1 /*
2  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
3  *
4  *  Copyright (C) 2011 Weinmann Medical GmbH
5  *  Author: Nikolaus Voss <n.voss@weinmann.de>
6  *
7  *  Evolved from original work by:
8  *  Copyright (C) 2004 Rick Bronson
9  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
10  *
11  *  Borrowed heavily from original work by:
12  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or
17  *  (at your option) any later version.
18  */
19 
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
36 
37 #define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT		2000
41 
42 /* AT91 TWI register definitions */
43 #define	AT91_TWI_CR		0x0000	/* Control Register */
44 #define	AT91_TWI_START		BIT(0)	/* Send a Start Condition */
45 #define	AT91_TWI_STOP		BIT(1)	/* Send a Stop Condition */
46 #define	AT91_TWI_MSEN		BIT(2)	/* Master Transfer Enable */
47 #define	AT91_TWI_MSDIS		BIT(3)	/* Master Transfer Disable */
48 #define	AT91_TWI_SVEN		BIT(4)	/* Slave Transfer Enable */
49 #define	AT91_TWI_SVDIS		BIT(5)	/* Slave Transfer Disable */
50 #define	AT91_TWI_QUICK		BIT(6)	/* SMBus quick command */
51 #define	AT91_TWI_SWRST		BIT(7)	/* Software Reset */
52 #define	AT91_TWI_ACMEN		BIT(16) /* Alternative Command Mode Enable */
53 #define	AT91_TWI_ACMDIS		BIT(17) /* Alternative Command Mode Disable */
54 #define	AT91_TWI_THRCLR		BIT(24) /* Transmit Holding Register Clear */
55 #define	AT91_TWI_RHRCLR		BIT(25) /* Receive Holding Register Clear */
56 #define	AT91_TWI_LOCKCLR	BIT(26) /* Lock Clear */
57 #define	AT91_TWI_FIFOEN		BIT(28) /* FIFO Enable */
58 #define	AT91_TWI_FIFODIS	BIT(29) /* FIFO Disable */
59 
60 #define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
61 #define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
62 #define	AT91_TWI_MREAD		BIT(12)	/* Master Read Direction */
63 
64 #define	AT91_TWI_IADR		0x000c	/* Internal Address Register */
65 
66 #define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
67 
68 #define	AT91_TWI_SR		0x0020	/* Status Register */
69 #define	AT91_TWI_TXCOMP		BIT(0)	/* Transmission Complete */
70 #define	AT91_TWI_RXRDY		BIT(1)	/* Receive Holding Register Ready */
71 #define	AT91_TWI_TXRDY		BIT(2)	/* Transmit Holding Register Ready */
72 #define	AT91_TWI_OVRE		BIT(6)	/* Overrun Error */
73 #define	AT91_TWI_UNRE		BIT(7)	/* Underrun Error */
74 #define	AT91_TWI_NACK		BIT(8)	/* Not Acknowledged */
75 #define	AT91_TWI_LOCK		BIT(23) /* TWI Lock due to Frame Errors */
76 
77 #define	AT91_TWI_INT_MASK \
78 	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
79 
80 #define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
81 #define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
82 #define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
83 #define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
84 #define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */
85 
86 #define	AT91_TWI_ACR		0x0040	/* Alternative Command Register */
87 #define	AT91_TWI_ACR_DATAL(len)	((len) & 0xff)
88 #define	AT91_TWI_ACR_DIR	BIT(8)
89 
90 #define	AT91_TWI_FMR		0x0050	/* FIFO Mode Register */
91 #define	AT91_TWI_FMR_TXRDYM(mode)	(((mode) & 0x3) << 0)
92 #define	AT91_TWI_FMR_TXRDYM_MASK	(0x3 << 0)
93 #define	AT91_TWI_FMR_RXRDYM(mode)	(((mode) & 0x3) << 4)
94 #define	AT91_TWI_FMR_RXRDYM_MASK	(0x3 << 4)
95 #define	AT91_TWI_ONE_DATA	0x0
96 #define	AT91_TWI_TWO_DATA	0x1
97 #define	AT91_TWI_FOUR_DATA	0x2
98 
99 #define	AT91_TWI_FLR		0x0054	/* FIFO Level Register */
100 
101 #define	AT91_TWI_FSR		0x0060	/* FIFO Status Register */
102 #define	AT91_TWI_FIER		0x0064	/* FIFO Interrupt Enable Register */
103 #define	AT91_TWI_FIDR		0x0068	/* FIFO Interrupt Disable Register */
104 #define	AT91_TWI_FIMR		0x006c	/* FIFO Interrupt Mask Register */
105 
106 #define	AT91_TWI_VER		0x00fc	/* Version Register */
107 
108 struct at91_twi_pdata {
109 	unsigned clk_max_div;
110 	unsigned clk_offset;
111 	bool has_unre_flag;
112 	bool has_alt_cmd;
113 	struct at_dma_slave dma_slave;
114 };
115 
116 struct at91_twi_dma {
117 	struct dma_chan *chan_rx;
118 	struct dma_chan *chan_tx;
119 	struct scatterlist sg[2];
120 	struct dma_async_tx_descriptor *data_desc;
121 	enum dma_data_direction direction;
122 	bool buf_mapped;
123 	bool xfer_in_progress;
124 };
125 
126 struct at91_twi_dev {
127 	struct device *dev;
128 	void __iomem *base;
129 	struct completion cmd_complete;
130 	struct clk *clk;
131 	u8 *buf;
132 	size_t buf_len;
