1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12
13 /*
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
17 */
18 static const char dmi_empty_string[] = " ";
19
20 static u32 dmi_ver __initdata;
21 static u32 dmi_len;
22 static u16 dmi_num;
23 /*
24 * Catch too early calls to dmi_check_system():
25 */
26 static int dmi_initialized;
27
28 /* DMI system identification string used during boot */
29 static char dmi_ids_string[128] __initdata;
30
31 static struct dmi_memdev_info {
32 const char *device;
33 const char *bank;
34 u16 handle;
35 } *dmi_memdev;
36 static int dmi_memdev_nr;
37
dmi_string_nosave(const struct dmi_header * dm,u8 s)38 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
39 {
40 const u8 *bp = ((u8 *) dm) + dm->length;
41
42 if (s) {
43 s--;
44 while (s > 0 && *bp) {
45 bp += strlen(bp) + 1;
46 s--;
47 }
48
49 if (*bp != 0) {
50 size_t len = strlen(bp)+1;
51 size_t cmp_len = len > 8 ? 8 : len;
52
53 if (!memcmp(bp, dmi_empty_string, cmp_len))
54 return dmi_empty_string;
55 return bp;
56 }
57 }
58
59 return "";
60 }
61
dmi_string(const struct dmi_header * dm,u8 s)62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
63 {
64 const char *bp = dmi_string_nosave(dm, s);
65 char *str;
66 size_t len;
67
68 if (bp == dmi_empty_string)
69 return dmi_empty_string;
70
71 len = strlen(bp) + 1;
72 str = dmi_alloc(len);
73 if (str != NULL)
74 strcpy(str, bp);
75
76 return str;
77 }
78
79 /*
80 * We have to be cautious here. We have seen BIOSes with DMI pointers
81 * pointing to completely the wrong place for example
82 */
dmi_table(u8 * buf,void (* decode)(const struct dmi_header *,void *),void * private_data)83 static void dmi_table(u8 *buf,
84 void (*decode)(const struct dmi_header *, void *),
85 void *private_data)
86 {
87 u8 *data = buf;
88 int i = 0;
89
90 /*
91 * Stop when we have seen all the items the table claimed to have
92 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
93 * >= 3.0 only) OR we run off the end of the table (should never
94 * happen but sometimes does on bogus implementations.)
95 */
96 while ((!dmi_num || i < dmi_num) &&
97 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98 const struct dmi_header *dm = (const struct dmi_header *)data;
99
100 /*
101 * We want to know the total length (formatted area and
102 * strings) before decoding to make sure we won't run off the
103 * table in dmi_decode or dmi_string
104 */
105 data += dm->length;
106 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107 data++;
108 if (data - buf < dmi_len - 1)
109 decode(dm, private_data);
110
111 /*
112 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113 * For tables behind a 64-bit entry point, we have no item
114 * count and no exact table length, so stop on end-of-table
115 * marker. For tables behind a 32-bit entry point, we have
116 * seen OEM structures behind the end-of-table marker on
117 * some systems, so don't trust it.
