1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 
36 #define BYT_RATIOS		0x66a
37 #define BYT_VIDS		0x66b
38 #define BYT_TURBO_RATIOS	0x66c
39 #define BYT_TURBO_VIDS		0x66d
40 
41 #define FRAC_BITS 8
42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
43 #define fp_toint(X) ((X) >> FRAC_BITS)
44 
45 
mul_fp(int32_t x,int32_t y)46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50 
div_fp(s64 x,s64 y)51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 	return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55 
ceiling_fp(int32_t x)56 static inline int ceiling_fp(int32_t x)
57 {
58 	int mask, ret;
59 
60 	ret = fp_toint(x);
61 	mask = (1 << FRAC_BITS) - 1;
62 	if (x & mask)
63 		ret += 1;
64 	return ret;
65 }
66 
67 struct sample {
68 	int32_t core_pct_busy;
69 	u64 aperf;
70 	u64 mperf;
71 	int freq;
72 	ktime_t time;
73 };
74 
75 struct pstate_data {
76 	int	current_pstate;
77 	int	min_pstate;
78 	int	max_pstate;
79 	int	scaling;
80 	int	turbo_pstate;
81 };
82 
83 struct vid_data {
84 	int min;
85 	int max;
86 	int turbo;
87 	int32_t ratio;
88 };
89 
90 struct _pid {
91 	int setpoint;
92 	int32_t integral;
93 	int32_t p_gain;
94 	int32_t i_gain;
95 	int32_t d_gain;
96 	int deadband;
97 	int32_t last_err;
98 };
99 
100 struct cpudata {
101 	int cpu;
102 
103 	struct timer_list timer;
104 
105 	struct pstate_data pstate;
106 	struct vid_data vid;
107 	struct _pid pid;
108 
109 	ktime_t last_sample_time;
110 	u64	prev_aperf;
111 	u64	prev_mperf;
112 	struct sample sample;
113 };
114 
115 static struct cpudata **all_cpu_data;
116 struct pstate_adjust_policy {
117 	int sample_rate_ms;
118 	int deadband;
119 	int setpoint;
120 	int p_gain_pct;
121 	int d_gain_pct;
122 	int i_gain_pct;
123 };
124 
125 struct pstate_funcs {
126 	int (*get_max)(void);
127 	int (*get_min)(void);
128 	int (*get_turbo)(void);
129 	int (*get_scaling)(void);
130 	void (*set)(struct cpudata*, int pstate);
131 	void (*get_vid)(struct cpudata *);
132 };
133 
134 struct cpu_defaults {
135 	struct pstate_adjust_policy pid_policy;
136 	struct pstate_funcs funcs;
137 };
138 
139 static struct pstate_adjust_policy pid_params;
140 static struct pstate_funcs pstate_funcs;
141 static int hwp_active;
142 
143 struct perf_limits {
144 	int no_turbo;
145 	int turbo_disabled;
146 	int max_perf_pct;
147 	int min_perf_pct;
148 	int32_t max_perf;
149 	int32_t min_perf;
150 	int max_policy_pct;
151 	int max_sysfs_pct;
152 	int min_policy_pct;
153 	int min_sysfs_pct;
154 };
155 
156 static struct perf_limits limits = {
157 	.no_turbo = 0,
158 	.turbo_disabled = 0,
159 	.max_perf_pct = 100,
160 	.max_perf = int_tofp(1),
161 	.min_perf_pct = 0,
162 	.min_perf = 0,
163 	.max_policy_pct = 100,
164 	.max_sysfs_pct = 100,
165 	.min_policy_pct = 0,
166 	.min_sysfs_pct = 0,
167 };
168 
pid_reset(struct _pid * pid,int setpoint,int busy,int deadband,int integral)169 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
170 			     int deadband, int integral) {
171 	pid->setpoint = setpoint;
172 	pid->deadband  = deadband;
173 	pid->integral  = int_tofp(integral);
174 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
175 }
176 
pid_p_gain_set(struct _pid * pid,int percent)177 static inline void pid_p_gain_set(struct _pid *pid, int percent)
178 {
179 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181 
pid_i_gain_set(struct _pid * pid,int percent)182 static inline void pid_i_gain_set(struct _pid *pid, int percent)
183 {
184 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186 
pid_d_gain_set(struct _pid * pid,int percent)187 static inline void pid_d_gain_set(struct _pid *pid, int percent)
188 {
189 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
190 }
191 
pid_calc(struct _pid * pid,int32_t busy)192 static signed int pid_calc(struct _pid *pid, int32_t busy)
193 {
194 	signed int result;
195 	int32_t pterm, dterm, fp_error;
196 	int32_t integral_limit;
197 
198 	fp_error = int_tofp(pid->setpoint) - busy;
199 
200 	if (abs(fp_error) <= int_tofp(pid->deadband))
201 		return 0;
202 
203 	pterm = mul_fp(pid->p_gain, fp_error);
204 
205 	pid->integral += fp_error;
206 
207 	/*
208 	 * We limit the integral here so that it will never
209 	 * get higher than 30.  This prevents it from becoming
210 	 * too large an input over long periods of time and allows
211 	 * it to get factored out sooner.