133 	struct i2c_msg *msg;
134 	int irq;
135 	unsigned imr;
136 	unsigned transfer_status;
137 	struct i2c_adapter adapter;
138 	unsigned twi_cwgr_reg;
139 	struct at91_twi_pdata *pdata;
140 	bool use_dma;
141 	bool recv_len_abort;
142 	u32 fifo_size;
143 	struct at91_twi_dma dma;
144 };
145 
at91_twi_read(struct at91_twi_dev * dev,unsigned reg)146 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
147 {
148 	return readl_relaxed(dev->base + reg);
149 }
150 
at91_twi_write(struct at91_twi_dev * dev,unsigned reg,unsigned val)151 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
152 {
153 	writel_relaxed(val, dev->base + reg);
154 }
155 
at91_disable_twi_interrupts(struct at91_twi_dev * dev)156 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
157 {
158 	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
159 }
160 
at91_twi_irq_save(struct at91_twi_dev * dev)161 static void at91_twi_irq_save(struct at91_twi_dev *dev)
162 {
163 	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
164 	at91_disable_twi_interrupts(dev);
165 }
166 
at91_twi_irq_restore(struct at91_twi_dev * dev)167 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
168 {
169 	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
170 }
171 
at91_init_twi_bus(struct at91_twi_dev * dev)172 static void at91_init_twi_bus(struct at91_twi_dev *dev)
173 {
174 	at91_disable_twi_interrupts(dev);
175 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
176 	/* FIFO should be enabled immediately after the software reset */
177 	if (dev->fifo_size)
178 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
179 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
180 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
181 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
182 }
183 
184 /*
185  * Calculate symmetric clock as stated in datasheet:
186  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
187  */
at91_calc_twi_clock(struct at91_twi_dev * dev,int twi_clk)188 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
189 {
190 	int ckdiv, cdiv, div;
191 	struct at91_twi_pdata *pdata = dev->pdata;
192 	int offset = pdata->clk_offset;
193 	int max_ckdiv = pdata->clk_max_div;
194 
195 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
196 				       2 * twi_clk) - offset);
197 	ckdiv = fls(div >> 8);
198 	cdiv = div >> ckdiv;
199 
200 	if (ckdiv > max_ckdiv) {
201 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
202 			 ckdiv, max_ckdiv);
203 		ckdiv = max_ckdiv;
204 		cdiv = 255;
205 	}
206 
207 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv;
208 	dev_dbg(dev->dev, "cdiv %d ckdiv %d\n", cdiv, ckdiv);
209 }
210 
at91_twi_dma_cleanup(struct at91_twi_dev * dev)211 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
212 {
213 	struct at91_twi_dma *dma = &dev->dma;
214 
215 	at91_twi_irq_save(dev);
216 
217 	if (dma->xfer_in_progress) {
218 		if (dma->direction == DMA_FROM_DEVICE)
219 			dmaengine_terminate_all(dma->chan_rx);
220 		else
221 			dmaengine_terminate_all(dma->chan_tx);
222 		dma->xfer_in_progress = false;
223 	}
224 	if (dma->buf_mapped) {
225 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
226 				 dev->buf_len, dma->direction);
227 		dma->buf_mapped = false;
228 	}
229 
230 	at91_twi_irq_restore(dev);
231 }
232 
at91_twi_write_next_byte(struct at91_twi_dev * dev)233 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
234 {
235 	if (!dev->buf_len)
236 		return;
237 
238 	/* 8bit write works with and without FIFO */
239 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
240 
241 	/* send stop when last byte has been written */
242 	if (--dev->buf_len == 0)
243 		if (!dev->pdata->has_alt_cmd)
244 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
245 
246 	dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
247 
248 	++dev->buf;
249 }
250 
at91_twi_write_data_dma_callback(void * data)251 static void at91_twi_write_data_dma_callback(void *data)
252 {
253 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
254 
255 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
256 			 dev->buf_len, DMA_TO_DEVICE);
257 
258 	/*
259 	 * When this callback is called, THR/TX FIFO is likely not to be empty
260 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
261 	 * Status Register to be sure that the STOP bit has been sent and the
262 	 * transfer is completed. The NACK interrupt has already been enabled,
263 	 * we just have to enable TXCOMP one.
