1 /*
2  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
3  *
4  *  Copyright (C) 2011 Weinmann Medical GmbH
5  *  Author: Nikolaus Voss <n.voss@weinmann.de>
6  *
7  *  Evolved from original work by:
8  *  Copyright (C) 2004 Rick Bronson
9  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
10  *
11  *  Borrowed heavily from original work by:
12  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or
17  *  (at your option) any later version.
18  */
19 
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
36 
37 #define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT		2000
41 
42 /* AT91 TWI register definitions */
43 #define	AT91_TWI_CR		0x0000	/* Control Register */
44 #define	AT91_TWI_START		0x0001	/* Send a Start Condition */
45 #define	AT91_TWI_STOP		0x0002	/* Send a Stop Condition */
46 #define	AT91_TWI_MSEN		0x0004	/* Master Transfer Enable */
47 #define	AT91_TWI_SVDIS		0x0020	/* Slave Transfer Disable */
48 #define	AT91_TWI_QUICK		0x0040	/* SMBus quick command */
49 #define	AT91_TWI_SWRST		0x0080	/* Software Reset */
50 
51 #define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
52 #define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
53 #define	AT91_TWI_MREAD		0x1000	/* Master Read Direction */
54 
55 #define	AT91_TWI_IADR		0x000c	/* Internal Address Register */
56 
57 #define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
58 
59 #define	AT91_TWI_SR		0x0020	/* Status Register */
60 #define	AT91_TWI_TXCOMP		0x0001	/* Transmission Complete */
61 #define	AT91_TWI_RXRDY		0x0002	/* Receive Holding Register Ready */
62 #define	AT91_TWI_TXRDY		0x0004	/* Transmit Holding Register Ready */
63 
64 #define	AT91_TWI_OVRE		0x0040	/* Overrun Error */
65 #define	AT91_TWI_UNRE		0x0080	/* Underrun Error */
66 #define	AT91_TWI_NACK		0x0100	/* Not Acknowledged */
67 
68 #define	AT91_TWI_INT_MASK \
69 	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
70 
71 #define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
72 #define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
73 #define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
74 #define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
75 #define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */
76 
77 struct at91_twi_pdata {
78 	unsigned clk_max_div;
79 	unsigned clk_offset;
80 	bool has_unre_flag;
81 	struct at_dma_slave dma_slave;
82 };
83 
84 struct at91_twi_dma {
85 	struct dma_chan *chan_rx;
86 	struct dma_chan *chan_tx;
87 	struct scatterlist sg;
88 	struct dma_async_tx_descriptor *data_desc;
89 	enum dma_data_direction direction;
90 	bool buf_mapped;
91 	bool xfer_in_progress;
92 };
93 
94 struct at91_twi_dev {
95 	struct device *dev;
96 	void __iomem *base;
97 	struct completion cmd_complete;
98 	struct clk *clk;
99 	u8 *buf;
100 	size_t buf_len;
101 	struct i2c_msg *msg;
102 	int irq;
103 	unsigned imr;
104 	unsigned transfer_status;
105 	struct i2c_adapter adapter;
106 	unsigned twi_cwgr_reg;
107 	struct at91_twi_pdata *pdata;
108 	bool use_dma;
109 	bool recv_len_abort;
110 	struct at91_twi_dma dma;
111 };
112 
at91_twi_read(struct at91_twi_dev * dev,unsigned reg)113 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
114 {
115 	return readl_relaxed(dev->base + reg);
116 }
117 
at91_twi_write(struct at91_twi_dev * dev,unsigned reg,unsigned val)118 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
119 {
120 	writel_relaxed(val, dev->base + reg);
121 }
122 
at91_disable_twi_interrupts(struct at91_twi_dev * dev)123 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
