1 /*
2  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
3  *
4  * Copyright (C) 2014 Atmel Corporation
5  *
6  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 
36 #include "dmaengine.h"
37 
38 /* Global registers */
39 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
40 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
41 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
42 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
49 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
50 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
51 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
52 #define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
109 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
110 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
111 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
112 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
114 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
118 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
119 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
120 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
121 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
122 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
123 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
124 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
125 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
126 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
127 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
128 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
129 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
130 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
131 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
132 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
134 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
135 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
136 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
137 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
138 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
139 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
140 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
141 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
142 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
143 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
145 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
146 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
147 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
148 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
150 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
151 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
152 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
153 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
154 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
155 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
156 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
157 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
158 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
159 #define		AT_XDMAC_CC_PERID(i)	(0x7f & (i) << 24)	/* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
163 
164 #define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
165 
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
175 
176 #define AT_XDMAC_MAX_CHAN	0x20
177 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
179 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
180 
181 #define AT_XDMAC_DMA_BUSWIDTHS\
182 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
186 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
187 
188 enum atc_status {
189 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
190 	AT_XDMAC_CHAN_IS_PAUSED,
191 };
192 
193 /* ----- Channels ----- */
194 struct at_xdmac_chan {
195 	struct dma_chan			chan;
196 	void __iomem			*ch_regs;
197 	u32				mask;		/* Channel Mask */
198 	u32				cfg;		/* Channel Configuration Register */
199 	u8				perid;		/* Peripheral ID */
200 	u8				perif;		/* Peripheral Interface */
201 	u8				memif;		/* Memory Interface */
202 	u32				save_cc;
203 	u32				save_cim;
204 	u32				save_cnda;
205 	u32				save_cndc;
206 	unsigned long			status;
207 	struct tasklet_struct		tasklet;
208 	struct dma_slave_config		sconfig;
209 
210 	spinlock_t			lock;
211 
212 	struct list_head		xfers_list;
213 	struct list_head		free_descs_list;
214 };
215 
216 
217 /* ----- Controller ----- */
218 struct at_xdmac {
219 	struct dma_device	dma;
220 	void __iomem		*regs;
221 	int			irq;
222 	struct clk		*clk;
223 	u32			save_gim;
224 	u32			save_gs;
225 	struct dma_pool		*at_xdmac_desc_pool;
226 	struct at_xdmac_chan	chan[0];
227 };
228 
229 
230 /* ----- Descriptors ----- */
231 
232 /* Linked List Descriptor */
233 struct at_xdmac_lld {
234 	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
235 	u32		mbr_ubc;	/* Microblock Control Member */
236 	dma_addr_t	mbr_sa;		/* Source Address Member */
237 	dma_addr_t	mbr_da;		/* Destination Address Member */
238 	u32		mbr_cfg;	/* Configuration Register */
239 	u32		mbr_bc;		/* Block Control Register */
240 	u32		mbr_ds;		/* Data Stride Register */
241 	u32		mbr_sus;	/* Source Microblock Stride Register */
242 	u32		mbr_dus;	/* Destination Microblock Stride Register */
243 };
244 
245 
246 struct at_xdmac_desc {
247 	struct at_xdmac_lld		lld;
248 	enum dma_transfer_direction	direction;
249 	struct dma_async_tx_descriptor	tx_dma_desc;
250 	struct list_head		desc_node;
251 	/* Following members are only used by the first descriptor */
252 	bool				active_xfer;
253 	unsigned int			xfer_size;
254 	struct list_head		descs_list;
255 	struct list_head		xfer_node;
256 };
257 
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)258 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
259 {
260 	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
261 }
262 
263 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
264 #define at_xdmac_write(atxdmac, reg, value) \
265 	writel_relaxed((value), (atxdmac)->regs + (reg))
266 
267 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
268 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
269 
to_at_xdmac_chan(struct dma_chan * dchan)270 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
271 {
272 	return container_of(dchan, struct at_xdmac_chan, chan);
273 }
274 
chan2dev(struct dma_chan * chan)275 static struct device *chan2dev(struct dma_chan *chan)
276 {
277 	return &chan->dev->device;
278 }
279 
to_at_xdmac(struct dma_device * ddev)280 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
281 {
282 	return container_of(ddev, struct at_xdmac, dma);
283 }
284 
txd_to_at_desc(struct dma_async_tx_descriptor * txd)285 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
286 {
287 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
288 }
289 
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)290 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
291 {
292 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
293 }
294 
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)295 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
296 {
297 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
298 }
299 
at_xdmac_csize(u32 maxburst)300 static inline int at_xdmac_csize(u32 maxburst)
301 {
302 	int csize;
303 
304 	csize = ffs(maxburst) - 1;
305 	if (csize > 4)
306 		csize = -EINVAL;
307 
308 	return csize;
309 };
310 
at_xdmac_get_dwidth(u32 cfg)311 static inline u8 at_xdmac_get_dwidth(u32 cfg)
312 {
313 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
314 };
315 
316 static unsigned int init_nr_desc_per_channel = 64;
317 module_param(init_nr_desc_per_channel, uint, 0644);
318 MODULE_PARM_DESC(init_nr_desc_per_channel,
319 		 "initial descriptors per channel (default: 64)");
320 
321 
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)322 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
323 {
324 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
325 }
326 
at_xdmac_off(struct at_xdmac * atxdmac)327 static void at_xdmac_off(struct at_xdmac *atxdmac)
328 {
329 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
330 
331 	/* Wait that all chans are disabled. */
332 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
333 		cpu_relax();
334 
335 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
336 }
337 
338 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)339 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
340 				struct at_xdmac_desc *first)
341 {
342 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
343 	u32		reg;
344 
345 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
346 
347 	if (at_xdmac_chan_is_enabled(atchan))
348 		return;
349 
350 	/* Set transfer as active to not try to start it again. */
351 	first->active_xfer = true;
352 
353 	/* Tell xdmac where to get the first descriptor. */
354 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
355 	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
356 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
357 
358 	/*
359 	 * When doing non cyclic transfer we need to use the next
360 	 * descriptor view 2 since some fields of the configuration register
361 	 * depend on transfer size and src/dest addresses.
362 	 */
363 	if (at_xdmac_chan_is_cyclic(atchan))
364 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
365 	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
366 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
367 	else
368 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
369 	/*
370 	 * Even if the register will be updated from the configuration in the
371 	 * descriptor when using view 2 or higher, the PROT bit won't be set
372 	 * properly. This bit can be modified only by using the channel
373 	 * configuration register.
374 	 */
375 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
376 
377 	reg |= AT_XDMAC_CNDC_NDDUP
378 	       | AT_XDMAC_CNDC_NDSUP
379 	       | AT_XDMAC_CNDC_NDE;
380 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
381 
382 	dev_vdbg(chan2dev(&atchan->chan),
383 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
384 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
385 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
386 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
387 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
388 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
389 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
390 
391 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
392 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
393 	/*
394 	 * There is no end of list when doing cyclic dma, we need to get
395 	 * an interrupt after each periods.
