev,
466 			"reached maximum number (%d) of stream IDs for master device %s\n",
467 			MAX_MASTER_STREAMIDS, masterspec->np->name);
468 		return -ENOSPC;
469 	}
470 
471 	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
472 	if (!master)
473 		return -ENOMEM;
474 
475 	master->of_node			= masterspec->np;
476 	master->cfg.num_streamids	= masterspec->args_count;
477 
478 	for (i = 0; i < master->cfg.num_streamids; ++i) {
479 		u16 streamid = masterspec->args[i];
480 
481 		if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
482 		     (streamid >= smmu->num_mapping_groups)) {
483 			dev_err(dev,
484 				"stream ID for master device %s greater than maximum allowed (%d)\n",
485 				masterspec->np->name, smmu->num_mapping_groups);
486 			return -ERANGE;
487 		}
488 		master->cfg.streamids[i] = streamid;
489 	}
490 	return insert_smmu_master(smmu, master);
491 }
492 
find_smmu_for_device(struct device * dev)493 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
494 {
495 	struct arm_smmu_device *smmu;
496 	struct arm_smmu_master *master = NULL;
497 	struct device_node *dev_node = dev_get_dev_node(dev);
498 
499 	spin_lock(&arm_smmu_devices_lock);
500 	list_for_each_entry(smmu, &arm_smmu_devices, list) {
501 		master = find_smmu_master(smmu, dev_node);
502 		if (master)
503 			break;
504 	}
505 	spin_unlock(&arm_smmu_devices_lock);
506 
507 	return master ? smmu : NULL;
508 }
509 
__arm_smmu_alloc_bitmap(unsigned long * map,int start,int end)510 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
511 {
512 	int idx;
513 
514 	do {
515 		idx = find_next_zero_bit(map, end, start);
516 		if (idx == end)
517 			return -ENOSPC;
518 	} while (test_and_set_bit(idx, map));
519 
520 	return idx;
521 }
522 
__arm_smmu_free_bitmap(unsigned long * map,int idx)523 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
524 {
525 	clear_bit(idx, map);
526 }
527 
528 /* Wait for any pending TLB invalidations to complete */
__arm_smmu_tlb_sync(struct arm_smmu_device * smmu)529 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
530 {
531 	int count = 0;
532 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
533 
534 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
535 	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
536 	       & sTLBGSTATUS_GSACTIVE) {
537 		cpu_relax();
538 		if (++count == TLB_LOOP_TIMEOUT) {
539 			dev_err_ratelimited(smmu->dev,
540 			"TLB sync timed out -- SMMU may be deadlocked\n");
541 			return;
542 		}
543 		udelay(1);
544 	}
545 }
546 
arm_smmu_tlb_sync(void * cookie)547 static void arm_smmu_tlb_sync(void *cookie)
548 {
549 	struct arm_smmu_domain *smmu_domain = cookie;
550 	__arm_smmu_tlb_sync(smmu_domain->smmu);
551 }
552 
arm_smmu_tlb_inv_context(void * cookie)553 static void arm_smmu_tlb_inv_context(void *cookie)
554 {
555 	struct arm_smmu_domain *smmu_domain = cookie;
556 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
557 	struct arm_smmu_device *smmu = smmu_domain->smmu;
558 	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
559 	void __iomem *base;
560 
561 	if (stage1) {
562 		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
563 		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
564 			       base + ARM_SMMU_CB_S1_TLBIASID);
565 	} else {
566 		base = ARM_SMMU_GR0(smmu);
567 		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
568 			       base + ARM_SMMU_GR0_TLBIVMID);
569 	}
570 
571 	__arm_smmu_tlb_sync(smmu);
572 }
573 
arm_smmu_tlb_inv_range_nosync(unsigned long iova,size_t size,bool leaf,void * cookie)574 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
575 					  bool leaf, void *cookie)
576 {
577 	struct arm_smmu_domain *smmu_domain = cookie;
578 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
579 	struct arm_smmu_device *smmu = smmu_domain->smmu;
580 	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
581 	void __iomem *reg;
582 
583 	if (stage1) {
584 		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
585 		reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
586 
587 		if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
588 			iova &= ~12UL;
589 			iova |= ARM_SMMU_CB_ASID(cfg);
590 			writel_relaxed(iova, reg);
591 #ifdef CONFIG_64BIT
592 		} else {
593 			iova >>= 12;
594 			iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
595 			writeq_relaxed(iova, reg);
596 #endif
597 		}
598 #ifdef CONFIG_64BIT
599 	} else if (smmu->version == ARM_SMMU_V2) {
600 		reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
601 		reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
602 			      ARM_SMMU_CB_S2_TLBIIPAS2;
603 		writeq_relaxed(iova >> 12, reg);
604 #endif
605 	} else {
606 		reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
607 		writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
608 	}
609 }
610 
arm_smmu_flush_pgtable(void * addr,size_t size,void * cookie)611 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
612 {
613 	struct arm_smmu_domain *smmu_domain = cookie;
614 	struct arm_smmu_device *smmu = smmu_domain->smmu;
615 	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
616 
617 
618 	/* Ensure new page tables are visible to the hardware walker */
619 	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
620 		dsb(ishst);
621 	} else {
622 		/*
623 		 * If the SMMU can't walk tables in the CPU caches, treat them
624 		 * like non-coherent DMA since we need to flush the new entries
625 		 * all the way out to memory. There's no possibility of
626 		 * recursion here as the SMMU table walker will not be wired
627 		 * through another SMMU.
