1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35
36 #define BYT_RATIOS 0x66a
37 #define BYT_VIDS 0x66b
38 #define BYT_TURBO_RATIOS 0x66c
39 #define BYT_TURBO_VIDS 0x66d
40
41 #define FRAC_BITS 8
42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
43 #define fp_toint(X) ((X) >> FRAC_BITS)
44
45
mul_fp(int32_t x,int32_t y)46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
div_fp(s64 x,s64 y)51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
ceiling_fp(int32_t x)56 static inline int ceiling_fp(int32_t x)
57 {
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65 }
66
67 struct sample {
68 int32_t core_pct_busy;
69 u64 aperf;
70 u64 mperf;
71 int freq;
72 ktime_t time;
73 };
74
75 struct pstate_data {
76 int current_pstate;
77 int min_pstate;
78 int max_pstate;
79 int scaling;
80 int turbo_pstate;
81 };
82
83 struct vid_data {
84 int min;
85 int max;
86 int turbo;
87 int32_t ratio;
88 };
89
90 struct _pid {
91 int setpoint;
92 int32_t integral;
93 int32_t p_gain;
94 int32_t i_gain;
95 int32_t d_gain;
96 int deadband;
97 int32_t last_err;
98 };
99
100 struct cpudata {
101 int cpu;
102
103 struct timer_list timer;
104
105 struct pstate_data pstate;
106 struct vid_data vid;
107 struct _pid pid;
108
109 ktime_t last_sample_time;
110 u64 prev_aperf;
111 u64 prev_mperf;
112 struct sample sample;
113 };
114
115 static struct cpudata **all_cpu_data;
116 struct pstate_adjust_policy {
117 int sample_rate_ms;
118 int deadband;
119 int setpoint;
120 int p_gain_pct;
121 int d_gain_pct;
122 int i_gain_pct;
123 };
124
125 struct pstate_funcs {
126 int (*get_max)(void);
127 int (*get_min)(void);
128 int (*get_turbo)(void);
129 int (*get_scaling)(void);
130 void (*set)(struct cpudata*, int pstate);
131 void (*get_vid)(struct cpudata *);
132 };
133
134 struct cpu_defaults {
135 struct pstate_adjust_policy pid_policy;
136 struct pstate_funcs funcs;
137 };
138
139 static struct pstate_adjust_policy pid_params;
140 static struct pstate_funcs pstate_funcs;
141 static int hwp_active;
142
143 struct perf_limits {
144 int no_turbo;
145 int turbo_disabled;
146 int max_perf_pct;
147 int min_perf_pct;
148 int32_t max_perf;
149 int32_t min_perf;
150 int max_policy_pct;
151 int max_sysfs_pct;
152 int min_policy_pct;
153 int min_sysfs_pct;
154 };
155
156 static struct perf_limits limits = {
157 .no_turbo = 0,
158 .turbo_disabled = 0,
159 .max_perf_pct = 100,
160 .max_perf = int_tofp(1),
161 .min_perf_pct = 0,
162 .min_perf = 0,
163 .max_policy_pct = 100,
164 .max_sysfs_pct = 100,
165 .min_policy_pct = 0,
166 .min_sysfs_pct = 0,
167 };
168
pid_reset(struct _pid * pid,int setpoint,int busy,int deadband,int integral)169 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
170 int deadband, int integral) {
171 pid->setpoint = setpoint;
172 pid->deadband = deadband;
173 pid->integral = int_tofp(integral);
174 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
175 }
176
pid_p_gain_set(struct _pid * pid,int percent)177 static inline void pid_p_gain_set(struct _pid *pid, int percent)
178 {
179 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
pid_i_gain_set(struct _pid * pid,int percent)182 static inline void pid_i_gain_set(struct _pid *pid, int percent)
183 {
184 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
pid_d_gain_set(struct _pid * pid,int percent)187 static inline void pid_d_gain_set(struct _pid *pid, int percent)
188 {
189 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
190 }
191
pid_calc(struct _pid * pid,int32_t busy)192 static signed int pid_calc(struct _pid *pid, int32_t busy)
193 {
194 signed int result;
195 int32_t pterm, dterm, fp_error;
196 int32_t integral_limit;
197
198 fp_error = int_tofp(pid->setpoint) - busy;
199
200 if (abs(fp_error) <= int_tofp(pid->deadband))
201 return 0;
202
203 pterm = mul_fp(pid->p_gain, fp_error);
204
205 pid->integral += fp_error;
206
207 /*
208 * We limit the integral here so that it will never
209 * get higher than 30. This prevents it from becoming
210 * too large an input over long periods of time and allows
211 * it to get factored out sooner.