396 	 */
397 	if (at_xdmac_chan_is_cyclic(atchan))
398 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
399 				    reg | AT_XDMAC_CIE_BIE);
400 	else
401 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
402 				    reg | AT_XDMAC_CIE_LIE);
403 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
404 	dev_vdbg(chan2dev(&atchan->chan),
405 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
406 	wmb();
407 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
408 
409 	dev_vdbg(chan2dev(&atchan->chan),
410 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
411 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
412 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
413 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
414 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
415 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
416 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
417 
418 }
419 
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
421 {
422 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
423 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
424 	dma_cookie_t		cookie;
425 	unsigned long		irqflags;
426 
427 	spin_lock_irqsave(&atchan->lock, irqflags);
428 	cookie = dma_cookie_assign(tx);
429 
430 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
431 		 __func__, atchan, desc);
432 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
433 	if (list_is_singular(&atchan->xfers_list))
434 		at_xdmac_start_xfer(atchan, desc);
435 
436 	spin_unlock_irqrestore(&atchan->lock, irqflags);
437 	return cookie;
438 }
439 
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
441 						 gfp_t gfp_flags)
442 {
443 	struct at_xdmac_desc	*desc;
444 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
445 	dma_addr_t		phys;
446 
447 	desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
448 	if (desc) {
449 		memset(desc, 0, sizeof(*desc));
450 		INIT_LIST_HEAD(&desc->descs_list);
451 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
452 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
453 		desc->tx_dma_desc.phys = phys;
454 	}
455 
456 	return desc;
457 }
458 
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)459 void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
460 {
461 	memset(&desc->lld, 0, sizeof(desc->lld));
462 	INIT_LIST_HEAD(&desc->descs_list);
463 	desc->direction = DMA_TRANS_NONE;
464 	desc->xfer_size = 0;
465 	desc->active_xfer = false;
466 }
467 
468 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)469 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
470 {
471 	struct at_xdmac_desc *desc;
472 
473 	if (list_empty(&atchan->free_descs_list)) {
474 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
475 	} else {
476 		desc = list_first_entry(&atchan->free_descs_list,
477 					struct at_xdmac_desc, desc_node);
478 		list_del(&desc->desc_node);
479 		at_xdmac_init_used_desc(desc);
480 	}
481 
482 	return desc;
483 }
484 
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)485 static void at_xdmac_queue_desc(struct dma_chan *chan,
486 				struct at_xdmac_desc *prev,
487 				struct at_xdmac_desc *desc)
488 {
489 	if (!prev || !desc)
490 		return;
491 
492 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
493 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
494 
495 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
496 		__func__, prev, &prev->lld.mbr_nda);
497 }
498 
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)499 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
500 						  struct at_xdmac_desc *desc)
501 {
502 	if (!desc)
503 		return;
504 
505 	desc->lld.mbr_bc++;
506 
507 	dev_dbg(chan2dev(chan),
508 		"%s: incrementing the block count of the desc 0x%p\n",
509 		__func__, desc);
510 }
511 
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)512 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
513 				       struct of_dma *of_dma)
514 {
515 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
516 	struct at_xdmac_chan	*atchan;
517 	struct dma_chan		*chan;
518 	struct device		*dev = atxdmac->dma.dev;
519 
520 	if (dma_spec->args_count != 1) {
521 		dev_err(dev, "dma phandler args: bad number of args\n");
522 		return NULL;
523 	}
524 
525 	chan = dma_get_any_slave_channel(&atxdmac->dma);
526 	if (!chan) {
527 		dev_err(dev, "can't get a dma channel\n");
528 		return NULL;
529 	}
530 
531 	atchan = to_at_xdmac_chan(chan);
532 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
533 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
534 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
535 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
536 		 atchan->memif, atchan->perif, atchan->perid);
537 
538 	return chan;
539 }
540 
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)541 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
542 				      enum dma_transfer_direction direction)
543 {
544 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
545 	int			csize, dwidth;
546 
547 	if (direction == DMA_DEV_TO_MEM) {
548 		atchan->cfg =
549 			AT91_XDMAC_DT_PERID(atchan->perid)
550 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
551 			| AT_XDMAC_CC_SAM_FIXED_AM
552 			| AT_XDMAC_CC_DIF(atchan->memif)
553 			| AT_XDMAC_CC_SIF(atchan->perif)
554 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
555 			| AT_XDMAC_CC_DSYNC_PER2MEM
556 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
557 			| AT_XDMAC_CC_TYPE_PER_TRAN;
558 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
559 		if (csize < 0) {
560 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
561 			return -EINVAL;
562 		}
563 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
564 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
565 		if (dwidth < 0) {
566 			dev_err(chan2dev(chan), "invalid src addr width value\n");
567 			return -EINVAL;
568 		}
569 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
570 	} else if (direction == DMA_MEM_TO_DEV) {
571 		atchan->cfg =
572 			AT91_XDMAC_DT_PERID(atchan->perid)
573 			| AT_XDMAC_CC_DAM_FIXED_AM
574 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
575 			| AT_XDMAC_CC_DIF(atchan->perif)
576 			| AT_XDMAC_CC_SIF(atchan->memif)
577 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
578 			| AT_XDMAC_CC_DSYNC_MEM2PER
579 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
580 			| AT_XDMAC_CC_TYPE_PER_TRAN;
581 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
582 		if (csize < 0) {
583 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
584 			return -EINVAL;
585 		}
586 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
587 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
588 		if (dwidth < 0) {
589 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
590 			return -EINVAL;
591 		}
592 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
593 	}
594 
595 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
596 
597 	return 0;
598 }
599 
600 /*
601  * Only check that maxburst and addr width values are supported by the
602  * the controller but not that the configuration is good to perform the
603  * transfer since we don't know the direction at this stage.
