1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
atomic_inc_return_safe(atomic_t * v)67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_MAX_PARENT_CHAIN_LEN	16
100 
101 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
102 #define RBD_MAX_SNAP_NAME_LEN	\
103 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104 
105 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
106 
107 #define RBD_SNAP_HEAD_NAME	"-"
108 
109 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
110 
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX	64
114 
115 #define RBD_OBJ_PREFIX_LEN_MAX	64
116 
117 /* Feature bits */
118 
119 #define RBD_FEATURE_LAYERING	(1<<0)
120 #define RBD_FEATURE_STRIPINGV2	(1<<1)
121 #define RBD_FEATURES_ALL \
122 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123 
124 /* Features supported by this (client software) implementation. */
125 
126 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
127 
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN		32
135 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	__u8 crypt_type;
145 	__u8 comp_type;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	u64 features;		/* Might be changeable someday? */
149 
150 	/* The remaining fields need to be updated occasionally */
151 	u64 image_size;
152 	struct ceph_snap_context *snapc;
153 	char *snap_names;	/* format 1 only */
154 	u64 *snap_sizes;	/* format 1 only */
155 };
156 
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183 	u64		pool_id;
184 	const char	*pool_name;
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206 
207 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
208 
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211 
212 enum obj_request_type {
213 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215 
216 enum obj_operation_type {
217 	OBJ_OP_WRITE,
218 	OBJ_OP_READ,
219 	OBJ_OP_DISCARD,
220 };
221 
222 enum obj_req_flags {
223 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
224 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
225 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
226 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
227 };
228 
229 struct rbd_obj_request {
230 	const char		*object_name;
231 	u64			offset;		/* object start byte */
232 	u64			length;		/* bytes from offset */
233 	unsigned long		flags;
234 
235 	/*
236 	 * An object request associated with an image will have its
237 	 * img_data flag set; a standalone object request will not.
238 	 *
239 	 * A standalone object request will have which == BAD_WHICH
240 	 * and a null obj_request pointer.
241 	 *
242 	 * An object request initiated in support of a layered image
243 	 * object (to check for its existence before a write) will
244 	 * have which == BAD_WHICH and a non-null obj_request pointer.
245 	 *
246 	 * Finally, an object request for rbd image data will have
247 	 * which != BAD_WHICH, and will have a non-null img_request
248 	 * pointer.  The value of which will be in the range
249 	 * 0..(img_request->obj_request_count-1).
250 	 */
251 	union {
252 		struct rbd_obj_request	*obj_request;	/* STAT op */
253 		struct {
254 			struct rbd_img_request	*img_request;
255 			u64			img_offset;
256 			/* links for img_request->obj_requests list */
257 			struct list_head	links;
258 		};
259 	};
260 	u32			which;		/* posn image request list */
261 
262 	enum obj_request_type	type;
263 	union {
264 		struct bio	*bio_list;
265 		struct {
266 			struct page	**pages;
267 			u32		page_count;
268 		};
269 	};
270 	struct page		**copyup_pages;
271 	u32			copyup_page_count;
272 
273 	struct ceph_osd_request	*osd_req;
274 
275 	u64			xferred;	/* bytes transferred */
276 	int			result;
277 
278 	rbd_obj_callback_t	callback;
279 	struct completion	completion;
280 
281 	struct kref		kref;
282 };
283 
284 enum img_req_flags {
285 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
289 };
290 
291 struct rbd_img_request {
292 	struct rbd_device	*rbd_dev;
293 	u64			offset;	/* starting image byte offset */
294 	u64			length;	/* byte count from offset */
295 	unsigned long		flags;
296 	union {
297 		u64			snap_id;	/* for reads */
298 		struct ceph_snap_context *snapc;	/* for writes */
299 	};
300 	union {
301 		struct request		*rq;		/* block request */
302 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
303 	};
304 	struct page		**copyup_pages;
305 	u32			copyup_page_count;
306 	spinlock_t		completion_lock;/* protects next_completion */
307 	u32			next_completion;
308 	rbd_img_callback_t	callback;
309 	u64			xferred;/* aggregate bytes transferred */
310 	int			result;	/* first nonzero obj_request result */
311 
312 	u32			obj_request_count;
313 	struct list_head	obj_requests;	/* rbd_obj_request structs */
314 
315 	struct kref		kref;
316 };
317 
318 #define for_each_obj_request(ireq, oreq) \
319 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 
325 struct rbd_mapping {
326 	u64                     size;
327 	u64                     features;
328 	bool			read_only;
329 };
330 
331 /*
332  * a single device
333  */
334 struct rbd_device {
335 	int			dev_id;		/* blkdev unique id */
336 
337 	int			major;		/* blkdev assigned major */
338 	int			minor;
339 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
340 
341 	u32			image_format;	/* Either 1 or 2 */
342 	struct rbd_client	*rbd_client;
343 
344 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345 
346 	spinlock_t		lock;		/* queue, flags, open_count */
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 
352 	char			*header_name;
353 
354 	struct ceph_file_layout	layout;
355 
356 	struct ceph_osd_event   *watch_event;
357 	struct rbd_obj_request	*watch_request;
358 
359 	struct rbd_spec		*parent_spec;
360 	u64			parent_overlap;
361 	atomic_t		parent_ref;
362 	struct rbd_device	*parent;
363 
364 	/* Block layer tags. */
365 	struct blk_mq_tag_set	tag_set;
366 
367 	/* protects updating the header */
368 	struct rw_semaphore     header_rwsem;
369 
370 	struct rbd_mapping	mapping;
371 
372 	struct list_head	node;
373 
374 	/* sysfs related */
375 	struct device		dev;
376 	unsigned long		open_count;	/* protected by lock */
377 };
378 
379 /*
380  * Flag bits for rbd_dev->flags.  If atomicity is required,
381  * rbd_dev->lock is used to protect access.
382  *
383  * Currently, only the "removing" flag (which is coupled with the
384  * "open_count" field) requires atomic access.
385  */
386 enum rbd_dev_flags {
387 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
388 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
389 };
390 
391 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
392 
393 static LIST_HEAD(rbd_dev_list);    /* devices */
394 static DEFINE_SPINLOCK(rbd_dev_list_lock);
395 
396 static LIST_HEAD(rbd_client_list);		/* clients */
397 static DEFINE_SPINLOCK(rbd_client_list_lock);
398 
399 /* Slab caches for frequently-allocated structures */
400 
401 static struct kmem_cache	*rbd_img_request_cache;
402 static struct kmem_cache	*rbd_obj_request_cache;
403 static struct kmem_cache	*rbd_segment_name_cache;
404 
405 static int rbd_major;
406 static DEFINE_IDA(rbd_dev_id_ida);
407 
408 static struct workqueue_struct *rbd_wq;
409 
410 /*
411  * Default to false for now, as single-major requires >= 0.75 version of
412  * userspace rbd utility.
413  */
414 static bool single_major = false;
415 module_param(single_major, bool, S_IRUGO);
416 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
417 
418 static int rbd_img_request_submit(struct rbd_img_request *img_request);
419 
420 static void rbd_dev_device_release(struct device *dev);
421 
422 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
423 		       size_t count);
424 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
425 			  size_t count);
426 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
427 				    size_t count);
428 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
429 				       size_t count);
430 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
431 static void rbd_spec_put(struct rbd_spec *spec);
432 
rbd_dev_id_to_minor(int dev_id)433 static int rbd_dev_id_to_minor(int dev_id)
434 {
435 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
436 }
437 
minor_to_rbd_dev_id(int minor)438 static int minor_to_rbd_dev_id(int minor)
439 {
440 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
441 }
442 
443 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
444 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
445 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
446 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
447 
448 static struct attribute *rbd_bus_attrs[] = {
449 	&bus_attr_add.attr,
450 	&bus_attr_remove.attr,
451 	&bus_attr_add_single_major.attr,
452 	&bus_attr_remove_single_major.attr,
453 	NULL,
454 };
455 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)456 static umode_t rbd_bus_is_visible(struct kobject *kobj,
457 				  struct attribute *attr, int index)
458 {
459 	if (!single_major &&
460 	    (attr == &bus_attr_add_single_major.attr ||
461 	     attr == &bus_attr_remove_single_major.attr))
462 		return 0;
463 
464 	return attr->mode;
465 }
466 
467 static const struct attribute_group rbd_bus_group = {
468 	.attrs = rbd_bus_attrs,
469 	.is_visible = rbd_bus_is_visible,
470 };
471 __ATTRIBUTE_GROUPS(rbd_bus);
472 
473 static struct bus_type rbd_bus_type = {
474 	.name		= "rbd",
475 	.bus_groups	= rbd_bus_groups,
476 };
477 
rbd_root_dev_release(struct device * dev)478 static void rbd_root_dev_release(struct device *dev)
479 {
480 }
481 
482 static struct device rbd_root_dev = {
483 	.init_name =    "rbd",
484 	.release =      rbd_root_dev_release,
485 };
486 
487 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)488 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
489 {
490 	struct va_format vaf;
491 	va_list args;
492 
493 	va_start(args, fmt);
494 	vaf.fmt = fmt;
495 	vaf.va = &args;
496 
497 	if (!rbd_dev)
498 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
499 	else if (rbd_dev->disk)
500 		printk(KERN_WARNING "%s: %s: %pV\n",
501 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
502 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
503 		printk(KERN_WARNING "%s: image %s: %pV\n",
504 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
505 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
506 		printk(KERN_WARNING "%s: id %s: %pV\n",
507 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
508 	else	/* punt */
509 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
510 			RBD_DRV_NAME, rbd_dev, &vaf);
511 	va_end(args);
512 }
513 
514 #ifdef RBD_DEBUG
515 #define rbd_assert(expr)						\
516 		if (unlikely(!(expr))) {				\
517 			printk(KERN_ERR "\nAssertion failure in %s() "	\
518 						"at line %d:\n\n"	\
519 					"\trbd_assert(%s);\n\n",	\
520 					__func__, __LINE__, #expr);	\
521 			BUG();						\
522 		}
523 #else /* !RBD_DEBUG */
524 #  define rbd_assert(expr)	((void) 0)
525 #endif /* !RBD_DEBUG */
526 
527 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
528 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
529 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
530 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
531 
532 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
533 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
534 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
535 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
536 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
537 					u64 snap_id);
538 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
539 				u8 *order, u64 *snap_size);
540 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
541 		u64 *snap_features);
542 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
543 
rbd_open(struct block_device * bdev,fmode_t mode)544 static int rbd_open(struct block_device *bdev, fmode_t mode)
545 {
546 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
547 	bool removing = false;
548 
549 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
550 		return -EROFS;
551 
552 	spin_lock_irq(&rbd_dev->lock);
553 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
554 		removing = true;
555 	else
556 		rbd_dev->open_count++;
557 	spin_unlock_irq(&rbd_dev->lock);
558 	if (removing)
559 		return -ENOENT;
560 
561 	(void) get_device(&rbd_dev->dev);
562 
563 	return 0;
564 }
565 
rbd_release(struct gendisk * disk,fmode_t mode)566 static void rbd_release(struct gendisk *disk, fmode_t mode)
567 {
568 	struct rbd_device *rbd_dev = disk->private_data;
569 	unsigned long open_count_before;
570 
571 	spin_lock_irq(&rbd_dev->lock);
572 	open_count_before = rbd_dev->open_count--;
573 	spin_unlock_irq(&rbd_dev->lock);
574 	rbd_assert(open_count_before > 0);
575 
576 	put_device(&rbd_dev->dev);
577 }
578 
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)579 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
580 {
581 	int ret = 0;
582 	int val;
583 	bool ro;
584 	bool ro_changed = false;
585 
586 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
587 	if (get_user(val, (int __user *)(arg)))
588 		return -EFAULT;
589 
590 	ro = val ? true : false;
591 	/* Snapshot doesn't allow to write*/
592 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
593 		return -EROFS;
594 
595 	spin_lock_irq(&rbd_dev->lock);
596 	/* prevent others open this device */
597 	if (rbd_dev->open_count > 1) {
598 		ret = -EBUSY;
599 		goto out;
600 	}
601 
602 	if (rbd_dev->mapping.read_only != ro) {
603 		rbd_dev->mapping.read_only = ro;
604 		ro_changed = true;
605 	}
606 
607 out:
608 	spin_unlock_irq(&rbd_dev->lock);
609 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
610 	if (ret == 0 && ro_changed)
611 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
612 
613 	return ret;
614 }
615 
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)616 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
617 			unsigned int cmd, unsigned long arg)
618 {
619 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
620 	int ret = 0;
621 
622 	switch (cmd) {
623 	case BLKROSET:
624 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
625 		break;
626 	default:
627 		ret = -ENOTTY;
628 	}
629 
630 	return ret;
631 }
632 
633 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)634 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
635 				unsigned int cmd, unsigned long arg)
636 {
637 	return rbd_ioctl(bdev, mode, cmd, arg);
638 }
639 #endif /* CONFIG_COMPAT */
640 
641 static const struct block_device_operations rbd_bd_ops = {
642 	.owner			= THIS_MODULE,
643 	.open			= rbd_open,
644 	.release		= rbd_release,
645 	.ioctl			= rbd_ioctl,
646 #ifdef CONFIG_COMPAT
647 	.compat_ioctl		= rbd_compat_ioctl,
648 #endif
649 };
650 
651 /*
652  * Initialize an rbd client instance.  Success or not, this function
653  * consumes ceph_opts.  Caller holds client_mutex.
654  */
rbd_client_create(struct ceph_options * ceph_opts)655 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
656 {
657 	struct rbd_client *rbdc;
658 	int ret = -ENOMEM;
659 
660 	dout("%s:\n", __func__);
661 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
662 	if (!rbdc)
663 		goto out_opt;
664 
665 	kref_init(&rbdc->kref);
666 	INIT_LIST_HEAD(&rbdc->node);
667 
668 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
669 	if (IS_ERR(rbdc->client))
670 		goto out_rbdc;
671 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
672 
673 	ret = ceph_open_session(rbdc->client);
674 	if (ret < 0)
675 		goto out_client;
676 
677 	spin_lock(&rbd_client_list_lock);
678 	list_add_tail(&rbdc->node, &rbd_client_list);
679 	spin_unlock(&rbd_client_list_lock);
680 
681 	dout("%s: rbdc %p\n", __func__, rbdc);
682 
683 	return rbdc;
684 out_client:
685 	ceph_destroy_client(rbdc->client);
686 out_rbdc:
687 	kfree(rbdc);
688 out_opt:
689 	if (ceph_opts)
690 		ceph_destroy_options(ceph_opts);
691 	dout("%s: error %d\n", __func__, ret);
692 
693 	return ERR_PTR(ret);
694 }
695 
__rbd_get_client(struct rbd_client * rbdc)696 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
697 {
698 	kref_get(&rbdc->kref);
699 
700 	return rbdc;
701 }
702 
703 /*
704  * Find a ceph client with specific addr and configuration.  If
705  * found, bump its reference count.
706  */
rbd_client_find(struct ceph_options * ceph_opts)707 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
708 {
709 	struct rbd_client *client_node;
710 	bool found = false;
711 
712 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
713 		return NULL;
714 
715 	spin_lock(&rbd_client_list_lock);
716 	list_for_each_entry(client_node, &rbd_client_list, node) {
717 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
718 			__rbd_get_client(client_node);
719 
720 			found = true;
721 			break;
722 		}
723 	}
724 	spin_unlock(&rbd_client_list_lock);
725 
726 	return found ? client_node : NULL;
727 }
728 
729 /*
730  * mount options
731  */
732 enum {
733 	Opt_last_int,
734 	/* int args above */
735 	Opt_last_string,
736 	/* string args above */
737 	Opt_read_only,
738 	Opt_read_write,
739 	/* Boolean args above */
740 	Opt_last_bool,
741 };
742 
743 static match_table_t rbd_opts_tokens = {
744 	/* int args above */
745 	/* string args above */
746 	{Opt_read_only, "read_only"},
747 	{Opt_read_only, "ro"},		/* Alternate spelling */
748 	{Opt_read_write, "read_write"},
749 	{Opt_read_write, "rw"},		/* Alternate spelling */
750 	/* Boolean args above */
751 	{-1, NULL}
752 };
753 
754 struct rbd_options {
755 	bool	read_only;
756 };
757 
758 #define RBD_READ_ONLY_DEFAULT	false
759 
parse_rbd_opts_token(char * c,void * private)760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762 	struct rbd_options *rbd_opts = private;
763 	substring_t argstr[MAX_OPT_ARGS];
764 	int token, intval, ret;
765 
766 	token = match_token(c, rbd_opts_tokens, argstr);
767 	if (token < 0)
768 		return -EINVAL;
769 
770 	if (token < Opt_last_int) {
771 		ret = match_int(&argstr[0], &intval);
772 		if (ret < 0) {
773 			pr_err("bad mount option arg (not int) "
774 			       "at '%s'\n", c);
775 			return ret;
776 		}
777 		dout("got int token %d val %d\n", token, intval);
778 	} else if (token > Opt_last_int && token < Opt_last_string) {
779 		dout("got string token %d val %s\n", token,
780 		     argstr[0].from);
781 	} else if (token > Opt_last_string && token < Opt_last_bool) {
782 		dout("got Boolean token %d\n", token);
783 	} else {
784 		dout("got token %d\n", token);
785 	}
786 
787 	switch (token) {
788 	case Opt_read_only:
789 		rbd_opts->read_only = true;
790 		break;
791 	case Opt_read_write:
792 		rbd_opts->read_only = false;
793 		break;
794 	default:
795 		rbd_assert(false);
796 		break;
797 	}
798 	return 0;
799 }
800 
obj_op_name(enum obj_operation_type op_type)801 static char* obj_op_name(enum obj_operation_type op_type)
802 {
803 	switch (op_type) {
804 	case OBJ_OP_READ:
805 		return "read";
806 	case OBJ_OP_WRITE:
807 		return "write";
808 	case OBJ_OP_DISCARD:
809 		return "discard";
810 	default:
811 		return "???";
812 	}
813 }
814 
815 /*
816  * Get a ceph client with specific addr and configuration, if one does
817  * not exist create it.  Either way, ceph_opts is consumed by this
818  * function.
819  */
rbd_get_client(struct ceph_options * ceph_opts)820 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
821 {
822 	struct rbd_client *rbdc;
823 
824 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
825 	rbdc = rbd_client_find(ceph_opts);
826 	if (rbdc)	/* using an existing client */
827 		ceph_destroy_options(ceph_opts);
828 	else
829 		rbdc = rbd_client_create(ceph_opts);
830 	mutex_unlock(&client_mutex);
831 
832 	return rbdc;
833 }
834 
835 /*
836  * Destroy ceph client
837  *
838  * Caller must hold rbd_client_list_lock.
839  */
rbd_client_release(struct kref * kref)840 static void rbd_client_release(struct kref *kref)
841 {
842 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
843 
844 	dout("%s: rbdc %p\n", __func__, rbdc);
845 	spin_lock(&rbd_client_list_lock);
846 	list_del(&rbdc->node);
847 	spin_unlock(&rbd_client_list_lock);
848 
849 	ceph_destroy_client(rbdc->client);
850 	kfree(rbdc);
851 }
852 
853 /*
854  * Drop reference to ceph client node. If it's not referenced anymore, release
855  * it.
856  */
rbd_put_client(struct rbd_client * rbdc)857 static void rbd_put_client(struct rbd_client *rbdc)
858 {
859 	if (rbdc)
860 		kref_put(&rbdc->kref, rbd_client_release);
861 }
862 
rbd_image_format_valid(u32 image_format)863 static bool rbd_image_format_valid(u32 image_format)
864 {
865 	return image_format == 1 || image_format == 2;
866 }
867 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)868 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
869 {
870 	size_t size;
871 	u32 snap_count;
872 
873 	/* The header has to start with the magic rbd header text */
874 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
875 		return false;
876 
877 	/* The bio layer requires at least sector-sized I/O */
878 
879 	if (ondisk->options.order < SECTOR_SHIFT)
880 		return false;
881 
882 	/* If we use u64 in a few spots we may be able to loosen this */
883 
884 	if (ondisk->options.order > 8 * sizeof (int) - 1)
885 		return false;
886 
887 	/*
888 	 * The size of a snapshot header has to fit in a size_t, and
889 	 * that limits the number of snapshots.
890 	 */
891 	snap_count = le32_to_cpu(ondisk->snap_count);
892 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
893 	if (snap_count > size / sizeof (__le64))
894 		return false;
895 
896 	/*
897 	 * Not only that, but the size of the entire the snapshot
898 	 * header must also be representable in a size_t.
899 	 */
900 	size -= snap_count * sizeof (__le64);
901 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
902 		return false;
903 
904 	return true;
905 }
906 
907 /*
908  * Fill an rbd image header with information from the given format 1
909  * on-disk header.