212 	 *
213 	 * The value of 30 was chosen through experimentation.
214 	 */
215 	integral_limit = int_tofp(30);
216 	if (pid->integral > integral_limit)
217 		pid->integral = integral_limit;
218 	if (pid->integral < -integral_limit)
219 		pid->integral = -integral_limit;
220 
221 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
222 	pid->last_err = fp_error;
223 
224 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
225 	result = result + (1 << (FRAC_BITS-1));
226 	return (signed int)fp_toint(result);
227 }
228 
intel_pstate_busy_pid_reset(struct cpudata * cpu)229 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
230 {
231 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
232 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
233 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
234 
235 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
236 }
237 
intel_pstate_reset_all_pid(void)238 static inline void intel_pstate_reset_all_pid(void)
239 {
240 	unsigned int cpu;
241 
242 	for_each_online_cpu(cpu) {
243 		if (all_cpu_data[cpu])
244 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
245 	}
246 }
247 
update_turbo_state(void)248 static inline void update_turbo_state(void)
249 {
250 	u64 misc_en;
251 	struct cpudata *cpu;
252 
253 	cpu = all_cpu_data[0];
254 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
255 	limits.turbo_disabled =
256 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
257 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
258 }
259 
260 #define PCT_TO_HWP(x) (x * 255 / 100)
intel_pstate_hwp_set(void)261 static void intel_pstate_hwp_set(void)
262 {
263 	int min, max, cpu;
264 	u64 value, freq;
265 
266 	get_online_cpus();
267 
268 	for_each_online_cpu(cpu) {
269 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
270 		min = PCT_TO_HWP(limits.min_perf_pct);
271 		value &= ~HWP_MIN_PERF(~0L);
272 		value |= HWP_MIN_PERF(min);
273 
274 		max = PCT_TO_HWP(limits.max_perf_pct);
275 		if (limits.no_turbo) {
276 			rdmsrl( MSR_HWP_CAPABILITIES, freq);
277 			max = HWP_GUARANTEED_PERF(freq);
278 		}
279 
280 		value &= ~HWP_MAX_PERF(~0L);
281 		value |= HWP_MAX_PERF(max);
282 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
283 	}
284 
285 	put_online_cpus();
286 }
287 
288 /************************** debugfs begin ************************/
pid_param_set(void * data,u64 val)289 static int pid_param_set(void *data, u64 val)
290 {
291 	*(u32 *)data = val;
292 	intel_pstate_reset_all_pid();
293 	return 0;
294 }
295 
pid_param_get(void * data,u64 * val)296 static int pid_param_get(void *data, u64 *val)
297 {
298 	*val = *(u32 *)data;
299 	return 0;
300 }
301 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
302 
303 struct pid_param {
304 	char *name;
305 	void *value;
306 };
307 
308 static struct pid_param pid_files[] = {
309 	{"sample_rate_ms", &pid_params.sample_rate_ms},
310 	{"d_gain_pct", &pid_params.d_gain_pct},
311 	{"i_gain_pct", &pid_params.i_gain_pct},
312 	{"deadband", &pid_params.deadband},
313 	{"setpoint", &pid_params.setpoint},
314 	{"p_gain_pct", &pid_params.p_gain_pct},
315 	{NULL, NULL}
316 };
317 
intel_pstate_debug_expose_params(void)318 static void __init intel_pstate_debug_expose_params(void)
319 {
320 	struct dentry *debugfs_parent;
321 	int i = 0;
322 
323 	if (hwp_active)
324 		return;
325 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
326 	if (IS_ERR_OR_NULL(debugfs_parent))
327 		return;
328 	while (pid_files[i].name) {
329 		debugfs_create_file(pid_files[i].name, 0660,
330 				    debugfs_parent, pid_files[i].value,
331 				    &fops_pid_param);
332 		i++;
333 	}
334 }
335 
336 /************************** debugfs end ************************/
337 
338 /************************** sysfs begin ************************/
339 #define show_one(file_name, object)					\
340 	static ssize_t show_##file_name					\
341 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
342 	{								\
343 		return sprintf(buf, "%u\n", limits.object);		\
344 	}
345 
show_turbo_pct(struct kobject * kobj,struct attribute * attr,char * buf)346 static ssize_t show_turbo_pct(struct kobject *kobj,
347 				struct attribute *attr, char *buf)
348 {
349 	struct cpudata *cpu;
350 	int total, no_turbo, turbo_pct;
351 	uint32_t turbo_fp;
352 
353 	cpu = all_cpu_data[0];
354 
355 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
356 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
357 	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
358 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