604  */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)605 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
606 {
607 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
608 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
609 		return -EINVAL;
610 
611 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
612 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
613 		return -EINVAL;
614 
615 	return 0;
616 }
617 
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)618 static int at_xdmac_set_slave_config(struct dma_chan *chan,
619 				      struct dma_slave_config *sconfig)
620 {
621 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
622 
623 	if (at_xdmac_check_slave_config(sconfig)) {
624 		dev_err(chan2dev(chan), "invalid slave configuration\n");
625 		return -EINVAL;
626 	}
627 
628 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
629 
630 	return 0;
631 }
632 
633 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)634 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
635 		       unsigned int sg_len, enum dma_transfer_direction direction,
636 		       unsigned long flags, void *context)
637 {
638 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
639 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
640 	struct scatterlist		*sg;
641 	int				i;
642 	unsigned int			xfer_size = 0;
643 	unsigned long			irqflags;
644 	struct dma_async_tx_descriptor	*ret = NULL;
645 
646 	if (!sgl)
647 		return NULL;
648 
649 	if (!is_slave_direction(direction)) {
650 		dev_err(chan2dev(chan), "invalid DMA direction\n");
651 		return NULL;
652 	}
653 
654 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
655 		 __func__, sg_len,
656 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
657 		 flags);
658 
659 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
660 	spin_lock_irqsave(&atchan->lock, irqflags);
661 
662 	if (at_xdmac_compute_chan_conf(chan, direction))
663 		goto spin_unlock;
664 
665 	/* Prepare descriptors. */
666 	for_each_sg(sgl, sg, sg_len, i) {
667 		struct at_xdmac_desc	*desc = NULL;
668 		u32			len, mem, dwidth, fixed_dwidth;
669 
670 		len = sg_dma_len(sg);
671 		mem = sg_dma_address(sg);
672 		if (unlikely(!len)) {
673 			dev_err(chan2dev(chan), "sg data length is zero\n");
674 			goto spin_unlock;
675 		}
676 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
677 			 __func__, i, len, mem);
678 
679 		desc = at_xdmac_get_desc(atchan);
680 		if (!desc) {
681 			dev_err(chan2dev(chan), "can't get descriptor\n");
682 			if (first)
683 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
684 			goto spin_unlock;
685 		}
686 
687 		/* Linked list descriptor setup. */
688 		if (direction == DMA_DEV_TO_MEM) {
689 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
690 			desc->lld.mbr_da = mem;
691 		} else {
692 			desc->lld.mbr_sa = mem;
693 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
694 		}
695 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
696 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
697 			       ? dwidth
698 			       : AT_XDMAC_CC_DWIDTH_BYTE;
699 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
700 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
701 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
702 			| (len >> fixed_dwidth);				/* microblock length */
703 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
704 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
705 		dev_dbg(chan2dev(chan),
706 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
707 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
708 
709 		/* Chain lld. */
710 		if (prev)
711 			at_xdmac_queue_desc(chan, prev, desc);
712 
713 		prev = desc;
714 		if (!first)
715 			first = desc;
716 
717 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
718 			 __func__, desc, first);
719 		list_add_tail(&desc->desc_node, &first->descs_list);
720 		xfer_size += len;
721 	}
722 
723 
724 	first->tx_dma_desc.flags = flags;
725 	first->xfer_size = xfer_size;
726 	first->direction = direction;
727 	ret = &first->tx_dma_desc;
728 
729 spin_unlock:
730 	spin_unlock_irqrestore(&atchan->lock, irqflags);
731 	return ret;
732 }
733 
734 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)735 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
736 			 size_t buf_len, size_t period_len,
737 			 enum dma_transfer_direction direction,
738 			 unsigned long flags)
739 {
740 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
741 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
742 	unsigned int		periods = buf_len / period_len;
743 	int			i;
744 	unsigned long		irqflags;
745 
746 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
747 		__func__, &buf_addr, buf_len, period_len,
748 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
749 
750 	if (!is_slave_direction(direction)) {
751 		dev_err(chan2dev(chan), "invalid DMA direction\n");
752 		return NULL;
753 	}
754 
755 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
756 		dev_err(chan2dev(chan), "channel currently used\n");
757 		return NULL;
758 	}
759 
760 	if (at_xdmac_compute_chan_conf(chan, direction))
761 		return NULL;
762 
763 	for (i = 0; i < periods; i++) {
764 		struct at_xdmac_desc	*desc = NULL;
765 
766 		spin_lock_irqsave(&atchan->lock, irqflags);
767 		desc = at_xdmac_get_desc(atchan);
768 		if (!desc) {
769 			dev_err(chan2dev(chan), "can't get descriptor\n");
770 			if (first)
771 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
772 			spin_unlock_irqrestore(&atchan->lock, irqflags);
773 			return NULL;
774 		}
775 		spin_unlock_irqrestore(&atchan->lock, irqflags);
776 		dev_dbg(chan2dev(chan),
777 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
778 			__func__, desc, &desc->tx_dma_desc.phys);
779 
780 		if (direction == DMA_DEV_TO_MEM) {
781 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
782 			desc->lld.mbr_da = buf_addr + i * period_len;
783 		} else {
784 			desc->lld.mbr_sa = buf_addr + i * period_len;
785 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
786 		}
787 		desc->lld.mbr_cfg = atchan->cfg;
788 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
789 			| AT_XDMAC_MBR_UBC_NDEN
790 			| AT_XDMAC_MBR_UBC_NSEN
791 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
792 
793 		dev_dbg(chan2dev(chan),
794 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
795 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
796 
797 		/* Chain lld. */
798 		if (prev)
799 			at_xdmac_queue_desc(chan, prev, desc);
800 
801 		prev = desc;
802 		if (!first)
803 			first = desc;
804 
805 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
806 			 __func__, desc, first);
807 		list_add_tail(&desc->desc_node, &first->descs_list);
808 	}
809 
810 	at_xdmac_queue_desc(chan, prev, first);
811 	first->tx_dma_desc.flags = flags;
812 	first->xfer_size = buf_len;
813 	first->direction = direction;
814 
815 	return &first->tx_dma_desc;
816 }
817 
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)818 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
819 {
820 	u32 width;
821 
822 	/*
823 	 * Check address alignment to select the greater data width we
824 	 * can use.
825 	 *
826 	 * Some XDMAC implementations don't provide dword transfer, in
827 	 * this case selecting dword has the same behavior as
828 	 * selecting word transfers.
829 	 */
830 	if (!(addr & 7)) {
831 		width = AT_XDMAC_CC_DWIDTH_DWORD;
832 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
833 	} else if (!(addr & 3)) {
834 		width = AT_XDMAC_CC_DWIDTH_WORD;
835 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
836 	} else if (!(addr & 1)) {
837 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
838 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
839 	} else {
840 		width = AT_XDMAC_CC_DWIDTH_BYTE;
841 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
842 	}
843 
844 	return width;
845 }
846 
847 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)848 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
849 				struct at_xdmac_chan *atchan,
850 				struct at_xdmac_desc *prev,
851 				dma_addr_t src, dma_addr_t dst,
852 				struct dma_interleaved_template *xt,
853 				struct data_chunk *chunk)
854 {
855 	struct at_xdmac_desc	*desc;
856 	u32			dwidth;
857 	unsigned long		flags;
858 	size_t			ublen;
859 	/*
860 	 * WARNING: The channel configuration is set here since there is no
861 	 * dmaengine_slave_config call in this case. Moreover we don't know the
862 	 * direction, it involves we can't dynamically set the source and dest
863 	 * interface so we have to use the same one. Only interface 0 allows EBI
864 	 * access. Hopefully we can access DDR through both ports (at least on
865 	 * SAMA5D4x), so we can use the same interface for source and dest,
866 	 * that solves the fact we don't know the direction.