628 		 */
629 		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
630 			     DMA_TO_DEVICE);
631 	}
632 }
633 
634 static struct iommu_gather_ops arm_smmu_gather_ops = {
635 	.tlb_flush_all	= arm_smmu_tlb_inv_context,
636 	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
637 	.tlb_sync	= arm_smmu_tlb_sync,
638 	.flush_pgtable	= arm_smmu_flush_pgtable,
639 };
640 
arm_smmu_context_fault(int irq,void * dev)641 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
642 {
643 	int flags, ret;
644 	u32 fsr, far, fsynr, resume;
645 	unsigned long iova;
646 	struct iommu_domain *domain = dev;
647 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
648 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
649 	struct arm_smmu_device *smmu = smmu_domain->smmu;
650 	void __iomem *cb_base;
651 
652 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
653 	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
654 
655 	if (!(fsr & FSR_FAULT))
656 		return IRQ_NONE;
657 
658 	if (fsr & FSR_IGN)
659 		dev_err_ratelimited(smmu->dev,
660 				    "Unexpected context fault (fsr 0x%x)\n",
661 				    fsr);
662 
663 	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
664 	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
665 
666 	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
667 	iova = far;
668 #ifdef CONFIG_64BIT
669 	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
670 	iova |= ((unsigned long)far << 32);
671 #endif
672 
673 	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
674 		ret = IRQ_HANDLED;
675 		resume = RESUME_RETRY;
676 	} else {
677 		dev_err_ratelimited(smmu->dev,
678 		    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
679 		    iova, fsynr, cfg->cbndx);
680 		ret = IRQ_NONE;
681 		resume = RESUME_TERMINATE;
682 	}
683 
684 	/* Clear the faulting FSR */
685 	writel(fsr, cb_base + ARM_SMMU_CB_FSR);
686 
687 	/* Retry or terminate any stalled transactions */
688 	if (fsr & FSR_SS)
689 		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
690 
691 	return ret;
692 }
693 
arm_smmu_global_fault(int irq,void * dev)694 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
695 {
696 	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
697 	struct arm_smmu_device *smmu = dev;
698 	void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
699 
700 	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
701 	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
702 	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
703 	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
704 
705 	if (!gfsr)
706 		return IRQ_NONE;
707 
708 	dev_err_ratelimited(smmu->dev,
709 		"Unexpected global fault, this could be serious\n");
710 	dev_err_ratelimited(smmu->dev,
711 		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
712 		gfsr, gfsynr0, gfsynr1, gfsynr2);
713 
714 	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
715 	return IRQ_HANDLED;
716 }
717 
arm_smmu_init_context_bank(struct arm_smmu_domain * smmu_domain,struct io_pgtable_cfg * pgtbl_cfg)718 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
719 				       struct io_pgtable_cfg *pgtbl_cfg)
720 {
721 	u32 reg;
722 	bool stage1;
723 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
724 	struct arm_smmu_device *smmu = smmu_domain->smmu;
725 	void __iomem *cb_base, *gr0_base, *gr1_base;
726 
727 	gr0_base = ARM_SMMU_GR0(smmu);
728 	gr1_base = ARM_SMMU_GR1(smmu);
729 	stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
730 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
731 
732 	if (smmu->version > ARM_SMMU_V1) {
733 		/*
734 		 * CBA2R.
735 		 * *Must* be initialised before CBAR thanks to VMID16
736 		 * architectural oversight affected some implementations.
737 		 */
738 #ifdef CONFIG_64BIT
739 		reg = CBA2R_RW64_64BIT;
740 #else
741 		reg = CBA2R_RW64_32BIT;
742 #endif
743 		writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
744 	}
745 
746 	/* CBAR */
747 	reg = cfg->cbar;
748 	if (smmu->version == ARM_SMMU_V1)
749 		reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
750 
751 	/*
752 	 * Use the weakest shareability/memory types, so they are
753 	 * overridden by the ttbcr/pte.
754 	 */
755 	if (stage1) {
756 		reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
757 			(CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
758 	} else {
759 		reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
760 	}
761 	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
762 
763 	/* TTBRs */
764 	if (stage1) {
765 		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
766 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
767 		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
768 		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
769 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
770 
771 		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
772 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
773 		reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
774 		reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
775 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
776 	} else {
777 		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
778 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
779 		reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
780 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
781 	}
782 
783 	/* TTBCR */
784 	if (stage1) {
785 		reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
786 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
787 		if (smmu->version > ARM_SMMU_V1) {
788 			reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
789 			reg |= TTBCR2_SEP_UPSTREAM;
790 			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
791 		}
792 	} else {
793 		reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
794 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
795 	}
796 
797 	/* MAIRs (stage-1 only) */
798 	if (stage1) {
799 		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
800 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
801 		reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
802 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
803 	}
804 
805 	/* SCTLR */
806 	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
807 	if (stage1)
808 		reg |= SCTLR_S1_ASIDPNE;
809 #ifdef __BIG_ENDIAN
810 	reg |= SCTLR_E;
811 #endif
812 	writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
813 }
814 
arm_smmu_init_domain_context(struct iommu_domain * domain,struct arm_smmu_device * smmu)815 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
816 					struct arm_smmu_device *smmu)
817 {
818 	int irq, start, ret = 0;
819 	unsigned long ias, oas;
820 	struct io_pgtable_ops *pgtbl_ops;
821 	struct io_pgtable_cfg pgtbl_cfg;
822 	enum io_pgtable_fmt fmt;
823 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
824 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
825 
826 	mutex_lock(&smmu_domain->init_mutex);
827 	if (smmu_domain->smmu)
828 		goto out_unlock;
829 
830 	/*
831 	 * Mapping the requested stage onto what we support is surprisingly
832 	 * complicated, mainly because the spec allows S1+S2 SMMUs without
833 	 * support for nested translation. That means we end up with the
834 	 * following table:
835 	 *
836 	 * Requested        Supported        Actual
837 	 *     S1               N              S1
838 	 *     S1             S1+S2            S1
839 	 *     S1               S2             S2
840 	 *     S1               S1             S1
841 	 *     N                N              N
842 	 *     N              S1+S2            S2
843 	 *     N                S2             S2
844 	 *     N                S1             S1
845 	 *
846 	 * Note that you can't actually request stage-2 mappings.