124 {
125 	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
126 }
127 
at91_twi_irq_save(struct at91_twi_dev * dev)128 static void at91_twi_irq_save(struct at91_twi_dev *dev)
129 {
130 	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
131 	at91_disable_twi_interrupts(dev);
132 }
133 
at91_twi_irq_restore(struct at91_twi_dev * dev)134 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
135 {
136 	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
137 }
138 
at91_init_twi_bus(struct at91_twi_dev * dev)139 static void at91_init_twi_bus(struct at91_twi_dev *dev)
140 {
141 	at91_disable_twi_interrupts(dev);
142 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
143 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
144 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
145 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
146 }
147 
148 /*
149  * Calculate symmetric clock as stated in datasheet:
150  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
151  */
at91_calc_twi_clock(struct at91_twi_dev * dev,int twi_clk)152 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
153 {
154 	int ckdiv, cdiv, div;
155 	struct at91_twi_pdata *pdata = dev->pdata;
156 	int offset = pdata->clk_offset;
157 	int max_ckdiv = pdata->clk_max_div;
158 
159 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
160 				       2 * twi_clk) - offset);
161 	ckdiv = fls(div >> 8);
162 	cdiv = div >> ckdiv;
163 
164 	if (ckdiv > max_ckdiv) {
165 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
166 			 ckdiv, max_ckdiv);
167 		ckdiv = max_ckdiv;
168 		cdiv = 255;
169 	}
170 
171 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv;
172 	dev_dbg(dev->dev, "cdiv %d ckdiv %d\n", cdiv, ckdiv);
173 }
174 
at91_twi_dma_cleanup(struct at91_twi_dev * dev)175 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
176 {
177 	struct at91_twi_dma *dma = &dev->dma;
178 
179 	at91_twi_irq_save(dev);
180 
181 	if (dma->xfer_in_progress) {
182 		if (dma->direction == DMA_FROM_DEVICE)
183 			dmaengine_terminate_all(dma->chan_rx);
184 		else
185 			dmaengine_terminate_all(dma->chan_tx);
186 		dma->xfer_in_progress = false;
187 	}
188 	if (dma->buf_mapped) {
189 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg),
190 				 dev->buf_len, dma->direction);
191 		dma->buf_mapped = false;
192 	}
193 
194 	at91_twi_irq_restore(dev);
195 }
196 
at91_twi_write_next_byte(struct at91_twi_dev * dev)197 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
198 {
199 	if (dev->buf_len <= 0)
200 		return;
201 
202 	at91_twi_write(dev, AT91_TWI_THR, *dev->buf);
203 
204 	/* send stop when last byte has been written */
205 	if (--dev->buf_len == 0)
206 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
207 
208 	dev_dbg(dev->dev, "wrote 0x%x, to go %d\n", *dev->buf, dev->buf_len);
209 
210 	++dev->buf;
211 }
212 
at91_twi_write_data_dma_callback(void * data)213 static void at91_twi_write_data_dma_callback(void *data)
214 {
215 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
216 
217 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
218 			 dev->buf_len, DMA_TO_DEVICE);
219 
220 	/*
221 	 * When this callback is called, THR/TX FIFO is likely not to be empty
222 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
223 	 * Status Register to be sure that the STOP bit has been sent and the
224 	 * transfer is completed. The NACK interrupt has already been enabled,
225 	 * we just have to enable TXCOMP one.