867 	 */
868 	u32			chan_cc = AT_XDMAC_CC_DIF(0)
869 					| AT_XDMAC_CC_SIF(0)
870 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
871 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
872 
873 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
874 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
875 		dev_dbg(chan2dev(chan),
876 			"%s: chunk too big (%d, max size %lu)...\n",
877 			__func__, chunk->size,
878 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
879 		return NULL;
880 	}
881 
882 	if (prev)
883 		dev_dbg(chan2dev(chan),
884 			"Adding items at the end of desc 0x%p\n", prev);
885 
886 	if (xt->src_inc) {
887 		if (xt->src_sgl)
888 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
889 		else
890 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
891 	}
892 
893 	if (xt->dst_inc) {
894 		if (xt->dst_sgl)
895 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
896 		else
897 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
898 	}
899 
900 	spin_lock_irqsave(&atchan->lock, flags);
901 	desc = at_xdmac_get_desc(atchan);
902 	spin_unlock_irqrestore(&atchan->lock, flags);
903 	if (!desc) {
904 		dev_err(chan2dev(chan), "can't get descriptor\n");
905 		return NULL;
906 	}
907 
908 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
909 
910 	ublen = chunk->size >> dwidth;
911 
912 	desc->lld.mbr_sa = src;
913 	desc->lld.mbr_da = dst;
914 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
915 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
916 
917 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
918 		| AT_XDMAC_MBR_UBC_NDEN
919 		| AT_XDMAC_MBR_UBC_NSEN
920 		| ublen;
921 	desc->lld.mbr_cfg = chan_cc;
922 
923 	dev_dbg(chan2dev(chan),
924 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
925 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
926 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
927 
928 	/* Chain lld. */
929 	if (prev)
930 		at_xdmac_queue_desc(chan, prev, desc);
931 
932 	return desc;
933 }
934 
935 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)936 at_xdmac_prep_interleaved(struct dma_chan *chan,
937 			  struct dma_interleaved_template *xt,
938 			  unsigned long flags)
939 {
940 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
941 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
942 	dma_addr_t		dst_addr, src_addr;
943 	size_t			src_skip = 0, dst_skip = 0, len = 0;
944 	struct data_chunk	*chunk;
945 	int			i;
946 
947 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
948 		return NULL;
949 
950 	/*
951 	 * TODO: Handle the case where we have to repeat a chain of
952 	 * descriptors...
953 	 */
954 	if ((xt->numf > 1) && (xt->frame_size > 1))
955 		return NULL;
956 
957 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
958 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
959 		xt->frame_size, flags);
960 
961 	src_addr = xt->src_start;
962 	dst_addr = xt->dst_start;
963 
964 	if (xt->numf > 1) {
965 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
966 							NULL,
967 							src_addr, dst_addr,
968 							xt, xt->sgl);
969 
970 		/* Length of the block is (BLEN+1) microblocks. */
971 		for (i = 0; i < xt->numf - 1; i++)
972 			at_xdmac_increment_block_count(chan, first);
973 
974 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
975 			__func__, first, first);
976 		list_add_tail(&first->desc_node, &first->descs_list);
977 	} else {
978 		for (i = 0; i < xt->frame_size; i++) {
979 			size_t src_icg = 0, dst_icg = 0;
980 			struct at_xdmac_desc *desc;
981 
982 			chunk = xt->sgl + i;
983 
984 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
985 			src_icg = dmaengine_get_src_icg(xt, chunk);
986 
987 			src_skip = chunk->size + src_icg;
988 			dst_skip = chunk->size + dst_icg;
989 
990 			dev_dbg(chan2dev(chan),
991 				"%s: chunk size=%d, src icg=%d, dst icg=%d\n",
992 				__func__, chunk->size, src_icg, dst_icg);
993 
994 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
995 							       prev,
996 							       src_addr, dst_addr,
997 							       xt, chunk);
998 			if (!desc) {
999 				list_splice_init(&first->descs_list,
1000 						 &atchan->free_descs_list);
1001 				return NULL;
1002 			}
1003 
1004 			if (!first)
1005 				first = desc;
1006 
1007 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1008 				__func__, desc, first);
1009 			list_add_tail(&desc->desc_node, &first->descs_list);
1010 
1011 			if (xt->src_sgl)
1012 				src_addr += src_skip;
1013 
1014 			if (xt->dst_sgl)
1015 				dst_addr += dst_skip;
1016 
1017 			len += chunk->size;
1018 			prev = desc;
1019 		}
1020 	}
1021 
1022 	first->tx_dma_desc.cookie = -EBUSY;
1023 	first->tx_dma_desc.flags = flags;
1024 	first->xfer_size = len;
1025 
1026 	return &first->tx_dma_desc;
1027 }
1028 
1029 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1030 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1031 			 size_t len, unsigned long flags)
1032 {
1033 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1034 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1035 	size_t			remaining_size = len, xfer_size = 0, ublen;
1036 	dma_addr_t		src_addr = src, dst_addr = dest;
1037 	u32			dwidth;
1038 	/*
1039 	 * WARNING: We don't know the direction, it involves we can't
1040 	 * dynamically set the source and dest interface so we have to use the
1041 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1042 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1043 	 * the same interface for source and dest, that solves the fact we
1044 	 * don't know the direction.
1045 	 */
1046 	u32			chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM
1047 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1048 					| AT_XDMAC_CC_DIF(0)
1049 					| AT_XDMAC_CC_SIF(0)
1050 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1051 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1052 	unsigned long		irqflags;
1053 
1054 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1055 		__func__, &src, &dest, len, flags);
1056 
1057 	if (unlikely(!len))
1058 		return NULL;
1059 
1060 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1061 
1062 	/* Prepare descriptors. */
1063 	while (remaining_size) {
1064 		struct at_xdmac_desc	*desc = NULL;
1065 
1066 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1067 
1068 		spin_lock_irqsave(&atchan->lock, irqflags);
1069 		desc = at_xdmac_get_desc(atchan);
1070 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1071 		if (!desc) {
1072 			dev_err(chan2dev(chan), "can't get descriptor\n");
1073 			if (first)
1074 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1075 			return NULL;
1076 		}
1077 
1078 		/* Update src and dest addresses. */
1079 		src_addr += xfer_size;
1080 		dst_addr += xfer_size;
1081 
1082 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1083 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1084 		else
1085 			xfer_size = remaining_size;
1086 
1087 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1088 
1089 		/* Check remaining length and change data width if needed. */
1090 		dwidth = at_xdmac_align_width(chan,
1091 					      src_addr | dst_addr | xfer_size);
1092 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1093 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1094 
1095 		ublen = xfer_size >> dwidth;
1096 		remaining_size -= xfer_size;
1097 
1098 		desc->lld.mbr_sa = src_addr;
1099 		desc->lld.mbr_da = dst_addr;
1100 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1101 			| AT_XDMAC_MBR_UBC_NDEN
1102 			| AT_XDMAC_MBR_UBC_NSEN
1103 			| ublen;
1104 		desc->lld.mbr_cfg = chan_cc;
1105 
1106 		dev_dbg(chan2dev(chan),
1107 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1108 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1109 
1110 		/* Chain lld. */
1111 		if (prev)
1112 			at_xdmac_queue_desc(chan, prev, desc);
1113 
1114 		prev = desc;
1115 		if (!first)
1116 			first = desc;
1117 
1118 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1119 			 __func__, desc, first);
1120 		list_add_tail(&desc->desc_node, &first->descs_list);
1121 	}
1122 
1123 	first->tx_dma_desc.flags = flags;
1124 	first->xfer_size = len;
1125 
1126 	return &first->tx_dma_desc;
1127 }
1128 
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1129 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1130 							 struct at_xdmac_chan *atchan,
1131 							 dma_addr_t dst_addr,
1132 							 size_t len,
1133 							 int value)
1134 {
1135 	struct at_xdmac_desc	*desc;
1136 	unsigned long		flags;
1137 	size_t			ublen;
1138 	u32			dwidth;
1139 	/*
1140 	 * WARNING: The channel configuration is set here since there is no
1141 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1142 	 * direction, it involves we can't dynamically set the source and dest
1143 	 * interface so we have to use the same one. Only interface 0 allows EBI
1144 	 * access. Hopefully we can access DDR through both ports (at least on
1145 	 * SAMA5D4x), so we can use the same interface for source and dest,
1146 	 * that solves the fact we don't know the direction.