359 	return sprintf(buf, "%u\n", turbo_pct);
360 }
361 
show_num_pstates(struct kobject * kobj,struct attribute * attr,char * buf)362 static ssize_t show_num_pstates(struct kobject *kobj,
363 				struct attribute *attr, char *buf)
364 {
365 	struct cpudata *cpu;
366 	int total;
367 
368 	cpu = all_cpu_data[0];
369 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
370 	return sprintf(buf, "%u\n", total);
371 }
372 
show_no_turbo(struct kobject * kobj,struct attribute * attr,char * buf)373 static ssize_t show_no_turbo(struct kobject *kobj,
374 			     struct attribute *attr, char *buf)
375 {
376 	ssize_t ret;
377 
378 	update_turbo_state();
379 	if (limits.turbo_disabled)
380 		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
381 	else
382 		ret = sprintf(buf, "%u\n", limits.no_turbo);
383 
384 	return ret;
385 }
386 
store_no_turbo(struct kobject * a,struct attribute * b,const char * buf,size_t count)387 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
388 			      const char *buf, size_t count)
389 {
390 	unsigned int input;
391 	int ret;
392 
393 	ret = sscanf(buf, "%u", &input);
394 	if (ret != 1)
395 		return -EINVAL;
396 
397 	update_turbo_state();
398 	if (limits.turbo_disabled) {
399 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
400 		return -EPERM;
401 	}
402 
403 	limits.no_turbo = clamp_t(int, input, 0, 1);
404 
405 	if (hwp_active)
406 		intel_pstate_hwp_set();
407 
408 	return count;
409 }
410 
store_max_perf_pct(struct kobject * a,struct attribute * b,const char * buf,size_t count)411 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
412 				  const char *buf, size_t count)
413 {
414 	unsigned int input;
415 	int ret;
416 
417 	ret = sscanf(buf, "%u", &input);
418 	if (ret != 1)
419 		return -EINVAL;
420 
421 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
422 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
423 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
424 
425 	if (hwp_active)
426 		intel_pstate_hwp_set();
427 	return count;
428 }
429 
store_min_perf_pct(struct kobject * a,struct attribute * b,const char * buf,size_t count)430 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
431 				  const char *buf, size_t count)
432 {
433 	unsigned int input;
434 	int ret;
435 
436 	ret = sscanf(buf, "%u", &input);
437 	if (ret != 1)
438 		return -EINVAL;
439 
440 	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
441 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
442 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
443 
444 	if (hwp_active)
445 		intel_pstate_hwp_set();
446 	return count;
447 }
448 
449 show_one(max_perf_pct, max_perf_pct);
450 show_one(min_perf_pct, min_perf_pct);
451 
452 define_one_global_rw(no_turbo);
453 define_one_global_rw(max_perf_pct);
454 define_one_global_rw(min_perf_pct);
455 define_one_global_ro(turbo_pct);
456 define_one_global_ro(num_pstates);
457 
458 static struct attribute *intel_pstate_attributes[] = {
459 	&no_turbo.attr,
460 	&max_perf_pct.attr,
461 	&min_perf_pct.attr,
462 	&turbo_pct.attr,
463 	&num_pstates.attr,
464 	NULL
465 };
466 
467 static struct attribute_group intel_pstate_attr_group = {
468 	.attrs = intel_pstate_attributes,
469 };
470 
intel_pstate_sysfs_expose_params(void)471 static void __init intel_pstate_sysfs_expose_params(void)
472 {
473 	struct kobject *intel_pstate_kobject;
474 	int rc;
475 
476 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
477 						&cpu_subsys.dev_root->kobj);
478 	BUG_ON(!intel_pstate_kobject);
479 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
480 	BUG_ON(rc);
481 }
482 /************************** sysfs end ************************/
483 
intel_pstate_hwp_enable(void)484 static void intel_pstate_hwp_enable(void)
485 {
486 	hwp_active++;
487 	pr_info("intel_pstate HWP enabled\n");
488 
489 	wrmsrl( MSR_PM_ENABLE, 0x1);
490 }
491 
byt_get_min_pstate(void)492 static int byt_get_min_pstate(void)
493 {
494 	u64 value;
495 
496 	rdmsrl(BYT_RATIOS, value);
497 	return (value >> 8) & 0x7F;
498 }
499 
byt_get_max_pstate(void)500 static int byt_get_max_pstate(void)
501 {
502 	u64 value;
503 
504 	rdmsrl(BYT_RATIOS, value);
505 	return (value >> 16) & 0x7F;
506 }
507 
byt_get_turbo_pstate(void)508 static int byt_get_turbo_pstate(void)
509 {
510 	u64 value;
511 
512 	rdmsrl(BYT_TURBO_RATIOS, value);
513 	return value & 0x7F;
514 }
515 
byt_set_pstate(struct cpudata * cpudata,int pstate)516 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
517 {
518 	u64 val;
519 	int32_t vid_fp;
520 	u32 vid;
521 
522 	val = pstate << 8;