226 	 */
227 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
228 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
229 }
230 
at91_twi_write_data_dma(struct at91_twi_dev * dev)231 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
232 {
233 	dma_addr_t dma_addr;
234 	struct dma_async_tx_descriptor *txdesc;
235 	struct at91_twi_dma *dma = &dev->dma;
236 	struct dma_chan *chan_tx = dma->chan_tx;
237 
238 	if (dev->buf_len <= 0)
239 		return;
240 
241 	dma->direction = DMA_TO_DEVICE;
242 
243 	at91_twi_irq_save(dev);
244 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
245 				  DMA_TO_DEVICE);
246 	if (dma_mapping_error(dev->dev, dma_addr)) {
247 		dev_err(dev->dev, "dma map failed\n");
248 		return;
249 	}
250 	dma->buf_mapped = true;
251 	at91_twi_irq_restore(dev);
252 	sg_dma_len(&dma->sg) = dev->buf_len;
253 	sg_dma_address(&dma->sg) = dma_addr;
254 
255 	txdesc = dmaengine_prep_slave_sg(chan_tx, &dma->sg, 1, DMA_MEM_TO_DEV,
256 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
257 	if (!txdesc) {
258 		dev_err(dev->dev, "dma prep slave sg failed\n");
259 		goto error;
260 	}
261 
262 	txdesc->callback = at91_twi_write_data_dma_callback;
263 	txdesc->callback_param = dev;
264 
265 	dma->xfer_in_progress = true;
266 	dmaengine_submit(txdesc);
267 	dma_async_issue_pending(chan_tx);
268 
269 	return;
270 
271 error:
272 	at91_twi_dma_cleanup(dev);
273 }
274 
at91_twi_read_next_byte(struct at91_twi_dev * dev)275 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
276 {
277 	if (dev->buf_len <= 0)
278 		return;
279 
280 	*dev->buf = at91_twi_read(dev, AT91_TWI_RHR) & 0xff;
281 	--dev->buf_len;
282 
283 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
284 	if (dev->recv_len_abort)
285 		return;
286 
287 	/* handle I2C_SMBUS_BLOCK_DATA */
288 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
289 		/* ensure length byte is a valid value */
290 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
291 			dev->msg->flags &= ~I2C_M_RECV_LEN;
292 			dev->buf_len += *dev->buf;
293 			dev->msg->len = dev->buf_len + 1;
294 			dev_dbg(dev->dev, "received block length %d\n",
295 					 dev->buf_len);
296 		} else {
297 			/* abort and send the stop by reading one more byte */
298 			dev->recv_len_abort = true;
299 			dev->buf_len = 1;
300 		}
301 	}
302 
303 	/* send stop if second but last byte has been read */
304 	if (dev->buf_len == 1)
305 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
306 
307 	dev_dbg(dev->dev, "read 0x%x, to go %d\n", *dev->buf, dev->buf_len);
308 
309 	++dev->buf;
310 }
311 
at91_twi_read_data_dma_callback(void * data)312 static void at91_twi_read_data_dma_callback(void *data)
313 {
314 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
315 
316 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg),
317 			 dev->buf_len, DMA_FROM_DEVICE);
318 
319 	/* The last two bytes have to be read without using dma */
320 	dev->buf += dev->buf_len - 2;
321 	dev->buf_len = 2;
322 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_RXRDY | AT91_TWI_TXCOMP);
323 }
324 
at91_twi_read_data_dma(struct at91_twi_dev * dev)325 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
326 {
327 	dma_addr_t dma_addr;
328 	struct dma_async_tx_descriptor *rxdesc;
329 	struct at91_twi_dma *dma = &dev->dma;
330 	struct dma_chan *chan_rx = dma->chan_rx;
331 
332 	dma->direction = DMA_FROM_DEVICE;
333 
334 	/* Keep in mind that we won't use dma to read the last two bytes */
335 	at91_twi_irq_save(dev);
336 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len - 2,
337 				  DMA_FROM_DEVICE);
338 	if (dma_mapping_error(dev->dev, dma_addr)) {
339 		dev_err(dev->dev, "dma map failed\n");
340 		return;
341 	}
342 	dma->buf_mapped = true;
343 	at91_twi_irq_restore(dev);
344 	dma->sg.dma_address = dma_addr;
345 	sg_dma_len(&dma->sg) = dev->buf_len - 2;
346 
347 	rxdesc = dmaengine_prep_slave_sg(chan_rx, &dma->sg, 1, DMA_DEV_TO_MEM,
348 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
349 	if (!rxdesc) {
350 		dev_err(dev->dev, "dma prep slave sg failed\n");