1147 	 */
1148 	u32			chan_cc = AT_XDMAC_CC_DAM_UBS_AM
1149 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1150 					| AT_XDMAC_CC_DIF(0)
1151 					| AT_XDMAC_CC_SIF(0)
1152 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1153 					| AT_XDMAC_CC_MEMSET_HW_MODE
1154 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1155 
1156 	dwidth = at_xdmac_align_width(chan, dst_addr);
1157 
1158 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1159 		dev_err(chan2dev(chan),
1160 			"%s: Transfer too large, aborting...\n",
1161 			__func__);
1162 		return NULL;
1163 	}
1164 
1165 	spin_lock_irqsave(&atchan->lock, flags);
1166 	desc = at_xdmac_get_desc(atchan);
1167 	spin_unlock_irqrestore(&atchan->lock, flags);
1168 	if (!desc) {
1169 		dev_err(chan2dev(chan), "can't get descriptor\n");
1170 		return NULL;
1171 	}
1172 
1173 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1174 
1175 	ublen = len >> dwidth;
1176 
1177 	desc->lld.mbr_da = dst_addr;
1178 	desc->lld.mbr_ds = value;
1179 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1180 		| AT_XDMAC_MBR_UBC_NDEN
1181 		| AT_XDMAC_MBR_UBC_NSEN
1182 		| ublen;
1183 	desc->lld.mbr_cfg = chan_cc;
1184 
1185 	dev_dbg(chan2dev(chan),
1186 		"%s: lld: mbr_da=%pad, mbr_ds=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1187 		__func__, &desc->lld.mbr_da, &desc->lld.mbr_ds, desc->lld.mbr_ubc,
1188 		desc->lld.mbr_cfg);
1189 
1190 	return desc;
1191 }
1192 
1193 struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1194 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1195 			 size_t len, unsigned long flags)
1196 {
1197 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1198 	struct at_xdmac_desc	*desc;
1199 
1200 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1201 		__func__, &dest, len, value, flags);
1202 
1203 	if (unlikely(!len))
1204 		return NULL;
1205 
1206 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1207 	list_add_tail(&desc->desc_node, &desc->descs_list);
1208 
1209 	desc->tx_dma_desc.cookie = -EBUSY;
1210 	desc->tx_dma_desc.flags = flags;
1211 	desc->xfer_size = len;
1212 
1213 	return &desc->tx_dma_desc;
1214 }
1215 
1216 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1217 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1218 			    unsigned int sg_len, int value,
1219 			    unsigned long flags)
1220 {
1221 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1222 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1223 				*ppdesc = NULL, *first = NULL;
1224 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1225 	size_t			stride = 0, pstride = 0, len = 0;
1226 	int			i;
1227 
1228 	if (!sgl)
1229 		return NULL;
1230 
1231 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1232 		__func__, sg_len, value, flags);
1233 
1234 	/* Prepare descriptors. */
1235 	for_each_sg(sgl, sg, sg_len, i) {
1236 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1237 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1238 			value, flags);
1239 		desc = at_xdmac_memset_create_desc(chan, atchan,
1240 						   sg_dma_address(sg),
1241 						   sg_dma_len(sg),
1242 						   value);
1243 		if (!desc && first)
1244 			list_splice_init(&first->descs_list,
1245 					 &atchan->free_descs_list);
1246 
1247 		if (!first)
1248 			first = desc;
1249 
1250 		/* Update our strides */
1251 		pstride = stride;
1252 		if (psg)
1253 			stride = sg_dma_address(sg) -
1254 				(sg_dma_address(psg) + sg_dma_len(psg));
1255 
1256 		/*
1257 		 * The scatterlist API gives us only the address and
1258 		 * length of each elements.
1259 		 *
1260 		 * Unfortunately, we don't have the stride, which we
1261 		 * will need to compute.
1262 		 *
1263 		 * That make us end up in a situation like this one:
1264 		 *    len    stride    len    stride    len
1265 		 * +-------+        +-------+        +-------+
1266 		 * |  N-2  |        |  N-1  |        |   N   |
1267 		 * +-------+        +-------+        +-------+
1268 		 *
1269 		 * We need all these three elements (N-2, N-1 and N)
1270 		 * to actually take the decision on whether we need to
1271 		 * queue N-1 or reuse N-2.
1272 		 *
1273 		 * We will only consider N if it is the last element.
1274 		 */
1275 		if (ppdesc && pdesc) {
1276 			if ((stride == pstride) &&
1277 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1278 				dev_dbg(chan2dev(chan),
1279 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1280 					__func__, pdesc, ppdesc);
1281 
1282 				/*
1283 				 * Increment the block count of the
1284 				 * N-2 descriptor
1285 				 */
1286 				at_xdmac_increment_block_count(chan, ppdesc);
1287 				ppdesc->lld.mbr_dus = stride;
1288 
1289 				/*
1290 				 * Put back the N-1 descriptor in the
1291 				 * free descriptor list
1292 				 */
1293 				list_add_tail(&pdesc->desc_node,
1294 					      &atchan->free_descs_list);
1295 
1296 				/*
1297 				 * Make our N-1 descriptor pointer
1298 				 * point to the N-2 since they were
1299 				 * actually merged.
1300 				 */
1301 				pdesc = ppdesc;
1302 
1303 			/*
1304 			 * Rule out the case where we don't have
1305 			 * pstride computed yet (our second sg
1306 			 * element)
1307 			 *
1308 			 * We also want to catch the case where there
1309 			 * would be a negative stride,
1310 			 */
1311 			} else if (pstride ||
1312 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1313 				/*
1314 				 * Queue the N-1 descriptor after the
1315 				 * N-2
1316 				 */
1317 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1318 
1319 				/*
1320 				 * Add the N-1 descriptor to the list
1321 				 * of the descriptors used for this
1322 				 * transfer
1323 				 */
1324 				list_add_tail(&desc->desc_node,
1325 					      &first->descs_list);
1326 				dev_dbg(chan2dev(chan),
1327 					"%s: add desc 0x%p to descs_list 0x%p\n",
1328 					__func__, desc, first);
1329 			}
1330 		}
1331 
1332 		/*
1333 		 * If we are the last element, just see if we have the
1334 		 * same size than the previous element.
1335 		 *
1336 		 * If so, we can merge it with the previous descriptor
1337 		 * since we don't care about the stride anymore.
