1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 /*
14  * DMI stands for "Desktop Management Interface".  It is part
15  * of and an antecedent to, SMBIOS, which stands for System
16  * Management BIOS.  See further: http://www.dmtf.org/standards
17  */
18 static const char dmi_empty_string[] = "        ";
19 
20 static u32 dmi_ver __initdata;
21 static u32 dmi_len;
22 static u16 dmi_num;
23 /*
24  * Catch too early calls to dmi_check_system():
25  */
26 static int dmi_initialized;
27 
28 /* DMI system identification string used during boot */
29 static char dmi_ids_string[128] __initdata;
30 
31 static struct dmi_memdev_info {
32 	const char *device;
33 	const char *bank;
34 	u16 handle;
35 } *dmi_memdev;
36 static int dmi_memdev_nr;
37 
dmi_string_nosave(const struct dmi_header * dm,u8 s)38 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
39 {
40 	const u8 *bp = ((u8 *) dm) + dm->length;
41 
42 	if (s) {
43 		s--;
44 		while (s > 0 && *bp) {
45 			bp += strlen(bp) + 1;
46 			s--;
47 		}
48 
49 		if (*bp != 0) {
50 			size_t len = strlen(bp)+1;
51 			size_t cmp_len = len > 8 ? 8 : len;
52 
53 			if (!memcmp(bp, dmi_empty_string, cmp_len))
54 				return dmi_empty_string;
55 			return bp;
56 		}
57 	}
58 
59 	return "";
60 }
61 
dmi_string(const struct dmi_header * dm,u8 s)62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
63 {
64 	const char *bp = dmi_string_nosave(dm, s);
65 	char *str;
66 	size_t len;
67 
68 	if (bp == dmi_empty_string)
69 		return dmi_empty_string;
70 
71 	len = strlen(bp) + 1;
72 	str = dmi_alloc(len);
73 	if (str != NULL)
74 		strcpy(str, bp);
75 
76 	return str;
77 }
78 
79 /*
80  *	We have to be cautious here. We have seen BIOSes with DMI pointers
81  *	pointing to completely the wrong place for example
82  */
dmi_table(u8 * buf,void (* decode)(const struct dmi_header *,void *),void * private_data)83 static void dmi_table(u8 *buf,
84 		      void (*decode)(const struct dmi_header *, void *),
85 		      void *private_data)
86 {
87 	u8 *data = buf;
88 	int i = 0;
89 
90 	/*
91 	 * Stop when we have seen all the items the table claimed to have
92 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
93 	 * >= 3.0 only) OR we run off the end of the table (should never
94 	 * happen but sometimes does on bogus implementations.)
95 	 */
96 	while ((!dmi_num || i < dmi_num) &&
97 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98 		const struct dmi_header *dm = (const struct dmi_header *)data;
99 
100 		/*
101 		 *  We want to know the total length (formatted area and
102 		 *  strings) before decoding to make sure we won't run off the
103 		 *  table in dmi_decode or dmi_string
104 		 */
105 		data += dm->length;
106 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107 			data++;
108 		if (data - buf < dmi_len - 1)
109 			decode(dm, private_data);
110 
111 		/*
112 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113 		 * For tables behind a 64-bit entry point, we have no item
114 		 * count and no exact table length, so stop on end-of-table
115 		 * marker. For tables behind a 32-bit entry point, we have
116 		 * seen OEM structures behind the end-of-table marker on
117 		 * some systems, so don't trust it.