118 */
119 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
120 break;
121
122 data += 2;
123 i++;
124 }
125 }
126
127 static phys_addr_t dmi_base;
128
dmi_walk_early(void (* decode)(const struct dmi_header *,void *))129 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
130 void *))
131 {
132 u8 *buf;
133
134 buf = dmi_early_remap(dmi_base, dmi_len);
135 if (buf == NULL)
136 return -1;
137
138 dmi_table(buf, decode, NULL);
139
140 add_device_randomness(buf, dmi_len);
141
142 dmi_early_unmap(buf, dmi_len);
143 return 0;
144 }
145
dmi_checksum(const u8 * buf,u8 len)146 static int __init dmi_checksum(const u8 *buf, u8 len)
147 {
148 u8 sum = 0;
149 int a;
150
151 for (a = 0; a < len; a++)
152 sum += buf[a];
153
154 return sum == 0;
155 }
156
157 static const char *dmi_ident[DMI_STRING_MAX];
158 static LIST_HEAD(dmi_devices);
159 int dmi_available;
160
161 /*
162 * Save a DMI string
163 */
dmi_save_ident(const struct dmi_header * dm,int slot,int string)164 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
165 int string)
166 {
167 const char *d = (const char *) dm;
168 const char *p;
169
170 if (dmi_ident[slot])
171 return;
172
173 p = dmi_string(dm, d[string]);
174 if (p == NULL)
175 return;
176
177 dmi_ident[slot] = p;
178 }
179
dmi_save_uuid(const struct dmi_header * dm,int slot,int index)180 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
181 int index)
182 {
183 const u8 *d = (u8 *) dm + index;
184 char *s;
185 int is_ff = 1, is_00 = 1, i;
186
187 if (dmi_ident[slot])
188 return;
189
190 for (i = 0; i < 16 && (is_ff || is_00); i++) {
191 if (d[i] != 0x00)
192 is_00 = 0;
193 if (d[i] != 0xFF)
194 is_ff = 0;
195 }
196
197 if (is_ff || is_00)
198 return;
199
200 s = dmi_alloc(16*2+4+1);
201 if (!s)
202 return;
203
204 /*
205 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
206 * the UUID are supposed to be little-endian encoded. The specification
207 * says that this is the defacto standard.
208 */
209 if (dmi_ver >= 0x020600)
210 sprintf(s, "%pUL", d);
211 else
212 sprintf(s, "%pUB", d);
213
214 dmi_ident[slot] = s;
215 }
216
dmi_save_type(const struct dmi_header * dm,int slot,int index)217 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
218 int index)
219 {
220 const u8 *d = (u8 *) dm + index;
221 char *s;
222
223 if (dmi_ident[slot])
224 return;
225
226 s = dmi_alloc(4);
227 if (!s)
228 return;
229
230 sprintf(s, "%u", *d & 0x7F);
231 dmi_ident[slot] = s;
232 }
233
dmi_save_one_device(int type,const char * name)234 static void __init dmi_save_one_device(int type, const char *name)
235 {
236 struct dmi_device *dev;
237
238 /* No duplicate device */
239 if (dmi_find_device(type, name, NULL))
240 return;
241
242 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
243 if (!dev)
244 return;
245
246 dev->type = type;
247 strcpy((char *)(dev + 1), name);
248 dev->name = (char *)(dev + 1);
249 dev->device_data = NULL;
250 list_add(&dev->list, &dmi_devices);
251 }
252
dmi_save_devices(const struct dmi_header * dm)253 static void __init dmi_save_devices(const struct dmi_header *dm)
254 {
255 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
256
257 for (i = 0; i < count; i++) {
258 const char *d = (char *)(dm + 1) + (i * 2);
259
260 /* Skip disabled device */
261 if ((*d & 0x80) == 0)
262 continue;
263
264 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
265 }
266 }
267
dmi_save_oem_strings_devices(const struct dmi_header * dm)268 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
269 {
270 int i, count = *(u8 *)(dm + 1);
271 struct dmi_device *dev;
272
273 for (i = 1; i <= count; i++) {
274 const char *devname = dmi_string(dm, i);
275
276 if (devname == dmi_empty_string)
277 continue;
278
279 dev = dmi_alloc(sizeof(*dev));
280 if (!dev)
281 break;
282
283 dev->type = DMI_DEV_TYPE_OEM_STRING;
284 dev->name = devname;
285 dev->device_data = NULL;
286
287 list_add(&dev->list, &dmi_devices);
288 }
289 }
290
dmi_save_ipmi_device(const struct dmi_header * dm)291 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
292 {
293 struct dmi_device *dev;
294 void *data;
295
296 data = dmi_alloc(dm->length);
297 if (data == NULL)
298 return;
299
300 memcpy(data, dm, dm->length);
301
302 dev = dmi_alloc(sizeof(*dev));
303 if (!dev)
304 return;
305
306 dev->type = DMI_DEV_TYPE_IPMI;
307 dev->name = "IPMI controller";
308 dev->device_data = data;
309
310 list_add_tail(&dev->list, &dmi_devices);
311 }
312
dmi_save_dev_onboard(int instance,int segment,int bus,int devfn,const char * name)313 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
314 int devfn, const char *name)
315 {
316 struct dmi_dev_onboard *onboard_dev;
317
318 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
319 if (!onboard_dev)
320 return;
321
322 onboard_dev->instance = instance;
323 onboard_dev->segment = segment;
324 onboard_dev->bus = bus;
325 onboard_dev->devfn = devfn;
326
327 strcpy((char *)&onboard_dev[1], name);
328 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
329 onboard_dev->dev.name = (char *)&onboard_dev[1];
