1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6 
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13 
14 
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *   - Some chips support 32 bit counter. A single channel is used for
23  *     this 32 bit free-running counter. the second channel is not used.
24  *
25  *   - The third channel may be used to provide a 16-bit clockevent
26  *     source, used in either periodic or oneshot mode.  This runs
27  *     at 32 KiHZ, and can handle delays of up to two seconds.
28  *
29  * A boot clocksource and clockevent source are also currently needed,
30  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31  * this code can be used when init_timers() is called, well before most
32  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
33  * have only the timers in one TC block... they currently don't support
34  * the tclib code, because of that initialization issue.)
35  *
36  * REVISIT behavior during system suspend states... we should disable
37  * all clocks and save the power.  Easily done for clockevent devices,
38  * but clocksources won't necessarily get the needed notifications.
39  * For deeper system sleep states, this will be mandatory...
40  */
41 
42 static void __iomem *tcaddr;
43 
tc_get_cycles(struct clocksource * cs)44 static cycle_t tc_get_cycles(struct clocksource *cs)
45 {
46 	unsigned long	flags;
47 	u32		lower, upper;
48 
49 	raw_local_irq_save(flags);
50 	do {
51 		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54 
55 	raw_local_irq_restore(flags);
56 	return (upper << 16) | lower;
57 }
58 
tc_get_cycles32(struct clocksource * cs)59 static cycle_t tc_get_cycles32(struct clocksource *cs)
60 {
61 	return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62 }
63 
64 static struct clocksource clksrc = {
65 	.name           = "tcb_clksrc",
66 	.rating         = 200,
67 	.read           = tc_get_cycles,
68 	.mask           = CLOCKSOURCE_MASK(32),
69 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
70 };
71 
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
73 
74 struct tc_clkevt_device {
75 	struct clock_event_device	clkevt;
76 	struct clk			*clk;
77 	void __iomem			*regs;
78 };
79 
to_tc_clkevt(struct clock_event_device * clkevt)80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81 {
82 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
83 }
84 
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86  * because using one of the divided clocks would usually mean the
87  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88  *
89  * A divided clock could be good for high resolution timers, since
90  * 30.5 usec resolution can seem "low".
91  */
92 static u32 timer_clock;
93 
tc_shutdown(struct clock_event_device * d)94 static int tc_shutdown(struct clock_event_device *d)
95 {
96 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 	void __iomem		*regs = tcd->regs;
98 
99 	__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
100 	__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
101 	if (!clockevent_state_detached(d))
102 		clk_disable(tcd->clk);
103 
104 	return 0;
105 }
106 
tc_set_oneshot(struct clock_event_device * d)107 static int tc_set_oneshot(struct clock_event_device *d)
108 {
109 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
110 	void __iomem		*regs = tcd->regs;
111 
112 	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
113 		tc_shutdown(d);
114 
115 	clk_enable(tcd->clk);
116 
117 	/* slow clock, count up to RC, then irq and stop */
118 	__raw_writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
119 		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
120 	__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
121 
122 	/* set_next_event() configures and starts the timer */
123 	return 0;
124 }
125 
tc_set_periodic(struct clock_event_device * d)126 static int tc_set_periodic(struct clock_event_device *d)
127 {
128 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
129 	void __iomem		*regs = tcd->regs;
130 
131 	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
132 		tc_shutdown(d);
133 
134 	/* By not making the gentime core emulate periodic mode on top
135 	 * of oneshot, we get lower overhead and improved accuracy.
136 	 */
137 	clk_enable(tcd->clk);
138 
139 	/* slow clock, count up to RC, then irq and restart */
140 	__raw_writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
141 		     regs + ATMEL_TC_REG(2, CMR));
142 	__raw_writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
143 
144 	/* Enable clock and interrupts on RC compare */
145 	__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
146 
147 	/* go go gadget! */
148 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
149 		     ATMEL_TC_REG(2, CCR));
150 	return 0;
151 }
152 
tc_next_event(unsigned long delta,struct clock_event_device * d)153 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
154 {
155 	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
156 
157 	/* go go gadget! */
158 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
159 			tcaddr + ATMEL_TC_REG(2, CCR));
160 	return 0;
161 }
162 
163 static struct tc_clkevt_device clkevt = {
164 	.clkevt	= {
165 		.name			= "tc_clkevt",
166 		.features		= CLOCK_EVT_FEAT_PERIODIC |
167 					  CLOCK_EVT_FEAT_ONESHOT,
168 		/* Should be lower than at91rm9200's system timer */
169 		.rating			= 125,
170 		.set_next_event		= tc_next_event,
171 		.set_state_shutdown	= tc_shutdown,
172 		.set_state_periodic	= tc_set_periodic,
173 		.set_state_oneshot	= tc_set_oneshot,
174 	},
175 };
176 
ch2_irq(int irq,void * handle)177 static irqreturn_t ch2_irq(int irq, void *handle)
178 {
179 	struct tc_clkevt_device	*dev = handle;
180 	unsigned int		sr;
181 
182 	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
183 	if (sr & ATMEL_TC_CPCS) {
184 		dev->clkevt.event_handler(&dev->clkevt);