1338 		 */
1339 		if ((i == (sg_len - 1)) &&
1340 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1341 			dev_dbg(chan2dev(chan),
1342 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1343 				__func__, desc, pdesc);
1344 
1345 			/*
1346 			 * Increment the block count of the N-1
1347 			 * descriptor
1348 			 */
1349 			at_xdmac_increment_block_count(chan, pdesc);
1350 			pdesc->lld.mbr_dus = stride;
1351 
1352 			/*
1353 			 * Put back the N descriptor in the free
1354 			 * descriptor list
1355 			 */
1356 			list_add_tail(&desc->desc_node,
1357 				      &atchan->free_descs_list);
1358 		}
1359 
1360 		/* Update our descriptors */
1361 		ppdesc = pdesc;
1362 		pdesc = desc;
1363 
1364 		/* Update our scatter pointers */
1365 		ppsg = psg;
1366 		psg = sg;
1367 
1368 		len += sg_dma_len(sg);
1369 	}
1370 
1371 	first->tx_dma_desc.cookie = -EBUSY;
1372 	first->tx_dma_desc.flags = flags;
1373 	first->xfer_size = len;
1374 
1375 	return &first->tx_dma_desc;
1376 }
1377 
1378 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1379 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1380 		struct dma_tx_state *txstate)
1381 {
1382 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1383 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1384 	struct at_xdmac_desc	*desc, *_desc;
1385 	struct list_head	*descs_list;
1386 	enum dma_status		ret;
1387 	int			residue, retry;
1388 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1389 	u8			dwidth = 0;
1390 	unsigned long		flags;
1391 
1392 	ret = dma_cookie_status(chan, cookie, txstate);
1393 	if (ret == DMA_COMPLETE)
1394 		return ret;
1395 
1396 	if (!txstate)
1397 		return ret;
1398 
1399 	spin_lock_irqsave(&atchan->lock, flags);
1400 
1401 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1402 
1403 	/*
1404 	 * If the transfer has not been started yet, don't need to compute the
1405 	 * residue, it's the transfer length.
1406 	 */
1407 	if (!desc->active_xfer) {
1408 		dma_set_residue(txstate, desc->xfer_size);
1409 		goto spin_unlock;
1410 	}
1411 
1412 	residue = desc->xfer_size;
1413 	/*
1414 	 * Flush FIFO: only relevant when the transfer is source peripheral
1415 	 * synchronized.
1416 	 */
1417 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1418 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1419 	if ((desc->lld.mbr_cfg & mask) == value) {
1420 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1421 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1422 			cpu_relax();
1423 	}
1424 
1425 	/*
1426 	 * When processing the residue, we need to read two registers but we
1427 	 * can't do it in an atomic way. AT_XDMAC_CNDA is used to find where
1428 	 * we stand in the descriptor list and AT_XDMAC_CUBC is used
1429 	 * to know how many data are remaining for the current descriptor.
1430 	 * Since the dma channel is not paused to not loose data, between the
1431 	 * AT_XDMAC_CNDA and AT_XDMAC_CUBC read, we may have change of
1432 	 * descriptor.
1433 	 * For that reason, after reading AT_XDMAC_CUBC, we check if we are
1434 	 * still using the same descriptor by reading a second time
1435 	 * AT_XDMAC_CNDA. If AT_XDMAC_CNDA has changed, it means we have to
1436 	 * read again AT_XDMAC_CUBC.
1437 	 * Memory barriers are used to ensure the read order of the registers.
1438 	 * A max number of retries is set because unlikely it can never ends if
1439 	 * we are transferring a lot of data with small buffers.
1440 	 */
1441 	cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1442 	rmb();
1443 	cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1444 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1445 		rmb();
1446 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1447 
1448 		if (likely(cur_nda == check_nda))
1449 			break;
1450 
1451 		cur_nda = check_nda;
1452 		rmb();
1453 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1454 	}
1455 
1456 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1457 		ret = DMA_ERROR;
1458 		goto spin_unlock;
1459 	}
1460 
1461 	/*
1462 	 * Remove size of all microblocks already transferred and the current
1463 	 * one. Then add the remaining size to transfer of the current
1464 	 * microblock.
1465 	 */
1466 	descs_list = &desc->descs_list;
1467 	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1468 		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1469 		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1470 		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1471 			break;
1472 	}
1473 	residue += cur_ubc << dwidth;
1474 
1475 	dma_set_residue(txstate, residue);
1476 
1477 	dev_dbg(chan2dev(chan),
1478 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1479 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1480 
1481 spin_unlock:
1482 	spin_unlock_irqrestore(&atchan->lock, flags);
1483 	return ret;
1484 }
1485 
1486 /* Call must be protected by lock. */
at_xdmac_remove_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * desc)1487 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1488 				    struct at_xdmac_desc *desc)
1489 {
1490 	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1491 
1492 	/*
1493 	 * Remove the transfer from the transfer list then move the transfer
1494 	 * descriptors into the free descriptors list.
1495 	 */
1496 	list_del(&desc->xfer_node);
1497 	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1498 }
1499 
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1500 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1501 {
1502 	struct at_xdmac_desc	*desc;
1503 	unsigned long		flags;
1504 
1505 	spin_lock_irqsave(&atchan->lock, flags);
1506 
1507 	/*
1508 	 * If channel is enabled, do nothing, advance_work will be triggered
1509 	 * after the interruption.
1510 	 */
1511 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1512 		desc = list_first_entry(&atchan->xfers_list,
1513 					struct at_xdmac_desc,
1514 					xfer_node);
1515 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1516 		if (!desc->active_xfer)
1517 			at_xdmac_start_xfer(atchan, desc);
1518 	}
1519 
1520 	spin_unlock_irqrestore(&atchan->lock, flags);
1521 }
1522 
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1523 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1524 {
1525 	struct at_xdmac_desc		*desc;
1526 	struct dma_async_tx_descriptor	*txd;
1527 
1528 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1529 	txd = &desc->tx_dma_desc;
1530 
1531 	if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
1532 		txd->callback(txd->callback_param);
1533 }
1534 
at_xdmac_tasklet(unsigned long data)1535 static void at_xdmac_tasklet(unsigned long data)
1536 {
1537 	struct at_xdmac_chan	*atchan = (struct at_xdmac_chan *)data;
1538 	struct at_xdmac_desc	*desc;
1539 	u32			error_mask;
1540 
1541 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1542 		 __func__, atchan->status);
1543 
1544 	error_mask = AT_XDMAC_CIS_RBEIS
1545 		     | AT_XDMAC_CIS_WBEIS
1546 		     | AT_XDMAC_CIS_ROIS;
1547 
1548 	if (at_xdmac_chan_is_cyclic(atchan)) {
1549 		at_xdmac_handle_cyclic(atchan);
1550 	} else if ((atchan->status & AT_XDMAC_CIS_LIS)
1551 		   || (atchan->status & error_mask)) {
1552 		struct dma_async_tx_descriptor  *txd;
1553 
1554 		if (atchan->status & AT_XDMAC_CIS_RBEIS)
1555 			dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1556 		if (atchan->status & AT_XDMAC_CIS_WBEIS)
1557 			dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1558 		if (atchan->status & AT_XDMAC_CIS_ROIS)
1559 			dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1560 
1561 		spin_lock_bh(&atchan->lock);
1562 		desc = list_first_entry(&atchan->xfers_list,
1563 					struct at_xdmac_desc,
1564 					xfer_node);
1565 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1566 		BUG_ON(!desc->active_xfer);
1567 
1568 		txd = &desc->tx_dma_desc;
1569 
1570 		at_xdmac_remove_xfer(atchan, desc);
1571 		spin_unlock_bh(&atchan->lock);
1572 
1573 		if (!at_xdmac_chan_is_cyclic(atchan)) {
1574 			dma_cookie_complete(txd);
1575 			if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
1576 				txd->callback(txd->callback_param);
1577 		}
1578 
1579 		dma_run_dependencies(txd);
1580 
1581 		at_xdmac_advance_work(atchan);
1582 	}
1583 }
1584 
at_xdmac_interrupt(int irq,void * dev_id)1585 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1586 {
1587 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1588 	struct at_xdmac_chan	*atchan;
1589 	u32			imr, status, pending;
1590 	u32			chan_imr, chan_status;
1591 	int			i, ret = IRQ_NONE;
1592 
1593 	do {
1594 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1595 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1596 		pending = status & imr;
1597 
1598 		dev_vdbg(atxdmac->dma.dev,
1599 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1600 			 __func__, status, imr, pending);
1601 
1602 		if (!pending)
1603 			break;
1604 
1605 		/* We have to find which channel has generated the interrupt. */
1606 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1607 			if (!((1 << i) & pending))
1608 				continue;
1609 
1610 			atchan = &atxdmac->chan[i];
1611 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1612 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1613 			atchan->status = chan_status & chan_imr;
1614 			dev_vdbg(atxdmac->dma.dev,
1615 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1616 				 __func__, i, chan_imr, chan_status);
1617 			dev_vdbg(chan2dev(&atchan->chan),
