1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6 
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13 
14 
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *   - Some chips support 32 bit counter. A single channel is used for
23  *     this 32 bit free-running counter. the second channel is not used.
24  *
25  *   - The third channel may be used to provide a 16-bit clockevent
26  *     source, used in either periodic or oneshot mode.  This runs
27  *     at 32 KiHZ, and can handle delays of up to two seconds.
28  *
29  * A boot clocksource and clockevent source are also currently needed,
30  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31  * this code can be used when init_timers() is called, well before most
32  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
33  * have only the timers in one TC block... they currently don't support
34  * the tclib code, because of that initialization issue.)
35  *
36  * REVISIT behavior during system suspend states... we should disable
37  * all clocks and save the power.  Easily done for clockevent devices,
38  * but clocksources won't necessarily get the needed notifications.
39  * For deeper system sleep states, this will be mandatory...
40  */
41 
42 static void __iomem *tcaddr;
43 
tc_get_cycles(struct clocksource * cs)44 static cycle_t tc_get_cycles(struct clocksource *cs)
45 {
46 	unsigned long	flags;
47 	u32		lower, upper;
48 
49 	raw_local_irq_save(flags);
50 	do {
51 		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54 
55 	raw_local_irq_restore(flags);
56 	return (upper << 16) | lower;
57 }
58 
tc_get_cycles32(struct clocksource * cs)59 static cycle_t tc_get_cycles32(struct clocksource *cs)
60 {
61 	return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62 }
63 
64 static struct clocksource clksrc = {
65 	.name           = "tcb_clksrc",
66 	.rating         = 200,
67 	.read           = tc_get_cycles,
68 	.mask           = CLOCKSOURCE_MASK(32),
69 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
70 };
71 
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
73 
74 struct tc_clkevt_device {
75 	struct clock_event_device	clkevt;
76 	struct clk			*clk;
77 	void __iomem			*regs;
78 };
79 
to_tc_clkevt(struct clock_event_device * clkevt)80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81 {
82 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
83 }
84 
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86  * because using one of the divided clocks would usually mean the
87  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88  *
89  * A divided clock could be good for high resolution timers, since
90  * 30.5 usec resolution can seem "low".
91  */
92 static u32 timer_clock;
93 
tc_mode(enum clock_event_mode m,struct clock_event_device * d)94 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
95 {
96 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 	void __iomem		*regs = tcd->regs;
98 
99 	if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100 			|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101 		__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102 		__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103 		clk_disable(tcd->clk);
104 	}
105 
106 	switch (m) {
107 
108 	/* By not making the gentime core emulate periodic mode on top
109 	 * of oneshot, we get lower overhead and improved accuracy.
110 	 */
111 	case CLOCK_EVT_MODE_PERIODIC:
112 		clk_enable(tcd->clk);
113 
114 		/* slow clock, count up to RC, then irq and restart */
115 		__raw_writel(timer_clock
116 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117 				regs + ATMEL_TC_REG(2, CMR));
118 		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
119 
120 		/* Enable clock and interrupts on RC compare */
121 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122 
123 		/* go go gadget! */
124 		__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125 				regs + ATMEL_TC_REG(2, CCR));
126 		break;
127 
128 	case CLOCK_EVT_MODE_ONESHOT:
129 		clk_enable(tcd->clk);
130 
131 		/* slow clock, count up to RC, then irq and stop */
132 		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134 				regs + ATMEL_TC_REG(2, CMR));
135 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
136 
137 		/* set_next_event() configures and starts the timer */
138 		break;
139 
140 	default:
141 		break;
142 	}
143 }
144 
tc_next_event(unsigned long delta,struct clock_event_device * d)145 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
146 {
147 	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
148 
149 	/* go go gadget! */
150 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151 			tcaddr + ATMEL_TC_REG(2, CCR));
152 	return 0;
153 }
154 
155 static struct tc_clkevt_device clkevt = {
156 	.clkevt	= {
157 		.name		= "tc_clkevt",
158 		.features	= CLOCK_EVT_FEAT_PERIODIC
159 					| CLOCK_EVT_FEAT_ONESHOT,
160 		/* Should be lower than at91rm9200's system timer */
161 		.rating		= 125,
162 		.set_next_event	= tc_next_event,
163 		.set_mode	= tc_mode,
164 	},
165 };
166 
ch2_irq(int irq,void * handle)167 static irqreturn_t ch2_irq(int irq, void *handle)
168 {
169 	struct tc_clkevt_device	*dev = handle;
170 	unsigned int		sr;
171 
172 	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
173 	if (sr & ATMEL_TC_CPCS) {
174 		dev->clkevt.event_handler(&dev->clkevt);
175 		return IRQ_HANDLED;
176 	}
177 
178 	return IRQ_NONE;
179 }
180 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)181 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
