1 /*
2  * System timer for CSR SiRFprimaII
3  *
4  * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
5  *
6  * Licensed under GPLv2 or later.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/clockchips.h>
12 #include <linux/clocksource.h>
13 #include <linux/bitops.h>
14 #include <linux/irq.h>
15 #include <linux/clk.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/sched_clock.h>
22 #include <asm/mach/time.h>
23 
24 #define PRIMA2_CLOCK_FREQ 1000000
25 
26 #define SIRFSOC_TIMER_COUNTER_LO	0x0000
27 #define SIRFSOC_TIMER_COUNTER_HI	0x0004
28 #define SIRFSOC_TIMER_MATCH_0		0x0008
29 #define SIRFSOC_TIMER_MATCH_1		0x000C
30 #define SIRFSOC_TIMER_MATCH_2		0x0010
31 #define SIRFSOC_TIMER_MATCH_3		0x0014
32 #define SIRFSOC_TIMER_MATCH_4		0x0018
33 #define SIRFSOC_TIMER_MATCH_5		0x001C
34 #define SIRFSOC_TIMER_STATUS		0x0020
35 #define SIRFSOC_TIMER_INT_EN		0x0024
36 #define SIRFSOC_TIMER_WATCHDOG_EN	0x0028
37 #define SIRFSOC_TIMER_DIV		0x002C
38 #define SIRFSOC_TIMER_LATCH		0x0030
39 #define SIRFSOC_TIMER_LATCHED_LO	0x0034
40 #define SIRFSOC_TIMER_LATCHED_HI	0x0038
41 
42 #define SIRFSOC_TIMER_WDT_INDEX		5
43 
44 #define SIRFSOC_TIMER_LATCH_BIT	 BIT(0)
45 
46 #define SIRFSOC_TIMER_REG_CNT 11
47 
48 static const u32 sirfsoc_timer_reg_list[SIRFSOC_TIMER_REG_CNT] = {
49 	SIRFSOC_TIMER_MATCH_0, SIRFSOC_TIMER_MATCH_1, SIRFSOC_TIMER_MATCH_2,
50 	SIRFSOC_TIMER_MATCH_3, SIRFSOC_TIMER_MATCH_4, SIRFSOC_TIMER_MATCH_5,
51 	SIRFSOC_TIMER_INT_EN, SIRFSOC_TIMER_WATCHDOG_EN, SIRFSOC_TIMER_DIV,
52 	SIRFSOC_TIMER_LATCHED_LO, SIRFSOC_TIMER_LATCHED_HI,
53 };
54 
55 static u32 sirfsoc_timer_reg_val[SIRFSOC_TIMER_REG_CNT];
56 
57 static void __iomem *sirfsoc_timer_base;
58 
59 /* timer0 interrupt handler */
sirfsoc_timer_interrupt(int irq,void * dev_id)60 static irqreturn_t sirfsoc_timer_interrupt(int irq, void *dev_id)
61 {
62 	struct clock_event_device *ce = dev_id;
63 
64 	WARN_ON(!(readl_relaxed(sirfsoc_timer_base + SIRFSOC_TIMER_STATUS) &
65 		BIT(0)));
66 
67 	/* clear timer0 interrupt */
68 	writel_relaxed(BIT(0), sirfsoc_timer_base + SIRFSOC_TIMER_STATUS);
69 
70 	ce->event_handler(ce);
71 
72 	return IRQ_HANDLED;
73 }
74 
75 /* read 64-bit timer counter */
sirfsoc_timer_read(struct clocksource * cs)76 static cycle_t sirfsoc_timer_read(struct clocksource *cs)
77 {
78 	u64 cycles;
79 
80 	/* latch the 64-bit timer counter */
81 	writel_relaxed(SIRFSOC_TIMER_LATCH_BIT,
82 		sirfsoc_timer_base + SIRFSOC_TIMER_LATCH);
83 	cycles = readl_relaxed(sirfsoc_timer_base + SIRFSOC_TIMER_LATCHED_HI);
84 	cycles = (cycles << 32) |