264 	 */
265 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
266 	if (!dev->pdata->has_alt_cmd)
267 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
268 }
269 
at91_twi_write_data_dma(struct at91_twi_dev * dev)270 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
271 {
272 	dma_addr_t dma_addr;
273 	struct dma_async_tx_descriptor *txdesc;
274 	struct at91_twi_dma *dma = &dev->dma;
275 	struct dma_chan *chan_tx = dma->chan_tx;
276 	unsigned int sg_len = 1;
277 
278 	if (!dev->buf_len)
279 		return;
280 
281 	dma->direction = DMA_TO_DEVICE;
282 
283 	at91_twi_irq_save(dev);
284 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
285 				  DMA_TO_DEVICE);
286 	if (dma_mapping_error(dev->dev, dma_addr)) {
287 		dev_err(dev->dev, "dma map failed\n");
288 		return;
289 	}
290 	dma->buf_mapped = true;
291 	at91_twi_irq_restore(dev);
292 
293 	if (dev->fifo_size) {
294 		size_t part1_len, part2_len;
295 		struct scatterlist *sg;
296 		unsigned fifo_mr;
297 
298 		sg_len = 0;
299 
300 		part1_len = dev->buf_len & ~0x3;
301 		if (part1_len) {
302 			sg = &dma->sg[sg_len++];
303 			sg_dma_len(sg) = part1_len;
304 			sg_dma_address(sg) = dma_addr;
305 		}
306 
307 		part2_len = dev->buf_len & 0x3;
308 		if (part2_len) {
309 			sg = &dma->sg[sg_len++];
310 			sg_dma_len(sg) = part2_len;
311 			sg_dma_address(sg) = dma_addr + part1_len;
312 		}
313 
314 		/*
315 		 * DMA controller is triggered when at least 4 data can be
316 		 * written into the TX FIFO
317 		 */
318 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
319 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
320 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
321 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
322 	} else {
323 		sg_dma_len(&dma->sg[0]) = dev->buf_len;
324 		sg_dma_address(&dma->sg[0]) = dma_addr;
325 	}
326 
327 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
328 					 DMA_MEM_TO_DEV,
329 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
330 	if (!txdesc) {
331 		dev_err(dev->dev, "dma prep slave sg failed\n");
332 		goto error;
333 	}
334 
335 	txdesc->callback = at91_twi_write_data_dma_callback;
336 	txdesc->callback_param = dev;
337 
338 	dma->xfer_in_progress = true;
339 	dmaengine_submit(txdesc);
340 	dma_async_issue_pending(chan_tx);
341 
342 	return;
343 
344 error:
345 	at91_twi_dma_cleanup(dev);
346 }
347 
at91_twi_read_next_byte(struct at91_twi_dev * dev)348 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
349 {
350 	/*
351 	 * If we are in this case, it means there is garbage data in RHR, so
352 	 * delete them.
353 	 */
354 	if (!dev->buf_len) {
355 		at91_twi_read(dev, AT91_TWI_RHR);
356 		return;
357 	}
358 
359 	/* 8bit read works with and without FIFO */
360 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
361 	--dev->buf_len;
362 
363 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
364 	if (dev->recv_len_abort)
365 		return;
366 
367 	/* handle I2C_SMBUS_BLOCK_DATA */
368 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
369 		/* ensure length byte is a valid value */
370 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
371 			dev->msg->flags &= ~I2C_M_RECV_LEN;
372 			dev->buf_len += *dev->buf;
373 			dev->msg->len = dev->buf_len + 1;
374 			dev_dbg(dev->dev, "received block length %d\n",
375 					 dev->buf_len);
376 		} else {
377 			/* abort and send the stop by reading one more byte */
378 			dev->recv_len_abort = true;
379 			dev->buf_len = 1;
380 		}
381 	}
382 
383 	/* send stop if second but last byte has been read */
384 	if (!dev->pdata->has_alt_cmd && dev->buf_len == 1)
385 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
386 
387 	dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
388 
389 	++dev->buf;
390 }
391 
at91_twi_read_data_dma_callback(void * data)392 static void at91_twi_read_data_dma_callback(void *data)
393 {
394 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
395 	unsigned ier = AT91_TWI_TXCOMP;
396 
397 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
398 			 dev->buf_len, DMA_FROM_DEVICE);
399 
400 	if (!dev->pdata->has_alt_cmd) {
401 		/* The last two bytes have to be read without using dma */
402 		dev->buf += dev->buf_len - 2;
403 		dev->buf_len = 2;
404 		ier |= AT91_TWI_RXRDY;
405 	}
406 	at91_twi_write(dev, AT91_TWI_IER, ier);
407 }
408 
at91_twi_read_data_dma(struct at91_twi_dev * dev)409 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
410 {
411 	dma_addr_t dma_addr;
412 	struct dma_async_tx_descriptor *rxdesc;
413 	struct at91_twi_dma *dma = &dev->dma;
414 	struct dma_chan *chan_rx = dma->chan_rx;
415 	size_t buf_len;
416 
417 	buf_len = (dev->pdata->has_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
418 	dma->direction = DMA_FROM_DEVICE;
419 
420 	/* Keep in mind that we won't use dma to read the last two bytes */
421 	at91_twi_irq_save(dev);
422 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
423 	if (dma_mapping_error(dev->dev, dma_addr)) {
424 		dev_err(dev->dev, "dma map failed\n");
425 		return;
426 	}
427 	dma->buf_mapped = true;
428 	at91_twi_irq_restore(dev);
429 
430 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
431 		unsigned fifo_mr;
432 
433 		/*
434 		 * DMA controller is triggered when at least 4 data can be
435 		 * read from the RX FIFO
436 		 */
437 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
438 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
439 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
440 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
441 	}
442 
443 	sg_dma_len(&dma->sg[0]) = buf_len;
444 	sg_dma_address(&dma->sg[0]) = dma_addr;
445 
446 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
447 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
448 	if (!rxdesc) {
449 		dev_err(dev->dev, "dma prep slave sg failed\n");
450 		goto error;
451 	}
452 
453 	rxdesc->callback = at91_twi_read_data_dma_callback;
454 	rxdesc->callback_param = dev;
455 
456 	dma->xfer_in_progress = true;
457 	dmaengine_submit(rxdesc);
458 	dma_async_issue_pending(dma->chan_rx);
459 
460 	return;
461 
462 error:
463 	at91_twi_dma_cleanup(dev);
464 }
465 
atmel_twi_interrupt(int irq,void * dev_id)466 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
467 {
468 	struct at91_twi_dev *dev = dev_id;
469 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
470 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
471 
472 	if (!irqstatus)
473 		return IRQ_NONE;
474 	/*
475 	 * In reception, the behavior of the twi device (before sama5d2) is
476 	 * weird. There is some magic about RXRDY flag! When a data has been
477 	 * almost received, the reception of a new one is anticipated if there
478 	 * is no stop command to send. That is the reason why ask for sending
479 	 * the stop command not on the last data but on the second last one.