330 onboard_dev->dev.device_data = onboard_dev;
331
332 list_add(&onboard_dev->dev.list, &dmi_devices);
333 }
334
dmi_save_extended_devices(const struct dmi_header * dm)335 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
336 {
337 const u8 *d = (u8 *) dm + 5;
338
339 /* Skip disabled device */
340 if ((*d & 0x80) == 0)
341 return;
342
343 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
344 dmi_string_nosave(dm, *(d-1)));
345 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
346 }
347
count_mem_devices(const struct dmi_header * dm,void * v)348 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
349 {
350 if (dm->type != DMI_ENTRY_MEM_DEVICE)
351 return;
352 dmi_memdev_nr++;
353 }
354
save_mem_devices(const struct dmi_header * dm,void * v)355 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
356 {
357 const char *d = (const char *)dm;
358 static int nr;
359
360 if (dm->type != DMI_ENTRY_MEM_DEVICE)
361 return;
362 if (nr >= dmi_memdev_nr) {
363 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
364 return;
365 }
366 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
367 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
368 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
369 nr++;
370 }
371
dmi_memdev_walk(void)372 void __init dmi_memdev_walk(void)
373 {
374 if (!dmi_available)
375 return;
376
377 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
378 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
379 if (dmi_memdev)
380 dmi_walk_early(save_mem_devices);
381 }
382 }
383
384 /*
385 * Process a DMI table entry. Right now all we care about are the BIOS
386 * and machine entries. For 2.5 we should pull the smbus controller info
387 * out of here.
388 */
dmi_decode(const struct dmi_header * dm,void * dummy)389 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
390 {
391 switch (dm->type) {
392 case 0: /* BIOS Information */
393 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
394 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
395 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
396 break;
397 case 1: /* System Information */
398 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
399 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
400 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
401 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
402 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
403 break;
404 case 2: /* Base Board Information */
405 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
406 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
407 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
408 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
409 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
410 break;
411 case 3: /* Chassis Information */
412 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
413 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
414 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
415 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
416 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
417 break;
418 case 10: /* Onboard Devices Information */
419 dmi_save_devices(dm);
420 break;
421 case 11: /* OEM Strings */
422 dmi_save_oem_strings_devices(dm);
423 break;
424 case 38: /* IPMI Device Information */
425 dmi_save_ipmi_device(dm);
426 break;
427 case 41: /* Onboard Devices Extended Information */
428 dmi_save_extended_devices(dm);
429 }
430 }
431
print_filtered(char * buf,size_t len,const char * info)432 static int __init print_filtered(char *buf, size_t len, const char *info)
433 {
434 int c = 0;
435 const char *p;
436
437 if (!info)
438 return c;
439
440 for (p = info; *p; p++)
441 if (isprint(*p))
442 c += scnprintf(buf + c, len - c, "%c", *p);
443 else
444 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
445 return c;
446 }
447
dmi_format_ids(char * buf,size_t len)448 static void __init dmi_format_ids(char *buf, size_t len)
449 {
450 int c = 0;
451 const char *board; /* Board Name is optional */
452
453 c += print_filtered(buf + c, len - c,
454 dmi_get_system_info(DMI_SYS_VENDOR));
455 c += scnprintf(buf + c, len - c, " ");
456 c += print_filtered(buf + c, len - c,
457 dmi_get_system_info(DMI_PRODUCT_NAME));
458
459 board = dmi_get_system_info(DMI_BOARD_NAME);
460 if (board) {
461 c += scnprintf(buf + c, len - c, "/");
462 c += print_filtered(buf + c, len - c, board);
463 }
464 c += scnprintf(buf + c, len - c, ", BIOS ");
465 c += print_filtered(buf + c, len - c,
466 dmi_get_system_info(DMI_BIOS_VERSION));
467 c += scnprintf(buf + c, len - c, " ");
468 c += print_filtered(buf + c, len - c,
469 dmi_get_system_info(DMI_BIOS_DATE));
470 }
471
472 /*
473 * Check for DMI/SMBIOS headers in the system firmware image. Any
474 * SMBIOS header must start 16 bytes before the DMI header, so take a
475 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
476 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
477 * takes precedence) and return 0. Otherwise return 1.