85 		readl_relaxed(sirfsoc_timer_base + SIRFSOC_TIMER_LATCHED_LO);
86 
87 	return cycles;
88 }
89 
sirfsoc_timer_set_next_event(unsigned long delta,struct clock_event_device * ce)90 static int sirfsoc_timer_set_next_event(unsigned long delta,
91 	struct clock_event_device *ce)
92 {
93 	unsigned long now, next;
94 
95 	writel_relaxed(SIRFSOC_TIMER_LATCH_BIT,
96 		sirfsoc_timer_base + SIRFSOC_TIMER_LATCH);
97 	now = readl_relaxed(sirfsoc_timer_base + SIRFSOC_TIMER_LATCHED_LO);
98 	next = now + delta;
99 	writel_relaxed(next, sirfsoc_timer_base + SIRFSOC_TIMER_MATCH_0);
100 	writel_relaxed(SIRFSOC_TIMER_LATCH_BIT,
101 		sirfsoc_timer_base + SIRFSOC_TIMER_LATCH);
102 	now = readl_relaxed(sirfsoc_timer_base + SIRFSOC_TIMER_LATCHED_LO);
103 
104 	return next - now > delta ? -ETIME : 0;
105 }
106 
sirfsoc_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * ce)107 static void sirfsoc_timer_set_mode(enum clock_event_mode mode,
108 	struct clock_event_device *ce)
109 {
110 	u32 val = readl_relaxed(sirfsoc_timer_base + SIRFSOC_TIMER_INT_EN);
111 	switch (mode) {
112 	case CLOCK_EVT_MODE_PERIODIC:
113 		WARN_ON(1);
114 		break;
115 	case CLOCK_EVT_MODE_ONESHOT:
116 		writel_relaxed(val | BIT(0),
117 			sirfsoc_timer_base + SIRFSOC_TIMER_INT_EN);
118 		break;
119 	case CLOCK_EVT_MODE_SHUTDOWN:
120 		writel_relaxed(val & ~BIT(0),
121 			sirfsoc_timer_base + SIRFSOC_TIMER_INT_EN);
122 		break;
123 	case CLOCK_EVT_MODE_UNUSED:
124 	case CLOCK_EVT_MODE_RESUME:
125 		break;
126 	}
127 }
128 
sirfsoc_clocksource_suspend(struct clocksource * cs)129 static void sirfsoc_clocksource_suspend(struct clocksource *cs)
130 {
131 	int i;
132 
133 	writel_relaxed(SIRFSOC_TIMER_LATCH_BIT,
134 		sirfsoc_timer_base + SIRFSOC_TIMER_LATCH);
135 
136 	for (i = 0; i < SIRFSOC_TIMER_REG_CNT; i++)
137 		sirfsoc_timer_reg_val[i] =
138 			readl_relaxed(sirfsoc_timer_base +
139 				sirfsoc_timer_reg_list[i]);
140 }
141 
sirfsoc_clocksource_resume(struct clocksource * cs)142 static void sirfsoc_clocksource_resume(struct clocksource *cs)
143 {
144 	int i;
145 
146 	for (i = 0; i < SIRFSOC_TIMER_REG_CNT - 2; i++)
147 		writel_relaxed(sirfsoc_timer_reg_val[i],
148 			sirfsoc_timer_base + sirfsoc_timer_reg_list[i]);
149 
150 	writel_relaxed(sirfsoc_timer_reg_val[SIRFSOC_TIMER_REG_CNT - 2],
151 		sirfsoc_timer_base + SIRFSOC_TIMER_COUNTER_LO);
152 	writel_relaxed(sirfsoc_timer_reg_val[SIRFSOC_TIMER_REG_CNT - 1],
153 		sirfsoc_timer_base + SIRFSOC_TIMER_COUNTER_HI);
154 }
155 
156 static struct clock_event_device sirfsoc_clockevent = {