480 	 *
481 	 * Unfortunately, we could still have the RXRDY flag set even if the
482 	 * transfer is done and we have read the last data. It might happen
483 	 * when the i2c slave device sends too quickly data after receiving the
484 	 * ack from the master. The data has been almost received before having
485 	 * the order to send stop. In this case, sending the stop command could
486 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
487 	 * the RXRDY interrupt first in order to not keep garbage data in the
488 	 * Receive Holding Register for the next transfer.
489 	 */
490 	if (irqstatus & AT91_TWI_RXRDY)
491 		at91_twi_read_next_byte(dev);
492 
493 	/*
494 	 * When a NACK condition is detected, the I2C controller sets the NACK,
495 	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
496 	 *
497 	 * 1 - Handling NACK errors with CPU write transfer.
498 	 *
499 	 * In such case, we should not write the next byte into the Transmit
500 	 * Holding Register (THR) otherwise the I2C controller would start a new
501 	 * transfer and the I2C slave is likely to reply by another NACK.
502 	 *
503 	 * 2 - Handling NACK errors with DMA write transfer.
504 	 *
505 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
506 	 * the DMA controller to write the next data into the THR. Then the
507 	 * result depends on the hardware version of the I2C controller.
508 	 *
509 	 * 2a - Without support of the Alternative Command mode.
510 	 *
511 	 * This is the worst case: the DMA controller is triggered to write the
512 	 * next data into the THR, hence starting a new transfer: the I2C slave
513 	 * is likely to reply by another NACK.
514 	 * Concurrently, this interrupt handler is likely to be called to manage
515 	 * the first NACK before the I2C controller detects the second NACK and
516 	 * sets once again the NACK bit into the SR.
517 	 * When handling the first NACK, this interrupt handler disables the I2C
518 	 * controller interruptions, especially the NACK interrupt.
519 	 * Hence, the NACK bit is pending into the SR. This is why we should
520 	 * read the SR to clear all pending interrupts at the beginning of
521 	 * at91_do_twi_transfer() before actually starting a new transfer.
522 	 *
523 	 * 2b - With support of the Alternative Command mode.
524 	 *
525 	 * When a NACK condition is detected, the I2C controller also locks the
526 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
527 	 * is triggered by the TXRDY bit to write the next data into the THR,
528 	 * this data actually won't go on the I2C bus hence a second NACK is not
529 	 * generated.
530 	 */
531 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
532 		at91_disable_twi_interrupts(dev);
533 		complete(&dev->cmd_complete);
534 	} else if (irqstatus & AT91_TWI_TXRDY) {
535 		at91_twi_write_next_byte(dev);
536 	}
537 
538 	/* catch error flags */
539 	dev->transfer_status |= status;
540 
541 	return IRQ_HANDLED;
542 }
543 
at91_do_twi_transfer(struct at91_twi_dev * dev)544 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
545 {
546 	int ret;
547 	unsigned long time_left;
548 	bool has_unre_flag = dev->pdata->has_unre_flag;
549 	bool has_alt_cmd = dev->pdata->has_alt_cmd;
550 
551 	/*
552 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
553 	 * read flag but shows the state of the transmission at the time the
554 	 * Status Register is read. According to the programmer datasheet,
555 	 * TXCOMP is set when both holding register and internal shifter are
556 	 * empty and STOP condition has been sent.
557 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
558 	 * detect transmission failure.
559 	 * Indeed let's take the case of an i2c write command using DMA.
560 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
561 	 * TXCOMP bits are set together into the Status Register.
562 	 * LOCK is a clear on write bit, which is set to prevent the DMA
563 	 * controller from sending new data on the i2c bus after a NACK
564 	 * condition has happened. Once locked, this i2c peripheral stops
565 	 * triggering the DMA controller for new data but it is more than
566 	 * likely that a new DMA transaction is already in progress, writing
567 	 * into the Transmit Holding Register. Since the peripheral is locked,
568 	 * these new data won't be sent to the i2c bus but they will remain
569 	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
570 	 * Then when the interrupt handler is called, the Status Register is
571 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
572 	 * manage the error properly, without waiting for timeout.
573 	 * This case can be reproduced easyly when writing into an at24 eeprom.
574 	 *
575 	 * Besides, the TXCOMP bit is already set before the i2c transaction
576 	 * has been started. For read transactions, this bit is cleared when
577 	 * writing the START bit into the Control Register. So the
578 	 * corresponding interrupt can safely be enabled just after.