1618 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1619 				 __func__,
1620 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1621 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1622 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1623 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1624 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1625 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1626 
1627 			if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1628 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1629 
1630 			tasklet_schedule(&atchan->tasklet);
1631 			ret = IRQ_HANDLED;
1632 		}
1633 
1634 	} while (pending);
1635 
1636 	return ret;
1637 }
1638 
at_xdmac_issue_pending(struct dma_chan * chan)1639 static void at_xdmac_issue_pending(struct dma_chan *chan)
1640 {
1641 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1642 
1643 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1644 
1645 	if (!at_xdmac_chan_is_cyclic(atchan))
1646 		at_xdmac_advance_work(atchan);
1647 
1648 	return;
1649 }
1650 
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1651 static int at_xdmac_device_config(struct dma_chan *chan,
1652 				  struct dma_slave_config *config)
1653 {
1654 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1655 	int ret;
1656 	unsigned long		flags;
1657 
1658 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1659 
1660 	spin_lock_irqsave(&atchan->lock, flags);
1661 	ret = at_xdmac_set_slave_config(chan, config);
1662 	spin_unlock_irqrestore(&atchan->lock, flags);
1663 
1664 	return ret;
1665 }
1666 
at_xdmac_device_pause(struct dma_chan * chan)1667 static int at_xdmac_device_pause(struct dma_chan *chan)
1668 {
1669 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1670 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1671 	unsigned long		flags;
1672 
1673 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1674 
1675 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1676 		return 0;
1677 
1678 	spin_lock_irqsave(&atchan->lock, flags);
1679 	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1680 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1681 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1682 		cpu_relax();
1683 	spin_unlock_irqrestore(&atchan->lock, flags);
1684 
1685 	return 0;
1686 }
1687 
at_xdmac_device_resume(struct dma_chan * chan)1688 static int at_xdmac_device_resume(struct dma_chan *chan)
1689 {
1690 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1691 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1692 	unsigned long		flags;
1693 
1694 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1695 
1696 	spin_lock_irqsave(&atchan->lock, flags);
1697 	if (!at_xdmac_chan_is_paused(atchan)) {
1698 		spin_unlock_irqrestore(&atchan->lock, flags);
1699 		return 0;
1700 	}
1701 
1702 	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1703 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1704 	spin_unlock_irqrestore(&atchan->lock, flags);
1705 
1706 	return 0;
1707 }
1708 
at_xdmac_device_terminate_all(struct dma_chan * chan)1709 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1710 {
1711 	struct at_xdmac_desc	*desc, *_desc;
1712 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1713 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1714 	unsigned long		flags;
1715 
1716 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1717 
1718 	spin_lock_irqsave(&atchan->lock, flags);
1719 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1720 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1721 		cpu_relax();
1722 
1723 	/* Cancel all pending transfers. */
1724 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1725 		at_xdmac_remove_xfer(atchan, desc);
1726 
1727 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1728 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1729 	spin_unlock_irqrestore(&atchan->lock, flags);
1730 
1731 	return 0;
1732 }
1733 
at_xdmac_alloc_chan_resources(struct dma_chan * chan)1734 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1735 {
1736 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1737 	struct at_xdmac_desc	*desc;
1738 	int			i;
1739 	unsigned long		flags;
1740 
1741 	spin_lock_irqsave(&atchan->lock, flags);
1742 
1743 	if (at_xdmac_chan_is_enabled(atchan)) {
1744 		dev_err(chan2dev(chan),
1745 			"can't allocate channel resources (channel enabled)\n");
1746 		i = -EIO;
1747 		goto spin_unlock;
1748 	}
1749 
1750 	if (!list_empty(&atchan->free_descs_list)) {
1751 		dev_err(chan2dev(chan),
1752 			"can't allocate channel resources (channel not free from a previous use)\n");
1753 		i = -EIO;
1754 		goto spin_unlock;
1755 	}
1756 
1757 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1758 		desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1759 		if (!desc) {
1760 			dev_warn(chan2dev(chan),
1761 				"only %d descriptors have been allocated\n", i);
1762 			break;
1763 		}
1764 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1765 	}
1766 
1767 	dma_cookie_init(chan);
1768 
1769 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1770 
1771 spin_unlock:
1772 	spin_unlock_irqrestore(&atchan->lock, flags);
1773 	return i;
1774 }
1775 
at_xdmac_free_chan_resources(struct dma_chan * chan)1776 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1777 {
1778 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1779 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1780 	struct at_xdmac_desc	*desc, *_desc;
1781 
1782 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1783 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1784 		list_del(&desc->desc_node);
1785 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1786 	}
1787 
1788 	return;
1789 }
1790 
1791 #ifdef CONFIG_PM
atmel_xdmac_prepare(struct device * dev)1792 static int atmel_xdmac_prepare(struct device *dev)
1793 {
1794 	struct platform_device	*pdev = to_platform_device(dev);
1795 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1796 	struct dma_chan		*chan, *_chan;
1797 
1798 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1799 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1800 
1801 		/* Wait for transfer completion, except in cyclic case. */
1802 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1803 			return -EAGAIN;
1804 	}
1805 	return 0;
1806 }
1807 #else
1808 #	define atmel_xdmac_prepare NULL
1809 #endif
1810 
1811 #ifdef CONFIG_PM_SLEEP
atmel_xdmac_suspend(struct device * dev)1812 static int atmel_xdmac_suspend(struct device *dev)
1813 {
1814 	struct platform_device	*pdev = to_platform_device(dev);
1815 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1816 	struct dma_chan		*chan, *_chan;
1817 
1818 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1819 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1820 
1821 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1822 		if (at_xdmac_chan_is_cyclic(atchan)) {
1823 			if (!at_xdmac_chan_is_paused(atchan))
1824 				at_xdmac_device_pause(chan);
1825 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1826 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1827 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1828 		}
1829 	}
1830 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1831 
1832 	at_xdmac_off(atxdmac);
1833 	clk_disable_unprepare(atxdmac->clk);
1834 	return 0;
1835 }
1836 
atmel_xdmac_resume(struct device * dev)1837 static int atmel_xdmac_resume(struct device *dev)
1838 {
1839 	struct platform_device	*pdev = to_platform_device(dev);
1840 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1841 	struct at_xdmac_chan	*atchan;
1842 	struct dma_chan		*chan, *_chan;
1843 	int			i;
1844 
1845 	clk_prepare_enable(atxdmac->clk);
1846 
1847 	/* Clear pending interrupts. */
1848 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1849 		atchan = &atxdmac->chan[i];
1850 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1851 			cpu_relax();
1852 	}
1853 
1854 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1855 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs);
1856 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1857 		atchan = to_at_xdmac_chan(chan);
1858 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1859 		if (at_xdmac_chan_is_cyclic(atchan)) {
1860 			if (at_xdmac_chan_is_paused(atchan))
1861 				at_xdmac_device_resume(chan);
1862 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1863 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1864 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1865 			wmb();
1866 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1867 		}
1868 	}
1869 	return 0;
1870 }
1871 #endif /* CONFIG_PM_SLEEP */
1872 
at_xdmac_probe(struct platform_device * pdev)1873 static int at_xdmac_probe(struct platform_device *pdev)
1874 {
1875 	struct resource	*res;
1876 	struct at_xdmac	*atxdmac;
1877 	int		irq, size, nr_channels, i, ret;
1878 	void __iomem	*base;
1879 	u32		reg;
1880 
1881 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1882 	if (!res)
1883 		return -EINVAL;
1884 
1885 	irq = platform_get_irq(pdev, 0);
1886 	if (irq < 0)
1887 		return irq;
1888 
1889 	base = devm_ioremap_resource(&pdev->dev, res);
1890 	if (IS_ERR(base))
1891 		return PTR_ERR(base);
1892 
1893 	/*
1894 	 * Read number of xdmac channels, read helper function can't be used
1895 	 * since atxdmac is not yet allocated and we need to know the number
1896 	 * of channels to do the allocation.