157 	.name = "sirfsoc_clockevent",
158 	.rating = 200,
159 	.features = CLOCK_EVT_FEAT_ONESHOT,
160 	.set_mode = sirfsoc_timer_set_mode,
161 	.set_next_event = sirfsoc_timer_set_next_event,
162 };
163 
164 static struct clocksource sirfsoc_clocksource = {
165 	.name = "sirfsoc_clocksource",
166 	.rating = 200,
167 	.mask = CLOCKSOURCE_MASK(64),
168 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
169 	.read = sirfsoc_timer_read,
170 	.suspend = sirfsoc_clocksource_suspend,
171 	.resume = sirfsoc_clocksource_resume,
172 };
173 
174 static struct irqaction sirfsoc_timer_irq = {
175 	.name = "sirfsoc_timer0",
176 	.flags = IRQF_TIMER,
177 	.irq = 0,
178 	.handler = sirfsoc_timer_interrupt,
179 	.dev_id = &sirfsoc_clockevent,
180 };
181 
182 /* Overwrite weak default sched_clock with more precise one */
sirfsoc_read_sched_clock(void)183 static u64 notrace sirfsoc_read_sched_clock(void)
184 {
185 	return sirfsoc_timer_read(NULL);
186 }
187 
sirfsoc_clockevent_init(void)188 static void __init sirfsoc_clockevent_init(void)
189 {
190 	sirfsoc_clockevent.cpumask = cpumask_of(0);
191 	clockevents_config_and_register(&sirfsoc_clockevent, PRIMA2_CLOCK_FREQ,
192 					2, -2);
193 }
194 
195 /* initialize the kernel jiffy timer source */
sirfsoc_prima2_timer_init(struct device_node * np)196 static void __init sirfsoc_prima2_timer_init(struct device_node *np)
197 {
198 	unsigned long rate;
199 	struct clk *clk;
200 
201 	clk = of_clk_get(np, 0);
202 	BUG_ON(IS_ERR(clk));
203 
204 	BUG_ON(clk_prepare_enable(clk));
205 
206 	rate = clk_get_rate(clk);
207 
208 	BUG_ON(rate < PRIMA2_CLOCK_FREQ);
209 	BUG_ON(rate % PRIMA2_CLOCK_FREQ);
210 
211 	sirfsoc_timer_base = of_iomap(np, 0);
212 	if (!sirfsoc_timer_base)
213 		panic("unable to map timer cpu registers\n");
214 
215 	sirfsoc_timer_irq.irq = irq_of_parse_and_map(np, 0);
216 
217 	writel_relaxed(rate / PRIMA2_CLOCK_FREQ / 2 - 1,
218 		sirfsoc_timer_base + SIRFSOC_TIMER_DIV);
219 	writel_relaxed(0, sirfsoc_timer_base + SIRFSOC_TIMER_COUNTER_LO);
220 	writel_relaxed(0, sirfsoc_timer_base + SIRFSOC_TIMER_COUNTER_HI);
221 	writel_relaxed(BIT(0), sirfsoc_timer_base + SIRFSOC_TIMER_STATUS);
222 
223 	BUG_ON(clocksource_register_hz(&sirfsoc_clocksource,
224 				       PRIMA2_CLOCK_FREQ));
225 
226 	sched_clock_register(sirfsoc_read_sched_clock, 64, PRIMA2_CLOCK_FREQ);
227 
228 	BUG_ON(setup_irq(sirfsoc_timer_irq.irq, &sirfsoc_timer_irq));
229 
230 	sirfsoc_clockevent_init();
231 }
232 CLOCKSOURCE_OF_DECLARE(sirfsoc_prima2_timer,
233 	"sirf,prima2-tick", sirfsoc_prima2_timer_init);
234