118 		 */
119 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
120 			break;
121 
122 		data += 2;
123 		i++;
124 	}
125 }
126 
127 static phys_addr_t dmi_base;
128 
dmi_walk_early(void (* decode)(const struct dmi_header *,void *))129 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
130 		void *))
131 {
132 	u8 *buf;
133 
134 	buf = dmi_early_remap(dmi_base, dmi_len);
135 	if (buf == NULL)
136 		return -1;
137 
138 	dmi_table(buf, decode, NULL);
139 
140 	add_device_randomness(buf, dmi_len);
141 
142 	dmi_early_unmap(buf, dmi_len);
143 	return 0;
144 }
145 
dmi_checksum(const u8 * buf,u8 len)146 static int __init dmi_checksum(const u8 *buf, u8 len)
147 {
148 	u8 sum = 0;
149 	int a;
150 
151 	for (a = 0; a < len; a++)
152 		sum += buf[a];
153 
154 	return sum == 0;
155 }
156 
157 static const char *dmi_ident[DMI_STRING_MAX];
158 static LIST_HEAD(dmi_devices);
159 int dmi_available;
160 
161 /*
162  *	Save a DMI string
163  */
dmi_save_ident(const struct dmi_header * dm,int slot,int string)164 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
165 		int string)
166 {
167 	const char *d = (const char *) dm;
168 	const char *p;
169 
170 	if (dmi_ident[slot])
171 		return;
172 
173 	p = dmi_string(dm, d[string]);
174 	if (p == NULL)
175 		return;
176 
177 	dmi_ident[slot] = p;
178 }
179 
dmi_save_uuid(const struct dmi_header * dm,int slot,int index)180 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
181 		int index)
182 {
183 	const u8 *d = (u8 *) dm + index;
184 	char *s;
185 	int is_ff = 1, is_00 = 1, i;
186 
187 	if (dmi_ident[slot])
188 		return;
189 
190 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
191 		if (d[i] != 0x00)
192 			is_00 = 0;
193 		if (d[i] != 0xFF)
194 			is_ff = 0;
195 	}
196 
197 	if (is_ff || is_00)
198 		return;
199 
200 	s = dmi_alloc(16*2+4+1);
201 	if (!s)
202 		return;
203 
204 	/*
205 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
206 	 * the UUID are supposed to be little-endian encoded.  The specification
207 	 * says that this is the defacto standard.
208 	 */
209 	if (dmi_ver >= 0x020600)
210 		sprintf(s, "%pUL", d);
211 	else
212 		sprintf(s, "%pUB", d);
213 
214 	dmi_ident[slot] = s;
215 }
216 
dmi_save_type(const struct dmi_header * dm,int slot,int index)217 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
218 		int index)
219 {
220 	const u8 *d = (u8 *) dm + index;
221 	char *s;
222 
223 	if (dmi_ident[slot])
224 		return;
225 
226 	s = dmi_alloc(4);
227 	if (!s)
228 		return;
229 
230 	sprintf(s, "%u", *d & 0x7F);
231 	dmi_ident[slot] = s;
232 }
233 
dmi_save_one_device(int type,const char * name)234 static void __init dmi_save_one_device(int type, const char *name)
235 {
236 	struct dmi_device *dev;
237 
238 	/* No duplicate device */
239 	if (dmi_find_device(type, name, NULL))
240 		return;
241 
242 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
243 	if (!dev)
244 		return;
245 
246 	dev->type = type;
247 	strcpy((char *)(dev + 1), name);
248 	dev->name = (char *)(dev + 1);
249 	dev->device_data = NULL;
250 	list_add(&dev->list, &dmi_devices);
251 }
252 
dmi_save_devices(const struct dmi_header * dm)253 static void __init dmi_save_devices(const struct dmi_header *dm)
254 {
255 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
256 
257 	for (i = 0; i < count; i++) {
258 		const char *d = (char *)(dm + 1) + (i * 2);
259 
260 		/* Skip disabled device */
261 		if ((*d & 0x80) == 0)
262 			continue;
263 
264 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
265 	}
266 }
267 
dmi_save_oem_strings_devices(const struct dmi_header * dm)268 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
269 {
270 	int i, count = *(u8 *)(dm + 1);
271 	struct dmi_device *dev;
272 
273 	for (i = 1; i <= count; i++) {
274 		const char *devname = dmi_string(dm, i);
275 
276 		if (devname == dmi_empty_string)
277 			continue;
278 
279 		dev = dmi_alloc(sizeof(*dev));
280 		if (!dev)
281 			break;
282 
283 		dev->type = DMI_DEV_TYPE_OEM_STRING;
284 		dev->name = devname;
285 		dev->device_data = NULL;
286 
287 		list_add(&dev->list, &dmi_devices);
288 	}
289 }
290 
dmi_save_ipmi_device(const struct dmi_header * dm)291 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
292 {
293 	struct dmi_device *dev;
294 	void *data;
295 
296 	data = dmi_alloc(dm->length);
297 	if (data == NULL)
298 		return;
299 
300 	memcpy(data, dm, dm->length);
301 
302 	dev = dmi_alloc(sizeof(*dev));
303 	if (!dev)
304 		return;
305 
306 	dev->type = DMI_DEV_TYPE_IPMI;
307 	dev->name = "IPMI controller";
308 	dev->device_data = data;
309 
310 	list_add_tail(&dev->list, &dmi_devices);
311 }
312 
dmi_save_dev_onboard(int instance,int segment,int bus,int devfn,const char * name)313 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
314 					int devfn, const char *name)
315 {
316 	struct dmi_dev_onboard *onboard_dev;
317 
318 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
319 	if (!onboard_dev)
320 		return;
321 
322 	onboard_dev->instance = instance;
323 	onboard_dev->segment = segment;
324 	onboard_dev->bus = bus;
325 	onboard_dev->devfn = devfn;
326 
327 	strcpy((char *)&onboard_dev[1], name);
328 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