579 	 * However for write transactions managed by the CPU, we first write
580 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
581 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
582 	 * the interrupt handler would be called immediately and the i2c command
583 	 * would be reported as completed.
584 	 * Also when a write transaction is managed by the DMA controller,
585 	 * enabling the TXCOMP interrupt in this function may lead to a race
586 	 * condition since we don't know whether the TXCOMP interrupt is enabled
587 	 * before or after the DMA has started to write into THR. So the TXCOMP
588 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
589 	 * Immediately after in that DMA callback, if the alternative command
590 	 * mode is not used, we still need to send the STOP condition manually
591 	 * writing the corresponding bit into the Control Register.
592 	 */
593 
594 	dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
595 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
596 
597 	reinit_completion(&dev->cmd_complete);
598 	dev->transfer_status = 0;
599 
600 	/* Clear pending interrupts, such as NACK. */
601 	at91_twi_read(dev, AT91_TWI_SR);
602 
603 	if (dev->fifo_size) {
604 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
605 
606 		/* Reset FIFO mode register */
607 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
608 			     AT91_TWI_FMR_RXRDYM_MASK);
609 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
610 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
611 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
612 
613 		/* Flush FIFOs */
614 		at91_twi_write(dev, AT91_TWI_CR,
615 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
616 	}
617 
618 	if (!dev->buf_len) {
619 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
620 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
621 	} else if (dev->msg->flags & I2C_M_RD) {
622 		unsigned start_flags = AT91_TWI_START;
623 
624 		/* if only one byte is to be read, immediately stop transfer */
625 		if (!has_alt_cmd && dev->buf_len <= 1 &&
626 		    !(dev->msg->flags & I2C_M_RECV_LEN))
627 			start_flags |= AT91_TWI_STOP;
628 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
629 		/*
630 		 * When using dma without alternative command mode, the last
631 		 * byte has to be read manually in order to not send the stop
632 		 * command too late and then to receive extra data.
633 		 * In practice, there are some issues if you use the dma to
634 		 * read n-1 bytes because of latency.
635 		 * Reading n-2 bytes with dma and the two last ones manually
636 		 * seems to be the best solution.
637 		 */
638 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
639 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
640 			at91_twi_read_data_dma(dev);
641 		} else {
642 			at91_twi_write(dev, AT91_TWI_IER,
643 				       AT91_TWI_TXCOMP |
644 				       AT91_TWI_NACK |
645 				       AT91_TWI_RXRDY);
646 		}
647 	} else {
648 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
649 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
650 			at91_twi_write_data_dma(dev);
651 		} else {
652 			at91_twi_write_next_byte(dev);
653 			at91_twi_write(dev, AT91_TWI_IER,
654 				       AT91_TWI_TXCOMP |
655 				       AT91_TWI_NACK |
656 				       AT91_TWI_TXRDY);
657 		}
658 	}
659 
660 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
661 					      dev->adapter.timeout);
662 	if (time_left == 0) {
663 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
664 		dev_err(dev->dev, "controller timed out\n");
665 		at91_init_twi_bus(dev);
666 		ret = -ETIMEDOUT;
667 		goto error;
668 	}
669 	if (dev->transfer_status & AT91_TWI_NACK) {
670 		dev_dbg(dev->dev, "received nack\n");
671 		ret = -EREMOTEIO;
672 		goto error;
673 	}
674 	if (dev->transfer_status & AT91_TWI_OVRE) {
675 		dev_err(dev->dev, "overrun while reading\n");
676 		ret = -EIO;
677 		goto error;
678 	}
679 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
680 		dev_err(dev->dev, "underrun while writing\n");
681 		ret = -EIO;
682 		goto error;
683 	}
684 	if ((has_alt_cmd || dev->fifo_size) &&
685 	    (dev->transfer_status & AT91_TWI_LOCK)) {
686 		dev_err(dev->dev, "tx locked\n");
687 		ret = -EIO;
688 		goto error;
689 	}
690 	if (dev->recv_len_abort) {
691 		dev_err(dev->dev, "invalid smbus block length recvd\n");
692 		ret = -EPROTO;
693 		goto error;
694 	}
695 
696 	dev_dbg(dev->dev, "transfer complete\n");
697 
698 	return 0;
699 
700 error:
701 	/* first stop DMA transfer if still in progress */
702 	at91_twi_dma_cleanup(dev);
703 	/* then flush THR/FIFO and unlock TX if locked */
704 	if ((has_alt_cmd || dev->fifo_size) &&
705 	    (dev->transfer_status & AT91_TWI_LOCK)) {
706 		dev_dbg(dev->dev, "unlock tx\n");
707 		at91_twi_write(dev, AT91_TWI_CR,
708 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
709 	}
710 	return ret;
711 }
712 
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)713 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
714 {
715 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
716 	int ret;
717 	unsigned int_addr_flag = 0;
718 	struct i2c_msg *m_start = msg;
719 	bool is_read, use_alt_cmd = false;
720 
721 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
722 
723 	ret = pm_runtime_get_sync(dev->dev);
724 	if (ret < 0)
725 		goto out;
726 
727 	if (num == 2) {
728 		int internal_address = 0;
729 		int i;
730 
731 		/* 1st msg is put into the internal address, start with 2nd */
732 		m_start = &msg[1];
733 		for (i = 0; i < msg->len; ++i) {
734 			const unsigned addr = msg->buf[msg->len - 1 - i];
735 
736 			internal_address |= addr << (8 * i);
737 			int_addr_flag += AT91_TWI_IADRSZ_1;
738 		}
739 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
740 	}
741 
742 	is_read = (m_start->flags & I2C_M_RD);
743 	if (dev->pdata->has_alt_cmd) {
744 		if (m_start->len > 0) {
745 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
746 			at91_twi_write(dev, AT91_TWI_ACR,
747 				       AT91_TWI_ACR_DATAL(m_start->len) |
748 				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
749 			use_alt_cmd = true;
750 		} else {
751 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
752 		}
753 	}
754 
755 	at91_twi_write(dev, AT91_TWI_MMR,
756 		       (m_start->addr << 16) |
757 		       int_addr_flag |
758 		       ((!use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
759 
760 	dev->buf_len = m_start->len;
761 	dev->buf = m_start->buf;
762 	dev->msg = m_start;
763 	dev->recv_len_abort = false;
764 
765 	ret = at91_do_twi_transfer(dev);
766 
767 	ret = (ret < 0) ? ret : num;
768 out:
769 	pm_runtime_mark_last_busy(dev->dev);
770 	pm_runtime_put_autosuspend(dev->dev);
771 
772 	return ret;
773 }
774 
775 /*
776  * The hardware can handle at most two messages concatenated by a
777  * repeated start via it's internal address feature.