910  */
rbd_header_from_disk(struct rbd_device * rbd_dev,struct rbd_image_header_ondisk * ondisk)911 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
912 				 struct rbd_image_header_ondisk *ondisk)
913 {
914 	struct rbd_image_header *header = &rbd_dev->header;
915 	bool first_time = header->object_prefix == NULL;
916 	struct ceph_snap_context *snapc;
917 	char *object_prefix = NULL;
918 	char *snap_names = NULL;
919 	u64 *snap_sizes = NULL;
920 	u32 snap_count;
921 	size_t size;
922 	int ret = -ENOMEM;
923 	u32 i;
924 
925 	/* Allocate this now to avoid having to handle failure below */
926 
927 	if (first_time) {
928 		size_t len;
929 
930 		len = strnlen(ondisk->object_prefix,
931 				sizeof (ondisk->object_prefix));
932 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
933 		if (!object_prefix)
934 			return -ENOMEM;
935 		memcpy(object_prefix, ondisk->object_prefix, len);
936 		object_prefix[len] = '\0';
937 	}
938 
939 	/* Allocate the snapshot context and fill it in */
940 
941 	snap_count = le32_to_cpu(ondisk->snap_count);
942 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
943 	if (!snapc)
944 		goto out_err;
945 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
946 	if (snap_count) {
947 		struct rbd_image_snap_ondisk *snaps;
948 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
949 
950 		/* We'll keep a copy of the snapshot names... */
951 
952 		if (snap_names_len > (u64)SIZE_MAX)
953 			goto out_2big;
954 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
955 		if (!snap_names)
956 			goto out_err;
957 
958 		/* ...as well as the array of their sizes. */
959 
960 		size = snap_count * sizeof (*header->snap_sizes);
961 		snap_sizes = kmalloc(size, GFP_KERNEL);
962 		if (!snap_sizes)
963 			goto out_err;
964 
965 		/*
966 		 * Copy the names, and fill in each snapshot's id
967 		 * and size.
968 		 *
969 		 * Note that rbd_dev_v1_header_info() guarantees the
970 		 * ondisk buffer we're working with has
971 		 * snap_names_len bytes beyond the end of the
972 		 * snapshot id array, this memcpy() is safe.
973 		 */
974 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
975 		snaps = ondisk->snaps;
976 		for (i = 0; i < snap_count; i++) {
977 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
978 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
979 		}
980 	}
981 
982 	/* We won't fail any more, fill in the header */
983 
984 	if (first_time) {
985 		header->object_prefix = object_prefix;
986 		header->obj_order = ondisk->options.order;
987 		header->crypt_type = ondisk->options.crypt_type;
988 		header->comp_type = ondisk->options.comp_type;
989 		/* The rest aren't used for format 1 images */
990 		header->stripe_unit = 0;
991 		header->stripe_count = 0;
992 		header->features = 0;
993 	} else {
994 		ceph_put_snap_context(header->snapc);
995 		kfree(header->snap_names);
996 		kfree(header->snap_sizes);
997 	}
998 
999 	/* The remaining fields always get updated (when we refresh) */
1000 
1001 	header->image_size = le64_to_cpu(ondisk->image_size);
1002 	header->snapc = snapc;
1003 	header->snap_names = snap_names;
1004 	header->snap_sizes = snap_sizes;
1005 
1006 	return 0;
1007 out_2big:
1008 	ret = -EIO;
1009 out_err:
1010 	kfree(snap_sizes);
1011 	kfree(snap_names);
1012 	ceph_put_snap_context(snapc);
1013 	kfree(object_prefix);
1014 
1015 	return ret;
1016 }
1017 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1018 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1019 {
1020 	const char *snap_name;
1021 
1022 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1023 
1024 	/* Skip over names until we find the one we are looking for */
1025 
1026 	snap_name = rbd_dev->header.snap_names;
1027 	while (which--)
1028 		snap_name += strlen(snap_name) + 1;
1029 
1030 	return kstrdup(snap_name, GFP_KERNEL);
1031 }
1032 
1033 /*
1034  * Snapshot id comparison function for use with qsort()/bsearch().
1035  * Note that result is for snapshots in *descending* order.
1036  */
snapid_compare_reverse(const void * s1,const void * s2)1037 static int snapid_compare_reverse(const void *s1, const void *s2)
1038 {
1039 	u64 snap_id1 = *(u64 *)s1;
1040 	u64 snap_id2 = *(u64 *)s2;
1041 
1042 	if (snap_id1 < snap_id2)
1043 		return 1;
1044 	return snap_id1 == snap_id2 ? 0 : -1;
1045 }
1046 
1047 /*
1048  * Search a snapshot context to see if the given snapshot id is
1049  * present.
1050  *
1051  * Returns the position of the snapshot id in the array if it's found,
1052  * or BAD_SNAP_INDEX otherwise.
1053  *
1054  * Note: The snapshot array is in kept sorted (by the osd) in
1055  * reverse order, highest snapshot id first.
1056  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1057 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1058 {
1059 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1060 	u64 *found;
1061 
1062 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1063 				sizeof (snap_id), snapid_compare_reverse);
1064 
1065 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1066 }
1067 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1068 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1069 					u64 snap_id)
1070 {
1071 	u32 which;
1072 	const char *snap_name;
1073 
1074 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1075 	if (which == BAD_SNAP_INDEX)
1076 		return ERR_PTR(-ENOENT);
1077 
1078 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1079 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1080 }
1081 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1082 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1083 {
1084 	if (snap_id == CEPH_NOSNAP)
1085 		return RBD_SNAP_HEAD_NAME;
1086 
1087 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1088 	if (rbd_dev->image_format == 1)
1089 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1090 
1091 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1092 }
1093 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1094 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1095 				u64 *snap_size)
1096 {
1097 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1098 	if (snap_id == CEPH_NOSNAP) {
1099 		*snap_size = rbd_dev->header.image_size;
1100 	} else if (rbd_dev->image_format == 1) {
1101 		u32 which;
1102 
1103 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1104 		if (which == BAD_SNAP_INDEX)
1105 			return -ENOENT;
1106 
1107 		*snap_size = rbd_dev->header.snap_sizes[which];
1108 	} else {
1109 		u64 size = 0;
1110 		int ret;
1111 
1112 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1113 		if (ret)
1114 			return ret;
1115 
1116 		*snap_size = size;
1117 	}
1118 	return 0;
1119 }
1120 
rbd_snap_features(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_features)1121 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1122 			u64 *snap_features)
1123 {
1124 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1125 	if (snap_id == CEPH_NOSNAP) {
1126 		*snap_features = rbd_dev->header.features;
1127 	} else if (rbd_dev->image_format == 1) {
1128 		*snap_features = 0;	/* No features for format 1 */
1129 	} else {
1130 		u64 features = 0;
1131 		int ret;
1132 
1133 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1134 		if (ret)
1135 			return ret;
1136 
1137 		*snap_features = features;
1138 	}
1139 	return 0;
1140 }
1141 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1142 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1143 {
1144 	u64 snap_id = rbd_dev->spec->snap_id;
1145 	u64 size = 0;
1146 	u64 features = 0;
1147 	int ret;
1148 
1149 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1150 	if (ret)
1151 		return ret;
1152 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1153 	if (ret)
1154 		return ret;
1155 
1156 	rbd_dev->mapping.size = size;
1157 	rbd_dev->mapping.features = features;
1158 
1159 	return 0;
1160 }
1161 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1162 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1163 {
1164 	rbd_dev->mapping.size = 0;
1165 	rbd_dev->mapping.features = 0;
1166 }
1167 
rbd_segment_name_free(const char * name)1168 static void rbd_segment_name_free(const char *name)
1169 {
1170 	/* The explicit cast here is needed to drop the const qualifier */
1171 
1172 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174 
rbd_segment_name(struct rbd_device * rbd_dev,u64 offset)1175 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177 	char *name;
1178 	u64 segment;
1179 	int ret;
1180 	char *name_format;
1181 
1182 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1183 	if (!name)
1184 		return NULL;
1185 	segment = offset >> rbd_dev->header.obj_order;
1186 	name_format = "%s.%012llx";
1187 	if (rbd_dev->image_format == 2)
1188 		name_format = "%s.%016llx";
1189 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1190 			rbd_dev->header.object_prefix, segment);
1191 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1192 		pr_err("error formatting segment name for #%llu (%d)\n",
1193 			segment, ret);
1194 		rbd_segment_name_free(name);
1195 		name = NULL;
1196 	}
1197 
1198 	return name;
1199 }
1200 
rbd_segment_offset(struct rbd_device * rbd_dev,u64 offset)1201 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1202 {
1203 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1204 
1205 	return offset & (segment_size - 1);
1206 }
1207 
rbd_segment_length(struct rbd_device * rbd_dev,u64 offset,u64 length)1208 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1209 				u64 offset, u64 length)
1210 {
1211 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1212 
1213 	offset &= segment_size - 1;
1214 
1215 	rbd_assert(length <= U64_MAX - offset);
1216 	if (offset + length > segment_size)
1217 		length = segment_size - offset;
1218 
1219 	return length;
1220 }
1221 
1222 /*
1223  * returns the size of an object in the image
1224  */
rbd_obj_bytes(struct rbd_image_header * header)1225 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1226 {
1227 	return 1 << header->obj_order;
1228 }
1229 
1230 /*
1231  * bio helpers
1232  */
1233 
bio_chain_put(struct bio * chain)1234 static void bio_chain_put(struct bio *chain)
1235 {
1236 	struct bio *tmp;
1237 
1238 	while (chain) {
1239 		tmp = chain;
1240 		chain = chain->bi_next;
1241 		bio_put(tmp);
1242 	}
1243 }
1244 
1245 /*
1246  * zeros a bio chain, starting at specific offset
1247  */
zero_bio_chain(struct bio * chain,int start_ofs)1248 static void zero_bio_chain(struct bio *chain, int start_ofs)
1249 {
1250 	struct bio_vec bv;
1251 	struct bvec_iter iter;
1252 	unsigned long flags;
1253 	void *buf;
1254 	int pos = 0;
1255 
1256 	while (chain) {
1257 		bio_for_each_segment(bv, chain, iter) {
1258 			if (pos + bv.bv_len > start_ofs) {
1259 				int remainder = max(start_ofs - pos, 0);
1260 				buf = bvec_kmap_irq(&bv, &flags);
1261 				memset(buf + remainder, 0,
1262 				       bv.bv_len - remainder);
1263 				flush_dcache_page(bv.bv_page);
1264 				bvec_kunmap_irq(buf, &flags);
1265 			}
1266 			pos += bv.bv_len;
1267 		}
1268 
1269 		chain = chain->bi_next;
1270 	}
1271 }
1272 
1273 /*
1274  * similar to zero_bio_chain(), zeros data defined by a page array,
1275  * starting at the given byte offset from the start of the array and
1276  * continuing up to the given end offset.  The pages array is
1277  * assumed to be big enough to hold all bytes up to the end.
1278  */
zero_pages(struct page ** pages,u64 offset,u64 end)1279 static void zero_pages(struct page **pages, u64 offset, u64 end)
1280 {
1281 	struct page **page = &pages[offset >> PAGE_SHIFT];
1282 
1283 	rbd_assert(end > offset);
1284 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1285 	while (offset < end) {
1286 		size_t page_offset;
1287 		size_t length;
1288 		unsigned long flags;
1289 		void *kaddr;
1290 
1291 		page_offset = offset & ~PAGE_MASK;
1292 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1293 		local_irq_save(flags);
1294 		kaddr = kmap_atomic(*page);
1295 		memset(kaddr + page_offset, 0, length);
1296 		flush_dcache_page(*page);
1297 		kunmap_atomic(kaddr);
1298 		local_irq_restore(flags);
1299 
1300 		offset += length;
1301 		page++;
1302 	}
1303 }
1304 
1305 /*
1306  * Clone a portion of a bio, starting at the given byte offset
1307  * and continuing for the number of bytes indicated.
1308  */
bio_clone_range(struct bio * bio_src,unsigned int offset,unsigned int len,gfp_t gfpmask)1309 static struct bio *bio_clone_range(struct bio *bio_src,
1310 					unsigned int offset,
1311 					unsigned int len,
1312 					gfp_t gfpmask)
1313 {
1314 	struct bio *bio;
1315 
1316 	bio = bio_clone(bio_src, gfpmask);
1317 	if (!bio)
1318 		return NULL;	/* ENOMEM */
1319 
1320 	bio_advance(bio, offset);
1321 	bio->bi_iter.bi_size = len;
1322 
1323 	return bio;
1324 }
1325 
1326 /*
1327  * Clone a portion of a bio chain, starting at the given byte offset
1328  * into the first bio in the source chain and continuing for the
1329  * number of bytes indicated.  The result is another bio chain of
1330  * exactly the given length, or a null pointer on error.
1331  *
1332  * The bio_src and offset parameters are both in-out.  On entry they
1333  * refer to the first source bio and the offset into that bio where
1334  * the start of data to be cloned is located.
1335  *
1336  * On return, bio_src is updated to refer to the bio in the source
1337  * chain that contains first un-cloned byte, and *offset will
1338  * contain the offset of that byte within that bio.
1339  */
bio_chain_clone_range(struct bio ** bio_src,unsigned int * offset,unsigned int len,gfp_t gfpmask)1340 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1341 					unsigned int *offset,
1342 					unsigned int len,
1343 					gfp_t gfpmask)
1344 {
1345 	struct bio *bi = *bio_src;
1346 	unsigned int off = *offset;
1347 	struct bio *chain = NULL;
1348 	struct bio **end;
1349 
1350 	/* Build up a chain of clone bios up to the limit */
1351 
1352 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1353 		return NULL;		/* Nothing to clone */
1354 
1355 	end = &chain;
1356 	while (len) {
1357 		unsigned int bi_size;
1358 		struct bio *bio;
1359 
1360 		if (!bi) {
1361 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1362 			goto out_err;	/* EINVAL; ran out of bio's */
1363 		}
1364 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1365 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1366 		if (!bio)
1367 			goto out_err;	/* ENOMEM */
1368 
1369 		*end = bio;
1370 		end = &bio->bi_next;
1371 
1372 		off += bi_size;
1373 		if (off == bi->bi_iter.bi_size) {
1374 			bi = bi->bi_next;
1375 			off = 0;
1376 		}
1377 		len -= bi_size;
1378 	}
1379 	*bio_src = bi;
1380 	*offset = off;
1381 
1382 	return chain;
1383 out_err:
1384 	bio_chain_put(chain);
1385 
1386 	return NULL;
1387 }
1388 
1389 /*
1390  * The default/initial value for all object request flags is 0.  For
1391  * each flag, once its value is set to 1 it is never reset to 0
1392  * again.
1393  */
obj_request_img_data_set(struct rbd_obj_request * obj_request)1394 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1395 {
1396 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1397 		struct rbd_device *rbd_dev;
1398 
1399 		rbd_dev = obj_request->img_request->rbd_dev;
1400 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1401 			obj_request);
1402 	}
1403 }
1404 
obj_request_img_data_test(struct rbd_obj_request * obj_request)1405 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1406 {
1407 	smp_mb();
1408 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1409 }
1410 
obj_request_done_set(struct rbd_obj_request * obj_request)1411 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1412 {
1413 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1414 		struct rbd_device *rbd_dev = NULL;
1415 
1416 		if (obj_request_img_data_test(obj_request))
1417 			rbd_dev = obj_request->img_request->rbd_dev;
1418 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1419 			obj_request);
1420 	}
1421 }
1422 
obj_request_done_test(struct rbd_obj_request * obj_request)1423 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1424 {
1425 	smp_mb();
1426 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1427 }
1428 
1429 /*
1430  * This sets the KNOWN flag after (possibly) setting the EXISTS
1431  * flag.  The latter is set based on the "exists" value provided.
1432  *
1433  * Note that for our purposes once an object exists it never goes
1434  * away again.  It's possible that the response from two existence
1435  * checks are separated by the creation of the target object, and
1436  * the first ("doesn't exist") response arrives *after* the second
1437  * ("does exist").  In that case we ignore the second one.
1438  */
obj_request_existence_set(struct rbd_obj_request * obj_request,bool exists)1439 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1440 				bool exists)
1441 {
1442 	if (exists)
1443 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1444 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1445 	smp_mb();
1446 }
1447 
obj_request_known_test(struct rbd_obj_request * obj_request)1448 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1449 {
1450 	smp_mb();
1451 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1452 }
1453 
obj_request_exists_test(struct rbd_obj_request * obj_request)1454 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1455 {
1456 	smp_mb();
1457 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1458 }
1459 
obj_request_overlaps_parent(struct rbd_obj_request * obj_request)1460 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1461 {
1462 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1463 
1464 	return obj_request->img_offset <
1465 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1466 }
1467 
rbd_obj_request_get(struct rbd_obj_request * obj_request)1468 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1469 {
1470 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1471 		atomic_read(&obj_request->kref.refcount));
1472 	kref_get(&obj_request->kref);
1473 }
1474 
1475 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1476 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1477 {
1478 	rbd_assert(obj_request != NULL);
1479 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1480 		atomic_read(&obj_request->kref.refcount));
1481 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1482 }
1483 
rbd_img_request_get(struct rbd_img_request * img_request)1484 static void rbd_img_request_get(struct rbd_img_request *img_request)
1485 {
1486 	dout("%s: img %p (was %d)\n", __func__, img_request,
1487 	     atomic_read(&img_request->kref.refcount));
1488 	kref_get(&img_request->kref);
1489 }
1490 
1491 static bool img_request_child_test(struct rbd_img_request *img_request);
1492 static void rbd_parent_request_destroy(struct kref *kref);
1493 static void rbd_img_request_destroy(struct kref *kref);
rbd_img_request_put(struct rbd_img_request * img_request)1494 static void rbd_img_request_put(struct rbd_img_request *img_request)
1495 {
1496 	rbd_assert(img_request != NULL);
1497 	dout("%s: img %p (was %d)\n", __func__, img_request,
1498 		atomic_read(&img_request->kref.refcount));
1499 	if (img_request_child_test(img_request))
1500 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1501 	else
1502 		kref_put(&img_request->kref, rbd_img_request_destroy);
1503 }
1504 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1505 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1506 					struct rbd_obj_request *obj_request)
1507 {
1508 	rbd_assert(obj_request->img_request == NULL);
1509 
1510 	/* Image request now owns object's original reference */
1511 	obj_request->img_request = img_request;
1512 	obj_request->which = img_request->obj_request_count;
1513 	rbd_assert(!obj_request_img_data_test(obj_request));
1514 	obj_request_img_data_set(obj_request);
1515 	rbd_assert(obj_request->which != BAD_WHICH);
1516 	img_request->obj_request_count++;
1517 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1518 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1519 		obj_request->which);
1520 }
1521 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1522 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1523 					struct rbd_obj_request *obj_request)
1524 {
1525 	rbd_assert(obj_request->which != BAD_WHICH);
1526 
1527 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1528 		obj_request->which);
1529 	list_del(&obj_request->links);
1530 	rbd_assert(img_request->obj_request_count > 0);
1531 	img_request->obj_request_count--;
1532 	rbd_assert(obj_request->which == img_request->obj_request_count);
1533 	obj_request->which = BAD_WHICH;
1534 	rbd_assert(obj_request_img_data_test(obj_request));
1535 	rbd_assert(obj_request->img_request == img_request);
1536 	obj_request->img_request = NULL;
1537 	obj_request->callback = NULL;
1538 	rbd_obj_request_put(obj_request);
1539 }
1540 
obj_request_type_valid(enum obj_request_type type)1541 static bool obj_request_type_valid(enum obj_request_type type)
1542 {
1543 	switch (type) {
1544 	case OBJ_REQUEST_NODATA:
1545 	case OBJ_REQUEST_BIO:
1546 	case OBJ_REQUEST_PAGES:
1547 		return true;
1548 	default:
1549 		return false;
1550 	}
1551 }
1552 
rbd_obj_request_submit(struct ceph_osd_client * osdc,struct rbd_obj_request * obj_request)1553 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1554 				struct rbd_obj_request *obj_request)
1555 {
1556 	dout("%s %p\n", __func__, obj_request);
1557 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1558 }
1559 
rbd_obj_request_end(struct rbd_obj_request * obj_request)1560 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1561 {
1562 	dout("%s %p\n", __func__, obj_request);
1563 	ceph_osdc_cancel_request(obj_request->osd_req);
1564 }
1565 
1566 /*
1567  * Wait for an object request to complete.  If interrupted, cancel the
1568  * underlying osd request.