329 	onboard_dev->dev.name = (char *)&onboard_dev[1];
330 	onboard_dev->dev.device_data = onboard_dev;
331 
332 	list_add(&onboard_dev->dev.list, &dmi_devices);
333 }
334 
dmi_save_extended_devices(const struct dmi_header * dm)335 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
336 {
337 	const u8 *d = (u8 *) dm + 5;
338 
339 	/* Skip disabled device */
340 	if ((*d & 0x80) == 0)
341 		return;
342 
343 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
344 			     dmi_string_nosave(dm, *(d-1)));
345 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
346 }
347 
count_mem_devices(const struct dmi_header * dm,void * v)348 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
349 {
350 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
351 		return;
352 	dmi_memdev_nr++;
353 }
354 
save_mem_devices(const struct dmi_header * dm,void * v)355 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
356 {
357 	const char *d = (const char *)dm;
358 	static int nr;
359 
360 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
361 		return;
362 	if (nr >= dmi_memdev_nr) {
363 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
364 		return;
365 	}
366 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
367 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
368 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
369 	nr++;
370 }
371 
dmi_memdev_walk(void)372 void __init dmi_memdev_walk(void)
373 {
374 	if (!dmi_available)
375 		return;
376 
377 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
378 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
379 		if (dmi_memdev)
380 			dmi_walk_early(save_mem_devices);
381 	}
382 }
383 
384 /*
385  *	Process a DMI table entry. Right now all we care about are the BIOS
386  *	and machine entries. For 2.5 we should pull the smbus controller info
387  *	out of here.
388  */
dmi_decode(const struct dmi_header * dm,void * dummy)389 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
390 {
391 	switch (dm->type) {
392 	case 0:		/* BIOS Information */
393 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
394 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
395 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
396 		break;
397 	case 1:		/* System Information */
398 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
399 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
400 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
401 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
402 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
403 		break;
404 	case 2:		/* Base Board Information */
405 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
406 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
407 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
408 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
409 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
410 		break;
411 	case 3:		/* Chassis Information */
412 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
413 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
414 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
415 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
416 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
417 		break;
418 	case 10:	/* Onboard Devices Information */
419 		dmi_save_devices(dm);
420 		break;
421 	case 11:	/* OEM Strings */
422 		dmi_save_oem_strings_devices(dm);
423 		break;
424 	case 38:	/* IPMI Device Information */
425 		dmi_save_ipmi_device(dm);
426 		break;
427 	case 41:	/* Onboard Devices Extended Information */
428 		dmi_save_extended_devices(dm);
429 	}
430 }
431 
print_filtered(char * buf,size_t len,const char * info)432 static int __init print_filtered(char *buf, size_t len, const char *info)
433 {
434 	int c = 0;
435 	const char *p;
436 
437 	if (!info)
438 		return c;
439 
440 	for (p = info; *p; p++)
441 		if (isprint(*p))
442 			c += scnprintf(buf + c, len - c, "%c", *p);
443 		else
444 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
445 	return c;
446 }
447 
dmi_format_ids(char * buf,size_t len)448 static void __init dmi_format_ids(char *buf, size_t len)
449 {
450 	int c = 0;
451 	const char *board;	/* Board Name is optional */
452 
453 	c += print_filtered(buf + c, len - c,
454 			    dmi_get_system_info(DMI_SYS_VENDOR));
455 	c += scnprintf(buf + c, len - c, " ");
456 	c += print_filtered(buf + c, len - c,
457 			    dmi_get_system_info(DMI_PRODUCT_NAME));
458 
459 	board = dmi_get_system_info(DMI_BOARD_NAME);
460 	if (board) {
461 		c += scnprintf(buf + c, len - c, "/");
462 		c += print_filtered(buf + c, len - c, board);
463 	}
464 	c += scnprintf(buf + c, len - c, ", BIOS ");
465 	c += print_filtered(buf + c, len - c,
466 			    dmi_get_system_info(DMI_BIOS_VERSION));
467 	c += scnprintf(buf + c, len - c, " ");
468 	c += print_filtered(buf + c, len - c,
469 			    dmi_get_system_info(DMI_BIOS_DATE));
470 }
471 
472 /*
473  * Check for DMI/SMBIOS headers in the system firmware image.  Any
474  * SMBIOS header must start 16 bytes before the DMI header, so take a
475  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
476  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
477  * takes precedence) and return 0.  Otherwise return 1.