847 	 */
848 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
849 		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
850 	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
851 		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
852 
853 	switch (smmu_domain->stage) {
854 	case ARM_SMMU_DOMAIN_S1:
855 		cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
856 		start = smmu->num_s2_context_banks;
857 		ias = smmu->va_size;
858 		oas = smmu->ipa_size;
859 		if (IS_ENABLED(CONFIG_64BIT))
860 			fmt = ARM_64_LPAE_S1;
861 		else
862 			fmt = ARM_32_LPAE_S1;
863 		break;
864 	case ARM_SMMU_DOMAIN_NESTED:
865 		/*
866 		 * We will likely want to change this if/when KVM gets
867 		 * involved.
868 		 */
869 	case ARM_SMMU_DOMAIN_S2:
870 		cfg->cbar = CBAR_TYPE_S2_TRANS;
871 		start = 0;
872 		ias = smmu->ipa_size;
873 		oas = smmu->pa_size;
874 		if (IS_ENABLED(CONFIG_64BIT))
875 			fmt = ARM_64_LPAE_S2;
876 		else
877 			fmt = ARM_32_LPAE_S2;
878 		break;
879 	default:
880 		ret = -EINVAL;
881 		goto out_unlock;
882 	}
883 
884 	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
885 				      smmu->num_context_banks);
886 	if (IS_ERR_VALUE(ret))
887 		goto out_unlock;
888 
889 	cfg->cbndx = ret;
890 	if (smmu->version == ARM_SMMU_V1) {
891 		cfg->irptndx = atomic_inc_return(&smmu->irptndx);
892 		cfg->irptndx %= smmu->num_context_irqs;
893 	} else {
894 		cfg->irptndx = cfg->cbndx;
895 	}
896 
897 	pgtbl_cfg = (struct io_pgtable_cfg) {
898 		.pgsize_bitmap	= arm_smmu_ops.pgsize_bitmap,
899 		.ias		= ias,
900 		.oas		= oas,
901 		.tlb		= &arm_smmu_gather_ops,
902 	};
903 
904 	smmu_domain->smmu = smmu;
905 	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
906 	if (!pgtbl_ops) {
907 		ret = -ENOMEM;
908 		goto out_clear_smmu;
909 	}
910 
911 	/* Update our support page sizes to reflect the page table format */
912 	arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
913 
914 	/* Initialise the context bank with our page table cfg */
915 	arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
916 
917 	/*
918 	 * Request context fault interrupt. Do this last to avoid the
919 	 * handler seeing a half-initialised domain state.
920 	 */
921 	irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
922 	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
923 			  "arm-smmu-context-fault", domain);
924 	if (IS_ERR_VALUE(ret)) {
925 		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
926 			cfg->irptndx, irq);
927 		cfg->irptndx = INVALID_IRPTNDX;
928 	}
929 
930 	mutex_unlock(&smmu_domain->init_mutex);
931 
932 	/* Publish page table ops for map/unmap */
933 	smmu_domain->pgtbl_ops = pgtbl_ops;
934 	return 0;
935 
936 out_clear_smmu:
937 	smmu_domain->smmu = NULL;
938 out_unlock:
939 	mutex_unlock(&smmu_domain->init_mutex);
940 	return ret;
941 }
942 
arm_smmu_destroy_domain_context(struct iommu_domain * domain)943 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
944 {
945 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
946 	struct arm_smmu_device *smmu = smmu_domain->smmu;
947 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
948 	void __iomem *cb_base;
949 	int irq;
950 
951 	if (!smmu)
952 		return;
953 
954 	/*
955 	 * Disable the context bank and free the page tables before freeing
956 	 * it.
957 	 */
958 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
959 	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
960 
961 	if (cfg->irptndx != INVALID_IRPTNDX) {
962 		irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
963 		free_irq(irq, domain);
964 	}
965 
966 	if (smmu_domain->pgtbl_ops)
967 		free_io_pgtable_ops(smmu_domain->pgtbl_ops);
968 
969 	__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
970 }
971 
arm_smmu_domain_alloc(unsigned type)972 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
973 {
974 	struct arm_smmu_domain *smmu_domain;
975 
976 	if (type != IOMMU_DOMAIN_UNMANAGED)
977 		return NULL;
978 	/*
979 	 * Allocate the domain and initialise some of its data structures.
980 	 * We can't really do anything meaningful until we've added a
981 	 * master.
982 	 */
983 	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
984 	if (!smmu_domain)
985 		return NULL;
986 
987 	mutex_init(&smmu_domain->init_mutex);
988 	spin_lock_init(&smmu_domain->pgtbl_lock);
989 
990 	return &smmu_domain->domain;
991 }
992 
arm_smmu_domain_free(struct iommu_domain * domain)993 static void arm_smmu_domain_free(struct iommu_domain *domain)
994 {
995 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
996 
997 	/*
998 	 * Free the domain resources. We assume that all devices have
999 	 * already been detached.