351 		goto error;
352 	}
353 
354 	rxdesc->callback = at91_twi_read_data_dma_callback;
355 	rxdesc->callback_param = dev;
356 
357 	dma->xfer_in_progress = true;
358 	dmaengine_submit(rxdesc);
359 	dma_async_issue_pending(dma->chan_rx);
360 
361 	return;
362 
363 error:
364 	at91_twi_dma_cleanup(dev);
365 }
366 
atmel_twi_interrupt(int irq,void * dev_id)367 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
368 {
369 	struct at91_twi_dev *dev = dev_id;
370 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
371 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
372 
373 	if (!irqstatus)
374 		return IRQ_NONE;
375 	else if (irqstatus & AT91_TWI_RXRDY)
376 		at91_twi_read_next_byte(dev);
377 	else if (irqstatus & AT91_TWI_TXRDY)
378 		at91_twi_write_next_byte(dev);
379 
380 	/* catch error flags */
381 	dev->transfer_status |= status;
382 
383 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
384 		at91_disable_twi_interrupts(dev);
385 		complete(&dev->cmd_complete);
386 	}
387 
388 	return IRQ_HANDLED;
389 }
390 
at91_do_twi_transfer(struct at91_twi_dev * dev)391 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
392 {
393 	int ret;
394 	unsigned long time_left;
395 	bool has_unre_flag = dev->pdata->has_unre_flag;
396 
397 	/*
398 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
399 	 * read flag but shows the state of the transmission at the time the
400 	 * Status Register is read. According to the programmer datasheet,
401 	 * TXCOMP is set when both holding register and internal shifter are
402 	 * empty and STOP condition has been sent.
403 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
404 	 * detect transmission failure.
405 	 *
406 	 * Besides, the TXCOMP bit is already set before the i2c transaction
407 	 * has been started. For read transactions, this bit is cleared when
408 	 * writing the START bit into the Control Register. So the
409 	 * corresponding interrupt can safely be enabled just after.
410 	 * However for write transactions managed by the CPU, we first write
411 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
412 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
413 	 * the interrupt handler would be called immediately and the i2c command
414 	 * would be reported as completed.
415 	 * Also when a write transaction is managed by the DMA controller,
416 	 * enabling the TXCOMP interrupt in this function may lead to a race
417 	 * condition since we don't know whether the TXCOMP interrupt is enabled
418 	 * before or after the DMA has started to write into THR. So the TXCOMP
419 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
420 	 * Immediately after in that DMA callback, we still need to send the
421 	 * STOP condition manually writing the corresponding bit into the
422 	 * Control Register.
423 	 */
424 
425 	dev_dbg(dev->dev, "transfer: %s %d bytes.\n",
426 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
427 
428 	reinit_completion(&dev->cmd_complete);
429 	dev->transfer_status = 0;
430 
431 	if (!dev->buf_len) {
432 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
433 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
434 	} else if (dev->msg->flags & I2C_M_RD) {
435 		unsigned start_flags = AT91_TWI_START;
436 
437 		if (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY) {
438 			dev_err(dev->dev, "RXRDY still set!");
439 			at91_twi_read(dev, AT91_TWI_RHR);
440 		}
441 
442 		/* if only one byte is to be read, immediately stop transfer */
443 		if (dev->buf_len <= 1 && !(dev->msg->flags & I2C_M_RECV_LEN))
444 			start_flags |= AT91_TWI_STOP;
445 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
446 		/*
447 		 * When using dma, the last byte has to be read manually in
448 		 * order to not send the stop command too late and then
449 		 * to receive extra data. In practice, there are some issues
450 		 * if you use the dma to read n-1 bytes because of latency.
451 		 * Reading n-2 bytes with dma and the two last ones manually
452 		 * seems to be the best solution.