212 *
213 * The value of 30 was chosen through experimentation.
214 */
215 integral_limit = int_tofp(30);
216 if (pid->integral > integral_limit)
217 pid->integral = integral_limit;
218 if (pid->integral < -integral_limit)
219 pid->integral = -integral_limit;
220
221 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
222 pid->last_err = fp_error;
223
224 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
225 result = result + (1 << (FRAC_BITS-1));
226 return (signed int)fp_toint(result);
227 }
228
intel_pstate_busy_pid_reset(struct cpudata * cpu)229 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
230 {
231 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
232 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
233 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
234
235 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
236 }
237
intel_pstate_reset_all_pid(void)238 static inline void intel_pstate_reset_all_pid(void)
239 {
240 unsigned int cpu;
241
242 for_each_online_cpu(cpu) {
243 if (all_cpu_data[cpu])
244 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
245 }
246 }
247
update_turbo_state(void)248 static inline void update_turbo_state(void)
249 {
250 u64 misc_en;
251 struct cpudata *cpu;
252
253 cpu = all_cpu_data[0];
254 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
255 limits.turbo_disabled =
256 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
257 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
258 }
259
260 #define PCT_TO_HWP(x) (x * 255 / 100)
intel_pstate_hwp_set(void)261 static void intel_pstate_hwp_set(void)
262 {
263 int min, max, cpu;
264 u64 value, freq;
265
266 get_online_cpus();
267
268 for_each_online_cpu(cpu) {
269 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
270 min = PCT_TO_HWP(limits.min_perf_pct);
271 value &= ~HWP_MIN_PERF(~0L);
272 value |= HWP_MIN_PERF(min);
273
274 max = PCT_TO_HWP(limits.max_perf_pct);
275 if (limits.no_turbo) {
276 rdmsrl( MSR_HWP_CAPABILITIES, freq);
277 max = HWP_GUARANTEED_PERF(freq);
278 }
279
280 value &= ~HWP_MAX_PERF(~0L);
281 value |= HWP_MAX_PERF(max);
282 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
283 }
284
285 put_online_cpus();
286 }
287
288 /************************** debugfs begin ************************/
pid_param_set(void * data,u64 val)289 static int pid_param_set(void *data, u64 val)
290 {
291 *(u32 *)data = val;
292 intel_pstate_reset_all_pid();
293 return 0;
294 }
295
pid_param_get(void * data,u64 * val)296 static int pid_param_get(void *data, u64 *val)
297 {
298 *val = *(u32 *)data;
299 return 0;
300 }
301 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
302
303 struct pid_param {
304 char *name;
305 void *value;
306 };
307
308 static struct pid_param pid_files[] = {
309 {"sample_rate_ms", &pid_params.sample_rate_ms},
310 {"d_gain_pct", &pid_params.d_gain_pct},
311 {"i_gain_pct", &pid_params.i_gain_pct},
312 {"deadband", &pid_params.deadband},
313 {"setpoint", &pid_params.setpoint},
314 {"p_gain_pct", &pid_params.p_gain_pct},
315 {NULL, NULL}
316 };
317
intel_pstate_debug_expose_params(void)318 static void __init intel_pstate_debug_expose_params(void)
319 {
320 struct dentry *debugfs_parent;
321 int i = 0;
322
323 if (hwp_active)
324 return;
325 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
326 if (IS_ERR_OR_NULL(debugfs_parent))
327 return;
328 while (pid_files[i].name) {
329 debugfs_create_file(pid_files[i].name, 0660,
330 debugfs_parent, pid_files[i].value,
331 &fops_pid_param);
332 i++;
333 }
334 }
335
336 /************************** debugfs end ************************/
337
338 /************************** sysfs begin ************************/
339 #define show_one(file_name, object) \
340 static ssize_t show_##file_name \
341 (struct kobject *kobj, struct attribute *attr, char *buf) \
342 { \
343 return sprintf(buf, "%u\n", limits.object); \
344 }
345
show_turbo_pct(struct kobject * kobj,struct attribute * attr,char * buf)346 static ssize_t show_turbo_pct(struct kobject *kobj,
347 struct attribute *attr, char *buf)
348 {
349 struct cpudata *cpu;
350 int total, no_turbo, turbo_pct;
351 uint32_t turbo_fp;
352
353 cpu = all_cpu_data[0];
354
355 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
356 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
357 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
358 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