478  */
dmi_present(const u8 * buf)479 static int __init dmi_present(const u8 *buf)
480 {
481 	u32 smbios_ver;
482 
483 	if (memcmp(buf, "_SM_", 4) == 0 &&
484 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
485 		smbios_ver = get_unaligned_be16(buf + 6);
486 
487 		/* Some BIOS report weird SMBIOS version, fix that up */
488 		switch (smbios_ver) {
489 		case 0x021F:
490 		case 0x0221:
491 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
492 				 smbios_ver & 0xFF, 3);
493 			smbios_ver = 0x0203;
494 			break;
495 		case 0x0233:
496 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
497 			smbios_ver = 0x0206;
498 			break;
499 		}
500 	} else {
501 		smbios_ver = 0;
502 	}
503 
504 	buf += 16;
505 
506 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
507 		if (smbios_ver)
508 			dmi_ver = smbios_ver;
509 		else
510 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
511 		dmi_num = get_unaligned_le16(buf + 12);
512 		dmi_len = get_unaligned_le16(buf + 6);
513 		dmi_base = get_unaligned_le32(buf + 8);
514 
515 		if (dmi_walk_early(dmi_decode) == 0) {
516 			if (smbios_ver) {
517 				pr_info("SMBIOS %d.%d present.\n",
518 				       dmi_ver >> 8, dmi_ver & 0xFF);
519 			} else {
520 				pr_info("Legacy DMI %d.%d present.\n",
521 				       dmi_ver >> 8, dmi_ver & 0xFF);
522 			}
523 			dmi_ver <<= 8;
524 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
525 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
526 			return 0;
527 		}
528 	}
529 
530 	return 1;
531 }
532 
533 /*
534  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
535  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
536  */
dmi_smbios3_present(const u8 * buf)537 static int __init dmi_smbios3_present(const u8 *buf)
538 {
539 	if (memcmp(buf, "_SM3_", 5) == 0 &&
540 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
541 		dmi_ver = get_unaligned_be32(buf + 6);
542 		dmi_ver &= 0xFFFFFF;
543 		dmi_num = 0;			/* No longer specified */
544 		dmi_len = get_unaligned_le32(buf + 12);
545 		dmi_base = get_unaligned_le64(buf + 16);
546 
547 		if (dmi_walk_early(dmi_decode) == 0) {
548 			pr_info("SMBIOS %d.%d.%d present.\n",
549 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
550 				dmi_ver & 0xFF);
551 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
552 			pr_debug("DMI: %s\n", dmi_ids_string);
553 			return 0;
554 		}
555 	}
556 	return 1;
557 }
558 
dmi_scan_machine(void)559 void __init dmi_scan_machine(void)
560 {
561 	char __iomem *p, *q;
562 	char buf[32];
563 
564 	if (efi_enabled(EFI_CONFIG_TABLES)) {
565 		/*
566 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
567 		 * allowed to define both the 64-bit entry point (smbios3) and
568 		 * the 32-bit entry point (smbios), in which case they should
569 		 * either both point to the same SMBIOS structure table, or the
570 		 * table pointed to by the 64-bit entry point should contain a
571 		 * superset of the table contents pointed to by the 32-bit entry
572 		 * point (section 5.2)
573 		 * This implies that the 64-bit entry point should have
574 		 * precedence if it is defined and supported by the OS. If we
575 		 * have the 64-bit entry point, but fail to decode it, fall
576 		 * back to the legacy one (if available)
577 		 */
578 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
579 			p = dmi_early_remap(efi.smbios3, 32);
580 			if (p == NULL)
581 				goto error;
582 			memcpy_fromio(buf, p, 32);
583 			dmi_early_unmap(p, 32);
584 
585 			if (!dmi_smbios3_present(buf)) {
586 				dmi_available = 1;
587 				goto out;
588 			}
589 		}
590 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
591 			goto error;
592 
593 		/* This is called as a core_initcall() because it isn't
594 		 * needed during early boot.  This also means we can
595 		 * iounmap the space when we're done with it.