478 */
dmi_present(const u8 * buf)479 static int __init dmi_present(const u8 *buf)
480 {
481 u32 smbios_ver;
482
483 if (memcmp(buf, "_SM_", 4) == 0 &&
484 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
485 smbios_ver = get_unaligned_be16(buf + 6);
486
487 /* Some BIOS report weird SMBIOS version, fix that up */
488 switch (smbios_ver) {
489 case 0x021F:
490 case 0x0221:
491 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
492 smbios_ver & 0xFF, 3);
493 smbios_ver = 0x0203;
494 break;
495 case 0x0233:
496 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
497 smbios_ver = 0x0206;
498 break;
499 }
500 } else {
501 smbios_ver = 0;
502 }
503
504 buf += 16;
505
506 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
507 if (smbios_ver)
508 dmi_ver = smbios_ver;
509 else
510 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
511 dmi_num = get_unaligned_le16(buf + 12);
512 dmi_len = get_unaligned_le16(buf + 6);
513 dmi_base = get_unaligned_le32(buf + 8);
514
515 if (dmi_walk_early(dmi_decode) == 0) {
516 if (smbios_ver) {
517 pr_info("SMBIOS %d.%d present.\n",
518 dmi_ver >> 8, dmi_ver & 0xFF);
519 } else {
520 pr_info("Legacy DMI %d.%d present.\n",
521 dmi_ver >> 8, dmi_ver & 0xFF);
522 }
523 dmi_ver <<= 8;
524 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
525 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
526 return 0;
527 }
528 }
529
530 return 1;
531 }
532
533 /*
534 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
535 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
536 */
dmi_smbios3_present(const u8 * buf)537 static int __init dmi_smbios3_present(const u8 *buf)
538 {
539 if (memcmp(buf, "_SM3_", 5) == 0 &&
540 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
541 dmi_ver = get_unaligned_be32(buf + 6);
542 dmi_ver &= 0xFFFFFF;
543 dmi_num = 0; /* No longer specified */
544 dmi_len = get_unaligned_le32(buf + 12);
545 dmi_base = get_unaligned_le64(buf + 16);
546
547 if (dmi_walk_early(dmi_decode) == 0) {
548 pr_info("SMBIOS %d.%d.%d present.\n",
549 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
550 dmi_ver & 0xFF);
551 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
552 pr_debug("DMI: %s\n", dmi_ids_string);
553 return 0;
554 }
555 }
556 return 1;
557 }
558
dmi_scan_machine(void)559 void __init dmi_scan_machine(void)
560 {
561 char __iomem *p, *q;
562 char buf[32];
563
564 if (efi_enabled(EFI_CONFIG_TABLES)) {
565 /*
566 * According to the DMTF SMBIOS reference spec v3.0.0, it is
567 * allowed to define both the 64-bit entry point (smbios3) and
568 * the 32-bit entry point (smbios), in which case they should
569 * either both point to the same SMBIOS structure table, or the
570 * table pointed to by the 64-bit entry point should contain a
571 * superset of the table contents pointed to by the 32-bit entry
572 * point (section 5.2)
573 * This implies that the 64-bit entry point should have
574 * precedence if it is defined and supported by the OS. If we
575 * have the 64-bit entry point, but fail to decode it, fall
576 * back to the legacy one (if available)
577 */
578 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
579 p = dmi_early_remap(efi.smbios3, 32);
580 if (p == NULL)
581 goto error;
582 memcpy_fromio(buf, p, 32);
583 dmi_early_unmap(p, 32);
584
585 if (!dmi_smbios3_present(buf)) {
586 dmi_available = 1;
587 goto out;
588 }
589 }
590 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
591 goto error;
592
593 /* This is called as a core_initcall() because it isn't
594 * needed during early boot. This also means we can
595 * iounmap the space when we're done with it.