1000 	 */
1001 	arm_smmu_destroy_domain_context(domain);
1002 	kfree(smmu_domain);
1003 }
1004 
arm_smmu_master_configure_smrs(struct arm_smmu_device * smmu,struct arm_smmu_master_cfg * cfg)1005 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1006 					  struct arm_smmu_master_cfg *cfg)
1007 {
1008 	int i;
1009 	struct arm_smmu_smr *smrs;
1010 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1011 
1012 	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1013 		return 0;
1014 
1015 	if (cfg->smrs)
1016 		return -EEXIST;
1017 
1018 	smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1019 	if (!smrs) {
1020 		dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1021 			cfg->num_streamids);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	/* Allocate the SMRs on the SMMU */
1026 	for (i = 0; i < cfg->num_streamids; ++i) {
1027 		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1028 						  smmu->num_mapping_groups);
1029 		if (IS_ERR_VALUE(idx)) {
1030 			dev_err(smmu->dev, "failed to allocate free SMR\n");
1031 			goto err_free_smrs;
1032 		}
1033 
1034 		smrs[i] = (struct arm_smmu_smr) {
1035 			.idx	= idx,
1036 			.mask	= 0, /* We don't currently share SMRs */
1037 			.id	= cfg->streamids[i],
1038 		};
1039 	}
1040 
1041 	/* It worked! Now, poke the actual hardware */
1042 	for (i = 0; i < cfg->num_streamids; ++i) {
1043 		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1044 			  smrs[i].mask << SMR_MASK_SHIFT;
1045 		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1046 	}
1047 
1048 	cfg->smrs = smrs;
1049 	return 0;
1050 
1051 err_free_smrs:
1052 	while (--i >= 0)
1053 		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1054 	kfree(smrs);
1055 	return -ENOSPC;
1056 }
1057 
arm_smmu_master_free_smrs(struct arm_smmu_device * smmu,struct arm_smmu_master_cfg * cfg)1058 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1059 				      struct arm_smmu_master_cfg *cfg)
1060 {
1061 	int i;
1062 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1063 	struct arm_smmu_smr *smrs = cfg->smrs;
1064 
1065 	if (!smrs)
1066 		return;
1067 
1068 	/* Invalidate the SMRs before freeing back to the allocator */
1069 	for (i = 0; i < cfg->num_streamids; ++i) {
1070 		u8 idx = smrs[i].idx;
1071 
1072 		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1073 		__arm_smmu_free_bitmap(smmu->smr_map, idx);
1074 	}
1075 
1076 	cfg->smrs = NULL;
1077 	kfree(smrs);
1078 }
1079 
arm_smmu_domain_add_master(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master_cfg * cfg)1080 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1081 				      struct arm_smmu_master_cfg *cfg)
1082 {
1083 	int i, ret;
1084 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1085 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1086 
1087 	/* Devices in an IOMMU group may already be configured */
1088 	ret = arm_smmu_master_configure_smrs(smmu, cfg);
1089 	if (ret)
1090 		return ret == -EEXIST ? 0 : ret;
1091 
1092 	for (i = 0; i < cfg->num_streamids; ++i) {
1093 		u32 idx, s2cr;
1094 
1095 		idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1096 		s2cr = S2CR_TYPE_TRANS |
1097 		       (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1098 		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1099 	}
1100 
1101 	return 0;
1102 }
1103 
arm_smmu_domain_remove_master(struct arm_smmu_domain * smmu_domain,struct arm_smmu_master_cfg * cfg)1104 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1105 					  struct arm_smmu_master_cfg *cfg)
1106 {
1107 	int i;
1108 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1109 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1110 
1111 	/* An IOMMU group is torn down by the first device to be removed */
1112 	if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1113 		return;
1114 
1115 	/*
1116 	 * We *must* clear the S2CR first, because freeing the SMR means
1117 	 * that it can be re-allocated immediately.
1118 	 */
1119 	for (i = 0; i < cfg->num_streamids; ++i) {
1120 		u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1121 
1122 		writel_relaxed(S2CR_TYPE_BYPASS,
1123 			       gr0_base + ARM_SMMU_GR0_S2CR(idx));
1124 	}
1125 
1126 	arm_smmu_master_free_smrs(smmu, cfg);
1127 }
1128 
arm_smmu_attach_dev(struct iommu_domain * domain,struct device * dev)1129 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1130 {
1131 	int ret;
1132 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1133 	struct arm_smmu_device *smmu;
1134 	struct arm_smmu_master_cfg *cfg;
1135 
1136 	smmu = find_smmu_for_device(dev);
1137 	if (!smmu) {
1138 		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1139 		return -ENXIO;
1140 	}
1141 
1142 	if (dev->archdata.iommu) {
1143 		dev_err(dev, "already attached to IOMMU domain\n");
1144 		return -EEXIST;
1145 	}
1146 
1147 	/* Ensure that the domain is finalised */
1148 	ret = arm_smmu_init_domain_context(domain, smmu);
1149 	if (IS_ERR_VALUE(ret))
1150 		return ret;
1151 
1152 	/*
1153 	 * Sanity check the domain. We don't support domains across
1154 	 * different SMMUs.