1569  */
rbd_obj_request_wait(struct rbd_obj_request * obj_request)1570 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1571 {
1572 	int ret;
1573 
1574 	dout("%s %p\n", __func__, obj_request);
1575 
1576 	ret = wait_for_completion_interruptible(&obj_request->completion);
1577 	if (ret < 0) {
1578 		dout("%s %p interrupted\n", __func__, obj_request);
1579 		rbd_obj_request_end(obj_request);
1580 		return ret;
1581 	}
1582 
1583 	dout("%s %p done\n", __func__, obj_request);
1584 	return 0;
1585 }
1586 
rbd_img_request_complete(struct rbd_img_request * img_request)1587 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1588 {
1589 
1590 	dout("%s: img %p\n", __func__, img_request);
1591 
1592 	/*
1593 	 * If no error occurred, compute the aggregate transfer
1594 	 * count for the image request.  We could instead use
1595 	 * atomic64_cmpxchg() to update it as each object request
1596 	 * completes; not clear which way is better off hand.
1597 	 */
1598 	if (!img_request->result) {
1599 		struct rbd_obj_request *obj_request;
1600 		u64 xferred = 0;
1601 
1602 		for_each_obj_request(img_request, obj_request)
1603 			xferred += obj_request->xferred;
1604 		img_request->xferred = xferred;
1605 	}
1606 
1607 	if (img_request->callback)
1608 		img_request->callback(img_request);
1609 	else
1610 		rbd_img_request_put(img_request);
1611 }
1612 
1613 /*
1614  * The default/initial value for all image request flags is 0.  Each
1615  * is conditionally set to 1 at image request initialization time
1616  * and currently never change thereafter.
1617  */
img_request_write_set(struct rbd_img_request * img_request)1618 static void img_request_write_set(struct rbd_img_request *img_request)
1619 {
1620 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1621 	smp_mb();
1622 }
1623 
img_request_write_test(struct rbd_img_request * img_request)1624 static bool img_request_write_test(struct rbd_img_request *img_request)
1625 {
1626 	smp_mb();
1627 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1628 }
1629 
1630 /*
1631  * Set the discard flag when the img_request is an discard request
1632  */
img_request_discard_set(struct rbd_img_request * img_request)1633 static void img_request_discard_set(struct rbd_img_request *img_request)
1634 {
1635 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1636 	smp_mb();
1637 }
1638 
img_request_discard_test(struct rbd_img_request * img_request)1639 static bool img_request_discard_test(struct rbd_img_request *img_request)
1640 {
1641 	smp_mb();
1642 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1643 }
1644 
img_request_child_set(struct rbd_img_request * img_request)1645 static void img_request_child_set(struct rbd_img_request *img_request)
1646 {
1647 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1648 	smp_mb();
1649 }
1650 
img_request_child_clear(struct rbd_img_request * img_request)1651 static void img_request_child_clear(struct rbd_img_request *img_request)
1652 {
1653 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1654 	smp_mb();
1655 }
1656 
img_request_child_test(struct rbd_img_request * img_request)1657 static bool img_request_child_test(struct rbd_img_request *img_request)
1658 {
1659 	smp_mb();
1660 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1661 }
1662 
img_request_layered_set(struct rbd_img_request * img_request)1663 static void img_request_layered_set(struct rbd_img_request *img_request)
1664 {
1665 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1666 	smp_mb();
1667 }
1668 
img_request_layered_clear(struct rbd_img_request * img_request)1669 static void img_request_layered_clear(struct rbd_img_request *img_request)
1670 {
1671 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1672 	smp_mb();
1673 }
1674 
img_request_layered_test(struct rbd_img_request * img_request)1675 static bool img_request_layered_test(struct rbd_img_request *img_request)
1676 {
1677 	smp_mb();
1678 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1679 }
1680 
1681 static enum obj_operation_type
rbd_img_request_op_type(struct rbd_img_request * img_request)1682 rbd_img_request_op_type(struct rbd_img_request *img_request)
1683 {
1684 	if (img_request_write_test(img_request))
1685 		return OBJ_OP_WRITE;
1686 	else if (img_request_discard_test(img_request))
1687 		return OBJ_OP_DISCARD;
1688 	else
1689 		return OBJ_OP_READ;
1690 }
1691 
1692 static void
rbd_img_obj_request_read_callback(struct rbd_obj_request * obj_request)1693 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1694 {
1695 	u64 xferred = obj_request->xferred;
1696 	u64 length = obj_request->length;
1697 
1698 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1699 		obj_request, obj_request->img_request, obj_request->result,
1700 		xferred, length);
1701 	/*
1702 	 * ENOENT means a hole in the image.  We zero-fill the entire
1703 	 * length of the request.  A short read also implies zero-fill
1704 	 * to the end of the request.  An error requires the whole
1705 	 * length of the request to be reported finished with an error
1706 	 * to the block layer.  In each case we update the xferred
1707 	 * count to indicate the whole request was satisfied.
1708 	 */
1709 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1710 	if (obj_request->result == -ENOENT) {
1711 		if (obj_request->type == OBJ_REQUEST_BIO)
1712 			zero_bio_chain(obj_request->bio_list, 0);
1713 		else
1714 			zero_pages(obj_request->pages, 0, length);
1715 		obj_request->result = 0;
1716 	} else if (xferred < length && !obj_request->result) {
1717 		if (obj_request->type == OBJ_REQUEST_BIO)
1718 			zero_bio_chain(obj_request->bio_list, xferred);
1719 		else
1720 			zero_pages(obj_request->pages, xferred, length);
1721 	}
1722 	obj_request->xferred = length;
1723 	obj_request_done_set(obj_request);
1724 }
1725 
rbd_obj_request_complete(struct rbd_obj_request * obj_request)1726 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1727 {
1728 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1729 		obj_request->callback);
1730 	if (obj_request->callback)
1731 		obj_request->callback(obj_request);
1732 	else
1733 		complete_all(&obj_request->completion);
1734 }
1735 
rbd_osd_trivial_callback(struct rbd_obj_request * obj_request)1736 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1737 {
1738 	dout("%s: obj %p\n", __func__, obj_request);
1739 	obj_request_done_set(obj_request);
1740 }
1741 
rbd_osd_read_callback(struct rbd_obj_request * obj_request)1742 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1743 {
1744 	struct rbd_img_request *img_request = NULL;
1745 	struct rbd_device *rbd_dev = NULL;
1746 	bool layered = false;
1747 
1748 	if (obj_request_img_data_test(obj_request)) {
1749 		img_request = obj_request->img_request;
1750 		layered = img_request && img_request_layered_test(img_request);
1751 		rbd_dev = img_request->rbd_dev;
1752 	}
1753 
1754 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1755 		obj_request, img_request, obj_request->result,
1756 		obj_request->xferred, obj_request->length);
1757 	if (layered && obj_request->result == -ENOENT &&
1758 			obj_request->img_offset < rbd_dev->parent_overlap)
1759 		rbd_img_parent_read(obj_request);
1760 	else if (img_request)
1761 		rbd_img_obj_request_read_callback(obj_request);
1762 	else
1763 		obj_request_done_set(obj_request);
1764 }
1765 
rbd_osd_write_callback(struct rbd_obj_request * obj_request)1766 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1767 {
1768 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1769 		obj_request->result, obj_request->length);
1770 	/*
1771 	 * There is no such thing as a successful short write.  Set
1772 	 * it to our originally-requested length.
1773 	 */
1774 	obj_request->xferred = obj_request->length;
1775 	obj_request_done_set(obj_request);
1776 }
1777 
rbd_osd_discard_callback(struct rbd_obj_request * obj_request)1778 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1779 {
1780 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1781 		obj_request->result, obj_request->length);
1782 	/*
1783 	 * There is no such thing as a successful short discard.  Set
1784 	 * it to our originally-requested length.
1785 	 */
1786 	obj_request->xferred = obj_request->length;
1787 	/* discarding a non-existent object is not a problem */
1788 	if (obj_request->result == -ENOENT)
1789 		obj_request->result = 0;
1790 	obj_request_done_set(obj_request);
1791 }
1792 
1793 /*
1794  * For a simple stat call there's nothing to do.  We'll do more if
1795  * this is part of a write sequence for a layered image.
1796  */
rbd_osd_stat_callback(struct rbd_obj_request * obj_request)1797 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1798 {
1799 	dout("%s: obj %p\n", __func__, obj_request);
1800 	obj_request_done_set(obj_request);
1801 }
1802 
rbd_osd_call_callback(struct rbd_obj_request * obj_request)1803 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1804 {
1805 	dout("%s: obj %p\n", __func__, obj_request);
1806 
1807 	if (obj_request_img_data_test(obj_request))
1808 		rbd_osd_copyup_callback(obj_request);
1809 	else
1810 		obj_request_done_set(obj_request);
1811 }
1812 
rbd_osd_req_callback(struct ceph_osd_request * osd_req,struct ceph_msg * msg)1813 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1814 				struct ceph_msg *msg)
1815 {
1816 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1817 	u16 opcode;
1818 
1819 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1820 	rbd_assert(osd_req == obj_request->osd_req);
1821 	if (obj_request_img_data_test(obj_request)) {
1822 		rbd_assert(obj_request->img_request);
1823 		rbd_assert(obj_request->which != BAD_WHICH);
1824 	} else {
1825 		rbd_assert(obj_request->which == BAD_WHICH);
1826 	}
1827 
1828 	if (osd_req->r_result < 0)
1829 		obj_request->result = osd_req->r_result;
1830 
1831 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1832 
1833 	/*
1834 	 * We support a 64-bit length, but ultimately it has to be
1835 	 * passed to the block layer, which just supports a 32-bit
1836 	 * length field.
1837 	 */
1838 	obj_request->xferred = osd_req->r_reply_op_len[0];
1839 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1840 
1841 	opcode = osd_req->r_ops[0].op;
1842 	switch (opcode) {
1843 	case CEPH_OSD_OP_READ:
1844 		rbd_osd_read_callback(obj_request);
1845 		break;
1846 	case CEPH_OSD_OP_SETALLOCHINT:
1847 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1848 		/* fall through */
1849 	case CEPH_OSD_OP_WRITE:
1850 		rbd_osd_write_callback(obj_request);
1851 		break;
1852 	case CEPH_OSD_OP_STAT:
1853 		rbd_osd_stat_callback(obj_request);
1854 		break;
1855 	case CEPH_OSD_OP_DELETE:
1856 	case CEPH_OSD_OP_TRUNCATE:
1857 	case CEPH_OSD_OP_ZERO:
1858 		rbd_osd_discard_callback(obj_request);
1859 		break;
1860 	case CEPH_OSD_OP_CALL:
1861 		rbd_osd_call_callback(obj_request);
1862 		break;
1863 	case CEPH_OSD_OP_NOTIFY_ACK:
1864 	case CEPH_OSD_OP_WATCH:
1865 		rbd_osd_trivial_callback(obj_request);
1866 		break;
1867 	default:
1868 		rbd_warn(NULL, "%s: unsupported op %hu",
1869 			obj_request->object_name, (unsigned short) opcode);
1870 		break;
1871 	}
1872 
1873 	if (obj_request_done_test(obj_request))
1874 		rbd_obj_request_complete(obj_request);
1875 }
1876 
rbd_osd_req_format_read(struct rbd_obj_request * obj_request)1877 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1878 {
1879 	struct rbd_img_request *img_request = obj_request->img_request;
1880 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1881 	u64 snap_id;
1882 
1883 	rbd_assert(osd_req != NULL);
1884 
1885 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1886 	ceph_osdc_build_request(osd_req, obj_request->offset,
1887 			NULL, snap_id, NULL);
1888 }
1889 
rbd_osd_req_format_write(struct rbd_obj_request * obj_request)1890 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1891 {
1892 	struct rbd_img_request *img_request = obj_request->img_request;
1893 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1894 	struct ceph_snap_context *snapc;
1895 	struct timespec mtime = CURRENT_TIME;
1896 
1897 	rbd_assert(osd_req != NULL);
1898 
1899 	snapc = img_request ? img_request->snapc : NULL;
1900 	ceph_osdc_build_request(osd_req, obj_request->offset,
1901 			snapc, CEPH_NOSNAP, &mtime);
1902 }
1903 
1904 /*
1905  * Create an osd request.  A read request has one osd op (read).
1906  * A write request has either one (watch) or two (hint+write) osd ops.
1907  * (All rbd data writes are prefixed with an allocation hint op, but
1908  * technically osd watch is a write request, hence this distinction.)
1909  */
rbd_osd_req_create(struct rbd_device * rbd_dev,enum obj_operation_type op_type,unsigned int num_ops,struct rbd_obj_request * obj_request)1910 static struct ceph_osd_request *rbd_osd_req_create(
1911 					struct rbd_device *rbd_dev,
1912 					enum obj_operation_type op_type,
1913 					unsigned int num_ops,
1914 					struct rbd_obj_request *obj_request)
1915 {
1916 	struct ceph_snap_context *snapc = NULL;
1917 	struct ceph_osd_client *osdc;
1918 	struct ceph_osd_request *osd_req;
1919 
1920 	if (obj_request_img_data_test(obj_request) &&
1921 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1922 		struct rbd_img_request *img_request = obj_request->img_request;
1923 		if (op_type == OBJ_OP_WRITE) {
1924 			rbd_assert(img_request_write_test(img_request));
1925 		} else {
1926 			rbd_assert(img_request_discard_test(img_request));
1927 		}
1928 		snapc = img_request->snapc;
1929 	}
1930 
1931 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1932 
1933 	/* Allocate and initialize the request, for the num_ops ops */
1934 
1935 	osdc = &rbd_dev->rbd_client->client->osdc;
1936 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1937 					  GFP_NOIO);
1938 	if (!osd_req)
1939 		return NULL;	/* ENOMEM */
1940 
1941 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1942 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1943 	else
1944 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1945 
1946 	osd_req->r_callback = rbd_osd_req_callback;
1947 	osd_req->r_priv = obj_request;
1948 
1949 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1950 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1951 
1952 	return osd_req;
1953 }
1954 
1955 /*
1956  * Create a copyup osd request based on the information in the object
1957  * request supplied.  A copyup request has two or three osd ops, a
1958  * copyup method call, potentially a hint op, and a write or truncate
1959  * or zero op.
1960  */
1961 static struct ceph_osd_request *
rbd_osd_req_create_copyup(struct rbd_obj_request * obj_request)1962 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1963 {
1964 	struct rbd_img_request *img_request;
1965 	struct ceph_snap_context *snapc;
1966 	struct rbd_device *rbd_dev;
1967 	struct ceph_osd_client *osdc;
1968 	struct ceph_osd_request *osd_req;
1969 	int num_osd_ops = 3;
1970 
1971 	rbd_assert(obj_request_img_data_test(obj_request));
1972 	img_request = obj_request->img_request;
1973 	rbd_assert(img_request);
1974 	rbd_assert(img_request_write_test(img_request) ||
1975 			img_request_discard_test(img_request));
1976 
1977 	if (img_request_discard_test(img_request))
1978 		num_osd_ops = 2;
1979 
1980 	/* Allocate and initialize the request, for all the ops */
1981 
1982 	snapc = img_request->snapc;
1983 	rbd_dev = img_request->rbd_dev;
1984 	osdc = &rbd_dev->rbd_client->client->osdc;
1985 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1986 						false, GFP_NOIO);
1987 	if (!osd_req)
1988 		return NULL;	/* ENOMEM */
1989 
1990 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1991 	osd_req->r_callback = rbd_osd_req_callback;
1992 	osd_req->r_priv = obj_request;
1993 
1994 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1995 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1996 
1997 	return osd_req;
1998 }
1999 
2000 
rbd_osd_req_destroy(struct ceph_osd_request * osd_req)2001 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2002 {
2003 	ceph_osdc_put_request(osd_req);
2004 }
2005 
2006 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2007 
rbd_obj_request_create(const char * object_name,u64 offset,u64 length,enum obj_request_type type)2008 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2009 						u64 offset, u64 length,
2010 						enum obj_request_type type)
2011 {
2012 	struct rbd_obj_request *obj_request;
2013 	size_t size;
2014 	char *name;
2015 
2016 	rbd_assert(obj_request_type_valid(type));
2017 
2018 	size = strlen(object_name) + 1;
2019 	name = kmalloc(size, GFP_NOIO);
2020 	if (!name)
2021 		return NULL;
2022 
2023 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2024 	if (!obj_request) {
2025 		kfree(name);
2026 		return NULL;
2027 	}
2028 
2029 	obj_request->object_name = memcpy(name, object_name, size);
2030 	obj_request->offset = offset;
2031 	obj_request->length = length;
2032 	obj_request->flags = 0;
2033 	obj_request->which = BAD_WHICH;
2034 	obj_request->type = type;
2035 	INIT_LIST_HEAD(&obj_request->links);
2036 	init_completion(&obj_request->completion);
2037 	kref_init(&obj_request->kref);
2038 
2039 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2040 		offset, length, (int)type, obj_request);
2041 
2042 	return obj_request;
2043 }
2044 
rbd_obj_request_destroy(struct kref * kref)2045 static void rbd_obj_request_destroy(struct kref *kref)
2046 {
2047 	struct rbd_obj_request *obj_request;
2048 
2049 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2050 
2051 	dout("%s: obj %p\n", __func__, obj_request);
2052 
2053 	rbd_assert(obj_request->img_request == NULL);
2054 	rbd_assert(obj_request->which == BAD_WHICH);
2055 
2056 	if (obj_request->osd_req)
2057 		rbd_osd_req_destroy(obj_request->osd_req);
2058 
2059 	rbd_assert(obj_request_type_valid(obj_request->type));
2060 	switch (obj_request->type) {
2061 	case OBJ_REQUEST_NODATA:
2062 		break;		/* Nothing to do */
2063 	case OBJ_REQUEST_BIO:
2064 		if (obj_request->bio_list)
2065 			bio_chain_put(obj_request->bio_list);
2066 		break;
2067 	case OBJ_REQUEST_PAGES:
2068 		if (obj_request->pages)
2069 			ceph_release_page_vector(obj_request->pages,
2070 						obj_request->page_count);
2071 		break;
2072 	}
2073 
2074 	kfree(obj_request->object_name);
2075 	obj_request->object_name = NULL;
2076 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2077 }
2078 
2079 /* It's OK to call this for a device with no parent */
2080 
2081 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)2082 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2083 {
2084 	rbd_dev_remove_parent(rbd_dev);
2085 	rbd_spec_put(rbd_dev->parent_spec);
2086 	rbd_dev->parent_spec = NULL;
2087 	rbd_dev->parent_overlap = 0;
2088 }
2089 
2090 /*
2091  * Parent image reference counting is used to determine when an
2092  * image's parent fields can be safely torn down--after there are no
2093  * more in-flight requests to the parent image.  When the last
2094  * reference is dropped, cleaning them up is safe.
2095  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)2096 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2097 {
2098 	int counter;
2099 
2100 	if (!rbd_dev->parent_spec)
2101 		return;
2102 
2103 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2104 	if (counter > 0)
2105 		return;
2106 
2107 	/* Last reference; clean up parent data structures */
2108 
2109 	if (!counter)
2110 		rbd_dev_unparent(rbd_dev);
2111 	else
2112 		rbd_warn(rbd_dev, "parent reference underflow");
2113 }
2114 
2115 /*
2116  * If an image has a non-zero parent overlap, get a reference to its
2117  * parent.
2118  *
2119  * Returns true if the rbd device has a parent with a non-zero
2120  * overlap and a reference for it was successfully taken, or
2121  * false otherwise.
2122  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)2123 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2124 {
2125 	int counter = 0;
2126 
2127 	if (!rbd_dev->parent_spec)
2128 		return false;
2129 
2130 	down_read(&rbd_dev->header_rwsem);
2131 	if (rbd_dev->parent_overlap)
2132 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2133 	up_read(&rbd_dev->header_rwsem);
2134 
2135 	if (counter < 0)
2136 		rbd_warn(rbd_dev, "parent reference overflow");
2137 
2138 	return counter > 0;
2139 }
2140 
2141 /*
2142  * Caller is responsible for filling in the list of object requests
2143  * that comprises the image request, and the Linux request pointer
2144  * (if there is one).