359 return sprintf(buf, "%u\n", turbo_pct);
360 }
361
show_num_pstates(struct kobject * kobj,struct attribute * attr,char * buf)362 static ssize_t show_num_pstates(struct kobject *kobj,
363 struct attribute *attr, char *buf)
364 {
365 struct cpudata *cpu;
366 int total;
367
368 cpu = all_cpu_data[0];
369 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
370 return sprintf(buf, "%u\n", total);
371 }
372
show_no_turbo(struct kobject * kobj,struct attribute * attr,char * buf)373 static ssize_t show_no_turbo(struct kobject *kobj,
374 struct attribute *attr, char *buf)
375 {
376 ssize_t ret;
377
378 update_turbo_state();
379 if (limits.turbo_disabled)
380 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
381 else
382 ret = sprintf(buf, "%u\n", limits.no_turbo);
383
384 return ret;
385 }
386
store_no_turbo(struct kobject * a,struct attribute * b,const char * buf,size_t count)387 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
388 const char *buf, size_t count)
389 {
390 unsigned int input;
391 int ret;
392
393 ret = sscanf(buf, "%u", &input);
394 if (ret != 1)
395 return -EINVAL;
396
397 update_turbo_state();
398 if (limits.turbo_disabled) {
399 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
400 return -EPERM;
401 }
402
403 limits.no_turbo = clamp_t(int, input, 0, 1);
404
405 if (hwp_active)
406 intel_pstate_hwp_set();
407
408 return count;
409 }
410
store_max_perf_pct(struct kobject * a,struct attribute * b,const char * buf,size_t count)411 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
412 const char *buf, size_t count)
413 {
414 unsigned int input;
415 int ret;
416
417 ret = sscanf(buf, "%u", &input);
418 if (ret != 1)
419 return -EINVAL;
420
421 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
422 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
423 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
424
425 if (hwp_active)
426 intel_pstate_hwp_set();
427 return count;
428 }
429
store_min_perf_pct(struct kobject * a,struct attribute * b,const char * buf,size_t count)430 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
431 const char *buf, size_t count)
432 {
433 unsigned int input;
434 int ret;
435
436 ret = sscanf(buf, "%u", &input);
437 if (ret != 1)
438 return -EINVAL;
439
440 limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
441 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
442 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
443
444 if (hwp_active)
445 intel_pstate_hwp_set();
446 return count;
447 }
448
449 show_one(max_perf_pct, max_perf_pct);
450 show_one(min_perf_pct, min_perf_pct);
451
452 define_one_global_rw(no_turbo);
453 define_one_global_rw(max_perf_pct);
454 define_one_global_rw(min_perf_pct);
455 define_one_global_ro(turbo_pct);
456 define_one_global_ro(num_pstates);
457
458 static struct attribute *intel_pstate_attributes[] = {
459 &no_turbo.attr,
460 &max_perf_pct.attr,
461 &min_perf_pct.attr,
462 &turbo_pct.attr,
463 &num_pstates.attr,
464 NULL
465 };
466
467 static struct attribute_group intel_pstate_attr_group = {
468 .attrs = intel_pstate_attributes,
469 };
470
intel_pstate_sysfs_expose_params(void)471 static void __init intel_pstate_sysfs_expose_params(void)
472 {
473 struct kobject *intel_pstate_kobject;
474 int rc;
475
476 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
477 &cpu_subsys.dev_root->kobj);
478 BUG_ON(!intel_pstate_kobject);
479 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
480 BUG_ON(rc);
481 }
482 /************************** sysfs end ************************/
483
intel_pstate_hwp_enable(void)484 static void intel_pstate_hwp_enable(void)
485 {
486 hwp_active++;
487 pr_info("intel_pstate HWP enabled\n");
488
489 wrmsrl( MSR_PM_ENABLE, 0x1);
490 }
491
byt_get_min_pstate(void)492 static int byt_get_min_pstate(void)
493 {
494 u64 value;
495
496 rdmsrl(BYT_RATIOS, value);
497 return (value >> 8) & 0x7F;
498 }
499
byt_get_max_pstate(void)500 static int byt_get_max_pstate(void)
501 {
502 u64 value;
503
504 rdmsrl(BYT_RATIOS, value);
505 return (value >> 16) & 0x7F;
506 }
507
byt_get_turbo_pstate(void)508 static int byt_get_turbo_pstate(void)
509 {
510 u64 value;
511
512 rdmsrl(BYT_TURBO_RATIOS, value);
513 return value & 0x7F;
514 }
515
byt_set_pstate(struct cpudata * cpudata,int pstate)516 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
517 {
518 u64 val;
519 int32_t vid_fp;
520 u32 vid;
521