523 	if (limits.no_turbo && !limits.turbo_disabled)
524 		val |= (u64)1 << 32;
525 
526 	vid_fp = cpudata->vid.min + mul_fp(
527 		int_tofp(pstate - cpudata->pstate.min_pstate),
528 		cpudata->vid.ratio);
529 
530 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
531 	vid = ceiling_fp(vid_fp);
532 
533 	if (pstate > cpudata->pstate.max_pstate)
534 		vid = cpudata->vid.turbo;
535 
536 	val |= vid;
537 
538 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
539 }
540 
541 #define BYT_BCLK_FREQS 5
542 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
543 
byt_get_scaling(void)544 static int byt_get_scaling(void)
545 {
546 	u64 value;
547 	int i;
548 
549 	rdmsrl(MSR_FSB_FREQ, value);
550 	i = value & 0x3;
551 
552 	BUG_ON(i > BYT_BCLK_FREQS);
553 
554 	return byt_freq_table[i] * 100;
555 }
556 
byt_get_vid(struct cpudata * cpudata)557 static void byt_get_vid(struct cpudata *cpudata)
558 {
559 	u64 value;
560 
561 	rdmsrl(BYT_VIDS, value);
562 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
563 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
564 	cpudata->vid.ratio = div_fp(
565 		cpudata->vid.max - cpudata->vid.min,
566 		int_tofp(cpudata->pstate.max_pstate -
567 			cpudata->pstate.min_pstate));
568 
569 	rdmsrl(BYT_TURBO_VIDS, value);
570 	cpudata->vid.turbo = value & 0x7f;
571 }
572 
core_get_min_pstate(void)573 static int core_get_min_pstate(void)
574 {
575 	u64 value;
576 
577 	rdmsrl(MSR_PLATFORM_INFO, value);
578 	return (value >> 40) & 0xFF;
579 }
580 
core_get_max_pstate(void)581 static int core_get_max_pstate(void)
582 {
583 	u64 value;
584 
585 	rdmsrl(MSR_PLATFORM_INFO, value);
586 	return (value >> 8) & 0xFF;
587 }
588 
core_get_turbo_pstate(void)589 static int core_get_turbo_pstate(void)
590 {
591 	u64 value;
592 	int nont, ret;
593 
594 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
595 	nont = core_get_max_pstate();
596 	ret = (value) & 255;
597 	if (ret <= nont)
598 		ret = nont;
599 	return ret;
600 }
601 
core_get_scaling(void)602 static inline int core_get_scaling(void)
603 {
604 	return 100000;
605 }
606 
core_set_pstate(struct cpudata * cpudata,int pstate)607 static void core_set_pstate(struct cpudata *cpudata, int pstate)
608 {
609 	u64 val;
610 
611 	val = pstate << 8;
612 	if (limits.no_turbo && !limits.turbo_disabled)
613 		val |= (u64)1 << 32;
614 
615 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
616 }
617 
knl_get_turbo_pstate(void)618 static int knl_get_turbo_pstate(void)
619 {
620 	u64 value;
621 	int nont, ret;
622 
623 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
624 	nont = core_get_max_pstate();
625 	ret = (((value) >> 8) & 0xFF);
626 	if (ret <= nont)
627 		ret = nont;
628 	return ret;
629 }
630 
631 static struct cpu_defaults core_params = {
632 	.pid_policy = {
633 		.sample_rate_ms = 10,
634 		.deadband = 0,
635 		.setpoint = 97,
636 		.p_gain_pct = 20,
637 		.d_gain_pct = 0,
638 		.i_gain_pct = 0,
639 	},
640 	.funcs = {
641 		.get_max = core_get_max_pstate,
642 		.get_min = core_get_min_pstate,
643 		.get_turbo = core_get_turbo_pstate,
644 		.get_scaling = core_get_scaling,
645 		.set = core_set_pstate,
646 	},
647 };
648 
649 static struct cpu_defaults byt_params = {
650 	.pid_policy = {
651 		.sample_rate_ms = 10,
652 		.deadband = 0,
653 		.setpoint = 60,
654 		.p_gain_pct = 14,
655 		.d_gain_pct = 0,
656 		.i_gain_pct = 4,
657 	},
658 	.funcs = {
659 		.get_max = byt_get_max_pstate,
660 		.get_min = byt_get_min_pstate,
661 		.get_turbo = byt_get_turbo_pstate,
662 		.set = byt_set_pstate,
663 		.get_scaling = byt_get_scaling,
664 		.get_vid = byt_get_vid,
665 	},
666 };
667 
668 static struct cpu_defaults knl_params = {
669 	.pid_policy = {
670 		.sample_rate_ms = 10,
671 		.deadband = 0,
672 		.setpoint = 97,
673 		.p_gain_pct = 20,
674 		.d_gain_pct = 0,
675 		.i_gain_pct = 0,
676 	},
677 	.funcs = {
678 		.get_max = core_get_max_pstate,
679 		.get_min = core_get_min_pstate,
680 		.get_turbo = knl_get_turbo_pstate,
681 		.get_scaling = core_get_scaling,
682 		.set = core_set_pstate,
683 	},
684 };
685 
intel_pstate_get_min_max(struct cpudata * cpu,int * min,int * max)686 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
687 {
688 	int max_perf = cpu->pstate.turbo_pstate;
689 	int max_perf_adj;
690 	int min_perf;
691 
692 	if (limits.no_turbo || limits.turbo_disabled)
693 		max_perf = cpu->pstate.max_pstate;
694 
695 	/*
696 	 * performance can be limited by user through sysfs, by cpufreq
697 	 * policy, or by cpu specific default values determined through
698 	 * experimentation.