2145  */
rbd_img_request_create(struct rbd_device * rbd_dev,u64 offset,u64 length,enum obj_operation_type op_type,struct ceph_snap_context * snapc)2146 static struct rbd_img_request *rbd_img_request_create(
2147 					struct rbd_device *rbd_dev,
2148 					u64 offset, u64 length,
2149 					enum obj_operation_type op_type,
2150 					struct ceph_snap_context *snapc)
2151 {
2152 	struct rbd_img_request *img_request;
2153 
2154 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2155 	if (!img_request)
2156 		return NULL;
2157 
2158 	img_request->rq = NULL;
2159 	img_request->rbd_dev = rbd_dev;
2160 	img_request->offset = offset;
2161 	img_request->length = length;
2162 	img_request->flags = 0;
2163 	if (op_type == OBJ_OP_DISCARD) {
2164 		img_request_discard_set(img_request);
2165 		img_request->snapc = snapc;
2166 	} else if (op_type == OBJ_OP_WRITE) {
2167 		img_request_write_set(img_request);
2168 		img_request->snapc = snapc;
2169 	} else {
2170 		img_request->snap_id = rbd_dev->spec->snap_id;
2171 	}
2172 	if (rbd_dev_parent_get(rbd_dev))
2173 		img_request_layered_set(img_request);
2174 	spin_lock_init(&img_request->completion_lock);
2175 	img_request->next_completion = 0;
2176 	img_request->callback = NULL;
2177 	img_request->result = 0;
2178 	img_request->obj_request_count = 0;
2179 	INIT_LIST_HEAD(&img_request->obj_requests);
2180 	kref_init(&img_request->kref);
2181 
2182 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2183 		obj_op_name(op_type), offset, length, img_request);
2184 
2185 	return img_request;
2186 }
2187 
rbd_img_request_destroy(struct kref * kref)2188 static void rbd_img_request_destroy(struct kref *kref)
2189 {
2190 	struct rbd_img_request *img_request;
2191 	struct rbd_obj_request *obj_request;
2192 	struct rbd_obj_request *next_obj_request;
2193 
2194 	img_request = container_of(kref, struct rbd_img_request, kref);
2195 
2196 	dout("%s: img %p\n", __func__, img_request);
2197 
2198 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2199 		rbd_img_obj_request_del(img_request, obj_request);
2200 	rbd_assert(img_request->obj_request_count == 0);
2201 
2202 	if (img_request_layered_test(img_request)) {
2203 		img_request_layered_clear(img_request);
2204 		rbd_dev_parent_put(img_request->rbd_dev);
2205 	}
2206 
2207 	if (img_request_write_test(img_request) ||
2208 		img_request_discard_test(img_request))
2209 		ceph_put_snap_context(img_request->snapc);
2210 
2211 	kmem_cache_free(rbd_img_request_cache, img_request);
2212 }
2213 
rbd_parent_request_create(struct rbd_obj_request * obj_request,u64 img_offset,u64 length)2214 static struct rbd_img_request *rbd_parent_request_create(
2215 					struct rbd_obj_request *obj_request,
2216 					u64 img_offset, u64 length)
2217 {
2218 	struct rbd_img_request *parent_request;
2219 	struct rbd_device *rbd_dev;
2220 
2221 	rbd_assert(obj_request->img_request);
2222 	rbd_dev = obj_request->img_request->rbd_dev;
2223 
2224 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2225 						length, OBJ_OP_READ, NULL);
2226 	if (!parent_request)
2227 		return NULL;
2228 
2229 	img_request_child_set(parent_request);
2230 	rbd_obj_request_get(obj_request);
2231 	parent_request->obj_request = obj_request;
2232 
2233 	return parent_request;
2234 }
2235 
rbd_parent_request_destroy(struct kref * kref)2236 static void rbd_parent_request_destroy(struct kref *kref)
2237 {
2238 	struct rbd_img_request *parent_request;
2239 	struct rbd_obj_request *orig_request;
2240 
2241 	parent_request = container_of(kref, struct rbd_img_request, kref);
2242 	orig_request = parent_request->obj_request;
2243 
2244 	parent_request->obj_request = NULL;
2245 	rbd_obj_request_put(orig_request);
2246 	img_request_child_clear(parent_request);
2247 
2248 	rbd_img_request_destroy(kref);
2249 }
2250 
rbd_img_obj_end_request(struct rbd_obj_request * obj_request)2251 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2252 {
2253 	struct rbd_img_request *img_request;
2254 	unsigned int xferred;
2255 	int result;
2256 	bool more;
2257 
2258 	rbd_assert(obj_request_img_data_test(obj_request));
2259 	img_request = obj_request->img_request;
2260 
2261 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2262 	xferred = (unsigned int)obj_request->xferred;
2263 	result = obj_request->result;
2264 	if (result) {
2265 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2266 		enum obj_operation_type op_type;
2267 
2268 		if (img_request_discard_test(img_request))
2269 			op_type = OBJ_OP_DISCARD;
2270 		else if (img_request_write_test(img_request))
2271 			op_type = OBJ_OP_WRITE;
2272 		else
2273 			op_type = OBJ_OP_READ;
2274 
2275 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2276 			obj_op_name(op_type), obj_request->length,
2277 			obj_request->img_offset, obj_request->offset);
2278 		rbd_warn(rbd_dev, "  result %d xferred %x",
2279 			result, xferred);
2280 		if (!img_request->result)
2281 			img_request->result = result;
2282 		/*
2283 		 * Need to end I/O on the entire obj_request worth of
2284 		 * bytes in case of error.
2285 		 */
2286 		xferred = obj_request->length;
2287 	}
2288 
2289 	/* Image object requests don't own their page array */
2290 
2291 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2292 		obj_request->pages = NULL;
2293 		obj_request->page_count = 0;
2294 	}
2295 
2296 	if (img_request_child_test(img_request)) {
2297 		rbd_assert(img_request->obj_request != NULL);
2298 		more = obj_request->which < img_request->obj_request_count - 1;
2299 	} else {
2300 		rbd_assert(img_request->rq != NULL);
2301 
2302 		more = blk_update_request(img_request->rq, result, xferred);
2303 		if (!more)
2304 			__blk_mq_end_request(img_request->rq, result);
2305 	}
2306 
2307 	return more;
2308 }
2309 
rbd_img_obj_callback(struct rbd_obj_request * obj_request)2310 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2311 {
2312 	struct rbd_img_request *img_request;
2313 	u32 which = obj_request->which;
2314 	bool more = true;
2315 
2316 	rbd_assert(obj_request_img_data_test(obj_request));
2317 	img_request = obj_request->img_request;
2318 
2319 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2320 	rbd_assert(img_request != NULL);
2321 	rbd_assert(img_request->obj_request_count > 0);
2322 	rbd_assert(which != BAD_WHICH);
2323 	rbd_assert(which < img_request->obj_request_count);
2324 
2325 	spin_lock_irq(&img_request->completion_lock);
2326 	if (which != img_request->next_completion)
2327 		goto out;
2328 
2329 	for_each_obj_request_from(img_request, obj_request) {
2330 		rbd_assert(more);
2331 		rbd_assert(which < img_request->obj_request_count);
2332 
2333 		if (!obj_request_done_test(obj_request))
2334 			break;
2335 		more = rbd_img_obj_end_request(obj_request);
2336 		which++;
2337 	}
2338 
2339 	rbd_assert(more ^ (which == img_request->obj_request_count));
2340 	img_request->next_completion = which;
2341 out:
2342 	spin_unlock_irq(&img_request->completion_lock);
2343 	rbd_img_request_put(img_request);
2344 
2345 	if (!more)
2346 		rbd_img_request_complete(img_request);
2347 }
2348 
2349 /*
2350  * Add individual osd ops to the given ceph_osd_request and prepare
2351  * them for submission. num_ops is the current number of
2352  * osd operations already to the object request.
2353  */
rbd_img_obj_request_fill(struct rbd_obj_request * obj_request,struct ceph_osd_request * osd_request,enum obj_operation_type op_type,unsigned int num_ops)2354 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2355 				struct ceph_osd_request *osd_request,
2356 				enum obj_operation_type op_type,
2357 				unsigned int num_ops)
2358 {
2359 	struct rbd_img_request *img_request = obj_request->img_request;
2360 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2361 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2362 	u64 offset = obj_request->offset;
2363 	u64 length = obj_request->length;
2364 	u64 img_end;
2365 	u16 opcode;
2366 
2367 	if (op_type == OBJ_OP_DISCARD) {
2368 		if (!offset && length == object_size &&
2369 		    (!img_request_layered_test(img_request) ||
2370 		     !obj_request_overlaps_parent(obj_request))) {
2371 			opcode = CEPH_OSD_OP_DELETE;
2372 		} else if ((offset + length == object_size)) {
2373 			opcode = CEPH_OSD_OP_TRUNCATE;
2374 		} else {
2375 			down_read(&rbd_dev->header_rwsem);
2376 			img_end = rbd_dev->header.image_size;
2377 			up_read(&rbd_dev->header_rwsem);
2378 
2379 			if (obj_request->img_offset + length == img_end)
2380 				opcode = CEPH_OSD_OP_TRUNCATE;
2381 			else
2382 				opcode = CEPH_OSD_OP_ZERO;
2383 		}
2384 	} else if (op_type == OBJ_OP_WRITE) {
2385 		opcode = CEPH_OSD_OP_WRITE;
2386 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2387 					object_size, object_size);
2388 		num_ops++;
2389 	} else {
2390 		opcode = CEPH_OSD_OP_READ;
2391 	}
2392 
2393 	if (opcode == CEPH_OSD_OP_DELETE)
2394 		osd_req_op_init(osd_request, num_ops, opcode);
2395 	else
2396 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2397 				       offset, length, 0, 0);
2398 
2399 	if (obj_request->type == OBJ_REQUEST_BIO)
2400 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2401 					obj_request->bio_list, length);
2402 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2403 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2404 					obj_request->pages, length,
2405 					offset & ~PAGE_MASK, false, false);
2406 
2407 	/* Discards are also writes */
2408 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2409 		rbd_osd_req_format_write(obj_request);
2410 	else
2411 		rbd_osd_req_format_read(obj_request);
2412 }
2413 
2414 /*
2415  * Split up an image request into one or more object requests, each
2416  * to a different object.  The "type" parameter indicates whether
2417  * "data_desc" is the pointer to the head of a list of bio
2418  * structures, or the base of a page array.  In either case this
2419  * function assumes data_desc describes memory sufficient to hold
2420  * all data described by the image request.
2421  */
rbd_img_request_fill(struct rbd_img_request * img_request,enum obj_request_type type,void * data_desc)2422 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2423 					enum obj_request_type type,
2424 					void *data_desc)
2425 {
2426 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2427 	struct rbd_obj_request *obj_request = NULL;
2428 	struct rbd_obj_request *next_obj_request;
2429 	struct bio *bio_list = NULL;
2430 	unsigned int bio_offset = 0;
2431 	struct page **pages = NULL;
2432 	enum obj_operation_type op_type;
2433 	u64 img_offset;
2434 	u64 resid;
2435 
2436 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2437 		(int)type, data_desc);
2438 
2439 	img_offset = img_request->offset;
2440 	resid = img_request->length;
2441 	rbd_assert(resid > 0);
2442 	op_type = rbd_img_request_op_type(img_request);
2443 
2444 	if (type == OBJ_REQUEST_BIO) {
2445 		bio_list = data_desc;
2446 		rbd_assert(img_offset ==
2447 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2448 	} else if (type == OBJ_REQUEST_PAGES) {
2449 		pages = data_desc;
2450 	}
2451 
2452 	while (resid) {
2453 		struct ceph_osd_request *osd_req;
2454 		const char *object_name;
2455 		u64 offset;
2456 		u64 length;
2457 
2458 		object_name = rbd_segment_name(rbd_dev, img_offset);
2459 		if (!object_name)
2460 			goto out_unwind;
2461 		offset = rbd_segment_offset(rbd_dev, img_offset);
2462 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2463 		obj_request = rbd_obj_request_create(object_name,
2464 						offset, length, type);
2465 		/* object request has its own copy of the object name */
2466 		rbd_segment_name_free(object_name);
2467 		if (!obj_request)
2468 			goto out_unwind;
2469 
2470 		/*
2471 		 * set obj_request->img_request before creating the
2472 		 * osd_request so that it gets the right snapc
2473 		 */
2474 		rbd_img_obj_request_add(img_request, obj_request);
2475 
2476 		if (type == OBJ_REQUEST_BIO) {
2477 			unsigned int clone_size;
2478 
2479 			rbd_assert(length <= (u64)UINT_MAX);
2480 			clone_size = (unsigned int)length;
2481 			obj_request->bio_list =
2482 					bio_chain_clone_range(&bio_list,
2483 								&bio_offset,
2484 								clone_size,
2485 								GFP_NOIO);
2486 			if (!obj_request->bio_list)
2487 				goto out_unwind;
2488 		} else if (type == OBJ_REQUEST_PAGES) {
2489 			unsigned int page_count;
2490 
2491 			obj_request->pages = pages;
2492 			page_count = (u32)calc_pages_for(offset, length);
2493 			obj_request->page_count = page_count;
2494 			if ((offset + length) & ~PAGE_MASK)
2495 				page_count--;	/* more on last page */
2496 			pages += page_count;
2497 		}
2498 
2499 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2500 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2501 					obj_request);
2502 		if (!osd_req)
2503 			goto out_unwind;
2504 
2505 		obj_request->osd_req = osd_req;
2506 		obj_request->callback = rbd_img_obj_callback;
2507 		obj_request->img_offset = img_offset;
2508 
2509 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2510 
2511 		rbd_img_request_get(img_request);
2512 
2513 		img_offset += length;
2514 		resid -= length;
2515 	}
2516 
2517 	return 0;
2518 
2519 out_unwind:
2520 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2521 		rbd_img_obj_request_del(img_request, obj_request);
2522 
2523 	return -ENOMEM;
2524 }
2525 
2526 static void
rbd_osd_copyup_callback(struct rbd_obj_request * obj_request)2527 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2528 {
2529 	struct rbd_img_request *img_request;
2530 	struct rbd_device *rbd_dev;
2531 	struct page **pages;
2532 	u32 page_count;
2533 
2534 	dout("%s: obj %p\n", __func__, obj_request);
2535 
2536 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2537 		obj_request->type == OBJ_REQUEST_NODATA);
2538 	rbd_assert(obj_request_img_data_test(obj_request));
2539 	img_request = obj_request->img_request;
2540 	rbd_assert(img_request);
2541 
2542 	rbd_dev = img_request->rbd_dev;
2543 	rbd_assert(rbd_dev);
2544 
2545 	pages = obj_request->copyup_pages;
2546 	rbd_assert(pages != NULL);
2547 	obj_request->copyup_pages = NULL;
2548 	page_count = obj_request->copyup_page_count;
2549 	rbd_assert(page_count);
2550 	obj_request->copyup_page_count = 0;
2551 	ceph_release_page_vector(pages, page_count);
2552 
2553 	/*
2554 	 * We want the transfer count to reflect the size of the
2555 	 * original write request.  There is no such thing as a
2556 	 * successful short write, so if the request was successful
2557 	 * we can just set it to the originally-requested length.
2558 	 */
2559 	if (!obj_request->result)
2560 		obj_request->xferred = obj_request->length;
2561 
2562 	obj_request_done_set(obj_request);
2563 }
2564 
2565 static void
rbd_img_obj_parent_read_full_callback(struct rbd_img_request * img_request)2566 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2567 {
2568 	struct rbd_obj_request *orig_request;
2569 	struct ceph_osd_request *osd_req;
2570 	struct ceph_osd_client *osdc;
2571 	struct rbd_device *rbd_dev;
2572 	struct page **pages;
2573 	enum obj_operation_type op_type;
2574 	u32 page_count;
2575 	int img_result;
2576 	u64 parent_length;
2577 
2578 	rbd_assert(img_request_child_test(img_request));
2579 
2580 	/* First get what we need from the image request */
2581 
2582 	pages = img_request->copyup_pages;
2583 	rbd_assert(pages != NULL);
2584 	img_request->copyup_pages = NULL;
2585 	page_count = img_request->copyup_page_count;
2586 	rbd_assert(page_count);
2587 	img_request->copyup_page_count = 0;
2588 
2589 	orig_request = img_request->obj_request;
2590 	rbd_assert(orig_request != NULL);
2591 	rbd_assert(obj_request_type_valid(orig_request->type));
2592 	img_result = img_request->result;
2593 	parent_length = img_request->length;
2594 	rbd_assert(parent_length == img_request->xferred);
2595 	rbd_img_request_put(img_request);
2596 
2597 	rbd_assert(orig_request->img_request);
2598 	rbd_dev = orig_request->img_request->rbd_dev;
2599 	rbd_assert(rbd_dev);
2600 
2601 	/*
2602 	 * If the overlap has become 0 (most likely because the
2603 	 * image has been flattened) we need to free the pages
2604 	 * and re-submit the original write request.
2605 	 */
2606 	if (!rbd_dev->parent_overlap) {
2607 		struct ceph_osd_client *osdc;
2608 
2609 		ceph_release_page_vector(pages, page_count);
2610 		osdc = &rbd_dev->rbd_client->client->osdc;
2611 		img_result = rbd_obj_request_submit(osdc, orig_request);
2612 		if (!img_result)
2613 			return;
2614 	}
2615 
2616 	if (img_result)
2617 		goto out_err;
2618 
2619 	/*
2620 	 * The original osd request is of no use to use any more.
2621 	 * We need a new one that can hold the three ops in a copyup
2622 	 * request.  Allocate the new copyup osd request for the
2623 	 * original request, and release the old one.
2624 	 */
2625 	img_result = -ENOMEM;
2626 	osd_req = rbd_osd_req_create_copyup(orig_request);
2627 	if (!osd_req)
2628 		goto out_err;
2629 	rbd_osd_req_destroy(orig_request->osd_req);
2630 	orig_request->osd_req = osd_req;
2631 	orig_request->copyup_pages = pages;
2632 	orig_request->copyup_page_count = page_count;
2633 
2634 	/* Initialize the copyup op */
2635 
2636 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2637 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2638 						false, false);
2639 
2640 	/* Add the other op(s) */
2641 
2642 	op_type = rbd_img_request_op_type(orig_request->img_request);
2643 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2644 
2645 	/* All set, send it off. */
2646 
2647 	osdc = &rbd_dev->rbd_client->client->osdc;
2648 	img_result = rbd_obj_request_submit(osdc, orig_request);
2649 	if (!img_result)
2650 		return;
2651 out_err:
2652 	/* Record the error code and complete the request */
2653 
2654 	orig_request->result = img_result;
2655 	orig_request->xferred = 0;
2656 	obj_request_done_set(orig_request);
2657 	rbd_obj_request_complete(orig_request);
2658 }
2659 
2660 /*
2661  * Read from the parent image the range of data that covers the
2662  * entire target of the given object request.  This is used for
2663  * satisfying a layered image write request when the target of an
2664  * object request from the image request does not exist.
2665  *
2666  * A page array big enough to hold the returned data is allocated
2667  * and supplied to rbd_img_request_fill() as the "data descriptor."
2668  * When the read completes, this page array will be transferred to
2669  * the original object request for the copyup operation.
2670  *
2671  * If an error occurs, record it as the result of the original
2672  * object request and mark it done so it gets completed.
2673  */
rbd_img_obj_parent_read_full(struct rbd_obj_request * obj_request)2674 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2675 {
2676 	struct rbd_img_request *img_request = NULL;
2677 	struct rbd_img_request *parent_request = NULL;
2678 	struct rbd_device *rbd_dev;
2679 	u64 img_offset;
2680 	u64 length;
2681 	struct page **pages = NULL;
2682 	u32 page_count;
2683 	int result;
2684 
2685 	rbd_assert(obj_request_img_data_test(obj_request));
2686 	rbd_assert(obj_request_type_valid(obj_request->type));
2687 
2688 	img_request = obj_request->img_request;
2689 	rbd_assert(img_request != NULL);
2690 	rbd_dev = img_request->rbd_dev;
2691 	rbd_assert(rbd_dev->parent != NULL);
2692 
2693 	/*
2694 	 * Determine the byte range covered by the object in the
2695 	 * child image to which the original request was to be sent.
2696 	 */
2697 	img_offset = obj_request->img_offset - obj_request->offset;
2698 	length = (u64)1 << rbd_dev->header.obj_order;
2699 
2700 	/*
2701 	 * There is no defined parent data beyond the parent
2702 	 * overlap, so limit what we read at that boundary if
2703 	 * necessary.
2704 	 */
2705 	if (img_offset + length > rbd_dev->parent_overlap) {
2706 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2707 		length = rbd_dev->parent_overlap - img_offset;
2708 	}
2709 
2710 	/*
2711 	 * Allocate a page array big enough to receive the data read
2712 	 * from the parent.