596 		 */
597 		p = dmi_early_remap(efi.smbios, 32);
598 		if (p == NULL)
599 			goto error;
600 		memcpy_fromio(buf, p, 32);
601 		dmi_early_unmap(p, 32);
602 
603 		if (!dmi_present(buf)) {
604 			dmi_available = 1;
605 			goto out;
606 		}
607 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
608 		p = dmi_early_remap(0xF0000, 0x10000);
609 		if (p == NULL)
610 			goto error;
611 
612 		/*
613 		 * Iterate over all possible DMI header addresses q.
614 		 * Maintain the 32 bytes around q in buf.  On the
615 		 * first iteration, substitute zero for the
616 		 * out-of-range bytes so there is no chance of falsely
617 		 * detecting an SMBIOS header.
618 		 */
619 		memset(buf, 0, 16);
620 		for (q = p; q < p + 0x10000; q += 16) {
621 			memcpy_fromio(buf + 16, q, 16);
622 			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
623 				dmi_available = 1;
624 				dmi_early_unmap(p, 0x10000);
625 				goto out;
626 			}
627 			memcpy(buf, buf + 16, 16);
628 		}
629 		dmi_early_unmap(p, 0x10000);
630 	}
631  error:
632 	pr_info("DMI not present or invalid.\n");
633  out:
634 	dmi_initialized = 1;
635 }
636 
637 /**
638  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
639  *
640  * Invoke dump_stack_set_arch_desc() with DMI system information so that
641  * DMI identifiers are printed out on task dumps.  Arch boot code should
642  * call this function after dmi_scan_machine() if it wants to print out DMI
643  * identifiers on task dumps.
644  */
dmi_set_dump_stack_arch_desc(void)645 void __init dmi_set_dump_stack_arch_desc(void)
646 {
647 	dump_stack_set_arch_desc("%s", dmi_ids_string);
648 }
649 
650 /**
651  *	dmi_matches - check if dmi_system_id structure matches system DMI data
652  *	@dmi: pointer to the dmi_system_id structure to check
653  */
dmi_matches(const struct dmi_system_id * dmi)654 static bool dmi_matches(const struct dmi_system_id *dmi)
655 {
656 	int i;
657 
658 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
659 
660 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
661 		int s = dmi->matches[i].slot;
662 		if (s == DMI_NONE)
663 			break;
664 		if (dmi_ident[s]) {
665 			if (!dmi->matches[i].exact_match &&
666 			    strstr(dmi_ident[s], dmi->matches[i].substr))
667 				continue;
668 			else if (dmi->matches[i].exact_match &&
669 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
670 				continue;
671 		}
672 
673 		/* No match */
674 		return false;
675 	}
676 	return true;
677 }
678 
679 /**
680  *	dmi_is_end_of_table - check for end-of-table marker
681  *	@dmi: pointer to the dmi_system_id structure to check
682  */
dmi_is_end_of_table(const struct dmi_system_id * dmi)683 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
684 {
685 	return dmi->matches[0].slot == DMI_NONE;
686 }
687 
688 /**
689  *	dmi_check_system - check system DMI data
690  *	@list: array of dmi_system_id structures to match against
691  *		All non-null elements of the list must match
692  *		their slot's (field index's) data (i.e., each
693  *		list string must be a substring of the specified
694  *		DMI slot's string data) to be considered a
695  *		successful match.