596 */
597 p = dmi_early_remap(efi.smbios, 32);
598 if (p == NULL)
599 goto error;
600 memcpy_fromio(buf, p, 32);
601 dmi_early_unmap(p, 32);
602
603 if (!dmi_present(buf)) {
604 dmi_available = 1;
605 goto out;
606 }
607 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
608 p = dmi_early_remap(0xF0000, 0x10000);
609 if (p == NULL)
610 goto error;
611
612 /*
613 * Iterate over all possible DMI header addresses q.
614 * Maintain the 32 bytes around q in buf. On the
615 * first iteration, substitute zero for the
616 * out-of-range bytes so there is no chance of falsely
617 * detecting an SMBIOS header.
618 */
619 memset(buf, 0, 16);
620 for (q = p; q < p + 0x10000; q += 16) {
621 memcpy_fromio(buf + 16, q, 16);
622 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
623 dmi_available = 1;
624 dmi_early_unmap(p, 0x10000);
625 goto out;
626 }
627 memcpy(buf, buf + 16, 16);
628 }
629 dmi_early_unmap(p, 0x10000);
630 }
631 error:
632 pr_info("DMI not present or invalid.\n");
633 out:
634 dmi_initialized = 1;
635 }
636
637 /**
638 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
639 *
640 * Invoke dump_stack_set_arch_desc() with DMI system information so that
641 * DMI identifiers are printed out on task dumps. Arch boot code should
642 * call this function after dmi_scan_machine() if it wants to print out DMI
643 * identifiers on task dumps.
644 */
dmi_set_dump_stack_arch_desc(void)645 void __init dmi_set_dump_stack_arch_desc(void)
646 {
647 dump_stack_set_arch_desc("%s", dmi_ids_string);
648 }
649
650 /**
651 * dmi_matches - check if dmi_system_id structure matches system DMI data
652 * @dmi: pointer to the dmi_system_id structure to check
653 */
dmi_matches(const struct dmi_system_id * dmi)654 static bool dmi_matches(const struct dmi_system_id *dmi)
655 {
656 int i;
657
658 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
659
660 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
661 int s = dmi->matches[i].slot;
662 if (s == DMI_NONE)
663 break;
664 if (dmi_ident[s]) {
665 if (!dmi->matches[i].exact_match &&
666 strstr(dmi_ident[s], dmi->matches[i].substr))
667 continue;
668 else if (dmi->matches[i].exact_match &&
669 !strcmp(dmi_ident[s], dmi->matches[i].substr))
670 continue;
671 }
672
673 /* No match */
674 return false;
675 }
676 return true;
677 }
678
679 /**
680 * dmi_is_end_of_table - check for end-of-table marker
681 * @dmi: pointer to the dmi_system_id structure to check
682 */
dmi_is_end_of_table(const struct dmi_system_id * dmi)683 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
684 {
685 return dmi->matches[0].slot == DMI_NONE;
686 }
687
688 /**
689 * dmi_check_system - check system DMI data
690 * @list: array of dmi_system_id structures to match against
691 * All non-null elements of the list must match
692 * their slot's (field index's) data (i.e., each
693 * list string must be a substring of the specified
694 * DMI slot's string data) to be considered a
695 * successful match.
696 *
697 * Walk the blacklist table running matching functions until someone
698 * returns non zero or we hit the end. Callback function is called for
699 * each successful match. Returns the number of matches.