2713 	 */
2714 	page_count = (u32)calc_pages_for(0, length);
2715 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2716 	if (IS_ERR(pages)) {
2717 		result = PTR_ERR(pages);
2718 		pages = NULL;
2719 		goto out_err;
2720 	}
2721 
2722 	result = -ENOMEM;
2723 	parent_request = rbd_parent_request_create(obj_request,
2724 						img_offset, length);
2725 	if (!parent_request)
2726 		goto out_err;
2727 
2728 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2729 	if (result)
2730 		goto out_err;
2731 	parent_request->copyup_pages = pages;
2732 	parent_request->copyup_page_count = page_count;
2733 
2734 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2735 	result = rbd_img_request_submit(parent_request);
2736 	if (!result)
2737 		return 0;
2738 
2739 	parent_request->copyup_pages = NULL;
2740 	parent_request->copyup_page_count = 0;
2741 	parent_request->obj_request = NULL;
2742 	rbd_obj_request_put(obj_request);
2743 out_err:
2744 	if (pages)
2745 		ceph_release_page_vector(pages, page_count);
2746 	if (parent_request)
2747 		rbd_img_request_put(parent_request);
2748 	obj_request->result = result;
2749 	obj_request->xferred = 0;
2750 	obj_request_done_set(obj_request);
2751 
2752 	return result;
2753 }
2754 
rbd_img_obj_exists_callback(struct rbd_obj_request * obj_request)2755 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2756 {
2757 	struct rbd_obj_request *orig_request;
2758 	struct rbd_device *rbd_dev;
2759 	int result;
2760 
2761 	rbd_assert(!obj_request_img_data_test(obj_request));
2762 
2763 	/*
2764 	 * All we need from the object request is the original
2765 	 * request and the result of the STAT op.  Grab those, then
2766 	 * we're done with the request.
2767 	 */
2768 	orig_request = obj_request->obj_request;
2769 	obj_request->obj_request = NULL;
2770 	rbd_obj_request_put(orig_request);
2771 	rbd_assert(orig_request);
2772 	rbd_assert(orig_request->img_request);
2773 
2774 	result = obj_request->result;
2775 	obj_request->result = 0;
2776 
2777 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2778 		obj_request, orig_request, result,
2779 		obj_request->xferred, obj_request->length);
2780 	rbd_obj_request_put(obj_request);
2781 
2782 	/*
2783 	 * If the overlap has become 0 (most likely because the
2784 	 * image has been flattened) we need to free the pages
2785 	 * and re-submit the original write request.
2786 	 */
2787 	rbd_dev = orig_request->img_request->rbd_dev;
2788 	if (!rbd_dev->parent_overlap) {
2789 		struct ceph_osd_client *osdc;
2790 
2791 		osdc = &rbd_dev->rbd_client->client->osdc;
2792 		result = rbd_obj_request_submit(osdc, orig_request);
2793 		if (!result)
2794 			return;
2795 	}
2796 
2797 	/*
2798 	 * Our only purpose here is to determine whether the object
2799 	 * exists, and we don't want to treat the non-existence as
2800 	 * an error.  If something else comes back, transfer the
2801 	 * error to the original request and complete it now.
2802 	 */
2803 	if (!result) {
2804 		obj_request_existence_set(orig_request, true);
2805 	} else if (result == -ENOENT) {
2806 		obj_request_existence_set(orig_request, false);
2807 	} else if (result) {
2808 		orig_request->result = result;
2809 		goto out;
2810 	}
2811 
2812 	/*
2813 	 * Resubmit the original request now that we have recorded
2814 	 * whether the target object exists.
2815 	 */
2816 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2817 out:
2818 	if (orig_request->result)
2819 		rbd_obj_request_complete(orig_request);
2820 }
2821 
rbd_img_obj_exists_submit(struct rbd_obj_request * obj_request)2822 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2823 {
2824 	struct rbd_obj_request *stat_request;
2825 	struct rbd_device *rbd_dev;
2826 	struct ceph_osd_client *osdc;
2827 	struct page **pages = NULL;
2828 	u32 page_count;
2829 	size_t size;
2830 	int ret;
2831 
2832 	/*
2833 	 * The response data for a STAT call consists of:
2834 	 *     le64 length;
2835 	 *     struct {
2836 	 *         le32 tv_sec;
2837 	 *         le32 tv_nsec;
2838 	 *     } mtime;
2839 	 */
2840 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2841 	page_count = (u32)calc_pages_for(0, size);
2842 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2843 	if (IS_ERR(pages))
2844 		return PTR_ERR(pages);
2845 
2846 	ret = -ENOMEM;
2847 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2848 							OBJ_REQUEST_PAGES);
2849 	if (!stat_request)
2850 		goto out;
2851 
2852 	rbd_obj_request_get(obj_request);
2853 	stat_request->obj_request = obj_request;
2854 	stat_request->pages = pages;
2855 	stat_request->page_count = page_count;
2856 
2857 	rbd_assert(obj_request->img_request);
2858 	rbd_dev = obj_request->img_request->rbd_dev;
2859 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2860 						   stat_request);
2861 	if (!stat_request->osd_req)
2862 		goto out;
2863 	stat_request->callback = rbd_img_obj_exists_callback;
2864 
2865 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2866 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2867 					false, false);
2868 	rbd_osd_req_format_read(stat_request);
2869 
2870 	osdc = &rbd_dev->rbd_client->client->osdc;
2871 	ret = rbd_obj_request_submit(osdc, stat_request);
2872 out:
2873 	if (ret)
2874 		rbd_obj_request_put(obj_request);
2875 
2876 	return ret;
2877 }
2878 
img_obj_request_simple(struct rbd_obj_request * obj_request)2879 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2880 {
2881 	struct rbd_img_request *img_request;
2882 	struct rbd_device *rbd_dev;
2883 
2884 	rbd_assert(obj_request_img_data_test(obj_request));
2885 
2886 	img_request = obj_request->img_request;
2887 	rbd_assert(img_request);
2888 	rbd_dev = img_request->rbd_dev;
2889 
2890 	/* Reads */
2891 	if (!img_request_write_test(img_request) &&
2892 	    !img_request_discard_test(img_request))
2893 		return true;
2894 
2895 	/* Non-layered writes */
2896 	if (!img_request_layered_test(img_request))
2897 		return true;
2898 
2899 	/*
2900 	 * Layered writes outside of the parent overlap range don't
2901 	 * share any data with the parent.
2902 	 */
2903 	if (!obj_request_overlaps_parent(obj_request))
2904 		return true;
2905 
2906 	/*
2907 	 * Entire-object layered writes - we will overwrite whatever
2908 	 * parent data there is anyway.
2909 	 */
2910 	if (!obj_request->offset &&
2911 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2912 		return true;
2913 
2914 	/*
2915 	 * If the object is known to already exist, its parent data has
2916 	 * already been copied.
2917 	 */
2918 	if (obj_request_known_test(obj_request) &&
2919 	    obj_request_exists_test(obj_request))
2920 		return true;
2921 
2922 	return false;
2923 }
2924 
rbd_img_obj_request_submit(struct rbd_obj_request * obj_request)2925 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2926 {
2927 	if (img_obj_request_simple(obj_request)) {
2928 		struct rbd_device *rbd_dev;
2929 		struct ceph_osd_client *osdc;
2930 
2931 		rbd_dev = obj_request->img_request->rbd_dev;
2932 		osdc = &rbd_dev->rbd_client->client->osdc;
2933 
2934 		return rbd_obj_request_submit(osdc, obj_request);
2935 	}
2936 
2937 	/*
2938 	 * It's a layered write.  The target object might exist but
2939 	 * we may not know that yet.  If we know it doesn't exist,
2940 	 * start by reading the data for the full target object from
2941 	 * the parent so we can use it for a copyup to the target.
2942 	 */
2943 	if (obj_request_known_test(obj_request))
2944 		return rbd_img_obj_parent_read_full(obj_request);
2945 
2946 	/* We don't know whether the target exists.  Go find out. */
2947 
2948 	return rbd_img_obj_exists_submit(obj_request);
2949 }
2950 
rbd_img_request_submit(struct rbd_img_request * img_request)2951 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2952 {
2953 	struct rbd_obj_request *obj_request;
2954 	struct rbd_obj_request *next_obj_request;
2955 
2956 	dout("%s: img %p\n", __func__, img_request);
2957 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2958 		int ret;
2959 
2960 		ret = rbd_img_obj_request_submit(obj_request);
2961 		if (ret)
2962 			return ret;
2963 	}
2964 
2965 	return 0;
2966 }
2967 
rbd_img_parent_read_callback(struct rbd_img_request * img_request)2968 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2969 {
2970 	struct rbd_obj_request *obj_request;
2971 	struct rbd_device *rbd_dev;
2972 	u64 obj_end;
2973 	u64 img_xferred;
2974 	int img_result;
2975 
2976 	rbd_assert(img_request_child_test(img_request));
2977 
2978 	/* First get what we need from the image request and release it */
2979 
2980 	obj_request = img_request->obj_request;
2981 	img_xferred = img_request->xferred;
2982 	img_result = img_request->result;
2983 	rbd_img_request_put(img_request);
2984 
2985 	/*
2986 	 * If the overlap has become 0 (most likely because the
2987 	 * image has been flattened) we need to re-submit the
2988 	 * original request.
2989 	 */
2990 	rbd_assert(obj_request);
2991 	rbd_assert(obj_request->img_request);
2992 	rbd_dev = obj_request->img_request->rbd_dev;
2993 	if (!rbd_dev->parent_overlap) {
2994 		struct ceph_osd_client *osdc;
2995 
2996 		osdc = &rbd_dev->rbd_client->client->osdc;
2997 		img_result = rbd_obj_request_submit(osdc, obj_request);
2998 		if (!img_result)
2999 			return;
3000 	}
3001 
3002 	obj_request->result = img_result;
3003 	if (obj_request->result)
3004 		goto out;
3005 
3006 	/*
3007 	 * We need to zero anything beyond the parent overlap
3008 	 * boundary.  Since rbd_img_obj_request_read_callback()
3009 	 * will zero anything beyond the end of a short read, an
3010 	 * easy way to do this is to pretend the data from the
3011 	 * parent came up short--ending at the overlap boundary.
3012 	 */
3013 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3014 	obj_end = obj_request->img_offset + obj_request->length;
3015 	if (obj_end > rbd_dev->parent_overlap) {
3016 		u64 xferred = 0;
3017 
3018 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3019 			xferred = rbd_dev->parent_overlap -
3020 					obj_request->img_offset;
3021 
3022 		obj_request->xferred = min(img_xferred, xferred);
3023 	} else {
3024 		obj_request->xferred = img_xferred;
3025 	}
3026 out:
3027 	rbd_img_obj_request_read_callback(obj_request);
3028 	rbd_obj_request_complete(obj_request);
3029 }
3030 
rbd_img_parent_read(struct rbd_obj_request * obj_request)3031 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3032 {
3033 	struct rbd_img_request *img_request;
3034 	int result;
3035 
3036 	rbd_assert(obj_request_img_data_test(obj_request));
3037 	rbd_assert(obj_request->img_request != NULL);
3038 	rbd_assert(obj_request->result == (s32) -ENOENT);
3039 	rbd_assert(obj_request_type_valid(obj_request->type));
3040 
3041 	/* rbd_read_finish(obj_request, obj_request->length); */
3042 	img_request = rbd_parent_request_create(obj_request,
3043 						obj_request->img_offset,
3044 						obj_request->length);
3045 	result = -ENOMEM;
3046 	if (!img_request)
3047 		goto out_err;
3048 
3049 	if (obj_request->type == OBJ_REQUEST_BIO)
3050 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3051 						obj_request->bio_list);
3052 	else
3053 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3054 						obj_request->pages);
3055 	if (result)
3056 		goto out_err;
3057 
3058 	img_request->callback = rbd_img_parent_read_callback;
3059 	result = rbd_img_request_submit(img_request);
3060 	if (result)
3061 		goto out_err;
3062 
3063 	return;
3064 out_err:
3065 	if (img_request)
3066 		rbd_img_request_put(img_request);
3067 	obj_request->result = result;
3068 	obj_request->xferred = 0;
3069 	obj_request_done_set(obj_request);
3070 }
3071 
rbd_obj_notify_ack_sync(struct rbd_device * rbd_dev,u64 notify_id)3072 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3073 {
3074 	struct rbd_obj_request *obj_request;
3075 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3076 	int ret;
3077 
3078 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3079 							OBJ_REQUEST_NODATA);
3080 	if (!obj_request)
3081 		return -ENOMEM;
3082 
3083 	ret = -ENOMEM;
3084 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3085 						  obj_request);
3086 	if (!obj_request->osd_req)
3087 		goto out;
3088 
3089 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3090 					notify_id, 0, 0);
3091 	rbd_osd_req_format_read(obj_request);
3092 
3093 	ret = rbd_obj_request_submit(osdc, obj_request);
3094 	if (ret)
3095 		goto out;
3096 	ret = rbd_obj_request_wait(obj_request);
3097 out:
3098 	rbd_obj_request_put(obj_request);
3099 
3100 	return ret;
3101 }
3102 
rbd_watch_cb(u64 ver,u64 notify_id,u8 opcode,void * data)3103 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3104 {
3105 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3106 	int ret;
3107 
3108 	if (!rbd_dev)
3109 		return;
3110 
3111 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3112 		rbd_dev->header_name, (unsigned long long)notify_id,
3113 		(unsigned int)opcode);
3114 
3115 	/*
3116 	 * Until adequate refresh error handling is in place, there is
3117 	 * not much we can do here, except warn.
3118 	 *
3119 	 * See http://tracker.ceph.com/issues/5040
3120 	 */
3121 	ret = rbd_dev_refresh(rbd_dev);
3122 	if (ret)
3123 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3124 
3125 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3126 	if (ret)
3127 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3128 }
3129 
3130 /*
3131  * Send a (un)watch request and wait for the ack.  Return a request
3132  * with a ref held on success or error.
3133  */
rbd_obj_watch_request_helper(struct rbd_device * rbd_dev,bool watch)3134 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3135 						struct rbd_device *rbd_dev,
3136 						bool watch)
3137 {
3138 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3139 	struct rbd_obj_request *obj_request;
3140 	int ret;
3141 
3142 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3143 					     OBJ_REQUEST_NODATA);
3144 	if (!obj_request)
3145 		return ERR_PTR(-ENOMEM);
3146 
3147 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3148 						  obj_request);
3149 	if (!obj_request->osd_req) {
3150 		ret = -ENOMEM;
3151 		goto out;
3152 	}
3153 
3154 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3155 			      rbd_dev->watch_event->cookie, 0, watch);
3156 	rbd_osd_req_format_write(obj_request);
3157 
3158 	if (watch)
3159 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3160 
3161 	ret = rbd_obj_request_submit(osdc, obj_request);
3162 	if (ret)
3163 		goto out;
3164 
3165 	ret = rbd_obj_request_wait(obj_request);
3166 	if (ret)
3167 		goto out;
3168 
3169 	ret = obj_request->result;
3170 	if (ret) {
3171 		if (watch)
3172 			rbd_obj_request_end(obj_request);
3173 		goto out;
3174 	}
3175 
3176 	return obj_request;
3177 
3178 out:
3179 	rbd_obj_request_put(obj_request);
3180 	return ERR_PTR(ret);
3181 }
3182 
3183 /*
3184  * Initiate a watch request, synchronously.
3185  */
rbd_dev_header_watch_sync(struct rbd_device * rbd_dev)3186 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3187 {
3188 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3189 	struct rbd_obj_request *obj_request;
3190 	int ret;
3191 
3192 	rbd_assert(!rbd_dev->watch_event);
3193 	rbd_assert(!rbd_dev->watch_request);
3194 
3195 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3196 				     &rbd_dev->watch_event);
3197 	if (ret < 0)
3198 		return ret;
3199 
3200 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3201 	if (IS_ERR(obj_request)) {
3202 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3203 		rbd_dev->watch_event = NULL;
3204 		return PTR_ERR(obj_request);
3205 	}
3206 
3207 	/*
3208 	 * A watch request is set to linger, so the underlying osd
3209 	 * request won't go away until we unregister it.  We retain
3210 	 * a pointer to the object request during that time (in
3211 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3212 	 * We'll drop that reference after we've unregistered it in
3213 	 * rbd_dev_header_unwatch_sync().
3214 	 */
3215 	rbd_dev->watch_request = obj_request;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * Tear down a watch request, synchronously.
3222  */
rbd_dev_header_unwatch_sync(struct rbd_device * rbd_dev)3223 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3224 {
3225 	struct rbd_obj_request *obj_request;
3226 
3227 	rbd_assert(rbd_dev->watch_event);
3228 	rbd_assert(rbd_dev->watch_request);
3229 
3230 	rbd_obj_request_end(rbd_dev->watch_request);
3231 	rbd_obj_request_put(rbd_dev->watch_request);
3232 	rbd_dev->watch_request = NULL;
3233 
3234 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3235 	if (!IS_ERR(obj_request))
3236 		rbd_obj_request_put(obj_request);
3237 	else
3238 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3239 			 PTR_ERR(obj_request));
3240 
3241 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3242 	rbd_dev->watch_event = NULL;
3243 }
3244 
3245 /*
3246  * Synchronous osd object method call.  Returns the number of bytes
3247  * returned in the outbound buffer, or a negative error code.
3248  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,const char * object_name,const char * class_name,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)3249 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3250 			     const char *object_name,
3251 			     const char *class_name,
3252 			     const char *method_name,
3253 			     const void *outbound,
3254 			     size_t outbound_size,
3255 			     void *inbound,
3256 			     size_t inbound_size)
3257 {
3258 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3259 	struct rbd_obj_request *obj_request;
3260 	struct page **pages;
3261 	u32 page_count;
3262 	int ret;
3263 
3264 	/*
3265 	 * Method calls are ultimately read operations.  The result
3266 	 * should placed into the inbound buffer provided.  They
3267 	 * also supply outbound data--parameters for the object
3268 	 * method.  Currently if this is present it will be a
3269 	 * snapshot id.
3270 	 */
3271 	page_count = (u32)calc_pages_for(0, inbound_size);
3272 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3273 	if (IS_ERR(pages))
3274 		return PTR_ERR(pages);
3275 
3276 	ret = -ENOMEM;
3277 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3278 							OBJ_REQUEST_PAGES);
3279 	if (!obj_request)
3280 		goto out;
3281 
3282 	obj_request->pages = pages;
3283 	obj_request->page_count = page_count;
3284 
3285 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3286 						  obj_request);
3287 	if (!obj_request->osd_req)
3288 		goto out;
3289 
3290 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3291 					class_name, method_name);
3292 	if (outbound_size) {
3293 		struct ceph_pagelist *pagelist;
3294 
3295 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3296 		if (!pagelist)
3297 			goto out;
3298 
3299 		ceph_pagelist_init(pagelist);
3300 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3301 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3302 						pagelist);
3303 	}
3304 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3305 					obj_request->pages, inbound_size,
3306 					0, false, false);
3307 	rbd_osd_req_format_read(obj_request);
3308 
3309 	ret = rbd_obj_request_submit(osdc, obj_request);
3310 	if (ret)
3311 		goto out;
3312 	ret = rbd_obj_request_wait(obj_request);
3313 	if (ret)
3314 		goto out;
3315 
3316 	ret = obj_request->result;
3317 	if (ret < 0)
3318 		goto out;
3319 
3320 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3321 	ret = (int)obj_request->xferred;
3322 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3323 out:
3324 	if (obj_request)
3325 		rbd_obj_request_put(obj_request);
3326 	else
3327 		ceph_release_page_vector(pages, page_count);
3328 
3329 	return ret;
3330 }
3331 
rbd_queue_workfn(struct work_struct * work)3332 static void rbd_queue_workfn(struct work_struct *work)
3333 {
3334 	struct request *rq = blk_mq_rq_from_pdu(work);
3335 	struct rbd_device *rbd_dev = rq->q->queuedata;
3336 	struct rbd_img_request *img_request;
3337 	struct ceph_snap_context *snapc = NULL;
3338 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3339 	u64 length = blk_rq_bytes(rq);
3340 	enum obj_operation_type op_type;
3341 	u64 mapping_size;
3342 	int result;
3343 
3344 	if (rq->cmd_type != REQ_TYPE_FS) {
3345 		dout("%s: non-fs request type %d\n", __func__,
3346 			(int) rq->cmd_type);
3347 		result = -EIO;
3348 		goto err;
3349 	}
3350 
3351 	if (rq->cmd_flags & REQ_DISCARD)
3352 		op_type = OBJ_OP_DISCARD;
3353 	else if (rq->cmd_flags & REQ_WRITE)
3354 		op_type = OBJ_OP_WRITE;
3355 	else
3356 		op_type = OBJ_OP_READ;
3357 
3358 	/* Ignore/skip any zero-length requests */
3359 
3360 	if (!length) {
3361 		dout("%s: zero-length request\n", __func__);
3362 		result = 0;
3363 		goto err_rq;
3364 	}
3365 
3366 	/* Only reads are allowed to a read-only device */
3367 
3368 	if (op_type != OBJ_OP_READ) {
3369 		if (rbd_dev->mapping.read_only) {
3370 			result = -EROFS;
3371 			goto err_rq;
3372 		}
3373 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3374 	}
3375 
3376 	/*
3377 	 * Quit early if the mapped snapshot no longer exists.  It's
3378 	 * still possible the snapshot will have disappeared by the
3379 	 * time our request arrives at the osd, but there's no sense in
3380 	 * sending it if we already know.