699 	 */
700 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
701 	*max = clamp_t(int, max_perf_adj,
702 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
703 
704 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
705 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
706 }
707 
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)708 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
709 {
710 	int max_perf, min_perf;
711 
712 	update_turbo_state();
713 
714 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
715 
716 	pstate = clamp_t(int, pstate, min_perf, max_perf);
717 
718 	if (pstate == cpu->pstate.current_pstate)
719 		return;
720 
721 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
722 
723 	cpu->pstate.current_pstate = pstate;
724 
725 	pstate_funcs.set(cpu, pstate);
726 }
727 
intel_pstate_get_cpu_pstates(struct cpudata * cpu)728 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
729 {
730 	cpu->pstate.min_pstate = pstate_funcs.get_min();
731 	cpu->pstate.max_pstate = pstate_funcs.get_max();
732 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
733 	cpu->pstate.scaling = pstate_funcs.get_scaling();
734 
735 	if (pstate_funcs.get_vid)
736 		pstate_funcs.get_vid(cpu);
737 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
738 }
739 
intel_pstate_calc_busy(struct cpudata * cpu)740 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
741 {
742 	struct sample *sample = &cpu->sample;
743 	int64_t core_pct;
744 
745 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
746 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
747 
748 	sample->freq = fp_toint(
749 		mul_fp(int_tofp(
750 			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
751 			core_pct));
752 
753 	sample->core_pct_busy = (int32_t)core_pct;
754 }
755 
intel_pstate_sample(struct cpudata * cpu)756 static inline void intel_pstate_sample(struct cpudata *cpu)
757 {
758 	u64 aperf, mperf;
759 	unsigned long flags;
760 
761 	local_irq_save(flags);
762 	rdmsrl(MSR_IA32_APERF, aperf);
763 	rdmsrl(MSR_IA32_MPERF, mperf);
764 	if (cpu->prev_mperf == mperf) {
765 		local_irq_restore(flags);
766 		return;
767 	}
768 
769 	local_irq_restore(flags);
770 
771 	cpu->last_sample_time = cpu->sample.time;
772 	cpu->sample.time = ktime_get();
773 	cpu->sample.aperf = aperf;
774 	cpu->sample.mperf = mperf;
775 	cpu->sample.aperf -= cpu->prev_aperf;
776 	cpu->sample.mperf -= cpu->prev_mperf;
777 
778 	intel_pstate_calc_busy(cpu);
779 
780 	cpu->prev_aperf = aperf;
781 	cpu->prev_mperf = mperf;
782 }
783 
intel_hwp_set_sample_time(struct cpudata * cpu)784 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
785 {
786 	int delay;
787 
788 	delay = msecs_to_jiffies(50);
789 	mod_timer_pinned(&cpu->timer, jiffies + delay);
790 }
791 
intel_pstate_set_sample_time(struct cpudata * cpu)792 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
793 {
794 	int delay;
795 
796 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
797 	mod_timer_pinned(&cpu->timer, jiffies + delay);
798 }
799 
intel_pstate_get_scaled_busy(struct cpudata * cpu)800 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
801 {
802 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
803 	s64 duration_us;
804 	u32 sample_time;
805 
806 	/*
807 	 * core_busy is the ratio of actual performance to max
808 	 * max_pstate is the max non turbo pstate available
809 	 * current_pstate was the pstate that was requested during
810 	 * 	the last sample period.
811 	 *
812 	 * We normalize core_busy, which was our actual percent
813 	 * performance to what we requested during the last sample
814 	 * period. The result will be a percentage of busy at a
815 	 * specified pstate.
816 	 */
817 	core_busy = cpu->sample.core_pct_busy;
818 	max_pstate = int_tofp(cpu->pstate.max_pstate);
819 	current_pstate = int_tofp(cpu->pstate.current_pstate);
820 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
821 
822 	/*
823 	 * Since we have a deferred timer, it will not fire unless
824 	 * we are in C0.  So, determine if the actual elapsed time
825 	 * is significantly greater (3x) than our sample interval.  If it
826 	 * is, then we were idle for a long enough period of time
827 	 * to adjust our busyness.