1155 	 */
1156 	if (smmu_domain->smmu != smmu) {
1157 		dev_err(dev,
1158 			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1159 			dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1160 		return -EINVAL;
1161 	}
1162 
1163 	/* Looks ok, so add the device to the domain */
1164 	cfg = find_smmu_master_cfg(dev);
1165 	if (!cfg)
1166 		return -ENODEV;
1167 
1168 	ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1169 	if (!ret)
1170 		dev->archdata.iommu = domain;
1171 	return ret;
1172 }
1173 
arm_smmu_detach_dev(struct iommu_domain * domain,struct device * dev)1174 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1175 {
1176 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1177 	struct arm_smmu_master_cfg *cfg;
1178 
1179 	cfg = find_smmu_master_cfg(dev);
1180 	if (!cfg)
1181 		return;
1182 
1183 	dev->archdata.iommu = NULL;
1184 	arm_smmu_domain_remove_master(smmu_domain, cfg);
1185 }
1186 
arm_smmu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot)1187 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1188 			phys_addr_t paddr, size_t size, int prot)
1189 {
1190 	int ret;
1191 	unsigned long flags;
1192 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1193 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1194 
1195 	if (!ops)
1196 		return -ENODEV;
1197 
1198 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1199 	ret = ops->map(ops, iova, paddr, size, prot);
1200 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1201 	return ret;
1202 }
1203 
arm_smmu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)1204 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1205 			     size_t size)
1206 {
1207 	size_t ret;
1208 	unsigned long flags;
1209 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1210 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1211 
1212 	if (!ops)
1213 		return 0;
1214 
1215 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1216 	ret = ops->unmap(ops, iova, size);
1217 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1218 	return ret;
1219 }
1220 
arm_smmu_iova_to_phys_hard(struct iommu_domain * domain,dma_addr_t iova)1221 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1222 					      dma_addr_t iova)
1223 {
1224 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225 	struct arm_smmu_device *smmu = smmu_domain->smmu;
1226 	struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1227 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1228 	struct device *dev = smmu->dev;
1229 	void __iomem *cb_base;
1230 	u32 tmp;
1231 	u64 phys;
1232 
1233 	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1234 
1235 	if (smmu->version == 1) {
1236 		u32 reg = iova & ~0xfff;
1237 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1238 	} else {
1239 		u32 reg = iova & ~0xfff;
1240 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1241 		reg = ((u64)iova & ~0xfff) >> 32;
1242 		writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
1243 	}
1244 
1245 	if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1246 				      !(tmp & ATSR_ACTIVE), 5, 50)) {
1247 		dev_err(dev,
1248 			"iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
1249 			&iova);
1250 		return ops->iova_to_phys(ops, iova);
1251 	}
1252 
1253 	phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1254 	phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1255 
1256 	if (phys & CB_PAR_F) {
1257 		dev_err(dev, "translation fault!\n");
1258 		dev_err(dev, "PAR = 0x%llx\n", phys);
1259 		return 0;
1260 	}
1261 
1262 	return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1263 }
1264 
arm_smmu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)1265 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1266 					dma_addr_t iova)
1267 {
1268 	phys_addr_t ret;
1269 	unsigned long flags;
1270 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1271 	struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1272 
1273 	if (!ops)
1274 		return 0;
1275 
1276 	spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1277 	if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1278 			smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1279 		ret = arm_smmu_iova_to_phys_hard(domain, iova);
1280 	} else {
1281 		ret = ops->iova_to_phys(ops, iova);
1282 	}
1283 
1284 	spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1285 
1286 	return ret;
1287 }
1288 
arm_smmu_capable(enum iommu_cap cap)1289 static bool arm_smmu_capable(enum iommu_cap cap)
1290 {
1291 	switch (cap) {
1292 	case IOMMU_CAP_CACHE_COHERENCY:
1293 		/*
1294 		 * Return true here as the SMMU can always send out coherent
1295 		 * requests.
1296 		 */
1297 		return true;
1298 	case IOMMU_CAP_INTR_REMAP:
1299 		return true; /* MSIs are just memory writes */
1300 	case IOMMU_CAP_NOEXEC:
1301 		return true;
1302 	default:
1303 		return false;
1304 	}
1305 }
1306 
__arm_smmu_get_pci_sid(struct pci_dev * pdev,u16 alias,void * data)1307 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1308 {
1309 	*((u16 *)data) = alias;
1310 	return 0; /* Continue walking */
1311 }
1312 
__arm_smmu_release_pci_iommudata(void * data)1313 static void __arm_smmu_release_pci_iommudata(void *data)
1314 {
1315 	kfree(data);
1316 }
1317 
arm_smmu_add_pci_device(struct pci_dev * pdev)1318 static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1319 {
1320 	int i, ret;
1321 	u16 sid;
1322 	struct iommu_group *group;
1323 	struct arm_smmu_master_cfg *cfg;
1324 
1325 	group = iommu_group_get_for_dev(&pdev->dev);
1326 	if (IS_ERR(group))
1327 		return PTR_ERR(group);
1328 
1329 	cfg = iommu_group_get_iommudata(group);
1330 	if (!cfg) {
1331 		cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1332 		if (!cfg) {
1333 			ret = -ENOMEM;
1334 			goto out_put_group;
1335 		}
1336 
1337 		iommu_group_set_iommudata(group, cfg,
1338 					  __arm_smmu_release_pci_iommudata);
1339 	}
1340 
1341 	if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
1342 		ret = -ENOSPC;
1343 		goto out_put_group;
1344 	}
1345 
1346 	/*
1347 	 * Assume Stream ID == Requester ID for now.
1348 	 * We need a way to describe the ID mappings in FDT.