778  */
779 static struct i2c_adapter_quirks at91_twi_quirks = {
780 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
781 	.max_comb_1st_msg_len = 3,
782 };
783 
at91_twi_func(struct i2c_adapter * adapter)784 static u32 at91_twi_func(struct i2c_adapter *adapter)
785 {
786 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
787 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
788 }
789 
790 static struct i2c_algorithm at91_twi_algorithm = {
791 	.master_xfer	= at91_twi_xfer,
792 	.functionality	= at91_twi_func,
793 };
794 
795 static struct at91_twi_pdata at91rm9200_config = {
796 	.clk_max_div = 5,
797 	.clk_offset = 3,
798 	.has_unre_flag = true,
799 	.has_alt_cmd = false,
800 };
801 
802 static struct at91_twi_pdata at91sam9261_config = {
803 	.clk_max_div = 5,
804 	.clk_offset = 4,
805 	.has_unre_flag = false,
806 	.has_alt_cmd = false,
807 };
808 
809 static struct at91_twi_pdata at91sam9260_config = {
810 	.clk_max_div = 7,
811 	.clk_offset = 4,
812 	.has_unre_flag = false,
813 	.has_alt_cmd = false,
814 };
815 
816 static struct at91_twi_pdata at91sam9g20_config = {
817 	.clk_max_div = 7,
818 	.clk_offset = 4,
819 	.has_unre_flag = false,
820 	.has_alt_cmd = false,
821 };
822 
823 static struct at91_twi_pdata at91sam9g10_config = {
824 	.clk_max_div = 7,
825 	.clk_offset = 4,
826 	.has_unre_flag = false,
827 	.has_alt_cmd = false,
828 };
829 
830 static const struct platform_device_id at91_twi_devtypes[] = {
831 	{
832 		.name = "i2c-at91rm9200",
833 		.driver_data = (unsigned long) &at91rm9200_config,
834 	}, {
835 		.name = "i2c-at91sam9261",
836 		.driver_data = (unsigned long) &at91sam9261_config,
837 	}, {
838 		.name = "i2c-at91sam9260",
839 		.driver_data = (unsigned long) &at91sam9260_config,
840 	}, {
841 		.name = "i2c-at91sam9g20",
842 		.driver_data = (unsigned long) &at91sam9g20_config,
843 	}, {
844 		.name = "i2c-at91sam9g10",
845 		.driver_data = (unsigned long) &at91sam9g10_config,
846 	}, {
847 		/* sentinel */
848 	}
849 };
850 
851 #if defined(CONFIG_OF)
852 static struct at91_twi_pdata at91sam9x5_config = {
853 	.clk_max_div = 7,
854 	.clk_offset = 4,
855 	.has_unre_flag = false,
856 	.has_alt_cmd = false,
857 };
858 
859 static struct at91_twi_pdata sama5d2_config = {
860 	.clk_max_div = 7,
861 	.clk_offset = 4,
862 	.has_unre_flag = true,
863 	.has_alt_cmd = true,
864 };
865 
866 static const struct of_device_id atmel_twi_dt_ids[] = {
867 	{
868 		.compatible = "atmel,at91rm9200-i2c",
869 		.data = &at91rm9200_config,
870 	} , {
871 		.compatible = "atmel,at91sam9260-i2c",
872 		.data = &at91sam9260_config,
873 	} , {
874 		.compatible = "atmel,at91sam9261-i2c",
875 		.data = &at91sam9261_config,
876 	} , {
877 		.compatible = "atmel,at91sam9g20-i2c",
878 		.data = &at91sam9g20_config,
879 	} , {
880 		.compatible = "atmel,at91sam9g10-i2c",
881 		.data = &at91sam9g10_config,
882 	}, {
883 		.compatible = "atmel,at91sam9x5-i2c",
884 		.data = &at91sam9x5_config,
885 	}, {
886 		.compatible = "atmel,sama5d2-i2c",
887 		.data = &sama5d2_config,
888 	}, {
889 		/* sentinel */
890 	}
891 };
892 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
893 #endif
894 
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)895 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
896 {
897 	int ret = 0;
898 	struct dma_slave_config slave_config;
899 	struct at91_twi_dma *dma = &dev->dma;
900 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
901 
902 	/*
903 	 * The actual width of the access will be chosen in
904 	 * dmaengine_prep_slave_sg():
905 	 * for each buffer in the scatter-gather list, if its size is aligned
906 	 * to addr_width then addr_width accesses will be performed to transfer
907 	 * the buffer. On the other hand, if the buffer size is not aligned to
908 	 * addr_width then the buffer is transferred using single byte accesses.