696  *
697  *	Walk the blacklist table running matching functions until someone
698  *	returns non zero or we hit the end. Callback function is called for
699  *	each successful match. Returns the number of matches.
700  */
dmi_check_system(const struct dmi_system_id * list)701 int dmi_check_system(const struct dmi_system_id *list)
702 {
703 	int count = 0;
704 	const struct dmi_system_id *d;
705 
706 	for (d = list; !dmi_is_end_of_table(d); d++)
707 		if (dmi_matches(d)) {
708 			count++;
709 			if (d->callback && d->callback(d))
710 				break;
711 		}
712 
713 	return count;
714 }
715 EXPORT_SYMBOL(dmi_check_system);
716 
717 /**
718  *	dmi_first_match - find dmi_system_id structure matching system DMI data
719  *	@list: array of dmi_system_id structures to match against
720  *		All non-null elements of the list must match
721  *		their slot's (field index's) data (i.e., each
722  *		list string must be a substring of the specified
723  *		DMI slot's string data) to be considered a
724  *		successful match.
725  *
726  *	Walk the blacklist table until the first match is found.  Return the
727  *	pointer to the matching entry or NULL if there's no match.
728  */
dmi_first_match(const struct dmi_system_id * list)729 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
730 {
731 	const struct dmi_system_id *d;
732 
733 	for (d = list; !dmi_is_end_of_table(d); d++)
734 		if (dmi_matches(d))
735 			return d;
736 
737 	return NULL;
738 }
739 EXPORT_SYMBOL(dmi_first_match);
740 
741 /**
742  *	dmi_get_system_info - return DMI data value
743  *	@field: data index (see enum dmi_field)
744  *
745  *	Returns one DMI data value, can be used to perform
746  *	complex DMI data checks.
747  */
dmi_get_system_info(int field)748 const char *dmi_get_system_info(int field)
749 {
750 	return dmi_ident[field];
751 }
752 EXPORT_SYMBOL(dmi_get_system_info);
753 
754 /**
755  * dmi_name_in_serial - Check if string is in the DMI product serial information
756  * @str: string to check for
757  */
dmi_name_in_serial(const char * str)758 int dmi_name_in_serial(const char *str)
759 {
760 	int f = DMI_PRODUCT_SERIAL;
761 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
762 		return 1;
763 	return 0;
764 }
765 
766 /**
767  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
768  *	@str: Case sensitive Name
769  */
dmi_name_in_vendors(const char * str)770 int dmi_name_in_vendors(const char *str)
771 {
772 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
773 	int i;
774 	for (i = 0; fields[i] != DMI_NONE; i++) {
775 		int f = fields[i];
776 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
777 			return 1;
778 	}
779 	return 0;
780 }
781 EXPORT_SYMBOL(dmi_name_in_vendors);
782 
783 /**
784  *	dmi_find_device - find onboard device by type/name
785  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
786  *	@name: device name string or %NULL to match all
787  *	@from: previous device found in search, or %NULL for new search.
788  *
789  *	Iterates through the list of known onboard devices. If a device is
790  *	found with a matching @vendor and @device, a pointer to its device
791  *	structure is returned.  Otherwise, %NULL is returned.
792  *	A new search is initiated by passing %NULL as the @from argument.
793  *	If @from is not %NULL, searches continue from next device.
794  */
dmi_find_device(int type,const char * name,const struct dmi_device * from)795 const struct dmi_device *dmi_find_device(int type, const char *name,
796 				    const struct dmi_device *from)
797 {
798 	const struct list_head *head = from ? &from->list : &dmi_devices;
799 	struct list_head *d;
800 
801 	for (d = head->next; d != &dmi_devices; d = d->next) {
802 		const struct dmi_device *dev =
803 			list_entry(d, struct dmi_device, list);
804 
805 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
806 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
807 			return dev;
808 	}
809 
810 	return NULL;
811 }
812 EXPORT_SYMBOL(dmi_find_device);
813 
814 /**
815  *	dmi_get_date - parse a DMI date
816  *	@field:	data index (see enum dmi_field)
817  *	@yearp: optional out parameter for the year
818  *	@monthp: optional out parameter for the month
819  *	@dayp: optional out parameter for the day
820  *
821  *	The date field is assumed to be in the form resembling
822  *	[mm[/dd]]/yy[yy] and the result is stored in the out
823  *	parameters any or all of which can be omitted.