522 val = pstate << 8;
523 if (limits.no_turbo && !limits.turbo_disabled)
524 val |= (u64)1 << 32;
525
526 vid_fp = cpudata->vid.min + mul_fp(
527 int_tofp(pstate - cpudata->pstate.min_pstate),
528 cpudata->vid.ratio);
529
530 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
531 vid = ceiling_fp(vid_fp);
532
533 if (pstate > cpudata->pstate.max_pstate)
534 vid = cpudata->vid.turbo;
535
536 val |= vid;
537
538 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
539 }
540
541 #define BYT_BCLK_FREQS 5
542 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
543
byt_get_scaling(void)544 static int byt_get_scaling(void)
545 {
546 u64 value;
547 int i;
548
549 rdmsrl(MSR_FSB_FREQ, value);
550 i = value & 0x3;
551
552 BUG_ON(i > BYT_BCLK_FREQS);
553
554 return byt_freq_table[i] * 100;
555 }
556
byt_get_vid(struct cpudata * cpudata)557 static void byt_get_vid(struct cpudata *cpudata)
558 {
559 u64 value;
560
561 rdmsrl(BYT_VIDS, value);
562 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
563 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
564 cpudata->vid.ratio = div_fp(
565 cpudata->vid.max - cpudata->vid.min,
566 int_tofp(cpudata->pstate.max_pstate -
567 cpudata->pstate.min_pstate));
568
569 rdmsrl(BYT_TURBO_VIDS, value);
570 cpudata->vid.turbo = value & 0x7f;
571 }
572
core_get_min_pstate(void)573 static int core_get_min_pstate(void)
574 {
575 u64 value;
576
577 rdmsrl(MSR_PLATFORM_INFO, value);
578 return (value >> 40) & 0xFF;
579 }
580
core_get_max_pstate(void)581 static int core_get_max_pstate(void)
582 {
583 u64 value;
584
585 rdmsrl(MSR_PLATFORM_INFO, value);
586 return (value >> 8) & 0xFF;
587 }
588
core_get_turbo_pstate(void)589 static int core_get_turbo_pstate(void)
590 {
591 u64 value;
592 int nont, ret;
593
594 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
595 nont = core_get_max_pstate();
596 ret = (value) & 255;
597 if (ret <= nont)
598 ret = nont;
599 return ret;
600 }
601
core_get_scaling(void)602 static inline int core_get_scaling(void)
603 {
604 return 100000;
605 }
606
core_set_pstate(struct cpudata * cpudata,int pstate)607 static void core_set_pstate(struct cpudata *cpudata, int pstate)
608 {
609 u64 val;
610
611 val = pstate << 8;
612 if (limits.no_turbo && !limits.turbo_disabled)
613 val |= (u64)1 << 32;
614
615 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
616 }
617
knl_get_turbo_pstate(void)618 static int knl_get_turbo_pstate(void)
619 {
620 u64 value;
621 int nont, ret;
622
623 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
624 nont = core_get_max_pstate();
625 ret = (((value) >> 8) & 0xFF);
626 if (ret <= nont)
627 ret = nont;
628 return ret;
629 }
630
631 static struct cpu_defaults core_params = {
632 .pid_policy = {
633 .sample_rate_ms = 10,
634 .deadband = 0,
635 .setpoint = 97,
636 .p_gain_pct = 20,
637 .d_gain_pct = 0,
638 .i_gain_pct = 0,
639 },
640 .funcs = {
641 .get_max = core_get_max_pstate,
642 .get_min = core_get_min_pstate,
643 .get_turbo = core_get_turbo_pstate,
644 .get_scaling = core_get_scaling,
645 .set = core_set_pstate,
646 },
647 };
648
649 static struct cpu_defaults byt_params = {
650 .pid_policy = {
651 .sample_rate_ms = 10,
652 .deadband = 0,
653 .setpoint = 60,
654 .p_gain_pct = 14,
655 .d_gain_pct = 0,
656 .i_gain_pct = 4,
657 },
658 .funcs = {
659 .get_max = byt_get_max_pstate,
660 .get_min = byt_get_min_pstate,
661 .get_turbo = byt_get_turbo_pstate,
662 .set = byt_set_pstate,
663 .get_scaling = byt_get_scaling,
664 .get_vid = byt_get_vid,
665 },
666 };
667
668 static struct cpu_defaults knl_params = {
669 .pid_policy = {
670 .sample_rate_ms = 10,
671 .deadband = 0,
672 .setpoint = 97,
673 .p_gain_pct = 20,
674 .d_gain_pct = 0,
675 .i_gain_pct = 0,
676 },
677 .funcs = {
678 .get_max = core_get_max_pstate,
679 .get_min = core_get_min_pstate,
680 .get_turbo = knl_get_turbo_pstate,
681 .get_scaling = core_get_scaling,
682 .set = core_set_pstate,
683 },
684 };
685
intel_pstate_get_min_max(struct cpudata * cpu,int * min,int * max)686 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
687 {
688 int max_perf = cpu->pstate.turbo_pstate;
689 int max_perf_adj;
690 int min_perf;
691
692 if (limits.no_turbo || limits.turbo_disabled)
693 max_perf = cpu->pstate.max_pstate;
694
695 /*
696 * performance can be limited by user through sysfs, by cpufreq
697 * policy, or by cpu specific default values determined through
698 * experimentation.