453 		 */
454 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
455 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
456 			at91_twi_read_data_dma(dev);
457 		} else {
458 			at91_twi_write(dev, AT91_TWI_IER,
459 				       AT91_TWI_TXCOMP |
460 				       AT91_TWI_NACK |
461 				       AT91_TWI_RXRDY);
462 		}
463 	} else {
464 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
465 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
466 			at91_twi_write_data_dma(dev);
467 		} else {
468 			at91_twi_write_next_byte(dev);
469 			at91_twi_write(dev, AT91_TWI_IER,
470 				       AT91_TWI_TXCOMP |
471 				       AT91_TWI_NACK |
472 				       AT91_TWI_TXRDY);
473 		}
474 	}
475 
476 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
477 					      dev->adapter.timeout);
478 	if (time_left == 0) {
479 		dev_err(dev->dev, "controller timed out\n");
480 		at91_init_twi_bus(dev);
481 		ret = -ETIMEDOUT;
482 		goto error;
483 	}
484 	if (dev->transfer_status & AT91_TWI_NACK) {
485 		dev_dbg(dev->dev, "received nack\n");
486 		ret = -EREMOTEIO;
487 		goto error;
488 	}
489 	if (dev->transfer_status & AT91_TWI_OVRE) {
490 		dev_err(dev->dev, "overrun while reading\n");
491 		ret = -EIO;
492 		goto error;
493 	}
494 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
495 		dev_err(dev->dev, "underrun while writing\n");
496 		ret = -EIO;
497 		goto error;
498 	}
499 	if (dev->recv_len_abort) {
500 		dev_err(dev->dev, "invalid smbus block length recvd\n");
501 		ret = -EPROTO;
502 		goto error;
503 	}
504 
505 	dev_dbg(dev->dev, "transfer complete\n");
506 
507 	return 0;
508 
509 error:
510 	at91_twi_dma_cleanup(dev);
511 	return ret;
512 }
513 
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)514 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
515 {
516 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
517 	int ret;
518 	unsigned int_addr_flag = 0;
519 	struct i2c_msg *m_start = msg;
520 
521 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
522 
523 	ret = pm_runtime_get_sync(dev->dev);
524 	if (ret < 0)
525 		goto out;
526 
527 	if (num == 2) {
528 		int internal_address = 0;
529 		int i;
530 
531 		/* 1st msg is put into the internal address, start with 2nd */
532 		m_start = &msg[1];
533 		for (i = 0; i < msg->len; ++i) {
534 			const unsigned addr = msg->buf[msg->len - 1 - i];
535 
536 			internal_address |= addr << (8 * i);
537 			int_addr_flag += AT91_TWI_IADRSZ_1;
538 		}
539 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
540 	}
541 
542 	at91_twi_write(dev, AT91_TWI_MMR, (m_start->addr << 16) | int_addr_flag
543 		       | ((m_start->flags & I2C_M_RD) ? AT91_TWI_MREAD : 0));
544 
545 	dev->buf_len = m_start->len;
546 	dev->buf = m_start->buf;
547 	dev->msg = m_start;
548 	dev->recv_len_abort = false;
549 
550 	ret = at91_do_twi_transfer(dev);
551 
552 	ret = (ret < 0) ? ret : num;
553 out:
554 	pm_runtime_mark_last_busy(dev->dev);
555 	pm_runtime_put_autosuspend(dev->dev);
556 
557 	return ret;
558 }
559 
560 /*
561  * The hardware can handle at most two messages concatenated by a
562  * repeated start via it's internal address feature.