824  *
825  *	If the field doesn't exist, all out parameters are set to zero
826  *	and false is returned.  Otherwise, true is returned with any
827  *	invalid part of date set to zero.
828  *
829  *	On return, year, month and day are guaranteed to be in the
830  *	range of [0,9999], [0,12] and [0,31] respectively.
831  */
dmi_get_date(int field,int * yearp,int * monthp,int * dayp)832 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
833 {
834 	int year = 0, month = 0, day = 0;
835 	bool exists;
836 	const char *s, *y;
837 	char *e;
838 
839 	s = dmi_get_system_info(field);
840 	exists = s;
841 	if (!exists)
842 		goto out;
843 
844 	/*
845 	 * Determine year first.  We assume the date string resembles
846 	 * mm/dd/yy[yy] but the original code extracted only the year
847 	 * from the end.  Keep the behavior in the spirit of no
848 	 * surprises.
849 	 */
850 	y = strrchr(s, '/');
851 	if (!y)
852 		goto out;
853 
854 	y++;
855 	year = simple_strtoul(y, &e, 10);
856 	if (y != e && year < 100) {	/* 2-digit year */
857 		year += 1900;
858 		if (year < 1996)	/* no dates < spec 1.0 */
859 			year += 100;
860 	}
861 	if (year > 9999)		/* year should fit in %04d */
862 		year = 0;
863 
864 	/* parse the mm and dd */
865 	month = simple_strtoul(s, &e, 10);
866 	if (s == e || *e != '/' || !month || month > 12) {
867 		month = 0;
868 		goto out;
869 	}
870 
871 	s = e + 1;
872 	day = simple_strtoul(s, &e, 10);
873 	if (s == y || s == e || *e != '/' || day > 31)
874 		day = 0;
875 out:
876 	if (yearp)
877 		*yearp = year;
878 	if (monthp)
879 		*monthp = month;
880 	if (dayp)
881 		*dayp = day;
882 	return exists;
883 }
884 EXPORT_SYMBOL(dmi_get_date);
885 
886 /**
887  *	dmi_walk - Walk the DMI table and get called back for every record
888  *	@decode: Callback function
889  *	@private_data: Private data to be passed to the callback function
890  *
891  *	Returns -1 when the DMI table can't be reached, 0 on success.
892  */
dmi_walk(void (* decode)(const struct dmi_header *,void *),void * private_data)893 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
894 	     void *private_data)
895 {
896 	u8 *buf;
897 
898 	if (!dmi_available)
899 		return -1;
900 
901 	buf = dmi_remap(dmi_base, dmi_len);
902 	if (buf == NULL)
903 		return -1;
904 
905 	dmi_table(buf, decode, private_data);
906 
907 	dmi_unmap(buf);
908 	return 0;
909 }
910 EXPORT_SYMBOL_GPL(dmi_walk);
911 
912 /**
913  * dmi_match - compare a string to the dmi field (if exists)
914  * @f: DMI field identifier
915  * @str: string to compare the DMI field to
916  *
917  * Returns true if the requested field equals to the str (including NULL).
918  */
dmi_match(enum dmi_field f,const char * str)919 bool dmi_match(enum dmi_field f, const char *str)
920 {
921 	const char *info = dmi_get_system_info(f);
922 
923 	if (info == NULL || str == NULL)
924 		return info == str;
925 
926 	return !strcmp(info, str);
927 }
928 EXPORT_SYMBOL_GPL(dmi_match);
929 
dmi_memdev_name(u16 handle,const char ** bank,const char ** device)930 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
931 {
932 	int n;
933 
934 	if (dmi_memdev == NULL)
935 		return;
936 
937 	for (n = 0; n < dmi_memdev_nr; n++) {
938 		if (handle == dmi_memdev[n].handle) {
939 			*bank = dmi_memdev[n].bank;
940 			*device = dmi_memdev[n].device;
941 			break;
942 		}
943 	}
944 }
945 EXPORT_SYMBOL_GPL(dmi_memdev_name);
946