700 */
dmi_check_system(const struct dmi_system_id * list)701 int dmi_check_system(const struct dmi_system_id *list)
702 {
703 int count = 0;
704 const struct dmi_system_id *d;
705
706 for (d = list; !dmi_is_end_of_table(d); d++)
707 if (dmi_matches(d)) {
708 count++;
709 if (d->callback && d->callback(d))
710 break;
711 }
712
713 return count;
714 }
715 EXPORT_SYMBOL(dmi_check_system);
716
717 /**
718 * dmi_first_match - find dmi_system_id structure matching system DMI data
719 * @list: array of dmi_system_id structures to match against
720 * All non-null elements of the list must match
721 * their slot's (field index's) data (i.e., each
722 * list string must be a substring of the specified
723 * DMI slot's string data) to be considered a
724 * successful match.
725 *
726 * Walk the blacklist table until the first match is found. Return the
727 * pointer to the matching entry or NULL if there's no match.
728 */
dmi_first_match(const struct dmi_system_id * list)729 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
730 {
731 const struct dmi_system_id *d;
732
733 for (d = list; !dmi_is_end_of_table(d); d++)
734 if (dmi_matches(d))
735 return d;
736
737 return NULL;
738 }
739 EXPORT_SYMBOL(dmi_first_match);
740
741 /**
742 * dmi_get_system_info - return DMI data value
743 * @field: data index (see enum dmi_field)
744 *
745 * Returns one DMI data value, can be used to perform
746 * complex DMI data checks.
747 */
dmi_get_system_info(int field)748 const char *dmi_get_system_info(int field)
749 {
750 return dmi_ident[field];
751 }
752 EXPORT_SYMBOL(dmi_get_system_info);
753
754 /**
755 * dmi_name_in_serial - Check if string is in the DMI product serial information
756 * @str: string to check for
757 */
dmi_name_in_serial(const char * str)758 int dmi_name_in_serial(const char *str)
759 {
760 int f = DMI_PRODUCT_SERIAL;
761 if (dmi_ident[f] && strstr(dmi_ident[f], str))
762 return 1;
763 return 0;
764 }
765
766 /**
767 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
768 * @str: Case sensitive Name
769 */
dmi_name_in_vendors(const char * str)770 int dmi_name_in_vendors(const char *str)
771 {
772 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
773 int i;
774 for (i = 0; fields[i] != DMI_NONE; i++) {
775 int f = fields[i];
776 if (dmi_ident[f] && strstr(dmi_ident[f], str))
777 return 1;
778 }
779 return 0;
780 }
781 EXPORT_SYMBOL(dmi_name_in_vendors);
782
783 /**
784 * dmi_find_device - find onboard device by type/name
785 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
786 * @name: device name string or %NULL to match all
787 * @from: previous device found in search, or %NULL for new search.
788 *
789 * Iterates through the list of known onboard devices. If a device is
790 * found with a matching @vendor and @device, a pointer to its device
791 * structure is returned. Otherwise, %NULL is returned.
792 * A new search is initiated by passing %NULL as the @from argument.
793 * If @from is not %NULL, searches continue from next device.
794 */
dmi_find_device(int type,const char * name,const struct dmi_device * from)795 const struct dmi_device *dmi_find_device(int type, const char *name,
796 const struct dmi_device *from)
797 {
798 const struct list_head *head = from ? &from->list : &dmi_devices;
799 struct list_head *d;
800
801 for (d = head->next; d != &dmi_devices; d = d->next) {
802 const struct dmi_device *dev =
803 list_entry(d, struct dmi_device, list);
804
805 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
806 ((name == NULL) || (strcmp(dev->name, name) == 0)))
807 return dev;
808 }
809
810 return NULL;
811 }
812 EXPORT_SYMBOL(dmi_find_device);
813
814 /**
815 * dmi_get_date - parse a DMI date
816 * @field: data index (see enum dmi_field)
817 * @yearp: optional out parameter for the year
818 * @monthp: optional out parameter for the month
819 * @dayp: optional out parameter for the day
820 *
821 * The date field is assumed to be in the form resembling
822 * [mm[/dd]]/yy[yy] and the result is stored in the out
823 * parameters any or all of which can be omitted.