828 	 */
829 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
830 	duration_us = ktime_us_delta(cpu->sample.time,
831 				     cpu->last_sample_time);
832 	if (duration_us > sample_time * 3) {
833 		sample_ratio = div_fp(int_tofp(sample_time),
834 				      int_tofp(duration_us));
835 		core_busy = mul_fp(core_busy, sample_ratio);
836 	}
837 
838 	return core_busy;
839 }
840 
intel_pstate_adjust_busy_pstate(struct cpudata * cpu)841 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
842 {
843 	int32_t busy_scaled;
844 	struct _pid *pid;
845 	signed int ctl;
846 
847 	pid = &cpu->pid;
848 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
849 
850 	ctl = pid_calc(pid, busy_scaled);
851 
852 	/* Negative values of ctl increase the pstate and vice versa */
853 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
854 }
855 
intel_hwp_timer_func(unsigned long __data)856 static void intel_hwp_timer_func(unsigned long __data)
857 {
858 	struct cpudata *cpu = (struct cpudata *) __data;
859 
860 	intel_pstate_sample(cpu);
861 	intel_hwp_set_sample_time(cpu);
862 }
863 
intel_pstate_timer_func(unsigned long __data)864 static void intel_pstate_timer_func(unsigned long __data)
865 {
866 	struct cpudata *cpu = (struct cpudata *) __data;
867 	struct sample *sample;
868 
869 	intel_pstate_sample(cpu);
870 
871 	sample = &cpu->sample;
872 
873 	intel_pstate_adjust_busy_pstate(cpu);
874 
875 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
876 			fp_toint(intel_pstate_get_scaled_busy(cpu)),
877 			cpu->pstate.current_pstate,
878 			sample->mperf,
879 			sample->aperf,
880 			sample->freq);
881 
882 	intel_pstate_set_sample_time(cpu);
883 }
884 
885 #define ICPU(model, policy) \
886 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
887 			(unsigned long)&policy }
888 
889 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
890 	ICPU(0x2a, core_params),
891 	ICPU(0x2d, core_params),
892 	ICPU(0x37, byt_params),
893 	ICPU(0x3a, core_params),
894 	ICPU(0x3c, core_params),
895 	ICPU(0x3d, core_params),
896 	ICPU(0x3e, core_params),
897 	ICPU(0x3f, core_params),
898 	ICPU(0x45, core_params),
899 	ICPU(0x46, core_params),
900 	ICPU(0x47, core_params),
901 	ICPU(0x4c, byt_params),
902 	ICPU(0x4e, core_params),
903 	ICPU(0x4f, core_params),
904 	ICPU(0x56, core_params),
905 	ICPU(0x57, knl_params),
906 	{}
907 };
908 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
909 
910 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
911 	ICPU(0x56, core_params),
912 	{}
913 };
914 
intel_pstate_init_cpu(unsigned int cpunum)915 static int intel_pstate_init_cpu(unsigned int cpunum)
916 {
917 	struct cpudata *cpu;
918 
919 	if (!all_cpu_data[cpunum])
920 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
921 					       GFP_KERNEL);
922 	if (!all_cpu_data[cpunum])
923 		return -ENOMEM;
924 
925 	cpu = all_cpu_data[cpunum];
926 
927 	cpu->cpu = cpunum;
928 	intel_pstate_get_cpu_pstates(cpu);
929 
930 	init_timer_deferrable(&cpu->timer);
931 	cpu->timer.data = (unsigned long)cpu;
932 	cpu->timer.expires = jiffies + HZ/100;
933 
934 	if (!hwp_active)
935 		cpu->timer.function = intel_pstate_timer_func;
936 	else
937 		cpu->timer.function = intel_hwp_timer_func;
938 
939 	intel_pstate_busy_pid_reset(cpu);
940 	intel_pstate_sample(cpu);
941 
942 	add_timer_on(&cpu->timer, cpunum);
943 
944 	pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
945 
946 	return 0;
947 }
948 
intel_pstate_get(unsigned int cpu_num)949 static unsigned int intel_pstate_get(unsigned int cpu_num)
950 {
951 	struct sample *sample;
952 	struct cpudata *cpu;
953 
954 	cpu = all_cpu_data[cpu_num];
955 	if (!cpu)
956 		return 0;
957 	sample = &cpu->sample;
958 	return sample->freq;
959 }
960 
intel_pstate_set_policy(struct cpufreq_policy * policy)961 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
962 {
963 	if (!policy->cpuinfo.max_freq)
964 		return -ENODEV;
965 
966 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
967 	    policy->max >= policy->cpuinfo.max_freq) {
968 		limits.min_policy_pct = 100;
969 		limits.min_perf_pct = 100;
970 		limits.min_perf = int_tofp(1);
971 		limits.max_policy_pct = 100;
972 		limits.max_perf_pct = 100;
973 		limits.max_perf = int_tofp(1);
974 		limits.no_turbo = 0;
975 		return 0;
976 	}
977 
978 	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
979 	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
980 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
981 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
982 
983 	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
984 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
985 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
986 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
987 
988 	if (hwp_active)
989 		intel_pstate_hwp_set();
990 
991 	return 0;
992 }
993 
intel_pstate_verify_policy(struct cpufreq_policy * policy)994 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
995 {
996 	cpufreq_verify_within_cpu_limits(policy);
997 
998 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
999 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1000 		return -EINVAL;
1001 
1002 	return 0;
1003 }
1004 
intel_pstate_stop_cpu(struct cpufreq_policy * policy)1005 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1006 {
1007 	int cpu_num = policy->cpu;
1008 	struct cpudata *cpu = all_cpu_data[cpu_num];
1009 
1010 	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
1011 
1012 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
1013 	if (hwp_active)
1014 		return;
1015 
1016 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1017 }
1018 
intel_pstate_cpu_init(struct cpufreq_policy * policy)1019 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1020 {
1021 	struct cpudata *cpu;
1022 	int rc;
1023 
1024 	rc = intel_pstate_init_cpu(policy->cpu);
1025 	if (rc)
1026 		return rc;
1027 
1028 	cpu = all_cpu_data[policy->cpu];
1029 
1030 	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1031 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1032 	else
1033 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1034 
1035 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1036 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1037 
1038 	/* cpuinfo and default policy values */
1039 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1040 	update_turbo_state();
1041 	policy->cpuinfo.max_freq = limits.turbo_disabled ?