909 	 * Please refer to the Atmel eXtended DMA controller driver.
910 	 * When FIFOs are used, the TXRDYM threshold can always be set to
911 	 * trigger the XDMAC when at least 4 data can be written into the TX
912 	 * FIFO, even if single byte accesses are performed.
913 	 * However the RXRDYM threshold must be set to fit the access width,
914 	 * deduced from buffer length, so the XDMAC is triggered properly to
915 	 * read data from the RX FIFO.
916 	 */
917 	if (dev->fifo_size)
918 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
919 
920 	memset(&slave_config, 0, sizeof(slave_config));
921 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
922 	slave_config.src_addr_width = addr_width;
923 	slave_config.src_maxburst = 1;
924 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
925 	slave_config.dst_addr_width = addr_width;
926 	slave_config.dst_maxburst = 1;
927 	slave_config.device_fc = false;
928 
929 	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
930 	if (IS_ERR(dma->chan_tx)) {
931 		ret = PTR_ERR(dma->chan_tx);
932 		dma->chan_tx = NULL;
933 		goto error;
934 	}
935 
936 	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
937 	if (IS_ERR(dma->chan_rx)) {
938 		ret = PTR_ERR(dma->chan_rx);
939 		dma->chan_rx = NULL;
940 		goto error;
941 	}
942 
943 	slave_config.direction = DMA_MEM_TO_DEV;
944 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
945 		dev_err(dev->dev, "failed to configure tx channel\n");
946 		ret = -EINVAL;
947 		goto error;
948 	}
949 
950 	slave_config.direction = DMA_DEV_TO_MEM;
951 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
952 		dev_err(dev->dev, "failed to configure rx channel\n");
953 		ret = -EINVAL;
954 		goto error;
955 	}
956 
957 	sg_init_table(dma->sg, 2);
958 	dma->buf_mapped = false;
959 	dma->xfer_in_progress = false;
960 	dev->use_dma = true;
961 
962 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
963 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
964 
965 	return ret;
966 
967 error:
968 	if (ret != -EPROBE_DEFER)
969 		dev_info(dev->dev, "can't use DMA, error %d\n", ret);
970 	if (dma->chan_rx)
971 		dma_release_channel(dma->chan_rx);
972 	if (dma->chan_tx)
973 		dma_release_channel(dma->chan_tx);
974 	return ret;
975 }
976 
at91_twi_get_driver_data(struct platform_device * pdev)977 static struct at91_twi_pdata *at91_twi_get_driver_data(
978 					struct platform_device *pdev)
979 {
980 	if (pdev->dev.of_node) {
981 		const struct of_device_id *match;
982 		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
983 		if (!match)
984 			return NULL;
985 		return (struct at91_twi_pdata *)match->data;
986 	}
987 	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
988 }
989 
at91_twi_probe(struct platform_device * pdev)990 static int at91_twi_probe(struct platform_device *pdev)
991 {
992 	struct at91_twi_dev *dev;
993 	struct resource *mem;
994 	int rc;
995 	u32 phy_addr;
996 	u32 bus_clk_rate;
997 
998 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
999 	if (!dev)
1000 		return -ENOMEM;
1001 	init_completion(&dev->cmd_complete);
1002 	dev->dev = &pdev->dev;
1003 
1004 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1005 	if (!mem)
1006 		return -ENODEV;
1007 	phy_addr = mem->start;
1008 
1009 	dev->pdata = at91_twi_get_driver_data(pdev);
1010 	if (!dev->pdata)
1011 		return -ENODEV;
1012 
1013 	dev->base = devm_ioremap_resource(&pdev->dev, mem);
1014 	if (IS_ERR(dev->base))
1015 		return PTR_ERR(dev->base);
1016 
1017 	dev->irq = platform_get_irq(pdev, 0);
1018 	if (dev->irq < 0)
1019 		return dev->irq;
1020 
1021 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1022 			 dev_name(dev->dev), dev);
1023 	if (rc) {
1024 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1025 		return rc;
1026 	}
1027 
1028 	platform_set_drvdata(pdev, dev);
1029 
1030 	dev->clk = devm_clk_get(dev->dev, NULL);
1031 	if (IS_ERR(dev->clk)) {
1032 		dev_err(dev->dev, "no clock defined\n");
1033 		return -ENODEV;
1034 	}
1035 	clk_prepare_enable(dev->clk);
1036 
1037 	if (dev->dev->of_node) {
1038 		rc = at91_twi_configure_dma(dev, phy_addr);
1039 		if (rc == -EPROBE_DEFER)
1040 			return rc;
1041 	}
1042 
1043 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1044 				  &dev->fifo_size)) {