699 */
700 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
701 *max = clamp_t(int, max_perf_adj,
702 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
703
704 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
705 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
706 }
707
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)708 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
709 {
710 int max_perf, min_perf;
711
712 update_turbo_state();
713
714 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
715
716 pstate = clamp_t(int, pstate, min_perf, max_perf);
717
718 if (pstate == cpu->pstate.current_pstate)
719 return;
720
721 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
722
723 cpu->pstate.current_pstate = pstate;
724
725 pstate_funcs.set(cpu, pstate);
726 }
727
intel_pstate_get_cpu_pstates(struct cpudata * cpu)728 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
729 {
730 cpu->pstate.min_pstate = pstate_funcs.get_min();
731 cpu->pstate.max_pstate = pstate_funcs.get_max();
732 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
733 cpu->pstate.scaling = pstate_funcs.get_scaling();
734
735 if (pstate_funcs.get_vid)
736 pstate_funcs.get_vid(cpu);
737 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
738 }
739
intel_pstate_calc_busy(struct cpudata * cpu)740 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
741 {
742 struct sample *sample = &cpu->sample;
743 int64_t core_pct;
744
745 core_pct = int_tofp(sample->aperf) * int_tofp(100);
746 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
747
748 sample->freq = fp_toint(
749 mul_fp(int_tofp(
750 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
751 core_pct));
752
753 sample->core_pct_busy = (int32_t)core_pct;
754 }
755
intel_pstate_sample(struct cpudata * cpu)756 static inline void intel_pstate_sample(struct cpudata *cpu)
757 {
758 u64 aperf, mperf;
759 unsigned long flags;
760
761 local_irq_save(flags);
762 rdmsrl(MSR_IA32_APERF, aperf);
763 rdmsrl(MSR_IA32_MPERF, mperf);
764 if (cpu->prev_mperf == mperf) {
765 local_irq_restore(flags);
766 return;
767 }
768
769 local_irq_restore(flags);
770
771 cpu->last_sample_time = cpu->sample.time;
772 cpu->sample.time = ktime_get();
773 cpu->sample.aperf = aperf;
774 cpu->sample.mperf = mperf;
775 cpu->sample.aperf -= cpu->prev_aperf;
776 cpu->sample.mperf -= cpu->prev_mperf;
777
778 intel_pstate_calc_busy(cpu);
779
780 cpu->prev_aperf = aperf;
781 cpu->prev_mperf = mperf;
782 }
783
intel_hwp_set_sample_time(struct cpudata * cpu)784 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
785 {
786 int delay;
787
788 delay = msecs_to_jiffies(50);
789 mod_timer_pinned(&cpu->timer, jiffies + delay);
790 }
791
intel_pstate_set_sample_time(struct cpudata * cpu)792 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
793 {
794 int delay;
795
796 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
797 mod_timer_pinned(&cpu->timer, jiffies + delay);
798 }
799
intel_pstate_get_scaled_busy(struct cpudata * cpu)800 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
801 {
802 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
803 s64 duration_us;
804 u32 sample_time;
805
806 /*
807 * core_busy is the ratio of actual performance to max
808 * max_pstate is the max non turbo pstate available
809 * current_pstate was the pstate that was requested during
810 * the last sample period.
811 *
812 * We normalize core_busy, which was our actual percent
813 * performance to what we requested during the last sample
814 * period. The result will be a percentage of busy at a
815 * specified pstate.
816 */
817 core_busy = cpu->sample.core_pct_busy;
818 max_pstate = int_tofp(cpu->pstate.max_pstate);
819 current_pstate = int_tofp(cpu->pstate.current_pstate);
820 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
821
822 /*
823 * Since we have a deferred timer, it will not fire unless
824 * we are in C0. So, determine if the actual elapsed time
825 * is significantly greater (3x) than our sample interval. If it
826 * is, then we were idle for a long enough period of time
827 * to adjust our busyness.