563  */
564 static struct i2c_adapter_quirks at91_twi_quirks = {
565 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
566 	.max_comb_1st_msg_len = 3,
567 };
568 
at91_twi_func(struct i2c_adapter * adapter)569 static u32 at91_twi_func(struct i2c_adapter *adapter)
570 {
571 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
572 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
573 }
574 
575 static struct i2c_algorithm at91_twi_algorithm = {
576 	.master_xfer	= at91_twi_xfer,
577 	.functionality	= at91_twi_func,
578 };
579 
580 static struct at91_twi_pdata at91rm9200_config = {
581 	.clk_max_div = 5,
582 	.clk_offset = 3,
583 	.has_unre_flag = true,
584 };
585 
586 static struct at91_twi_pdata at91sam9261_config = {
587 	.clk_max_div = 5,
588 	.clk_offset = 4,
589 	.has_unre_flag = false,
590 };
591 
592 static struct at91_twi_pdata at91sam9260_config = {
593 	.clk_max_div = 7,
594 	.clk_offset = 4,
595 	.has_unre_flag = false,
596 };
597 
598 static struct at91_twi_pdata at91sam9g20_config = {
599 	.clk_max_div = 7,
600 	.clk_offset = 4,
601 	.has_unre_flag = false,
602 };
603 
604 static struct at91_twi_pdata at91sam9g10_config = {
605 	.clk_max_div = 7,
606 	.clk_offset = 4,
607 	.has_unre_flag = false,
608 };
609 
610 static const struct platform_device_id at91_twi_devtypes[] = {
611 	{
612 		.name = "i2c-at91rm9200",
613 		.driver_data = (unsigned long) &at91rm9200_config,
614 	}, {
615 		.name = "i2c-at91sam9261",
616 		.driver_data = (unsigned long) &at91sam9261_config,
617 	}, {
618 		.name = "i2c-at91sam9260",
619 		.driver_data = (unsigned long) &at91sam9260_config,
620 	}, {
621 		.name = "i2c-at91sam9g20",
622 		.driver_data = (unsigned long) &at91sam9g20_config,
623 	}, {
624 		.name = "i2c-at91sam9g10",
625 		.driver_data = (unsigned long) &at91sam9g10_config,
626 	}, {
627 		/* sentinel */
628 	}
629 };
630 
631 #if defined(CONFIG_OF)
632 static struct at91_twi_pdata at91sam9x5_config = {
633 	.clk_max_div = 7,
634 	.clk_offset = 4,
635 	.has_unre_flag = false,
636 };
637 
638 static const struct of_device_id atmel_twi_dt_ids[] = {
639 	{
640 		.compatible = "atmel,at91rm9200-i2c",
641 		.data = &at91rm9200_config,
642 	} , {
643 		.compatible = "atmel,at91sam9260-i2c",
644 		.data = &at91sam9260_config,
645 	} , {
646 		.compatible = "atmel,at91sam9261-i2c",
647 		.data = &at91sam9261_config,
648 	} , {
649 		.compatible = "atmel,at91sam9g20-i2c",
650 		.data = &at91sam9g20_config,
651 	} , {
652 		.compatible = "atmel,at91sam9g10-i2c",
653 		.data = &at91sam9g10_config,
654 	}, {
655 		.compatible = "atmel,at91sam9x5-i2c",
656 		.data = &at91sam9x5_config,
657 	}, {
658 		/* sentinel */
659 	}
660 };
661 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
662 #endif
663 
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)664 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
665 {
666 	int ret = 0;
667 	struct dma_slave_config slave_config;
668 	struct at91_twi_dma *dma = &dev->dma;
669 
670 	memset(&slave_config, 0, sizeof(slave_config));
671 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
672 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
673 	slave_config.src_maxburst = 1;
674 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
675 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
676 	slave_config.dst_maxburst = 1;
677 	slave_config.device_fc = false;
678 
679 	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
680 	if (IS_ERR(dma->chan_tx)) {
681 		ret = PTR_ERR(dma->chan_tx);