185 		return IRQ_HANDLED;
186 	}
187 
188 	return IRQ_NONE;
189 }
190 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)191 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
192 {
193 	int ret;
194 	struct clk *t2_clk = tc->clk[2];
195 	int irq = tc->irq[2];
196 
197 	ret = clk_prepare_enable(tc->slow_clk);
198 	if (ret)
199 		return ret;
200 
201 	/* try to enable t2 clk to avoid future errors in mode change */
202 	ret = clk_prepare_enable(t2_clk);
203 	if (ret) {
204 		clk_disable_unprepare(tc->slow_clk);
205 		return ret;
206 	}
207 
208 	clk_disable(t2_clk);
209 
210 	clkevt.regs = tc->regs;
211 	clkevt.clk = t2_clk;
212 
213 	timer_clock = clk32k_divisor_idx;
214 
215 	clkevt.clkevt.cpumask = cpumask_of(0);
216 
217 	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
218 	if (ret) {
219 		clk_unprepare(t2_clk);
220 		clk_disable_unprepare(tc->slow_clk);
221 		return ret;
222 	}
223 
224 	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
225 
226 	return ret;
227 }
228 
229 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
230 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)231 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
232 {
233 	/* NOTHING */
234 	return 0;
235 }
236 
237 #endif
238 
tcb_setup_dual_chan(struct atmel_tc * tc,int mck_divisor_idx)239 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
240 {
241 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
242 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
243 			| ATMEL_TC_WAVE
244 			| ATMEL_TC_WAVESEL_UP		/* free-run */
245 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
246 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
247 			tcaddr + ATMEL_TC_REG(0, CMR));
248 	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
249 	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
250 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
251 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
252 
253 	/* channel 1:  waveform mode, input TIOA0 */
254 	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */
255 			| ATMEL_TC_WAVE
256 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
257 			tcaddr + ATMEL_TC_REG(1, CMR));
258 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
259 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
260 
261 	/* chain channel 0 to channel 1*/
262 	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
263 	/* then reset all the timers */
264 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
265 }
266 
tcb_setup_single_chan(struct atmel_tc * tc,int mck_divisor_idx)267 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
268 {
269 	/* channel 0:  waveform mode, input mclk/8 */
270 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
271 			| ATMEL_TC_WAVE
272 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
273 			tcaddr + ATMEL_TC_REG(0, CMR));
274 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
275 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
276 
277 	/* then reset all the timers */
278 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
279 }
280 
tcb_clksrc_init(void)281 static int __init tcb_clksrc_init(void)
282 {
283 	static char bootinfo[] __initdata
284 		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
285 
286 	struct platform_device *pdev;
287 	struct atmel_tc *tc;
288 	struct clk *t0_clk;
289 	u32 rate, divided_rate = 0;
290 	int best_divisor_idx = -1;
291 	int clk32k_divisor_idx = -1;
292 	int i;
293 	int ret;
294 
295 	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
296 	if (!tc) {
297 		pr_debug("can't alloc TC for clocksource\n");
298 		return -ENODEV;
299 	}
300 	tcaddr = tc->regs;
301 	pdev = tc->pdev;
302 
303 	t0_clk = tc->clk[0];
304 	ret = clk_prepare_enable(t0_clk);
305 	if (ret) {
306 		pr_debug("can't enable T0 clk\n");
307 		goto err_free_tc;
308 	}
309 
310 	/* How fast will we be counting?  Pick something over 5 MHz.  */
311 	rate = (u32) clk_get_rate(t0_clk);
312 	for (i = 0; i < 5; i++) {
313 		unsigned divisor = atmel_tc_divisors[i];
314 		unsigned tmp;
315 
316 		/* remember 32 KiHz clock for later */
317 		if (!divisor) {
318 			clk32k_divisor_idx = i;
319 			continue;
320 		}
321 
322 		tmp = rate / divisor;
323 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
324 		if (best_divisor_idx > 0) {
325 			if (tmp < 5 * 1000 * 1000)
326 				continue;
327 		}
328 		divided_rate = tmp;
329 		best_divisor_idx = i;
330 	}
331 
332 
333 	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
334 			divided_rate / 1000000,
335 			((divided_rate + 500000) % 1000000) / 1000);
336 
337 	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
338 		/* use apropriate function to read 32 bit counter */
339 		clksrc.read = tc_get_cycles32;
340 		/* setup ony channel 0 */
341 		tcb_setup_single_chan(tc, best_divisor_idx);
342 	} else {
343 		/* tclib will give us three clocks no matter what the
344 		 * underlying platform supports.
345 		 */
346 		ret = clk_prepare_enable(tc->clk[1]);
347 		if (ret) {
348 			pr_debug("can't enable T1 clk\n");
349 			goto err_disable_t0;
350 		}
351 		/* setup both channel 0 & 1 */
352 		tcb_setup_dual_chan(tc, best_divisor_idx);
353 	}
354 
355 	/* and away we go! */
356 	ret = clocksource_register_hz(&clksrc, divided_rate);
357 	if (ret)
358 		goto err_disable_t1;
359 
360 	/* channel 2:  periodic and oneshot timer support */
361 	ret = setup_clkevents(tc, clk32k_divisor_idx);
362 	if (ret)
363 		goto err_unregister_clksrc;
364 
365 	return 0;
366 
367 err_unregister_clksrc:
368 	clocksource_unregister(&clksrc);
369 
370 err_disable_t1:
371 	if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
372 		clk_disable_unprepare(tc->clk[1]);
373 
374 err_disable_t0:
375 	clk_disable_unprepare(t0_clk);
376 
377 err_free_tc:
378 	atmel_tc_free(tc);
379 	return ret;
380 }
381 arch_initcall(tcb_clksrc_init);
382