1349 	 */
1350 	pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1351 	for (i = 0; i < cfg->num_streamids; ++i)
1352 		if (cfg->streamids[i] == sid)
1353 			break;
1354 
1355 	/* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1356 	if (i == cfg->num_streamids)
1357 		cfg->streamids[cfg->num_streamids++] = sid;
1358 
1359 	return 0;
1360 out_put_group:
1361 	iommu_group_put(group);
1362 	return ret;
1363 }
1364 
arm_smmu_add_platform_device(struct device * dev)1365 static int arm_smmu_add_platform_device(struct device *dev)
1366 {
1367 	struct iommu_group *group;
1368 	struct arm_smmu_master *master;
1369 	struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1370 
1371 	if (!smmu)
1372 		return -ENODEV;
1373 
1374 	master = find_smmu_master(smmu, dev->of_node);
1375 	if (!master)
1376 		return -ENODEV;
1377 
1378 	/* No automatic group creation for platform devices */
1379 	group = iommu_group_alloc();
1380 	if (IS_ERR(group))
1381 		return PTR_ERR(group);
1382 
1383 	iommu_group_set_iommudata(group, &master->cfg, NULL);
1384 	return iommu_group_add_device(group, dev);
1385 }
1386 
arm_smmu_add_device(struct device * dev)1387 static int arm_smmu_add_device(struct device *dev)
1388 {
1389 	if (dev_is_pci(dev))
1390 		return arm_smmu_add_pci_device(to_pci_dev(dev));
1391 
1392 	return arm_smmu_add_platform_device(dev);
1393 }
1394 
arm_smmu_remove_device(struct device * dev)1395 static void arm_smmu_remove_device(struct device *dev)
1396 {
1397 	iommu_group_remove_device(dev);
1398 }
1399 
arm_smmu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1400 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1401 				    enum iommu_attr attr, void *data)
1402 {
1403 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1404 
1405 	switch (attr) {
1406 	case DOMAIN_ATTR_NESTING:
1407 		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1408 		return 0;
1409 	default:
1410 		return -ENODEV;
1411 	}
1412 }
1413 
arm_smmu_domain_set_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)1414 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1415 				    enum iommu_attr attr, void *data)
1416 {
1417 	int ret = 0;
1418 	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1419 
1420 	mutex_lock(&smmu_domain->init_mutex);
1421 
1422 	switch (attr) {
1423 	case DOMAIN_ATTR_NESTING:
1424 		if (smmu_domain->smmu) {
1425 			ret = -EPERM;
1426 			goto out_unlock;
1427 		}
1428 
1429 		if (*(int *)data)
1430 			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1431 		else
1432 			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1433 
1434 		break;
1435 	default:
1436 		ret = -ENODEV;
1437 	}
1438 
1439 out_unlock:
1440 	mutex_unlock(&smmu_domain->init_mutex);
1441 	return ret;
1442 }
1443 
1444 static struct iommu_ops arm_smmu_ops = {
1445 	.capable		= arm_smmu_capable,
1446 	.domain_alloc		= arm_smmu_domain_alloc,
1447 	.domain_free		= arm_smmu_domain_free,
1448 	.attach_dev		= arm_smmu_attach_dev,
1449 	.detach_dev		= arm_smmu_detach_dev,
1450 	.map			= arm_smmu_map,
1451 	.unmap			= arm_smmu_unmap,
1452 	.map_sg			= default_iommu_map_sg,
1453 	.iova_to_phys		= arm_smmu_iova_to_phys,
1454 	.add_device		= arm_smmu_add_device,
1455 	.remove_device		= arm_smmu_remove_device,
1456 	.domain_get_attr	= arm_smmu_domain_get_attr,
1457 	.domain_set_attr	= arm_smmu_domain_set_attr,
1458 	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
1459 };
1460 
arm_smmu_device_reset(struct arm_smmu_device * smmu)1461 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1462 {
1463 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1464 	void __iomem *cb_base;
1465 	int i = 0;
1466 	u32 reg;
1467 
1468 	/* clear global FSR */
1469 	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1470 	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1471 
1472 	/* Mark all SMRn as invalid and all S2CRn as bypass */
1473 	for (i = 0; i < smmu->num_mapping_groups; ++i) {
1474 		writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1475 		writel_relaxed(S2CR_TYPE_BYPASS,
1476 			gr0_base + ARM_SMMU_GR0_S2CR(i));
1477 	}
1478 
1479 	/* Make sure all context banks are disabled and clear CB_FSR  */
1480 	for (i = 0; i < smmu->num_context_banks; ++i) {
1481 		cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1482 		writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1483 		writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1484 	}
1485 
1486 	/* Invalidate the TLB, just in case */
1487 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1488 	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1489 
1490 	reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1491 
1492 	/* Enable fault reporting */
1493 	reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1494 
1495 	/* Disable TLB broadcasting. */
1496 	reg |= (sCR0_VMIDPNE | sCR0_PTM);
1497 
1498 	/* Enable client access, but bypass when no mapping is found */
1499 	reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1500 
1501 	/* Disable forced broadcasting */
1502 	reg &= ~sCR0_FB;
1503 
1504 	/* Don't upgrade barriers */
1505 	reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1506 
1507 	/* Push the button */
1508 	__arm_smmu_tlb_sync(smmu);
1509 	writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1510 }
1511 
arm_smmu_id_size_to_bits(int size)1512 static int arm_smmu_id_size_to_bits(int size)
1513 {
1514 	switch (size) {
1515 	case 0:
1516 		return 32;
1517 	case 1:
1518 		return 36;
1519 	case 2:
1520 		return 40;
1521 	case 3:
1522 		return 42;
1523 	case 4:
1524 		return 44;
1525 	case 5:
1526 	default:
1527 		return 48;
1528 	}
1529 }
1530 
arm_smmu_device_cfg_probe(struct arm_smmu_device * smmu)1531 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1532 {
1533 	unsigned long size;
1534 	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1535 	u32 id;
1536 
1537 	dev_notice(smmu->dev, "probing hardware configuration...\n");
1538 	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1539 
1540 	/* ID0 */
1541 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1542 