682 		dma->chan_tx = NULL;
683 		goto error;
684 	}
685 
686 	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
687 	if (IS_ERR(dma->chan_rx)) {
688 		ret = PTR_ERR(dma->chan_rx);
689 		dma->chan_rx = NULL;
690 		goto error;
691 	}
692 
693 	slave_config.direction = DMA_MEM_TO_DEV;
694 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
695 		dev_err(dev->dev, "failed to configure tx channel\n");
696 		ret = -EINVAL;
697 		goto error;
698 	}
699 
700 	slave_config.direction = DMA_DEV_TO_MEM;
701 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
702 		dev_err(dev->dev, "failed to configure rx channel\n");
703 		ret = -EINVAL;
704 		goto error;
705 	}
706 
707 	sg_init_table(&dma->sg, 1);
708 	dma->buf_mapped = false;
709 	dma->xfer_in_progress = false;
710 	dev->use_dma = true;
711 
712 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
713 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
714 
715 	return ret;
716 
717 error:
718 	if (ret != -EPROBE_DEFER)
719 		dev_info(dev->dev, "can't use DMA, error %d\n", ret);
720 	if (dma->chan_rx)
721 		dma_release_channel(dma->chan_rx);
722 	if (dma->chan_tx)
723 		dma_release_channel(dma->chan_tx);
724 	return ret;
725 }
726 
at91_twi_get_driver_data(struct platform_device * pdev)727 static struct at91_twi_pdata *at91_twi_get_driver_data(
728 					struct platform_device *pdev)
729 {
730 	if (pdev->dev.of_node) {
731 		const struct of_device_id *match;
732 		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
733 		if (!match)
734 			return NULL;
735 		return (struct at91_twi_pdata *)match->data;
736 	}
737 	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
738 }
739 
at91_twi_probe(struct platform_device * pdev)740 static int at91_twi_probe(struct platform_device *pdev)
741 {
742 	struct at91_twi_dev *dev;
743 	struct resource *mem;
744 	int rc;
745 	u32 phy_addr;
746 	u32 bus_clk_rate;
747 
748 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
749 	if (!dev)
750 		return -ENOMEM;
751 	init_completion(&dev->cmd_complete);
752 	dev->dev = &pdev->dev;
753 
754 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
755 	if (!mem)
756 		return -ENODEV;
757 	phy_addr = mem->start;
758 
759 	dev->pdata = at91_twi_get_driver_data(pdev);
760 	if (!dev->pdata)
761 		return -ENODEV;
762 
763 	dev->base = devm_ioremap_resource(&pdev->dev, mem);
764 	if (IS_ERR(dev->base))
765 		return PTR_ERR(dev->base);
766 
767 	dev->irq = platform_get_irq(pdev, 0);
768 	if (dev->irq < 0)
769 		return dev->irq;
770 
771 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
772 			 dev_name(dev->dev), dev);
773 	if (rc) {
774 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
775 		return rc;
776 	}
777 
778 	platform_set_drvdata(pdev, dev);
779 
780 	dev->clk = devm_clk_get(dev->dev, NULL);
781 	if (IS_ERR(dev->clk)) {
782 		dev_err(dev->dev, "no clock defined\n");
783 		return -ENODEV;
784 	}
785 	clk_prepare_enable(dev->clk);
786 
787 	if (dev->dev->of_node) {
788 		rc = at91_twi_configure_dma(dev, phy_addr);
789 		if (rc == -EPROBE_DEFER)
790 			return rc;
791 	}
792 
793 	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
794 			&bus_clk_rate);
795 	if (rc)
796 		bus_clk_rate = DEFAULT_TWI_CLK_HZ;
797 
798 	at91_calc_twi_clock(dev, bus_clk_rate);
799 	at91_init_twi_bus(dev);
800 
801 	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
802 	i2c_set_adapdata(&dev->adapter, dev);
803 	dev->adapter.owner = THIS_MODULE;
804 	dev->adapter.class = I2C_CLASS_DEPRECATED;
805 	dev->adapter.algo = &at91_twi_algorithm;