828 */
829 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
830 duration_us = ktime_us_delta(cpu->sample.time,
831 cpu->last_sample_time);
832 if (duration_us > sample_time * 3) {
833 sample_ratio = div_fp(int_tofp(sample_time),
834 int_tofp(duration_us));
835 core_busy = mul_fp(core_busy, sample_ratio);
836 }
837
838 return core_busy;
839 }
840
intel_pstate_adjust_busy_pstate(struct cpudata * cpu)841 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
842 {
843 int32_t busy_scaled;
844 struct _pid *pid;
845 signed int ctl;
846
847 pid = &cpu->pid;
848 busy_scaled = intel_pstate_get_scaled_busy(cpu);
849
850 ctl = pid_calc(pid, busy_scaled);
851
852 /* Negative values of ctl increase the pstate and vice versa */
853 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
854 }
855
intel_hwp_timer_func(unsigned long __data)856 static void intel_hwp_timer_func(unsigned long __data)
857 {
858 struct cpudata *cpu = (struct cpudata *) __data;
859
860 intel_pstate_sample(cpu);
861 intel_hwp_set_sample_time(cpu);
862 }
863
intel_pstate_timer_func(unsigned long __data)864 static void intel_pstate_timer_func(unsigned long __data)
865 {
866 struct cpudata *cpu = (struct cpudata *) __data;
867 struct sample *sample;
868
869 intel_pstate_sample(cpu);
870
871 sample = &cpu->sample;
872
873 intel_pstate_adjust_busy_pstate(cpu);
874
875 trace_pstate_sample(fp_toint(sample->core_pct_busy),
876 fp_toint(intel_pstate_get_scaled_busy(cpu)),
877 cpu->pstate.current_pstate,
878 sample->mperf,
879 sample->aperf,
880 sample->freq);
881
882 intel_pstate_set_sample_time(cpu);
883 }
884
885 #define ICPU(model, policy) \
886 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
887 (unsigned long)&policy }
888
889 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
890 ICPU(0x2a, core_params),
891 ICPU(0x2d, core_params),
892 ICPU(0x37, byt_params),
893 ICPU(0x3a, core_params),
894 ICPU(0x3c, core_params),
895 ICPU(0x3d, core_params),
896 ICPU(0x3e, core_params),
897 ICPU(0x3f, core_params),
898 ICPU(0x45, core_params),
899 ICPU(0x46, core_params),
900 ICPU(0x47, core_params),
901 ICPU(0x4c, byt_params),
902 ICPU(0x4e, core_params),
903 ICPU(0x4f, core_params),
904 ICPU(0x56, core_params),
905 ICPU(0x57, knl_params),
906 {}
907 };
908 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
909
910 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
911 ICPU(0x56, core_params),
912 {}
913 };
914
intel_pstate_init_cpu(unsigned int cpunum)915 static int intel_pstate_init_cpu(unsigned int cpunum)
916 {
917 struct cpudata *cpu;
918
919 if (!all_cpu_data[cpunum])
920 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
921 GFP_KERNEL);
922 if (!all_cpu_data[cpunum])
923 return -ENOMEM;
924
925 cpu = all_cpu_data[cpunum];
926
927 cpu->cpu = cpunum;
928 intel_pstate_get_cpu_pstates(cpu);
929
930 init_timer_deferrable(&cpu->timer);
931 cpu->timer.data = (unsigned long)cpu;
932 cpu->timer.expires = jiffies + HZ/100;
933
934 if (!hwp_active)
935 cpu->timer.function = intel_pstate_timer_func;
936 else
937 cpu->timer.function = intel_hwp_timer_func;
938
939 intel_pstate_busy_pid_reset(cpu);
940 intel_pstate_sample(cpu);
941
942 add_timer_on(&cpu->timer, cpunum);
943
944 pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
945
946 return 0;
947 }
948
intel_pstate_get(unsigned int cpu_num)949 static unsigned int intel_pstate_get(unsigned int cpu_num)
950 {
951 struct sample *sample;
952 struct cpudata *cpu;
953
954 cpu = all_cpu_data[cpu_num];
955 if (!cpu)
956 return 0;
957 sample = &cpu->sample;
958 return sample->freq;
959 }
960
intel_pstate_set_policy(struct cpufreq_policy * policy)961 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
962 {
963 if (!policy->cpuinfo.max_freq)
964 return -ENODEV;
965
966 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
967 policy->max >= policy->cpuinfo.max_freq) {
968 limits.min_policy_pct = 100;
969 limits.min_perf_pct = 100;
970 limits.min_perf = int_tofp(1);
971 limits.max_policy_pct = 100;
972 limits.max_perf_pct = 100;
973 limits.max_perf = int_tofp(1);
974 limits.no_turbo = 0;
975 return 0;
976 }
977
978 limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
979 limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
980 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
981 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
982
983 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
984 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
985 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
986 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
987
988 if (hwp_active)
989 intel_pstate_hwp_set();
990
991 return 0;
992 }
993
intel_pstate_verify_policy(struct cpufreq_policy * policy)994 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
995 {
996 cpufreq_verify_within_cpu_limits(policy);
997
998 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
999 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1000 return -EINVAL;
1001
1002 return 0;
1003 }
1004
intel_pstate_stop_cpu(struct cpufreq_policy * policy)1005 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1006 {
1007 int cpu_num = policy->cpu;
1008 struct cpudata *cpu = all_cpu_data[cpu_num];
1009
1010 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
1011
1012 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1013 if (hwp_active)
1014 return;
1015
1016 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1017 }
1018
intel_pstate_cpu_init(struct cpufreq_policy * policy)1019 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1020 {
1021 struct cpudata *cpu;
1022 int rc;
1023
1024 rc = intel_pstate_init_cpu(policy->cpu);
1025 if (rc)
1026 return rc;
1027
1028 cpu = all_cpu_data[policy->cpu];
1029
1030 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1031 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1032 else
1033 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1034
1035 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1036 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1037
1038 /* cpuinfo and default policy values */
1039 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1040 update_turbo_state();
1041 policy->cpuinfo.max_freq = limits.turbo_disabled ?