824 *
825 * If the field doesn't exist, all out parameters are set to zero
826 * and false is returned. Otherwise, true is returned with any
827 * invalid part of date set to zero.
828 *
829 * On return, year, month and day are guaranteed to be in the
830 * range of [0,9999], [0,12] and [0,31] respectively.
831 */
dmi_get_date(int field,int * yearp,int * monthp,int * dayp)832 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
833 {
834 int year = 0, month = 0, day = 0;
835 bool exists;
836 const char *s, *y;
837 char *e;
838
839 s = dmi_get_system_info(field);
840 exists = s;
841 if (!exists)
842 goto out;
843
844 /*
845 * Determine year first. We assume the date string resembles
846 * mm/dd/yy[yy] but the original code extracted only the year
847 * from the end. Keep the behavior in the spirit of no
848 * surprises.
849 */
850 y = strrchr(s, '/');
851 if (!y)
852 goto out;
853
854 y++;
855 year = simple_strtoul(y, &e, 10);
856 if (y != e && year < 100) { /* 2-digit year */
857 year += 1900;
858 if (year < 1996) /* no dates < spec 1.0 */
859 year += 100;
860 }
861 if (year > 9999) /* year should fit in %04d */
862 year = 0;
863
864 /* parse the mm and dd */
865 month = simple_strtoul(s, &e, 10);
866 if (s == e || *e != '/' || !month || month > 12) {
867 month = 0;
868 goto out;
869 }
870
871 s = e + 1;
872 day = simple_strtoul(s, &e, 10);
873 if (s == y || s == e || *e != '/' || day > 31)
874 day = 0;
875 out:
876 if (yearp)
877 *yearp = year;
878 if (monthp)
879 *monthp = month;
880 if (dayp)
881 *dayp = day;
882 return exists;
883 }
884 EXPORT_SYMBOL(dmi_get_date);
885
886 /**
887 * dmi_walk - Walk the DMI table and get called back for every record
888 * @decode: Callback function
889 * @private_data: Private data to be passed to the callback function
890 *
891 * Returns -1 when the DMI table can't be reached, 0 on success.
892 */
dmi_walk(void (* decode)(const struct dmi_header *,void *),void * private_data)893 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
894 void *private_data)
895 {
896 u8 *buf;
897
898 if (!dmi_available)
899 return -1;
900
901 buf = dmi_remap(dmi_base, dmi_len);
902 if (buf == NULL)
903 return -1;
904
905 dmi_table(buf, decode, private_data);
906
907 dmi_unmap(buf);
908 return 0;
909 }
910 EXPORT_SYMBOL_GPL(dmi_walk);
911
912 /**
913 * dmi_match - compare a string to the dmi field (if exists)
914 * @f: DMI field identifier
915 * @str: string to compare the DMI field to
916 *
917 * Returns true if the requested field equals to the str (including NULL).
918 */
dmi_match(enum dmi_field f,const char * str)919 bool dmi_match(enum dmi_field f, const char *str)
920 {
921 const char *info = dmi_get_system_info(f);
922
923 if (info == NULL || str == NULL)
924 return info == str;
925
926 return !strcmp(info, str);
927 }
928 EXPORT_SYMBOL_GPL(dmi_match);
929
dmi_memdev_name(u16 handle,const char ** bank,const char ** device)930 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
931 {
932 int n;
933
934 if (dmi_memdev == NULL)
935 return;
936
937 for (n = 0; n < dmi_memdev_nr; n++) {
938 if (handle == dmi_memdev[n].handle) {
939 *bank = dmi_memdev[n].bank;
940 *device = dmi_memdev[n].device;
941 break;
942 }
943 }
944 }
945 EXPORT_SYMBOL_GPL(dmi_memdev_name);
946