3381 	 */
3382 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3383 		dout("request for non-existent snapshot");
3384 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3385 		result = -ENXIO;
3386 		goto err_rq;
3387 	}
3388 
3389 	if (offset && length > U64_MAX - offset + 1) {
3390 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3391 			 length);
3392 		result = -EINVAL;
3393 		goto err_rq;	/* Shouldn't happen */
3394 	}
3395 
3396 	blk_mq_start_request(rq);
3397 
3398 	down_read(&rbd_dev->header_rwsem);
3399 	mapping_size = rbd_dev->mapping.size;
3400 	if (op_type != OBJ_OP_READ) {
3401 		snapc = rbd_dev->header.snapc;
3402 		ceph_get_snap_context(snapc);
3403 	}
3404 	up_read(&rbd_dev->header_rwsem);
3405 
3406 	if (offset + length > mapping_size) {
3407 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3408 			 length, mapping_size);
3409 		result = -EIO;
3410 		goto err_rq;
3411 	}
3412 
3413 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3414 					     snapc);
3415 	if (!img_request) {
3416 		result = -ENOMEM;
3417 		goto err_rq;
3418 	}
3419 	img_request->rq = rq;
3420 	snapc = NULL; /* img_request consumes a ref */
3421 
3422 	if (op_type == OBJ_OP_DISCARD)
3423 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3424 					      NULL);
3425 	else
3426 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3427 					      rq->bio);
3428 	if (result)
3429 		goto err_img_request;
3430 
3431 	result = rbd_img_request_submit(img_request);
3432 	if (result)
3433 		goto err_img_request;
3434 
3435 	return;
3436 
3437 err_img_request:
3438 	rbd_img_request_put(img_request);
3439 err_rq:
3440 	if (result)
3441 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3442 			 obj_op_name(op_type), length, offset, result);
3443 	ceph_put_snap_context(snapc);
3444 err:
3445 	blk_mq_end_request(rq, result);
3446 }
3447 
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)3448 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3449 		const struct blk_mq_queue_data *bd)
3450 {
3451 	struct request *rq = bd->rq;
3452 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3453 
3454 	queue_work(rbd_wq, work);
3455 	return BLK_MQ_RQ_QUEUE_OK;
3456 }
3457 
3458 /*
3459  * a queue callback. Makes sure that we don't create a bio that spans across
3460  * multiple osd objects. One exception would be with a single page bios,
3461  * which we handle later at bio_chain_clone_range()
3462  */
rbd_merge_bvec(struct request_queue * q,struct bvec_merge_data * bmd,struct bio_vec * bvec)3463 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3464 			  struct bio_vec *bvec)
3465 {
3466 	struct rbd_device *rbd_dev = q->queuedata;
3467 	sector_t sector_offset;
3468 	sector_t sectors_per_obj;
3469 	sector_t obj_sector_offset;
3470 	int ret;
3471 
3472 	/*
3473 	 * Find how far into its rbd object the partition-relative
3474 	 * bio start sector is to offset relative to the enclosing
3475 	 * device.
3476 	 */
3477 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3478 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3479 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3480 
3481 	/*
3482 	 * Compute the number of bytes from that offset to the end
3483 	 * of the object.  Account for what's already used by the bio.
3484 	 */
3485 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3486 	if (ret > bmd->bi_size)
3487 		ret -= bmd->bi_size;
3488 	else
3489 		ret = 0;
3490 
3491 	/*
3492 	 * Don't send back more than was asked for.  And if the bio
3493 	 * was empty, let the whole thing through because:  "Note
3494 	 * that a block device *must* allow a single page to be
3495 	 * added to an empty bio."
3496 	 */
3497 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3498 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3499 		ret = (int) bvec->bv_len;
3500 
3501 	return ret;
3502 }
3503 
rbd_free_disk(struct rbd_device * rbd_dev)3504 static void rbd_free_disk(struct rbd_device *rbd_dev)
3505 {
3506 	struct gendisk *disk = rbd_dev->disk;
3507 
3508 	if (!disk)
3509 		return;
3510 
3511 	rbd_dev->disk = NULL;
3512 	if (disk->flags & GENHD_FL_UP) {
3513 		del_gendisk(disk);
3514 		if (disk->queue)
3515 			blk_cleanup_queue(disk->queue);
3516 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3517 	}
3518 	put_disk(disk);
3519 }
3520 
rbd_obj_read_sync(struct rbd_device * rbd_dev,const char * object_name,u64 offset,u64 length,void * buf)3521 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3522 				const char *object_name,
3523 				u64 offset, u64 length, void *buf)
3524 
3525 {
3526 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3527 	struct rbd_obj_request *obj_request;
3528 	struct page **pages = NULL;
3529 	u32 page_count;
3530 	size_t size;
3531 	int ret;
3532 
3533 	page_count = (u32) calc_pages_for(offset, length);
3534 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3535 	if (IS_ERR(pages))
3536 		return PTR_ERR(pages);
3537 
3538 	ret = -ENOMEM;
3539 	obj_request = rbd_obj_request_create(object_name, offset, length,
3540 							OBJ_REQUEST_PAGES);
3541 	if (!obj_request)
3542 		goto out;
3543 
3544 	obj_request->pages = pages;
3545 	obj_request->page_count = page_count;
3546 
3547 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3548 						  obj_request);
3549 	if (!obj_request->osd_req)
3550 		goto out;
3551 
3552 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3553 					offset, length, 0, 0);
3554 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3555 					obj_request->pages,
3556 					obj_request->length,
3557 					obj_request->offset & ~PAGE_MASK,
3558 					false, false);
3559 	rbd_osd_req_format_read(obj_request);
3560 
3561 	ret = rbd_obj_request_submit(osdc, obj_request);
3562 	if (ret)
3563 		goto out;
3564 	ret = rbd_obj_request_wait(obj_request);
3565 	if (ret)
3566 		goto out;
3567 
3568 	ret = obj_request->result;
3569 	if (ret < 0)
3570 		goto out;
3571 
3572 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3573 	size = (size_t) obj_request->xferred;
3574 	ceph_copy_from_page_vector(pages, buf, 0, size);
3575 	rbd_assert(size <= (size_t)INT_MAX);
3576 	ret = (int)size;
3577 out:
3578 	if (obj_request)
3579 		rbd_obj_request_put(obj_request);
3580 	else
3581 		ceph_release_page_vector(pages, page_count);
3582 
3583 	return ret;
3584 }
3585 
3586 /*
3587  * Read the complete header for the given rbd device.  On successful
3588  * return, the rbd_dev->header field will contain up-to-date
3589  * information about the image.
3590  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev)3591 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3592 {
3593 	struct rbd_image_header_ondisk *ondisk = NULL;
3594 	u32 snap_count = 0;
3595 	u64 names_size = 0;
3596 	u32 want_count;
3597 	int ret;
3598 
3599 	/*
3600 	 * The complete header will include an array of its 64-bit
3601 	 * snapshot ids, followed by the names of those snapshots as
3602 	 * a contiguous block of NUL-terminated strings.  Note that
3603 	 * the number of snapshots could change by the time we read
3604 	 * it in, in which case we re-read it.
3605 	 */
3606 	do {
3607 		size_t size;
3608 
3609 		kfree(ondisk);
3610 
3611 		size = sizeof (*ondisk);
3612 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3613 		size += names_size;
3614 		ondisk = kmalloc(size, GFP_KERNEL);
3615 		if (!ondisk)
3616 			return -ENOMEM;
3617 
3618 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3619 				       0, size, ondisk);
3620 		if (ret < 0)
3621 			goto out;
3622 		if ((size_t)ret < size) {
3623 			ret = -ENXIO;
3624 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3625 				size, ret);
3626 			goto out;
3627 		}
3628 		if (!rbd_dev_ondisk_valid(ondisk)) {
3629 			ret = -ENXIO;
3630 			rbd_warn(rbd_dev, "invalid header");
3631 			goto out;
3632 		}
3633 
3634 		names_size = le64_to_cpu(ondisk->snap_names_len);
3635 		want_count = snap_count;
3636 		snap_count = le32_to_cpu(ondisk->snap_count);
3637 	} while (snap_count != want_count);
3638 
3639 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3640 out:
3641 	kfree(ondisk);
3642 
3643 	return ret;
3644 }
3645 
3646 /*
3647  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3648  * has disappeared from the (just updated) snapshot context.
3649  */
rbd_exists_validate(struct rbd_device * rbd_dev)3650 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3651 {
3652 	u64 snap_id;
3653 
3654 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3655 		return;
3656 
3657 	snap_id = rbd_dev->spec->snap_id;
3658 	if (snap_id == CEPH_NOSNAP)
3659 		return;
3660 
3661 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3662 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3663 }
3664 
rbd_dev_update_size(struct rbd_device * rbd_dev)3665 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3666 {
3667 	sector_t size;
3668 	bool removing;
3669 
3670 	/*
3671 	 * Don't hold the lock while doing disk operations,
3672 	 * or lock ordering will conflict with the bdev mutex via:
3673 	 * rbd_add() -> blkdev_get() -> rbd_open()
3674 	 */
3675 	spin_lock_irq(&rbd_dev->lock);
3676 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3677 	spin_unlock_irq(&rbd_dev->lock);
3678 	/*
3679 	 * If the device is being removed, rbd_dev->disk has
3680 	 * been destroyed, so don't try to update its size
3681 	 */
3682 	if (!removing) {
3683 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3684 		dout("setting size to %llu sectors", (unsigned long long)size);
3685 		set_capacity(rbd_dev->disk, size);
3686 		revalidate_disk(rbd_dev->disk);
3687 	}
3688 }
3689 
rbd_dev_refresh(struct rbd_device * rbd_dev)3690 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3691 {
3692 	u64 mapping_size;
3693 	int ret;
3694 
3695 	down_write(&rbd_dev->header_rwsem);
3696 	mapping_size = rbd_dev->mapping.size;
3697 
3698 	ret = rbd_dev_header_info(rbd_dev);
3699 	if (ret)
3700 		goto out;
3701 
3702 	/*
3703 	 * If there is a parent, see if it has disappeared due to the
3704 	 * mapped image getting flattened.
3705 	 */
3706 	if (rbd_dev->parent) {
3707 		ret = rbd_dev_v2_parent_info(rbd_dev);
3708 		if (ret)
3709 			goto out;
3710 	}
3711 
3712 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3713 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3714 	} else {
3715 		/* validate mapped snapshot's EXISTS flag */
3716 		rbd_exists_validate(rbd_dev);
3717 	}
3718 
3719 out:
3720 	up_write(&rbd_dev->header_rwsem);
3721 	if (!ret && mapping_size != rbd_dev->mapping.size)
3722 		rbd_dev_update_size(rbd_dev);
3723 
3724 	return ret;
3725 }
3726 
rbd_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)3727 static int rbd_init_request(void *data, struct request *rq,
3728 		unsigned int hctx_idx, unsigned int request_idx,
3729 		unsigned int numa_node)
3730 {
3731 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3732 
3733 	INIT_WORK(work, rbd_queue_workfn);
3734 	return 0;
3735 }
3736 
3737 static struct blk_mq_ops rbd_mq_ops = {
3738 	.queue_rq	= rbd_queue_rq,
3739 	.map_queue	= blk_mq_map_queue,
3740 	.init_request	= rbd_init_request,
3741 };
3742 
rbd_init_disk(struct rbd_device * rbd_dev)3743 static int rbd_init_disk(struct rbd_device *rbd_dev)
3744 {
3745 	struct gendisk *disk;
3746 	struct request_queue *q;
3747 	u64 segment_size;
3748 	int err;
3749 
3750 	/* create gendisk info */
3751 	disk = alloc_disk(single_major ?
3752 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3753 			  RBD_MINORS_PER_MAJOR);
3754 	if (!disk)
3755 		return -ENOMEM;
3756 
3757 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3758 		 rbd_dev->dev_id);
3759 	disk->major = rbd_dev->major;
3760 	disk->first_minor = rbd_dev->minor;
3761 	if (single_major)
3762 		disk->flags |= GENHD_FL_EXT_DEVT;
3763 	disk->fops = &rbd_bd_ops;
3764 	disk->private_data = rbd_dev;
3765 
3766 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3767 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3768 	rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3769 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3770 	rbd_dev->tag_set.flags =
3771 		BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3772 	rbd_dev->tag_set.nr_hw_queues = 1;
3773 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3774 
3775 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3776 	if (err)
3777 		goto out_disk;
3778 
3779 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3780 	if (IS_ERR(q)) {
3781 		err = PTR_ERR(q);
3782 		goto out_tag_set;
3783 	}
3784 
3785 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3786 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3787 
3788 	/* set io sizes to object size */
3789 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3790 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3791 	blk_queue_max_segment_size(q, segment_size);
3792 	blk_queue_io_min(q, segment_size);
3793 	blk_queue_io_opt(q, segment_size);
3794 
3795 	/* enable the discard support */
3796 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3797 	q->limits.discard_granularity = segment_size;
3798 	q->limits.discard_alignment = segment_size;
3799 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3800 	q->limits.discard_zeroes_data = 1;
3801 
3802 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3803 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3804 		q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3805 
3806 	disk->queue = q;
3807 
3808 	q->queuedata = rbd_dev;
3809 
3810 	rbd_dev->disk = disk;
3811 
3812 	return 0;
3813 out_tag_set:
3814 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3815 out_disk:
3816 	put_disk(disk);
3817 	return err;
3818 }
3819 
3820 /*
3821   sysfs
3822 */
3823 
dev_to_rbd_dev(struct device * dev)3824 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3825 {
3826 	return container_of(dev, struct rbd_device, dev);
3827 }
3828 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)3829 static ssize_t rbd_size_show(struct device *dev,
3830 			     struct device_attribute *attr, char *buf)
3831 {
3832 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3833 
3834 	return sprintf(buf, "%llu\n",
3835 		(unsigned long long)rbd_dev->mapping.size);
3836 }
3837 
3838 /*
3839  * Note this shows the features for whatever's mapped, which is not
3840  * necessarily the base image.
3841  */
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)3842 static ssize_t rbd_features_show(struct device *dev,
3843 			     struct device_attribute *attr, char *buf)
3844 {
3845 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3846 
3847 	return sprintf(buf, "0x%016llx\n",
3848 			(unsigned long long)rbd_dev->mapping.features);
3849 }
3850 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)3851 static ssize_t rbd_major_show(struct device *dev,
3852 			      struct device_attribute *attr, char *buf)
3853 {
3854 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3855 
3856 	if (rbd_dev->major)
3857 		return sprintf(buf, "%d\n", rbd_dev->major);
3858 
3859 	return sprintf(buf, "(none)\n");
3860 }
3861 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)3862 static ssize_t rbd_minor_show(struct device *dev,
3863 			      struct device_attribute *attr, char *buf)
3864 {
3865 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3866 
3867 	return sprintf(buf, "%d\n", rbd_dev->minor);
3868 }
3869 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)3870 static ssize_t rbd_client_id_show(struct device *dev,
3871 				  struct device_attribute *attr, char *buf)
3872 {
3873 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3874 
3875 	return sprintf(buf, "client%lld\n",
3876 			ceph_client_id(rbd_dev->rbd_client->client));
3877 }
3878 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)3879 static ssize_t rbd_pool_show(struct device *dev,
3880 			     struct device_attribute *attr, char *buf)
3881 {
3882 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3883 
3884 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3885 }
3886 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)3887 static ssize_t rbd_pool_id_show(struct device *dev,
3888 			     struct device_attribute *attr, char *buf)
3889 {
3890 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3891 
3892 	return sprintf(buf, "%llu\n",
3893 			(unsigned long long) rbd_dev->spec->pool_id);
3894 }
3895 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)3896 static ssize_t rbd_name_show(struct device *dev,
3897 			     struct device_attribute *attr, char *buf)
3898 {
3899 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3900 
3901 	if (rbd_dev->spec->image_name)
3902 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3903 
3904 	return sprintf(buf, "(unknown)\n");
3905 }
3906 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)3907 static ssize_t rbd_image_id_show(struct device *dev,
3908 			     struct device_attribute *attr, char *buf)
3909 {
3910 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3911 
3912 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3913 }
3914 
3915 /*
3916  * Shows the name of the currently-mapped snapshot (or
3917  * RBD_SNAP_HEAD_NAME for the base image).
3918  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)3919 static ssize_t rbd_snap_show(struct device *dev,
3920 			     struct device_attribute *attr,
3921 			     char *buf)
3922 {
3923 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3924 
3925 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3926 }
3927 
3928 /*
3929  * For a v2 image, shows the chain of parent images, separated by empty
3930  * lines.  For v1 images or if there is no parent, shows "(no parent
3931  * image)".
3932  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)3933 static ssize_t rbd_parent_show(struct device *dev,
3934 			       struct device_attribute *attr,
3935 			       char *buf)
3936 {
3937 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3938 	ssize_t count = 0;
3939 
3940 	if (!rbd_dev->parent)
3941 		return sprintf(buf, "(no parent image)\n");
3942 
3943 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3944 		struct rbd_spec *spec = rbd_dev->parent_spec;
3945 
3946 		count += sprintf(&buf[count], "%s"
3947 			    "pool_id %llu\npool_name %s\n"
3948 			    "image_id %s\nimage_name %s\n"
3949 			    "snap_id %llu\nsnap_name %s\n"
3950 			    "overlap %llu\n",
3951 			    !count ? "" : "\n", /* first? */
3952 			    spec->pool_id, spec->pool_name,
3953 			    spec->image_id, spec->image_name ?: "(unknown)",
3954 			    spec->snap_id, spec->snap_name,
3955 			    rbd_dev->parent_overlap);
3956 	}
3957 
3958 	return count;
3959 }
3960 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)3961 static ssize_t rbd_image_refresh(struct device *dev,
3962 				 struct device_attribute *attr,
3963 				 const char *buf,
3964 				 size_t size)
3965 {
3966 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3967 	int ret;
3968 
3969 	ret = rbd_dev_refresh(rbd_dev);
3970 	if (ret)
3971 		return ret;
3972 
3973 	return size;
3974 }
3975 
3976 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3977 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3978 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3979 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3980 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3981 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3982 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3983 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3984 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3985 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3986 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3987 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3988 
3989 static struct attribute *rbd_attrs[] = {
3990 	&dev_attr_size.attr,
3991 	&dev_attr_features.attr,
3992 	&dev_attr_major.attr,
3993 	&dev_attr_minor.attr,
3994 	&dev_attr_client_id.attr,
3995 	&dev_attr_pool.attr,
3996 	&dev_attr_pool_id.attr,
3997 	&dev_attr_name.attr,
3998 	&dev_attr_image_id.attr,
3999 	&dev_attr_current_snap.attr,
4000 	&dev_attr_parent.attr,
4001 	&dev_attr_refresh.attr,
4002 	NULL
4003 };
4004 
4005 static struct attribute_group rbd_attr_group = {
4006 	.attrs = rbd_attrs,
4007 };
4008 
4009 static const struct attribute_group *rbd_attr_groups[] = {
4010 	&rbd_attr_group,
4011 	NULL
4012 };
4013 
rbd_sysfs_dev_release(struct device * dev)4014 static void rbd_sysfs_dev_release(struct device *dev)
4015 {
4016 }
4017 
4018 static struct device_type rbd_device_type = {
4019 	.name		= "rbd",
4020 	.groups		= rbd_attr_groups,
4021 	.release	= rbd_sysfs_dev_release,
4022 };
4023 
rbd_spec_get(struct rbd_spec * spec)4024 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4025 {
4026 	kref_get(&spec->kref);
4027 
4028 	return spec;
4029 }
4030 
4031 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)4032 static void rbd_spec_put(struct rbd_spec *spec)
4033 {
4034 	if (spec)
4035 		kref_put(&spec->kref, rbd_spec_free);
4036 }
4037 
rbd_spec_alloc(void)4038 static struct rbd_spec *rbd_spec_alloc(void)
4039 {
4040 	struct rbd_spec *spec;
4041 
4042 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4043 	if (!spec)
4044 		return NULL;
4045 
4046 	spec->pool_id = CEPH_NOPOOL;
4047 	spec->snap_id = CEPH_NOSNAP;
4048 	kref_init(&spec->kref);
4049 
4050 	return spec;
4051 }
4052 
rbd_spec_free(struct kref * kref)4053 static void rbd_spec_free(struct kref *kref)
4054 {
4055 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4056 
4057 	kfree(spec->pool_name);
4058 	kfree(spec->image_id);
4059 	kfree(spec->image_name);
4060 	kfree(spec->snap_name);
4061 	kfree(spec);
4062 }
4063 
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec)4064 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4065 				struct rbd_spec *spec)
4066 {
4067 	struct rbd_device *rbd_dev;
4068 
4069 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4070 	if (!rbd_dev)
4071 		return NULL;
4072 
4073 	spin_lock_init(&rbd_dev->lock);
4074 	rbd_dev->flags = 0;
4075 	atomic_set(&rbd_dev->parent_ref, 0);
4076 	INIT_LIST_HEAD(&rbd_dev->node);
4077 	init_rwsem(&rbd_dev->header_rwsem);
4078 
4079 	rbd_dev->spec = spec;
4080 	rbd_dev->rbd_client = rbdc;
4081 
4082 	/* Initialize the layout used for all rbd requests */
4083 
4084 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4085 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4086 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4087 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4088 
4089 	return rbd_dev;
4090 }
4091 
rbd_dev_destroy(struct rbd_device * rbd_dev)4092 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4093 {
4094 	rbd_put_client(rbd_dev->rbd_client);
4095 	rbd_spec_put(rbd_dev->spec);
4096 	kfree(rbd_dev);
4097 }
4098 
4099 /*
4100  * Get the size and object order for an image snapshot, or if
4101  * snap_id is CEPH_NOSNAP, gets this information for the base
4102  * image.