1042 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1043 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1044
1045 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1046 cpumask_set_cpu(policy->cpu, policy->cpus);
1047
1048 return 0;
1049 }
1050
1051 static struct cpufreq_driver intel_pstate_driver = {
1052 .flags = CPUFREQ_CONST_LOOPS,
1053 .verify = intel_pstate_verify_policy,
1054 .setpolicy = intel_pstate_set_policy,
1055 .get = intel_pstate_get,
1056 .init = intel_pstate_cpu_init,
1057 .stop_cpu = intel_pstate_stop_cpu,
1058 .name = "intel_pstate",
1059 };
1060
1061 static int __initdata no_load;
1062 static int __initdata no_hwp;
1063 static int __initdata hwp_only;
1064 static unsigned int force_load;
1065
intel_pstate_msrs_not_valid(void)1066 static int intel_pstate_msrs_not_valid(void)
1067 {
1068 if (!pstate_funcs.get_max() ||
1069 !pstate_funcs.get_min() ||
1070 !pstate_funcs.get_turbo())
1071 return -ENODEV;
1072
1073 return 0;
1074 }
1075
copy_pid_params(struct pstate_adjust_policy * policy)1076 static void copy_pid_params(struct pstate_adjust_policy *policy)
1077 {
1078 pid_params.sample_rate_ms = policy->sample_rate_ms;
1079 pid_params.p_gain_pct = policy->p_gain_pct;
1080 pid_params.i_gain_pct = policy->i_gain_pct;
1081 pid_params.d_gain_pct = policy->d_gain_pct;
1082 pid_params.deadband = policy->deadband;
1083 pid_params.setpoint = policy->setpoint;
1084 }
1085
copy_cpu_funcs(struct pstate_funcs * funcs)1086 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1087 {
1088 pstate_funcs.get_max = funcs->get_max;
1089 pstate_funcs.get_min = funcs->get_min;
1090 pstate_funcs.get_turbo = funcs->get_turbo;
1091 pstate_funcs.get_scaling = funcs->get_scaling;
1092 pstate_funcs.set = funcs->set;
1093 pstate_funcs.get_vid = funcs->get_vid;
1094 }
1095
1096 #if IS_ENABLED(CONFIG_ACPI)
1097 #include <acpi/processor.h>
1098
intel_pstate_no_acpi_pss(void)1099 static bool intel_pstate_no_acpi_pss(void)
1100 {
1101 int i;
1102
1103 for_each_possible_cpu(i) {
1104 acpi_status status;
1105 union acpi_object *pss;
1106 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1107 struct acpi_processor *pr = per_cpu(processors, i);
1108
1109 if (!pr)
1110 continue;
1111
1112 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1113 if (ACPI_FAILURE(status))
1114 continue;
1115
1116 pss = buffer.pointer;
1117 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1118 kfree(pss);
1119 return false;
1120 }
1121
1122 kfree(pss);
1123 }
1124
1125 return true;
1126 }
1127
intel_pstate_has_acpi_ppc(void)1128 static bool intel_pstate_has_acpi_ppc(void)
1129 {
1130 int i;
1131
1132 for_each_possible_cpu(i) {
1133 struct acpi_processor *pr = per_cpu(processors, i);
1134
1135 if (!pr)
1136 continue;
1137 if (acpi_has_method(pr->handle, "_PPC"))
1138 return true;
1139 }
1140 return false;
1141 }
1142
1143 enum {
1144 PSS,
1145 PPC,
1146 };
1147
1148 struct hw_vendor_info {
1149 u16 valid;
1150 char oem_id[ACPI_OEM_ID_SIZE];
1151 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1152 int oem_pwr_table;
1153 };
1154
1155 /* Hardware vendor-specific info that has its own power management modes */
1156 static struct hw_vendor_info vendor_info[] = {
1157 {1, "HP ", "ProLiant", PSS},
1158 {1, "ORACLE", "X4-2 ", PPC},
1159 {1, "ORACLE", "X4-2L ", PPC},
1160 {1, "ORACLE", "X4-2B ", PPC},
1161 {1, "ORACLE", "X3-2 ", PPC},
1162 {1, "ORACLE", "X3-2L ", PPC},
1163 {1, "ORACLE", "X3-2B ", PPC},