1897 	 */
1898 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1899 	nr_channels = AT_XDMAC_NB_CH(reg);
1900 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1901 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1902 			nr_channels);
1903 		return -EINVAL;
1904 	}
1905 
1906 	size = sizeof(*atxdmac);
1907 	size += nr_channels * sizeof(struct at_xdmac_chan);
1908 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1909 	if (!atxdmac) {
1910 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1911 		return -ENOMEM;
1912 	}
1913 
1914 	atxdmac->regs = base;
1915 	atxdmac->irq = irq;
1916 
1917 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1918 	if (IS_ERR(atxdmac->clk)) {
1919 		dev_err(&pdev->dev, "can't get dma_clk\n");
1920 		return PTR_ERR(atxdmac->clk);
1921 	}
1922 
1923 	/* Do not use dev res to prevent races with tasklet */
1924 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1925 	if (ret) {
1926 		dev_err(&pdev->dev, "can't request irq\n");
1927 		return ret;
1928 	}
1929 
1930 	ret = clk_prepare_enable(atxdmac->clk);
1931 	if (ret) {
1932 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
1933 		goto err_free_irq;
1934 	}
1935 
1936 	atxdmac->at_xdmac_desc_pool =
1937 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1938 				sizeof(struct at_xdmac_desc), 4, 0);
1939 	if (!atxdmac->at_xdmac_desc_pool) {
1940 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1941 		ret = -ENOMEM;
1942 		goto err_clk_disable;
1943 	}
1944 
1945 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1946 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1947 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1948 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1949 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1950 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1951 	/*
1952 	 * Without DMA_PRIVATE the driver is not able to allocate more than
1953 	 * one channel, second allocation fails in private_candidate.
1954 	 */
1955 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
1956 	atxdmac->dma.dev				= &pdev->dev;
1957 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
1958 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
1959 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
1960 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
1961 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
1962 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
1963 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
1964 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
1965 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
1966 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
1967 	atxdmac->dma.device_config			= at_xdmac_device_config;
1968 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
1969 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
1970 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
1971 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
1972 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
1973 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1974 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1975 
1976 	/* Disable all chans and interrupts. */
1977 	at_xdmac_off(atxdmac);
1978 
1979 	/* Init channels. */
1980 	INIT_LIST_HEAD(&atxdmac->dma.channels);
1981 	for (i = 0; i < nr_channels; i++) {
1982 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
1983 
1984 		atchan->chan.device = &atxdmac->dma;
1985 		list_add_tail(&atchan->chan.device_node,
1986 			      &atxdmac->dma.channels);
1987 
1988 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
1989 		atchan->mask = 1 << i;
1990 
1991 		spin_lock_init(&atchan->lock);
1992 		INIT_LIST_HEAD(&atchan->xfers_list);
1993 		INIT_LIST_HEAD(&atchan->free_descs_list);
1994 		tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
1995 			     (unsigned long)atchan);
1996 
1997 		/* Clear pending interrupts. */
1998 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1999 			cpu_relax();
2000 	}
2001 	platform_set_drvdata(pdev, atxdmac);
2002 
2003 	ret = dma_async_device_register(&atxdmac->dma);
2004 	if (ret) {
2005 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2006 		goto err_clk_disable;
2007 	}
2008 
2009 	ret = of_dma_controller_register(pdev->dev.of_node,
2010 					 at_xdmac_xlate, atxdmac);
2011 	if (ret) {
2012 		dev_err(&pdev->dev, "could not register of dma controller\n");
2013 		goto err_dma_unregister;
2014 	}
2015 
2016 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2017 		 nr_channels, atxdmac->regs);
2018 
2019 	return 0;
2020 
2021 err_dma_unregister:
2022 	dma_async_device_unregister(&atxdmac->dma);
2023 err_clk_disable:
2024 	clk_disable_unprepare(atxdmac->clk);
2025 err_free_irq:
2026 	free_irq(atxdmac->irq, atxdmac->dma.dev);
2027 	return ret;
2028 }
2029 
at_xdmac_remove(struct platform_device * pdev)2030 static int at_xdmac_remove(struct platform_device *pdev)
2031 {
2032 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2033 	int		i;
2034 
2035 	at_xdmac_off(atxdmac);
2036 	of_dma_controller_free(pdev->dev.of_node);
2037 	dma_async_device_unregister(&atxdmac->dma);
2038 	clk_disable_unprepare(atxdmac->clk);
2039 
2040 	synchronize_irq(atxdmac->irq);
2041 
2042 	free_irq(atxdmac->irq, atxdmac->dma.dev);
2043 
2044 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2045 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2046 
2047 		tasklet_kill(&atchan->tasklet);
2048 		at_xdmac_free_chan_resources(&atchan->chan);
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2055 	.prepare	= atmel_xdmac_prepare,
2056 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2057 };
2058 
2059 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2060 	{
2061 		.compatible = "atmel,sama5d4-dma",
2062 	}, {
2063 		/* sentinel */
2064 	}
2065 };
2066 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2067 
2068 static struct platform_driver at_xdmac_driver = {
2069 	.probe		= at_xdmac_probe,
2070 	.remove		= at_xdmac_remove,
2071 	.driver = {
2072 		.name		= "at_xdmac",
2073 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2074 		.pm		= &atmel_xdmac_dev_pm_ops,
2075 	}
2076 };
2077 
at_xdmac_init(void)2078 static int __init at_xdmac_init(void)
2079 {
2080 	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2081 }
2082 subsys_initcall(at_xdmac_init);
2083 
2084 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2085 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2086 MODULE_LICENSE("GPL");
2087