1042 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1043 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1044 
1045 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1046 	cpumask_set_cpu(policy->cpu, policy->cpus);
1047 
1048 	return 0;
1049 }
1050 
1051 static struct cpufreq_driver intel_pstate_driver = {
1052 	.flags		= CPUFREQ_CONST_LOOPS,
1053 	.verify		= intel_pstate_verify_policy,
1054 	.setpolicy	= intel_pstate_set_policy,
1055 	.get		= intel_pstate_get,
1056 	.init		= intel_pstate_cpu_init,
1057 	.stop_cpu	= intel_pstate_stop_cpu,
1058 	.name		= "intel_pstate",
1059 };
1060 
1061 static int __initdata no_load;
1062 static int __initdata no_hwp;
1063 static int __initdata hwp_only;
1064 static unsigned int force_load;
1065 
intel_pstate_msrs_not_valid(void)1066 static int intel_pstate_msrs_not_valid(void)
1067 {
1068 	if (!pstate_funcs.get_max() ||
1069 	    !pstate_funcs.get_min() ||
1070 	    !pstate_funcs.get_turbo())
1071 		return -ENODEV;
1072 
1073 	return 0;
1074 }
1075 
copy_pid_params(struct pstate_adjust_policy * policy)1076 static void copy_pid_params(struct pstate_adjust_policy *policy)
1077 {
1078 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1079 	pid_params.p_gain_pct = policy->p_gain_pct;
1080 	pid_params.i_gain_pct = policy->i_gain_pct;
1081 	pid_params.d_gain_pct = policy->d_gain_pct;
1082 	pid_params.deadband = policy->deadband;
1083 	pid_params.setpoint = policy->setpoint;
1084 }
1085 
copy_cpu_funcs(struct pstate_funcs * funcs)1086 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1087 {
1088 	pstate_funcs.get_max   = funcs->get_max;
1089 	pstate_funcs.get_min   = funcs->get_min;
1090 	pstate_funcs.get_turbo = funcs->get_turbo;
1091 	pstate_funcs.get_scaling = funcs->get_scaling;
1092 	pstate_funcs.set       = funcs->set;
1093 	pstate_funcs.get_vid   = funcs->get_vid;
1094 }
1095 
1096 #if IS_ENABLED(CONFIG_ACPI)
1097 #include <acpi/processor.h>
1098 
intel_pstate_no_acpi_pss(void)1099 static bool intel_pstate_no_acpi_pss(void)
1100 {
1101 	int i;
1102 
1103 	for_each_possible_cpu(i) {
1104 		acpi_status status;
1105 		union acpi_object *pss;
1106 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1107 		struct acpi_processor *pr = per_cpu(processors, i);
1108 
1109 		if (!pr)
1110 			continue;
1111 
1112 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1113 		if (ACPI_FAILURE(status))
1114 			continue;
1115 
1116 		pss = buffer.pointer;
1117 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1118 			kfree(pss);
1119 			return false;
1120 		}
1121 
1122 		kfree(pss);
1123 	}
1124 
1125 	return true;
1126 }
1127 
intel_pstate_has_acpi_ppc(void)1128 static bool intel_pstate_has_acpi_ppc(void)
1129 {
1130 	int i;
1131 
1132 	for_each_possible_cpu(i) {
1133 		struct acpi_processor *pr = per_cpu(processors, i);
1134 
1135 		if (!pr)
1136 			continue;
1137 		if (acpi_has_method(pr->handle, "_PPC"))
1138 			return true;
1139 	}
1140 	return false;
1141 }
1142 
1143 enum {
1144 	PSS,
1145 	PPC,
1146 };
1147 
1148 struct hw_vendor_info {
1149 	u16  valid;
1150 	char oem_id[ACPI_OEM_ID_SIZE];
1151 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1152 	int  oem_pwr_table;
1153 };
1154 
1155 /* Hardware vendor-specific info that has its own power management modes */
1156 static struct hw_vendor_info vendor_info[] = {
1157 	{1, "HP    ", "ProLiant", PSS},
1158 	{1, "ORACLE", "X4-2    ", PPC},
1159 	{1, "ORACLE", "X4-2L   ", PPC},
1160 	{1, "ORACLE", "X4-2B   ", PPC},
1161 	{1, "ORACLE", "X3-2    ", PPC},
1162 	{1, "ORACLE", "X3-2L   ", PPC},
1163 	{1, "ORACLE", "X3-2B   ", PPC},