1164 {1, "ORACLE", "X4470M2 ", PPC},
1165 {1, "ORACLE", "X4270M3 ", PPC},
1166 {1, "ORACLE", "X4270M2 ", PPC},
1167 {1, "ORACLE", "X4170M2 ", PPC},
1168 {0, "", ""},
1169 };
1170
intel_pstate_platform_pwr_mgmt_exists(void)1171 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1172 {
1173 struct acpi_table_header hdr;
1174 struct hw_vendor_info *v_info;
1175 const struct x86_cpu_id *id;
1176 u64 misc_pwr;
1177
1178 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1179 if (id) {
1180 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1181 if ( misc_pwr & (1 << 8))
1182 return true;
1183 }
1184
1185 if (acpi_disabled ||
1186 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1187 return false;
1188
1189 for (v_info = vendor_info; v_info->valid; v_info++) {
1190 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1191 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1192 ACPI_OEM_TABLE_ID_SIZE))
1193 switch (v_info->oem_pwr_table) {
1194 case PSS:
1195 return intel_pstate_no_acpi_pss();
1196 case PPC:
1197 return intel_pstate_has_acpi_ppc() &&
1198 (!force_load);
1199 }
1200 }
1201
1202 return false;
1203 }
1204 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)1205 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)1206 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1207 #endif /* CONFIG_ACPI */
1208
intel_pstate_init(void)1209 static int __init intel_pstate_init(void)
1210 {
1211 int cpu, rc = 0;
1212 const struct x86_cpu_id *id;
1213 struct cpu_defaults *cpu_def;
1214
1215 if (no_load)
1216 return -ENODEV;
1217
1218 id = x86_match_cpu(intel_pstate_cpu_ids);
1219 if (!id)
1220 return -ENODEV;
1221
1222 /*
1223 * The Intel pstate driver will be ignored if the platform
1224 * firmware has its own power management modes.
1225 */
1226 if (intel_pstate_platform_pwr_mgmt_exists())
1227 return -ENODEV;
1228
1229 cpu_def = (struct cpu_defaults *)id->driver_data;
1230
1231 copy_pid_params(&cpu_def->pid_policy);
1232 copy_cpu_funcs(&cpu_def->funcs);
1233
1234 if (intel_pstate_msrs_not_valid())
1235 return -ENODEV;
1236
1237 pr_info("Intel P-state driver initializing.\n");
1238
1239 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1240 if (!all_cpu_data)
1241 return -ENOMEM;
1242
1243 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1244 intel_pstate_hwp_enable();
1245
1246 if (!hwp_active && hwp_only)
1247 goto out;
1248
1249 rc = cpufreq_register_driver(&intel_pstate_driver);
1250 if (rc)
1251 goto out;
1252
1253 intel_pstate_debug_expose_params();
1254 intel_pstate_sysfs_expose_params();
1255
1256 return rc;
1257 out:
1258 get_online_cpus();
1259 for_each_online_cpu(cpu) {
1260 if (all_cpu_data[cpu]) {
1261 del_timer_sync(&all_cpu_data[cpu]->timer);
1262 kfree(all_cpu_data[cpu]);
1263 }
1264 }
1265
1266 put_online_cpus();
1267 vfree(all_cpu_data);
1268 return -ENODEV;
1269 }
1270 device_initcall(intel_pstate_init);
1271
intel_pstate_setup(char * str)1272 static int __init intel_pstate_setup(char *str)
1273 {
1274 if (!str)
1275 return -EINVAL;
1276
1277 if (!strcmp(str, "disable"))
1278 no_load = 1;
1279 if (!strcmp(str, "no_hwp"))
1280 no_hwp = 1;
1281 if (!strcmp(str, "force"))
1282 force_load = 1;
1283 if (!strcmp(str, "hwp_only"))
1284 hwp_only = 1;
1285 return 0;
1286 }
1287 early_param("intel_pstate", intel_pstate_setup);
1288
1289 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1290 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1291 MODULE_LICENSE("GPL");
1292