806 	dev->adapter.quirks = &at91_twi_quirks;
807 	dev->adapter.dev.parent = dev->dev;
808 	dev->adapter.nr = pdev->id;
809 	dev->adapter.timeout = AT91_I2C_TIMEOUT;
810 	dev->adapter.dev.of_node = pdev->dev.of_node;
811 
812 	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
813 	pm_runtime_use_autosuspend(dev->dev);
814 	pm_runtime_set_active(dev->dev);
815 	pm_runtime_enable(dev->dev);
816 
817 	rc = i2c_add_numbered_adapter(&dev->adapter);
818 	if (rc) {
819 		dev_err(dev->dev, "Adapter %s registration failed\n",
820 			dev->adapter.name);
821 		clk_disable_unprepare(dev->clk);
822 
823 		pm_runtime_disable(dev->dev);
824 		pm_runtime_set_suspended(dev->dev);
825 
826 		return rc;
827 	}
828 
829 	dev_info(dev->dev, "AT91 i2c bus driver.\n");
830 	return 0;
831 }
832 
at91_twi_remove(struct platform_device * pdev)833 static int at91_twi_remove(struct platform_device *pdev)
834 {
835 	struct at91_twi_dev *dev = platform_get_drvdata(pdev);
836 
837 	i2c_del_adapter(&dev->adapter);
838 	clk_disable_unprepare(dev->clk);
839 
840 	pm_runtime_disable(dev->dev);
841 	pm_runtime_set_suspended(dev->dev);
842 
843 	return 0;
844 }
845 
846 #ifdef CONFIG_PM
847 
at91_twi_runtime_suspend(struct device * dev)848 static int at91_twi_runtime_suspend(struct device *dev)
849 {
850 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
851 
852 	clk_disable_unprepare(twi_dev->clk);
853 
854 	pinctrl_pm_select_sleep_state(dev);
855 
856 	return 0;
857 }
858 
at91_twi_runtime_resume(struct device * dev)859 static int at91_twi_runtime_resume(struct device *dev)
860 {
861 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
862 
863 	pinctrl_pm_select_default_state(dev);
864 
865 	return clk_prepare_enable(twi_dev->clk);
866 }
867 
at91_twi_suspend_noirq(struct device * dev)868 static int at91_twi_suspend_noirq(struct device *dev)
869 {
870 	if (!pm_runtime_status_suspended(dev))
871 		at91_twi_runtime_suspend(dev);
872 
873 	return 0;
874 }
875 
at91_twi_resume_noirq(struct device * dev)876 static int at91_twi_resume_noirq(struct device *dev)
877 {
878 	int ret;
879 
880 	if (!pm_runtime_status_suspended(dev)) {
881 		ret = at91_twi_runtime_resume(dev);
882 		if (ret)
883 			return ret;
884 	}
885 
886 	pm_runtime_mark_last_busy(dev);
887 	pm_request_autosuspend(dev);
888 
889 	return 0;
890 }
891 
892 static const struct dev_pm_ops at91_twi_pm = {
893 	.suspend_noirq	= at91_twi_suspend_noirq,
894 	.resume_noirq	= at91_twi_resume_noirq,
895 	.runtime_suspend	= at91_twi_runtime_suspend,
896 	.runtime_resume		= at91_twi_runtime_resume,
897 };
898 
899 #define at91_twi_pm_ops (&at91_twi_pm)
900 #else
901 #define at91_twi_pm_ops NULL
902 #endif
903 
904 static struct platform_driver at91_twi_driver = {
905 	.probe		= at91_twi_probe,
906 	.remove		= at91_twi_remove,
907 	.id_table	= at91_twi_devtypes,
908 	.driver		= {
909 		.name	= "at91_i2c",
910 		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
911 		.pm	= at91_twi_pm_ops,
912 	},
913 };
914 
at91_twi_init(void)915 static int __init at91_twi_init(void)
916 {
917 	return platform_driver_register(&at91_twi_driver);
918 }
919 
at91_twi_exit(void)920 static void __exit at91_twi_exit(void)
921 {
922 	platform_driver_unregister(&at91_twi_driver);
923 }
924 
925 subsys_initcall(at91_twi_init);
926 module_exit(at91_twi_exit);
927 
928 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
929 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
930 MODULE_LICENSE("GPL");
931 MODULE_ALIAS("platform:at91_i2c");
932