4103  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)4104 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4105 				u8 *order, u64 *snap_size)
4106 {
4107 	__le64 snapid = cpu_to_le64(snap_id);
4108 	int ret;
4109 	struct {
4110 		u8 order;
4111 		__le64 size;
4112 	} __attribute__ ((packed)) size_buf = { 0 };
4113 
4114 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4115 				"rbd", "get_size",
4116 				&snapid, sizeof (snapid),
4117 				&size_buf, sizeof (size_buf));
4118 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4119 	if (ret < 0)
4120 		return ret;
4121 	if (ret < sizeof (size_buf))
4122 		return -ERANGE;
4123 
4124 	if (order) {
4125 		*order = size_buf.order;
4126 		dout("  order %u", (unsigned int)*order);
4127 	}
4128 	*snap_size = le64_to_cpu(size_buf.size);
4129 
4130 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4131 		(unsigned long long)snap_id,
4132 		(unsigned long long)*snap_size);
4133 
4134 	return 0;
4135 }
4136 
rbd_dev_v2_image_size(struct rbd_device * rbd_dev)4137 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4138 {
4139 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4140 					&rbd_dev->header.obj_order,
4141 					&rbd_dev->header.image_size);
4142 }
4143 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev)4144 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4145 {
4146 	void *reply_buf;
4147 	int ret;
4148 	void *p;
4149 
4150 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4151 	if (!reply_buf)
4152 		return -ENOMEM;
4153 
4154 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155 				"rbd", "get_object_prefix", NULL, 0,
4156 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4157 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 	if (ret < 0)
4159 		goto out;
4160 
4161 	p = reply_buf;
4162 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4163 						p + ret, NULL, GFP_NOIO);
4164 	ret = 0;
4165 
4166 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4167 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4168 		rbd_dev->header.object_prefix = NULL;
4169 	} else {
4170 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4171 	}
4172 out:
4173 	kfree(reply_buf);
4174 
4175 	return ret;
4176 }
4177 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_features)4178 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4179 		u64 *snap_features)
4180 {
4181 	__le64 snapid = cpu_to_le64(snap_id);
4182 	struct {
4183 		__le64 features;
4184 		__le64 incompat;
4185 	} __attribute__ ((packed)) features_buf = { 0 };
4186 	u64 incompat;
4187 	int ret;
4188 
4189 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4190 				"rbd", "get_features",
4191 				&snapid, sizeof (snapid),
4192 				&features_buf, sizeof (features_buf));
4193 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4194 	if (ret < 0)
4195 		return ret;
4196 	if (ret < sizeof (features_buf))
4197 		return -ERANGE;
4198 
4199 	incompat = le64_to_cpu(features_buf.incompat);
4200 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4201 		return -ENXIO;
4202 
4203 	*snap_features = le64_to_cpu(features_buf.features);
4204 
4205 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4206 		(unsigned long long)snap_id,
4207 		(unsigned long long)*snap_features,
4208 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4209 
4210 	return 0;
4211 }
4212 
rbd_dev_v2_features(struct rbd_device * rbd_dev)4213 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4214 {
4215 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4216 						&rbd_dev->header.features);
4217 }
4218 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev)4219 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4220 {
4221 	struct rbd_spec *parent_spec;
4222 	size_t size;
4223 	void *reply_buf = NULL;
4224 	__le64 snapid;
4225 	void *p;
4226 	void *end;
4227 	u64 pool_id;
4228 	char *image_id;
4229 	u64 snap_id;
4230 	u64 overlap;
4231 	int ret;
4232 
4233 	parent_spec = rbd_spec_alloc();
4234 	if (!parent_spec)
4235 		return -ENOMEM;
4236 
4237 	size = sizeof (__le64) +				/* pool_id */
4238 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4239 		sizeof (__le64) +				/* snap_id */
4240 		sizeof (__le64);				/* overlap */
4241 	reply_buf = kmalloc(size, GFP_KERNEL);
4242 	if (!reply_buf) {
4243 		ret = -ENOMEM;
4244 		goto out_err;
4245 	}
4246 
4247 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4248 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4249 				"rbd", "get_parent",
4250 				&snapid, sizeof (snapid),
4251 				reply_buf, size);
4252 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4253 	if (ret < 0)
4254 		goto out_err;
4255 
4256 	p = reply_buf;
4257 	end = reply_buf + ret;
4258 	ret = -ERANGE;
4259 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4260 	if (pool_id == CEPH_NOPOOL) {
4261 		/*
4262 		 * Either the parent never existed, or we have
4263 		 * record of it but the image got flattened so it no
4264 		 * longer has a parent.  When the parent of a
4265 		 * layered image disappears we immediately set the
4266 		 * overlap to 0.  The effect of this is that all new
4267 		 * requests will be treated as if the image had no
4268 		 * parent.
4269 		 */
4270 		if (rbd_dev->parent_overlap) {
4271 			rbd_dev->parent_overlap = 0;
4272 			rbd_dev_parent_put(rbd_dev);
4273 			pr_info("%s: clone image has been flattened\n",
4274 				rbd_dev->disk->disk_name);
4275 		}
4276 
4277 		goto out;	/* No parent?  No problem. */
4278 	}
4279 
4280 	/* The ceph file layout needs to fit pool id in 32 bits */
4281 
4282 	ret = -EIO;
4283 	if (pool_id > (u64)U32_MAX) {
4284 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4285 			(unsigned long long)pool_id, U32_MAX);
4286 		goto out_err;
4287 	}
4288 
4289 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4290 	if (IS_ERR(image_id)) {
4291 		ret = PTR_ERR(image_id);
4292 		goto out_err;
4293 	}
4294 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4295 	ceph_decode_64_safe(&p, end, overlap, out_err);
4296 
4297 	/*
4298 	 * The parent won't change (except when the clone is
4299 	 * flattened, already handled that).  So we only need to
4300 	 * record the parent spec we have not already done so.
4301 	 */
4302 	if (!rbd_dev->parent_spec) {
4303 		parent_spec->pool_id = pool_id;
4304 		parent_spec->image_id = image_id;
4305 		parent_spec->snap_id = snap_id;
4306 		rbd_dev->parent_spec = parent_spec;
4307 		parent_spec = NULL;	/* rbd_dev now owns this */
4308 	} else {
4309 		kfree(image_id);
4310 	}
4311 
4312 	/*
4313 	 * We always update the parent overlap.  If it's zero we issue
4314 	 * a warning, as we will proceed as if there was no parent.
4315 	 */
4316 	if (!overlap) {
4317 		if (parent_spec) {
4318 			/* refresh, careful to warn just once */
4319 			if (rbd_dev->parent_overlap)
4320 				rbd_warn(rbd_dev,
4321 				    "clone now standalone (overlap became 0)");
4322 		} else {
4323 			/* initial probe */
4324 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4325 		}
4326 	}
4327 	rbd_dev->parent_overlap = overlap;
4328 
4329 out:
4330 	ret = 0;
4331 out_err:
4332 	kfree(reply_buf);
4333 	rbd_spec_put(parent_spec);
4334 
4335 	return ret;
4336 }
4337 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev)4338 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4339 {
4340 	struct {
4341 		__le64 stripe_unit;
4342 		__le64 stripe_count;
4343 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4344 	size_t size = sizeof (striping_info_buf);
4345 	void *p;
4346 	u64 obj_size;
4347 	u64 stripe_unit;
4348 	u64 stripe_count;
4349 	int ret;
4350 
4351 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4352 				"rbd", "get_stripe_unit_count", NULL, 0,
4353 				(char *)&striping_info_buf, size);
4354 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4355 	if (ret < 0)
4356 		return ret;
4357 	if (ret < size)
4358 		return -ERANGE;
4359 
4360 	/*
4361 	 * We don't actually support the "fancy striping" feature
4362 	 * (STRIPINGV2) yet, but if the striping sizes are the
4363 	 * defaults the behavior is the same as before.  So find
4364 	 * out, and only fail if the image has non-default values.
4365 	 */
4366 	ret = -EINVAL;
4367 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4368 	p = &striping_info_buf;
4369 	stripe_unit = ceph_decode_64(&p);
4370 	if (stripe_unit != obj_size) {
4371 		rbd_warn(rbd_dev, "unsupported stripe unit "
4372 				"(got %llu want %llu)",
4373 				stripe_unit, obj_size);
4374 		return -EINVAL;
4375 	}
4376 	stripe_count = ceph_decode_64(&p);
4377 	if (stripe_count != 1) {
4378 		rbd_warn(rbd_dev, "unsupported stripe count "
4379 				"(got %llu want 1)", stripe_count);
4380 		return -EINVAL;
4381 	}
4382 	rbd_dev->header.stripe_unit = stripe_unit;
4383 	rbd_dev->header.stripe_count = stripe_count;
4384 
4385 	return 0;
4386 }
4387 
rbd_dev_image_name(struct rbd_device * rbd_dev)4388 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4389 {
4390 	size_t image_id_size;
4391 	char *image_id;
4392 	void *p;
4393 	void *end;
4394 	size_t size;
4395 	void *reply_buf = NULL;
4396 	size_t len = 0;
4397 	char *image_name = NULL;
4398 	int ret;
4399 
4400 	rbd_assert(!rbd_dev->spec->image_name);
4401 
4402 	len = strlen(rbd_dev->spec->image_id);
4403 	image_id_size = sizeof (__le32) + len;
4404 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4405 	if (!image_id)
4406 		return NULL;
4407 
4408 	p = image_id;
4409 	end = image_id + image_id_size;
4410 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4411 
4412 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4413 	reply_buf = kmalloc(size, GFP_KERNEL);
4414 	if (!reply_buf)
4415 		goto out;
4416 
4417 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4418 				"rbd", "dir_get_name",
4419 				image_id, image_id_size,
4420 				reply_buf, size);
4421 	if (ret < 0)
4422 		goto out;
4423 	p = reply_buf;
4424 	end = reply_buf + ret;
4425 
4426 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4427 	if (IS_ERR(image_name))
4428 		image_name = NULL;
4429 	else
4430 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4431 out:
4432 	kfree(reply_buf);
4433 	kfree(image_id);
4434 
4435 	return image_name;
4436 }
4437 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4438 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4439 {
4440 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4441 	const char *snap_name;
4442 	u32 which = 0;
4443 
4444 	/* Skip over names until we find the one we are looking for */
4445 
4446 	snap_name = rbd_dev->header.snap_names;
4447 	while (which < snapc->num_snaps) {
4448 		if (!strcmp(name, snap_name))
4449 			return snapc->snaps[which];
4450 		snap_name += strlen(snap_name) + 1;
4451 		which++;
4452 	}
4453 	return CEPH_NOSNAP;
4454 }
4455 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4456 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4457 {
4458 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4459 	u32 which;
4460 	bool found = false;
4461 	u64 snap_id;
4462 
4463 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4464 		const char *snap_name;
4465 
4466 		snap_id = snapc->snaps[which];
4467 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4468 		if (IS_ERR(snap_name)) {
4469 			/* ignore no-longer existing snapshots */
4470 			if (PTR_ERR(snap_name) == -ENOENT)
4471 				continue;
4472 			else
4473 				break;
4474 		}
4475 		found = !strcmp(name, snap_name);
4476 		kfree(snap_name);
4477 	}
4478 	return found ? snap_id : CEPH_NOSNAP;
4479 }
4480 
4481 /*
4482  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4483  * no snapshot by that name is found, or if an error occurs.
4484  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)4485 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4486 {
4487 	if (rbd_dev->image_format == 1)
4488 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4489 
4490 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4491 }
4492 
4493 /*
4494  * An image being mapped will have everything but the snap id.
4495  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)4496 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4497 {
4498 	struct rbd_spec *spec = rbd_dev->spec;
4499 
4500 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4501 	rbd_assert(spec->image_id && spec->image_name);
4502 	rbd_assert(spec->snap_name);
4503 
4504 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4505 		u64 snap_id;
4506 
4507 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4508 		if (snap_id == CEPH_NOSNAP)
4509 			return -ENOENT;
4510 
4511 		spec->snap_id = snap_id;
4512 	} else {
4513 		spec->snap_id = CEPH_NOSNAP;
4514 	}
4515 
4516 	return 0;
4517 }
4518 
4519 /*
4520  * A parent image will have all ids but none of the names.
4521  *
4522  * All names in an rbd spec are dynamically allocated.  It's OK if we
4523  * can't figure out the name for an image id.
4524  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)4525 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4526 {
4527 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4528 	struct rbd_spec *spec = rbd_dev->spec;
4529 	const char *pool_name;
4530 	const char *image_name;
4531 	const char *snap_name;
4532 	int ret;
4533 
4534 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4535 	rbd_assert(spec->image_id);
4536 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4537 
4538 	/* Get the pool name; we have to make our own copy of this */
4539 
4540 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4541 	if (!pool_name) {
4542 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4543 		return -EIO;
4544 	}
4545 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4546 	if (!pool_name)
4547 		return -ENOMEM;
4548 
4549 	/* Fetch the image name; tolerate failure here */
4550 
4551 	image_name = rbd_dev_image_name(rbd_dev);
4552 	if (!image_name)
4553 		rbd_warn(rbd_dev, "unable to get image name");
4554 
4555 	/* Fetch the snapshot name */
4556 
4557 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4558 	if (IS_ERR(snap_name)) {
4559 		ret = PTR_ERR(snap_name);
4560 		goto out_err;
4561 	}
4562 
4563 	spec->pool_name = pool_name;
4564 	spec->image_name = image_name;
4565 	spec->snap_name = snap_name;
4566 
4567 	return 0;
4568 
4569 out_err:
4570 	kfree(image_name);
4571 	kfree(pool_name);
4572 	return ret;
4573 }
4574 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev)4575 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4576 {
4577 	size_t size;
4578 	int ret;
4579 	void *reply_buf;
4580 	void *p;
4581 	void *end;
4582 	u64 seq;
4583 	u32 snap_count;
4584 	struct ceph_snap_context *snapc;
4585 	u32 i;
4586 
4587 	/*
4588 	 * We'll need room for the seq value (maximum snapshot id),
4589 	 * snapshot count, and array of that many snapshot ids.
4590 	 * For now we have a fixed upper limit on the number we're
4591 	 * prepared to receive.
4592 	 */
4593 	size = sizeof (__le64) + sizeof (__le32) +
4594 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4595 	reply_buf = kzalloc(size, GFP_KERNEL);
4596 	if (!reply_buf)
4597 		return -ENOMEM;
4598 
4599 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4600 				"rbd", "get_snapcontext", NULL, 0,
4601 				reply_buf, size);
4602 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4603 	if (ret < 0)
4604 		goto out;
4605 
4606 	p = reply_buf;
4607 	end = reply_buf + ret;
4608 	ret = -ERANGE;
4609 	ceph_decode_64_safe(&p, end, seq, out);
4610 	ceph_decode_32_safe(&p, end, snap_count, out);
4611 
4612 	/*
4613 	 * Make sure the reported number of snapshot ids wouldn't go
4614 	 * beyond the end of our buffer.  But before checking that,
4615 	 * make sure the computed size of the snapshot context we
4616 	 * allocate is representable in a size_t.
4617 	 */
4618 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4619 				 / sizeof (u64)) {
4620 		ret = -EINVAL;
4621 		goto out;
4622 	}
4623 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4624 		goto out;
4625 	ret = 0;
4626 
4627 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4628 	if (!snapc) {
4629 		ret = -ENOMEM;
4630 		goto out;
4631 	}
4632 	snapc->seq = seq;
4633 	for (i = 0; i < snap_count; i++)
4634 		snapc->snaps[i] = ceph_decode_64(&p);
4635 
4636 	ceph_put_snap_context(rbd_dev->header.snapc);
4637 	rbd_dev->header.snapc = snapc;
4638 
4639 	dout("  snap context seq = %llu, snap_count = %u\n",
4640 		(unsigned long long)seq, (unsigned int)snap_count);
4641 out:
4642 	kfree(reply_buf);
4643 
4644 	return ret;
4645 }
4646 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)4647 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4648 					u64 snap_id)
4649 {
4650 	size_t size;
4651 	void *reply_buf;
4652 	__le64 snapid;
4653 	int ret;
4654 	void *p;
4655 	void *end;
4656 	char *snap_name;
4657 
4658 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4659 	reply_buf = kmalloc(size, GFP_KERNEL);
4660 	if (!reply_buf)
4661 		return ERR_PTR(-ENOMEM);
4662 
4663 	snapid = cpu_to_le64(snap_id);
4664 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4665 				"rbd", "get_snapshot_name",
4666 				&snapid, sizeof (snapid),
4667 				reply_buf, size);
4668 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4669 	if (ret < 0) {
4670 		snap_name = ERR_PTR(ret);
4671 		goto out;
4672 	}
4673 
4674 	p = reply_buf;
4675 	end = reply_buf + ret;
4676 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4677 	if (IS_ERR(snap_name))
4678 		goto out;
4679 
4680 	dout("  snap_id 0x%016llx snap_name = %s\n",
4681 		(unsigned long long)snap_id, snap_name);
4682 out:
4683 	kfree(reply_buf);
4684 
4685 	return snap_name;
4686 }
4687 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev)4688 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4689 {
4690 	bool first_time = rbd_dev->header.object_prefix == NULL;
4691 	int ret;
4692 
4693 	ret = rbd_dev_v2_image_size(rbd_dev);
4694 	if (ret)
4695 		return ret;
4696 
4697 	if (first_time) {
4698 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4699 		if (ret)
4700 			return ret;
4701 	}
4702 
4703 	ret = rbd_dev_v2_snap_context(rbd_dev);
4704 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4705 
4706 	return ret;
4707 }
4708 
rbd_dev_header_info(struct rbd_device * rbd_dev)4709 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4710 {
4711 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4712 
4713 	if (rbd_dev->image_format == 1)
4714 		return rbd_dev_v1_header_info(rbd_dev);
4715 
4716 	return rbd_dev_v2_header_info(rbd_dev);
4717 }
4718 
rbd_bus_add_dev(struct rbd_device * rbd_dev)4719 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4720 {
4721 	struct device *dev;
4722 	int ret;
4723 
4724 	dev = &rbd_dev->dev;
4725 	dev->bus = &rbd_bus_type;
4726 	dev->type = &rbd_device_type;
4727 	dev->parent = &rbd_root_dev;
4728 	dev->release = rbd_dev_device_release;
4729 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4730 	ret = device_register(dev);
4731 
4732 	return ret;
4733 }
4734 
rbd_bus_del_dev(struct rbd_device * rbd_dev)4735 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4736 {
4737 	device_unregister(&rbd_dev->dev);
4738 }
4739 
4740 /*
4741  * Get a unique rbd identifier for the given new rbd_dev, and add
4742  * the rbd_dev to the global list.
4743  */
rbd_dev_id_get(struct rbd_device * rbd_dev)4744 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4745 {
4746 	int new_dev_id;
4747 
4748 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4749 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4750 				    GFP_KERNEL);
4751 	if (new_dev_id < 0)
4752 		return new_dev_id;
4753 
4754 	rbd_dev->dev_id = new_dev_id;
4755 
4756 	spin_lock(&rbd_dev_list_lock);
4757 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4758 	spin_unlock(&rbd_dev_list_lock);
4759 
4760 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4761 
4762 	return 0;
4763 }
4764 
4765 /*
4766  * Remove an rbd_dev from the global list, and record that its
4767  * identifier is no longer in use.