1045 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1046 	}
1047 
1048 	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1049 			&bus_clk_rate);
1050 	if (rc)
1051 		bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1052 
1053 	at91_calc_twi_clock(dev, bus_clk_rate);
1054 	at91_init_twi_bus(dev);
1055 
1056 	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1057 	i2c_set_adapdata(&dev->adapter, dev);
1058 	dev->adapter.owner = THIS_MODULE;
1059 	dev->adapter.class = I2C_CLASS_DEPRECATED;
1060 	dev->adapter.algo = &at91_twi_algorithm;
1061 	dev->adapter.quirks = &at91_twi_quirks;
1062 	dev->adapter.dev.parent = dev->dev;
1063 	dev->adapter.nr = pdev->id;
1064 	dev->adapter.timeout = AT91_I2C_TIMEOUT;
1065 	dev->adapter.dev.of_node = pdev->dev.of_node;
1066 
1067 	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1068 	pm_runtime_use_autosuspend(dev->dev);
1069 	pm_runtime_set_active(dev->dev);
1070 	pm_runtime_enable(dev->dev);
1071 
1072 	rc = i2c_add_numbered_adapter(&dev->adapter);
1073 	if (rc) {
1074 		dev_err(dev->dev, "Adapter %s registration failed\n",
1075 			dev->adapter.name);
1076 		clk_disable_unprepare(dev->clk);
1077 
1078 		pm_runtime_disable(dev->dev);
1079 		pm_runtime_set_suspended(dev->dev);
1080 
1081 		return rc;
1082 	}
1083 
1084 	dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1085 		 at91_twi_read(dev, AT91_TWI_VER));
1086 	return 0;
1087 }
1088 
at91_twi_remove(struct platform_device * pdev)1089 static int at91_twi_remove(struct platform_device *pdev)
1090 {
1091 	struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1092 
1093 	i2c_del_adapter(&dev->adapter);
1094 	clk_disable_unprepare(dev->clk);
1095 
1096 	pm_runtime_disable(dev->dev);
1097 	pm_runtime_set_suspended(dev->dev);
1098 
1099 	return 0;
1100 }
1101 
1102 #ifdef CONFIG_PM
1103 
at91_twi_runtime_suspend(struct device * dev)1104 static int at91_twi_runtime_suspend(struct device *dev)
1105 {
1106 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1107 
1108 	clk_disable_unprepare(twi_dev->clk);
1109 
1110 	pinctrl_pm_select_sleep_state(dev);
1111 
1112 	return 0;
1113 }
1114 
at91_twi_runtime_resume(struct device * dev)1115 static int at91_twi_runtime_resume(struct device *dev)
1116 {
1117 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1118 
1119 	pinctrl_pm_select_default_state(dev);
1120 
1121 	return clk_prepare_enable(twi_dev->clk);
1122 }
1123 
at91_twi_suspend_noirq(struct device * dev)1124 static int at91_twi_suspend_noirq(struct device *dev)
1125 {
1126 	if (!pm_runtime_status_suspended(dev))
1127 		at91_twi_runtime_suspend(dev);
1128 
1129 	return 0;
1130 }
1131 
at91_twi_resume_noirq(struct device * dev)1132 static int at91_twi_resume_noirq(struct device *dev)
1133 {
1134 	int ret;
1135 
1136 	if (!pm_runtime_status_suspended(dev)) {
1137 		ret = at91_twi_runtime_resume(dev);
1138 		if (ret)
1139 			return ret;
1140 	}
1141 
1142 	pm_runtime_mark_last_busy(dev);
1143 	pm_request_autosuspend(dev);
1144 
1145 	return 0;
1146 }
1147 
1148 static const struct dev_pm_ops at91_twi_pm = {
1149 	.suspend_noirq	= at91_twi_suspend_noirq,
1150 	.resume_noirq	= at91_twi_resume_noirq,
1151 	.runtime_suspend	= at91_twi_runtime_suspend,
1152 	.runtime_resume		= at91_twi_runtime_resume,
1153 };
1154 
1155 #define at91_twi_pm_ops (&at91_twi_pm)
1156 #else
1157 #define at91_twi_pm_ops NULL
1158 #endif
1159 
1160 static struct platform_driver at91_twi_driver = {
1161 	.probe		= at91_twi_probe,
1162 	.remove		= at91_twi_remove,
1163 	.id_table	= at91_twi_devtypes,
1164 	.driver		= {
1165 		.name	= "at91_i2c",
1166 		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
1167 		.pm	= at91_twi_pm_ops,
1168 	},
1169 };
1170 
at91_twi_init(void)1171 static int __init at91_twi_init(void)
1172 {
1173 	return platform_driver_register(&at91_twi_driver);
1174 }
1175 
at91_twi_exit(void)1176 static void __exit at91_twi_exit(void)
1177 {
1178 	platform_driver_unregister(&at91_twi_driver);
1179 }
1180 
1181 subsys_initcall(at91_twi_init);
1182 module_exit(at91_twi_exit);
1183 
1184 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1185 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1186 MODULE_LICENSE("GPL");
1187 MODULE_ALIAS("platform:at91_i2c");
1188