1543 	/* Restrict available stages based on module parameter */
1544 	if (force_stage == 1)
1545 		id &= ~(ID0_S2TS | ID0_NTS);
1546 	else if (force_stage == 2)
1547 		id &= ~(ID0_S1TS | ID0_NTS);
1548 
1549 	if (id & ID0_S1TS) {
1550 		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1551 		dev_notice(smmu->dev, "\tstage 1 translation\n");
1552 	}
1553 
1554 	if (id & ID0_S2TS) {
1555 		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1556 		dev_notice(smmu->dev, "\tstage 2 translation\n");
1557 	}
1558 
1559 	if (id & ID0_NTS) {
1560 		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1561 		dev_notice(smmu->dev, "\tnested translation\n");
1562 	}
1563 
1564 	if (!(smmu->features &
1565 		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1566 		dev_err(smmu->dev, "\tno translation support!\n");
1567 		return -ENODEV;
1568 	}
1569 
1570 	if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1571 		smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1572 		dev_notice(smmu->dev, "\taddress translation ops\n");
1573 	}
1574 
1575 	if (id & ID0_CTTW) {
1576 		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1577 		dev_notice(smmu->dev, "\tcoherent table walk\n");
1578 	}
1579 
1580 	if (id & ID0_SMS) {
1581 		u32 smr, sid, mask;
1582 
1583 		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1584 		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1585 					   ID0_NUMSMRG_MASK;
1586 		if (smmu->num_mapping_groups == 0) {
1587 			dev_err(smmu->dev,
1588 				"stream-matching supported, but no SMRs present!\n");
1589 			return -ENODEV;
1590 		}
1591 
1592 		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1593 		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1594 		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1595 		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1596 
1597 		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1598 		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1599 		if ((mask & sid) != sid) {
1600 			dev_err(smmu->dev,
1601 				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1602 				mask, sid);
1603 			return -ENODEV;
1604 		}
1605 
1606 		dev_notice(smmu->dev,
1607 			   "\tstream matching with %u register groups, mask 0x%x",
1608 			   smmu->num_mapping_groups, mask);
1609 	} else {
1610 		smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1611 					   ID0_NUMSIDB_MASK;
1612 	}
1613 
1614 	/* ID1 */
1615 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1616 	smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1617 
1618 	/* Check for size mismatch of SMMU address space from mapped region */
1619 	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1620 	size *= 2 << smmu->pgshift;
1621 	if (smmu->size != size)
1622 		dev_warn(smmu->dev,
1623 			"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1624 			size, smmu->size);
1625 
1626 	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1627 	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1628 	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1629 		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1630 		return -ENODEV;
1631 	}
1632 	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1633 		   smmu->num_context_banks, smmu->num_s2_context_banks);
1634 
1635 	/* ID2 */
1636 	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1637 	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1638 	smmu->ipa_size = size;
1639 
1640 	/* The output mask is also applied for bypass */
1641 	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1642 	smmu->pa_size = size;
1643 
1644 	/*
1645 	 * What the page table walker can address actually depends on which
1646 	 * descriptor format is in use, but since a) we don't know that yet,
1647 	 * and b) it can vary per context bank, this will have to do...
1648 	 */
1649 	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1650 		dev_warn(smmu->dev,
1651 			 "failed to set DMA mask for table walker\n");
1652 
1653 	if (smmu->version == ARM_SMMU_V1) {
1654 		smmu->va_size = smmu->ipa_size;
1655 		size = SZ_4K | SZ_2M | SZ_1G;
1656 	} else {
1657 		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1658 		smmu->va_size = arm_smmu_id_size_to_bits(size);
1659 #ifndef CONFIG_64BIT
1660 		smmu->va_size = min(32UL, smmu->va_size);
1661 #endif
1662 		size = 0;
1663 		if (id & ID2_PTFS_4K)
1664 			size |= SZ_4K | SZ_2M | SZ_1G;
1665 		if (id & ID2_PTFS_16K)
1666 			size |= SZ_16K | SZ_32M;
1667 		if (id & ID2_PTFS_64K)
1668 			size |= SZ_64K | SZ_512M;
1669 	}
1670 
1671 	arm_smmu_ops.pgsize_bitmap &= size;
1672 	dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1673 
1674 	if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1675 		dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1676 			   smmu->va_size, smmu->ipa_size);
1677 
1678 	if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1679 		dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1680 			   smmu->ipa_size, smmu->pa_size);
1681 
1682 	return 0;
1683 }
1684 
1685 static const struct of_device_id arm_smmu_of_match[] = {
1686 	{ .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1687 	{ .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1688 	{ .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1689 	{ .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1690 	{ .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1691 	{ },
1692 };
1693 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1694 
arm_smmu_device_dt_probe(struct platform_device * pdev)1695 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1696 {
1697 	const struct of_device_id *of_id;
1698 	struct resource *res;
1699 	struct arm_smmu_device *smmu;
1700 	struct device *dev = &pdev->dev;
1701 	struct rb_node *node;
1702 	struct of_phandle_args masterspec;
1703 	int num_irqs, i, err;
1704 
1705 	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1706 	if (!smmu) {
1707 		dev_err(dev, "failed to allocate arm_smmu_device\n");
1708 		return -ENOMEM;
1709 	}