182 {
183 	int ret;
184 	struct clk *t2_clk = tc->clk[2];
185 	int irq = tc->irq[2];
186 
187 	/* try to enable t2 clk to avoid future errors in mode change */
188 	ret = clk_prepare_enable(t2_clk);
189 	if (ret)
190 		return ret;
191 	clk_disable(t2_clk);
192 
193 	clkevt.regs = tc->regs;
194 	clkevt.clk = t2_clk;
195 
196 	timer_clock = clk32k_divisor_idx;
197 
198 	clkevt.clkevt.cpumask = cpumask_of(0);
199 
200 	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
201 	if (ret) {
202 		clk_disable_unprepare(t2_clk);
203 		return ret;
204 	}
205 
206 	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
207 
208 	return ret;
209 }
210 
211 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
212 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)213 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
214 {
215 	/* NOTHING */
216 	return 0;
217 }
218 
219 #endif
220 
tcb_setup_dual_chan(struct atmel_tc * tc,int mck_divisor_idx)221 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
222 {
223 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
224 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
225 			| ATMEL_TC_WAVE
226 			| ATMEL_TC_WAVESEL_UP		/* free-run */
227 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
228 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
229 			tcaddr + ATMEL_TC_REG(0, CMR));
230 	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
231 	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
232 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
233 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
234 
235 	/* channel 1:  waveform mode, input TIOA0 */
236 	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */
237 			| ATMEL_TC_WAVE
238 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
239 			tcaddr + ATMEL_TC_REG(1, CMR));
240 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
241 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
242 
243 	/* chain channel 0 to channel 1*/
244 	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
245 	/* then reset all the timers */
246 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
247 }
248 
tcb_setup_single_chan(struct atmel_tc * tc,int mck_divisor_idx)249 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
250 {
251 	/* channel 0:  waveform mode, input mclk/8 */
252 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
253 			| ATMEL_TC_WAVE
254 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
255 			tcaddr + ATMEL_TC_REG(0, CMR));
256 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
257 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
258 
259 	/* then reset all the timers */
260 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
261 }
262 
tcb_clksrc_init(void)263 static int __init tcb_clksrc_init(void)
264 {
265 	static char bootinfo[] __initdata
266 		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
267 
268 	struct platform_device *pdev;
269 	struct atmel_tc *tc;
270 	struct clk *t0_clk;
271 	u32 rate, divided_rate = 0;
272 	int best_divisor_idx = -1;
273 	int clk32k_divisor_idx = -1;
274 	int i;
275 	int ret;
276 
277 	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
278 	if (!tc) {
279 		pr_debug("can't alloc TC for clocksource\n");
280 		return -ENODEV;
281 	}
282 	tcaddr = tc->regs;
283 	pdev = tc->pdev;
284 
285 	t0_clk = tc->clk[0];
286 	ret = clk_prepare_enable(t0_clk);
287 	if (ret) {
288 		pr_debug("can't enable T0 clk\n");
289 		goto err_free_tc;
290 	}
291 
292 	/* How fast will we be counting?  Pick something over 5 MHz.  */
293 	rate = (u32) clk_get_rate(t0_clk);
294 	for (i = 0; i < 5; i++) {
295 		unsigned divisor = atmel_tc_divisors[i];
296 		unsigned tmp;
297 
298 		/* remember 32 KiHz clock for later */
299 		if (!divisor) {
300 			clk32k_divisor_idx = i;
301 			continue;
302 		}
303 
304 		tmp = rate / divisor;
305 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
306 		if (best_divisor_idx > 0) {
307 			if (tmp < 5 * 1000 * 1000)
308 				continue;
309 		}
310 		divided_rate = tmp;
311 		best_divisor_idx = i;
312 	}
313 
314 
315 	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
316 			divided_rate / 1000000,
317 			((divided_rate + 500000) % 1000000) / 1000);
318 
319 	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
320 		/* use apropriate function to read 32 bit counter */
321 		clksrc.read = tc_get_cycles32;
322 		/* setup ony channel 0 */
323 		tcb_setup_single_chan(tc, best_divisor_idx);
324 	} else {
325 		/* tclib will give us three clocks no matter what the
326 		 * underlying platform supports.
327 		 */
328 		ret = clk_prepare_enable(tc->clk[1]);
329 		if (ret) {
330 			pr_debug("can't enable T1 clk\n");
331 			goto err_disable_t0;
332 		}
333 		/* setup both channel 0 & 1 */
334 		tcb_setup_dual_chan(tc, best_divisor_idx);
335 	}
336 
337 	/* and away we go! */
338 	ret = clocksource_register_hz(&clksrc, divided_rate);
339 	if (ret)
340 		goto err_disable_t1;
341 
342 	/* channel 2:  periodic and oneshot timer support */
343 	ret = setup_clkevents(tc, clk32k_divisor_idx);
344 	if (ret)
345 		goto err_unregister_clksrc;
346 
347 	return 0;
348 
349 err_unregister_clksrc:
350 	clocksource_unregister(&clksrc);
351 
352 err_disable_t1:
353 	if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
354 		clk_disable_unprepare(tc->clk[1]);
355 
356 err_disable_t0:
357 	clk_disable_unprepare(t0_clk);
358 
359 err_free_tc:
360 	atmel_tc_free(tc);
361 	return ret;
362 }
363 arch_initcall(tcb_clksrc_init);
364