1164 	{1, "ORACLE", "X4470M2 ", PPC},
1165 	{1, "ORACLE", "X4270M3 ", PPC},
1166 	{1, "ORACLE", "X4270M2 ", PPC},
1167 	{1, "ORACLE", "X4170M2 ", PPC},
1168 	{0, "", ""},
1169 };
1170 
intel_pstate_platform_pwr_mgmt_exists(void)1171 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1172 {
1173 	struct acpi_table_header hdr;
1174 	struct hw_vendor_info *v_info;
1175 	const struct x86_cpu_id *id;
1176 	u64 misc_pwr;
1177 
1178 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1179 	if (id) {
1180 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1181 		if ( misc_pwr & (1 << 8))
1182 			return true;
1183 	}
1184 
1185 	if (acpi_disabled ||
1186 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1187 		return false;
1188 
1189 	for (v_info = vendor_info; v_info->valid; v_info++) {
1190 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1191 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1192 						ACPI_OEM_TABLE_ID_SIZE))
1193 			switch (v_info->oem_pwr_table) {
1194 			case PSS:
1195 				return intel_pstate_no_acpi_pss();
1196 			case PPC:
1197 				return intel_pstate_has_acpi_ppc() &&
1198 					(!force_load);
1199 			}
1200 	}
1201 
1202 	return false;
1203 }
1204 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)1205 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)1206 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1207 #endif /* CONFIG_ACPI */
1208 
intel_pstate_init(void)1209 static int __init intel_pstate_init(void)
1210 {
1211 	int cpu, rc = 0;
1212 	const struct x86_cpu_id *id;
1213 	struct cpu_defaults *cpu_def;
1214 
1215 	if (no_load)
1216 		return -ENODEV;
1217 
1218 	id = x86_match_cpu(intel_pstate_cpu_ids);
1219 	if (!id)
1220 		return -ENODEV;
1221 
1222 	/*
1223 	 * The Intel pstate driver will be ignored if the platform
1224 	 * firmware has its own power management modes.
1225 	 */
1226 	if (intel_pstate_platform_pwr_mgmt_exists())
1227 		return -ENODEV;
1228 
1229 	cpu_def = (struct cpu_defaults *)id->driver_data;
1230 
1231 	copy_pid_params(&cpu_def->pid_policy);
1232 	copy_cpu_funcs(&cpu_def->funcs);
1233 
1234 	if (intel_pstate_msrs_not_valid())
1235 		return -ENODEV;
1236 
1237 	pr_info("Intel P-state driver initializing.\n");
1238 
1239 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1240 	if (!all_cpu_data)
1241 		return -ENOMEM;
1242 
1243 	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1244 		intel_pstate_hwp_enable();
1245 
1246 	if (!hwp_active && hwp_only)
1247 		goto out;
1248 
1249 	rc = cpufreq_register_driver(&intel_pstate_driver);
1250 	if (rc)
1251 		goto out;
1252 
1253 	intel_pstate_debug_expose_params();
1254 	intel_pstate_sysfs_expose_params();
1255 
1256 	return rc;
1257 out:
1258 	get_online_cpus();
1259 	for_each_online_cpu(cpu) {
1260 		if (all_cpu_data[cpu]) {
1261 			del_timer_sync(&all_cpu_data[cpu]->timer);
1262 			kfree(all_cpu_data[cpu]);
1263 		}
1264 	}
1265 
1266 	put_online_cpus();
1267 	vfree(all_cpu_data);
1268 	return -ENODEV;
1269 }
1270 device_initcall(intel_pstate_init);
1271 
intel_pstate_setup(char * str)1272 static int __init intel_pstate_setup(char *str)
1273 {
1274 	if (!str)
1275 		return -EINVAL;
1276 
1277 	if (!strcmp(str, "disable"))
1278 		no_load = 1;
1279 	if (!strcmp(str, "no_hwp"))
1280 		no_hwp = 1;
1281 	if (!strcmp(str, "force"))
1282 		force_load = 1;
1283 	if (!strcmp(str, "hwp_only"))
1284 		hwp_only = 1;
1285 	return 0;
1286 }
1287 early_param("intel_pstate", intel_pstate_setup);
1288 
1289 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1290 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1291 MODULE_LICENSE("GPL");
1292