1710 	smmu->dev = dev;
1711 
1712 	of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1713 	smmu->version = (enum arm_smmu_arch_version)of_id->data;
1714 
1715 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1716 	smmu->base = devm_ioremap_resource(dev, res);
1717 	if (IS_ERR(smmu->base))
1718 		return PTR_ERR(smmu->base);
1719 	smmu->size = resource_size(res);
1720 
1721 	if (of_property_read_u32(dev->of_node, "#global-interrupts",
1722 				 &smmu->num_global_irqs)) {
1723 		dev_err(dev, "missing #global-interrupts property\n");
1724 		return -ENODEV;
1725 	}
1726 
1727 	num_irqs = 0;
1728 	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1729 		num_irqs++;
1730 		if (num_irqs > smmu->num_global_irqs)
1731 			smmu->num_context_irqs++;
1732 	}
1733 
1734 	if (!smmu->num_context_irqs) {
1735 		dev_err(dev, "found %d interrupts but expected at least %d\n",
1736 			num_irqs, smmu->num_global_irqs + 1);
1737 		return -ENODEV;
1738 	}
1739 
1740 	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1741 				  GFP_KERNEL);
1742 	if (!smmu->irqs) {
1743 		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1744 		return -ENOMEM;
1745 	}
1746 
1747 	for (i = 0; i < num_irqs; ++i) {
1748 		int irq = platform_get_irq(pdev, i);
1749 
1750 		if (irq < 0) {
1751 			dev_err(dev, "failed to get irq index %d\n", i);
1752 			return -ENODEV;
1753 		}
1754 		smmu->irqs[i] = irq;
1755 	}
1756 
1757 	err = arm_smmu_device_cfg_probe(smmu);
1758 	if (err)
1759 		return err;
1760 
1761 	i = 0;
1762 	smmu->masters = RB_ROOT;
1763 	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1764 					   "#stream-id-cells", i,
1765 					   &masterspec)) {
1766 		err = register_smmu_master(smmu, dev, &masterspec);
1767 		if (err) {
1768 			dev_err(dev, "failed to add master %s\n",
1769 				masterspec.np->name);
1770 			goto out_put_masters;
1771 		}
1772 
1773 		i++;
1774 	}
1775 	dev_notice(dev, "registered %d master devices\n", i);
1776 
1777 	parse_driver_options(smmu);
1778 
1779 	if (smmu->version > ARM_SMMU_V1 &&
1780 	    smmu->num_context_banks != smmu->num_context_irqs) {
1781 		dev_err(dev,
1782 			"found only %d context interrupt(s) but %d required\n",
1783 			smmu->num_context_irqs, smmu->num_context_banks);
1784 		err = -ENODEV;
1785 		goto out_put_masters;
1786 	}
1787 
1788 	for (i = 0; i < smmu->num_global_irqs; ++i) {
1789 		err = request_irq(smmu->irqs[i],
1790 				  arm_smmu_global_fault,
1791 				  IRQF_SHARED,
1792 				  "arm-smmu global fault",
1793 				  smmu);
1794 		if (err) {
1795 			dev_err(dev, "failed to request global IRQ %d (%u)\n",
1796 				i, smmu->irqs[i]);
1797 			goto out_free_irqs;
1798 		}
1799 	}
1800 
1801 	INIT_LIST_HEAD(&smmu->list);
1802 	spin_lock(&arm_smmu_devices_lock);
1803 	list_add(&smmu->list, &arm_smmu_devices);
1804 	spin_unlock(&arm_smmu_devices_lock);
1805 
1806 	arm_smmu_device_reset(smmu);
1807 	return 0;
1808 
1809 out_free_irqs:
1810 	while (i--)
1811 		free_irq(smmu->irqs[i], smmu);
1812 
1813 out_put_masters:
1814 	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1815 		struct arm_smmu_master *master
1816 			= container_of(node, struct arm_smmu_master, node);
1817 		of_node_put(master->of_node);
1818 	}
1819 
1820 	return err;
1821 }
1822 
arm_smmu_device_remove(struct platform_device * pdev)1823 static int arm_smmu_device_remove(struct platform_device *pdev)
1824 {
1825 	int i;
1826 	struct device *dev = &pdev->dev;
1827 	struct arm_smmu_device *curr, *smmu = NULL;
1828 	struct rb_node *node;
1829 
1830 	spin_lock(&arm_smmu_devices_lock);
1831 	list_for_each_entry(curr, &arm_smmu_devices, list) {
1832 		if (curr->dev == dev) {
1833 			smmu = curr;
1834 			list_del(&smmu->list);
1835 			break;
1836 		}
1837 	}
1838 	spin_unlock(&arm_smmu_devices_lock);
1839 
1840 	if (!smmu)
1841 		return -ENODEV;
1842 
1843 	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1844 		struct arm_smmu_master *master
1845 			= container_of(node, struct arm_smmu_master, node);
1846 		of_node_put(master->of_node);
1847 	}
1848 
1849 	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1850 		dev_err(dev, "removing device with active domains!\n");
1851 
1852 	for (i = 0; i < smmu->num_global_irqs; ++i)
1853 		free_irq(smmu->irqs[i], smmu);
1854 
1855 	/* Turn the thing off */
1856 	writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1857 	return 0;
1858 }
1859 
1860 static struct platform_driver arm_smmu_driver = {
1861 	.driver	= {
1862 		.name		= "arm-smmu",
1863 		.of_match_table	= of_match_ptr(arm_smmu_of_match),
1864 	},
1865 	.probe	= arm_smmu_device_dt_probe,
1866 	.remove	= arm_smmu_device_remove,
1867 };
1868 
arm_smmu_init(void)1869 static int __init arm_smmu_init(void)
1870 {
1871 	struct device_node *np;
1872 	int ret;
1873 
1874 	/*
1875 	 * Play nice with systems that don't have an ARM SMMU by checking that
1876 	 * an ARM SMMU exists in the system before proceeding with the driver
1877 	 * and IOMMU bus operation registration.
1878 	 */
1879 	np = of_find_matching_node(NULL, arm_smmu_of_match);
1880 	if (!np)
1881 		return 0;
1882 
1883 	of_node_put(np);
1884 
1885 	ret = platform_driver_register(&arm_smmu_driver);
1886 	if (ret)
1887 		return ret;
1888 
1889 	/* Oh, for a proper bus abstraction */
1890 	if (!iommu_present(&platform_bus_type))
1891 		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1892 
1893 #ifdef CONFIG_ARM_AMBA
1894 	if (!iommu_present(&amba_bustype))
1895 		bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1896 #endif
1897 
1898 #ifdef CONFIG_PCI
1899 	if (!iommu_present(&pci_bus_type))
1900 		bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1901 #endif
1902 
1903 	return 0;
1904 }
1905 
arm_smmu_exit(void)1906 static void __exit arm_smmu_exit(void)
1907 {
1908 	return platform_driver_unregister(&arm_smmu_driver);
1909 }
1910 
1911 subsys_initcall(arm_smmu_init);
1912 module_exit(arm_smmu_exit);
1913 
1914 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1915 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1916 MODULE_LICENSE("GPL v2");
1917