4768  */
rbd_dev_id_put(struct rbd_device * rbd_dev)4769 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4770 {
4771 	spin_lock(&rbd_dev_list_lock);
4772 	list_del_init(&rbd_dev->node);
4773 	spin_unlock(&rbd_dev_list_lock);
4774 
4775 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4776 
4777 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4778 }
4779 
4780 /*
4781  * Skips over white space at *buf, and updates *buf to point to the
4782  * first found non-space character (if any). Returns the length of
4783  * the token (string of non-white space characters) found.  Note
4784  * that *buf must be terminated with '\0'.
4785  */
next_token(const char ** buf)4786 static inline size_t next_token(const char **buf)
4787 {
4788         /*
4789         * These are the characters that produce nonzero for
4790         * isspace() in the "C" and "POSIX" locales.
4791         */
4792         const char *spaces = " \f\n\r\t\v";
4793 
4794         *buf += strspn(*buf, spaces);	/* Find start of token */
4795 
4796 	return strcspn(*buf, spaces);   /* Return token length */
4797 }
4798 
4799 /*
4800  * Finds the next token in *buf, dynamically allocates a buffer big
4801  * enough to hold a copy of it, and copies the token into the new
4802  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4803  * that a duplicate buffer is created even for a zero-length token.
4804  *
4805  * Returns a pointer to the newly-allocated duplicate, or a null
4806  * pointer if memory for the duplicate was not available.  If
4807  * the lenp argument is a non-null pointer, the length of the token
4808  * (not including the '\0') is returned in *lenp.
4809  *
4810  * If successful, the *buf pointer will be updated to point beyond
4811  * the end of the found token.
4812  *
4813  * Note: uses GFP_KERNEL for allocation.
4814  */
dup_token(const char ** buf,size_t * lenp)4815 static inline char *dup_token(const char **buf, size_t *lenp)
4816 {
4817 	char *dup;
4818 	size_t len;
4819 
4820 	len = next_token(buf);
4821 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4822 	if (!dup)
4823 		return NULL;
4824 	*(dup + len) = '\0';
4825 	*buf += len;
4826 
4827 	if (lenp)
4828 		*lenp = len;
4829 
4830 	return dup;
4831 }
4832 
4833 /*
4834  * Parse the options provided for an "rbd add" (i.e., rbd image
4835  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4836  * and the data written is passed here via a NUL-terminated buffer.
4837  * Returns 0 if successful or an error code otherwise.
4838  *
4839  * The information extracted from these options is recorded in
4840  * the other parameters which return dynamically-allocated
4841  * structures:
4842  *  ceph_opts
4843  *      The address of a pointer that will refer to a ceph options
4844  *      structure.  Caller must release the returned pointer using
4845  *      ceph_destroy_options() when it is no longer needed.
4846  *  rbd_opts
4847  *	Address of an rbd options pointer.  Fully initialized by
4848  *	this function; caller must release with kfree().
4849  *  spec
4850  *	Address of an rbd image specification pointer.  Fully
4851  *	initialized by this function based on parsed options.
4852  *	Caller must release with rbd_spec_put().
4853  *
4854  * The options passed take this form:
4855  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4856  * where:
4857  *  <mon_addrs>
4858  *      A comma-separated list of one or more monitor addresses.
4859  *      A monitor address is an ip address, optionally followed
4860  *      by a port number (separated by a colon).
4861  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4862  *  <options>
4863  *      A comma-separated list of ceph and/or rbd options.
4864  *  <pool_name>
4865  *      The name of the rados pool containing the rbd image.
4866  *  <image_name>
4867  *      The name of the image in that pool to map.
4868  *  <snap_id>
4869  *      An optional snapshot id.  If provided, the mapping will
4870  *      present data from the image at the time that snapshot was
4871  *      created.  The image head is used if no snapshot id is
4872  *      provided.  Snapshot mappings are always read-only.
4873  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)4874 static int rbd_add_parse_args(const char *buf,
4875 				struct ceph_options **ceph_opts,
4876 				struct rbd_options **opts,
4877 				struct rbd_spec **rbd_spec)
4878 {
4879 	size_t len;
4880 	char *options;
4881 	const char *mon_addrs;
4882 	char *snap_name;
4883 	size_t mon_addrs_size;
4884 	struct rbd_spec *spec = NULL;
4885 	struct rbd_options *rbd_opts = NULL;
4886 	struct ceph_options *copts;
4887 	int ret;
4888 
4889 	/* The first four tokens are required */
4890 
4891 	len = next_token(&buf);
4892 	if (!len) {
4893 		rbd_warn(NULL, "no monitor address(es) provided");
4894 		return -EINVAL;
4895 	}
4896 	mon_addrs = buf;
4897 	mon_addrs_size = len + 1;
4898 	buf += len;
4899 
4900 	ret = -EINVAL;
4901 	options = dup_token(&buf, NULL);
4902 	if (!options)
4903 		return -ENOMEM;
4904 	if (!*options) {
4905 		rbd_warn(NULL, "no options provided");
4906 		goto out_err;
4907 	}
4908 
4909 	spec = rbd_spec_alloc();
4910 	if (!spec)
4911 		goto out_mem;
4912 
4913 	spec->pool_name = dup_token(&buf, NULL);
4914 	if (!spec->pool_name)
4915 		goto out_mem;
4916 	if (!*spec->pool_name) {
4917 		rbd_warn(NULL, "no pool name provided");
4918 		goto out_err;
4919 	}
4920 
4921 	spec->image_name = dup_token(&buf, NULL);
4922 	if (!spec->image_name)
4923 		goto out_mem;
4924 	if (!*spec->image_name) {
4925 		rbd_warn(NULL, "no image name provided");
4926 		goto out_err;
4927 	}
4928 
4929 	/*
4930 	 * Snapshot name is optional; default is to use "-"
4931 	 * (indicating the head/no snapshot).
4932 	 */
4933 	len = next_token(&buf);
4934 	if (!len) {
4935 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4936 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4937 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4938 		ret = -ENAMETOOLONG;
4939 		goto out_err;
4940 	}
4941 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4942 	if (!snap_name)
4943 		goto out_mem;
4944 	*(snap_name + len) = '\0';
4945 	spec->snap_name = snap_name;
4946 
4947 	/* Initialize all rbd options to the defaults */
4948 
4949 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4950 	if (!rbd_opts)
4951 		goto out_mem;
4952 
4953 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4954 
4955 	copts = ceph_parse_options(options, mon_addrs,
4956 					mon_addrs + mon_addrs_size - 1,
4957 					parse_rbd_opts_token, rbd_opts);
4958 	if (IS_ERR(copts)) {
4959 		ret = PTR_ERR(copts);
4960 		goto out_err;
4961 	}
4962 	kfree(options);
4963 
4964 	*ceph_opts = copts;
4965 	*opts = rbd_opts;
4966 	*rbd_spec = spec;
4967 
4968 	return 0;
4969 out_mem:
4970 	ret = -ENOMEM;
4971 out_err:
4972 	kfree(rbd_opts);
4973 	rbd_spec_put(spec);
4974 	kfree(options);
4975 
4976 	return ret;
4977 }
4978 
4979 /*
4980  * Return pool id (>= 0) or a negative error code.
4981  */
rbd_add_get_pool_id(struct rbd_client * rbdc,const char * pool_name)4982 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4983 {
4984 	u64 newest_epoch;
4985 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4986 	int tries = 0;
4987 	int ret;
4988 
4989 again:
4990 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4991 	if (ret == -ENOENT && tries++ < 1) {
4992 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4993 					       &newest_epoch);
4994 		if (ret < 0)
4995 			return ret;
4996 
4997 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4998 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4999 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5000 						     newest_epoch, timeout);
5001 			goto again;
5002 		} else {
5003 			/* the osdmap we have is new enough */
5004 			return -ENOENT;
5005 		}
5006 	}
5007 
5008 	return ret;
5009 }
5010 
5011 /*
5012  * An rbd format 2 image has a unique identifier, distinct from the
5013  * name given to it by the user.  Internally, that identifier is
5014  * what's used to specify the names of objects related to the image.
5015  *
5016  * A special "rbd id" object is used to map an rbd image name to its
5017  * id.  If that object doesn't exist, then there is no v2 rbd image
5018  * with the supplied name.
5019  *
5020  * This function will record the given rbd_dev's image_id field if
5021  * it can be determined, and in that case will return 0.  If any
5022  * errors occur a negative errno will be returned and the rbd_dev's
5023  * image_id field will be unchanged (and should be NULL).
5024  */
rbd_dev_image_id(struct rbd_device * rbd_dev)5025 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5026 {
5027 	int ret;
5028 	size_t size;
5029 	char *object_name;
5030 	void *response;
5031 	char *image_id;
5032 
5033 	/*
5034 	 * When probing a parent image, the image id is already
5035 	 * known (and the image name likely is not).  There's no
5036 	 * need to fetch the image id again in this case.  We
5037 	 * do still need to set the image format though.
5038 	 */
5039 	if (rbd_dev->spec->image_id) {
5040 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5041 
5042 		return 0;
5043 	}
5044 
5045 	/*
5046 	 * First, see if the format 2 image id file exists, and if
5047 	 * so, get the image's persistent id from it.
5048 	 */
5049 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5050 	object_name = kmalloc(size, GFP_NOIO);
5051 	if (!object_name)
5052 		return -ENOMEM;
5053 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5054 	dout("rbd id object name is %s\n", object_name);
5055 
5056 	/* Response will be an encoded string, which includes a length */
5057 
5058 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5059 	response = kzalloc(size, GFP_NOIO);
5060 	if (!response) {
5061 		ret = -ENOMEM;
5062 		goto out;
5063 	}
5064 
5065 	/* If it doesn't exist we'll assume it's a format 1 image */
5066 
5067 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5068 				"rbd", "get_id", NULL, 0,
5069 				response, RBD_IMAGE_ID_LEN_MAX);
5070 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5071 	if (ret == -ENOENT) {
5072 		image_id = kstrdup("", GFP_KERNEL);
5073 		ret = image_id ? 0 : -ENOMEM;
5074 		if (!ret)
5075 			rbd_dev->image_format = 1;
5076 	} else if (ret >= 0) {
5077 		void *p = response;
5078 
5079 		image_id = ceph_extract_encoded_string(&p, p + ret,
5080 						NULL, GFP_NOIO);
5081 		ret = PTR_ERR_OR_ZERO(image_id);
5082 		if (!ret)
5083 			rbd_dev->image_format = 2;
5084 	}
5085 
5086 	if (!ret) {
5087 		rbd_dev->spec->image_id = image_id;
5088 		dout("image_id is %s\n", image_id);
5089 	}
5090 out:
5091 	kfree(response);
5092 	kfree(object_name);
5093 
5094 	return ret;
5095 }
5096 
5097 /*
5098  * Undo whatever state changes are made by v1 or v2 header info
5099  * call.
5100  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)5101 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5102 {
5103 	struct rbd_image_header	*header;
5104 
5105 	rbd_dev_parent_put(rbd_dev);
5106 
5107 	/* Free dynamic fields from the header, then zero it out */
5108 
5109 	header = &rbd_dev->header;
5110 	ceph_put_snap_context(header->snapc);
5111 	kfree(header->snap_sizes);
5112 	kfree(header->snap_names);
5113 	kfree(header->object_prefix);
5114 	memset(header, 0, sizeof (*header));
5115 }
5116 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev)5117 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5118 {
5119 	int ret;
5120 
5121 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5122 	if (ret)
5123 		goto out_err;
5124 
5125 	/*
5126 	 * Get the and check features for the image.  Currently the
5127 	 * features are assumed to never change.
5128 	 */
5129 	ret = rbd_dev_v2_features(rbd_dev);
5130 	if (ret)
5131 		goto out_err;
5132 
5133 	/* If the image supports fancy striping, get its parameters */
5134 
5135 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5136 		ret = rbd_dev_v2_striping_info(rbd_dev);
5137 		if (ret < 0)
5138 			goto out_err;
5139 	}
5140 	/* No support for crypto and compression type format 2 images */
5141 
5142 	return 0;
5143 out_err:
5144 	rbd_dev->header.features = 0;
5145 	kfree(rbd_dev->header.object_prefix);
5146 	rbd_dev->header.object_prefix = NULL;
5147 
5148 	return ret;
5149 }
5150 
5151 /*
5152  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5153  * rbd_dev_image_probe() recursion depth, which means it's also the
5154  * length of the already discovered part of the parent chain.
5155  */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)5156 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5157 {
5158 	struct rbd_device *parent = NULL;
5159 	int ret;
5160 
5161 	if (!rbd_dev->parent_spec)
5162 		return 0;
5163 
5164 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5165 		pr_info("parent chain is too long (%d)\n", depth);
5166 		ret = -EINVAL;
5167 		goto out_err;
5168 	}
5169 
5170 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5171 	if (!parent) {
5172 		ret = -ENOMEM;
5173 		goto out_err;
5174 	}
5175 
5176 	/*
5177 	 * Images related by parent/child relationships always share
5178 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5179 	 */
5180 	__rbd_get_client(rbd_dev->rbd_client);
5181 	rbd_spec_get(rbd_dev->parent_spec);
5182 
5183 	ret = rbd_dev_image_probe(parent, depth);
5184 	if (ret < 0)
5185 		goto out_err;
5186 
5187 	rbd_dev->parent = parent;
5188 	atomic_set(&rbd_dev->parent_ref, 1);
5189 	return 0;
5190 
5191 out_err:
5192 	rbd_dev_unparent(rbd_dev);
5193 	if (parent)
5194 		rbd_dev_destroy(parent);
5195 	return ret;
5196 }
5197 
rbd_dev_device_setup(struct rbd_device * rbd_dev)5198 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5199 {
5200 	int ret;
5201 
5202 	/* Get an id and fill in device name. */
5203 
5204 	ret = rbd_dev_id_get(rbd_dev);
5205 	if (ret)
5206 		return ret;
5207 
5208 	BUILD_BUG_ON(DEV_NAME_LEN
5209 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5210 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5211 
5212 	/* Record our major and minor device numbers. */
5213 
5214 	if (!single_major) {
5215 		ret = register_blkdev(0, rbd_dev->name);
5216 		if (ret < 0)
5217 			goto err_out_id;
5218 
5219 		rbd_dev->major = ret;
5220 		rbd_dev->minor = 0;
5221 	} else {
5222 		rbd_dev->major = rbd_major;
5223 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5224 	}
5225 
5226 	/* Set up the blkdev mapping. */
5227 
5228 	ret = rbd_init_disk(rbd_dev);
5229 	if (ret)
5230 		goto err_out_blkdev;
5231 
5232 	ret = rbd_dev_mapping_set(rbd_dev);
5233 	if (ret)
5234 		goto err_out_disk;
5235 
5236 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5237 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5238 
5239 	ret = rbd_bus_add_dev(rbd_dev);
5240 	if (ret)
5241 		goto err_out_mapping;
5242 
5243 	/* Everything's ready.  Announce the disk to the world. */
5244 
5245 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5246 	add_disk(rbd_dev->disk);
5247 
5248 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5249 		(unsigned long long) rbd_dev->mapping.size);
5250 
5251 	return ret;
5252 
5253 err_out_mapping:
5254 	rbd_dev_mapping_clear(rbd_dev);
5255 err_out_disk:
5256 	rbd_free_disk(rbd_dev);
5257 err_out_blkdev:
5258 	if (!single_major)
5259 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5260 err_out_id:
5261 	rbd_dev_id_put(rbd_dev);
5262 	rbd_dev_mapping_clear(rbd_dev);
5263 
5264 	return ret;
5265 }
5266 
rbd_dev_header_name(struct rbd_device * rbd_dev)5267 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5268 {
5269 	struct rbd_spec *spec = rbd_dev->spec;
5270 	size_t size;
5271 
5272 	/* Record the header object name for this rbd image. */
5273 
5274 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5275 
5276 	if (rbd_dev->image_format == 1)
5277 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5278 	else
5279 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5280 
5281 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5282 	if (!rbd_dev->header_name)
5283 		return -ENOMEM;
5284 
5285 	if (rbd_dev->image_format == 1)
5286 		sprintf(rbd_dev->header_name, "%s%s",
5287 			spec->image_name, RBD_SUFFIX);
5288 	else
5289 		sprintf(rbd_dev->header_name, "%s%s",
5290 			RBD_HEADER_PREFIX, spec->image_id);
5291 	return 0;
5292 }
5293 
rbd_dev_image_release(struct rbd_device * rbd_dev)5294 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5295 {
5296 	rbd_dev_unprobe(rbd_dev);
5297 	kfree(rbd_dev->header_name);
5298 	rbd_dev->header_name = NULL;
5299 	rbd_dev->image_format = 0;
5300 	kfree(rbd_dev->spec->image_id);
5301 	rbd_dev->spec->image_id = NULL;
5302 
5303 	rbd_dev_destroy(rbd_dev);
5304 }
5305 
5306 /*
5307  * Probe for the existence of the header object for the given rbd
5308  * device.  If this image is the one being mapped (i.e., not a
5309  * parent), initiate a watch on its header object before using that
5310  * object to get detailed information about the rbd image.
5311  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)5312 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5313 {
5314 	int ret;
5315 
5316 	/*
5317 	 * Get the id from the image id object.  Unless there's an
5318 	 * error, rbd_dev->spec->image_id will be filled in with
5319 	 * a dynamically-allocated string, and rbd_dev->image_format
5320 	 * will be set to either 1 or 2.
5321 	 */
5322 	ret = rbd_dev_image_id(rbd_dev);
5323 	if (ret)
5324 		return ret;
5325 
5326 	ret = rbd_dev_header_name(rbd_dev);
5327 	if (ret)
5328 		goto err_out_format;
5329 
5330 	if (!depth) {
5331 		ret = rbd_dev_header_watch_sync(rbd_dev);
5332 		if (ret) {
5333 			if (ret == -ENOENT)
5334 				pr_info("image %s/%s does not exist\n",
5335 					rbd_dev->spec->pool_name,
5336 					rbd_dev->spec->image_name);
5337 			goto out_header_name;
5338 		}
5339 	}
5340 
5341 	ret = rbd_dev_header_info(rbd_dev);
5342 	if (ret)
5343 		goto err_out_watch;
5344 
5345 	/*
5346 	 * If this image is the one being mapped, we have pool name and
5347 	 * id, image name and id, and snap name - need to fill snap id.
5348 	 * Otherwise this is a parent image, identified by pool, image
5349 	 * and snap ids - need to fill in names for those ids.
5350 	 */
5351 	if (!depth)
5352 		ret = rbd_spec_fill_snap_id(rbd_dev);
5353 	else
5354 		ret = rbd_spec_fill_names(rbd_dev);
5355 	if (ret) {
5356 		if (ret == -ENOENT)
5357 			pr_info("snap %s/%s@%s does not exist\n",
5358 				rbd_dev->spec->pool_name,
5359 				rbd_dev->spec->image_name,
5360 				rbd_dev->spec->snap_name);
5361 		goto err_out_probe;
5362 	}
5363 
5364 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5365 		ret = rbd_dev_v2_parent_info(rbd_dev);
5366 		if (ret)
5367 			goto err_out_probe;
5368 
5369 		/*
5370 		 * Need to warn users if this image is the one being
5371 		 * mapped and has a parent.
5372 		 */
5373 		if (!depth && rbd_dev->parent_spec)
5374 			rbd_warn(rbd_dev,
5375 				 "WARNING: kernel layering is EXPERIMENTAL!");
5376 	}
5377 
5378 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5379 	if (ret)
5380 		goto err_out_probe;
5381 
5382 	dout("discovered format %u image, header name is %s\n",
5383 		rbd_dev->image_format, rbd_dev->header_name);
5384 	return 0;
5385 
5386 err_out_probe:
5387 	rbd_dev_unprobe(rbd_dev);
5388 err_out_watch:
5389 	if (!depth)
5390 		rbd_dev_header_unwatch_sync(rbd_dev);
5391 out_header_name:
5392 	kfree(rbd_dev->header_name);
5393 	rbd_dev->header_name = NULL;
5394 err_out_format:
5395 	rbd_dev->image_format = 0;
5396 	kfree(rbd_dev->spec->image_id);
5397 	rbd_dev->spec->image_id = NULL;
5398 	return ret;
5399 }
5400 
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)5401 static ssize_t do_rbd_add(struct bus_type *bus,
5402 			  const char *buf,
5403 			  size_t count)
5404 {
5405 	struct rbd_device *rbd_dev = NULL;
5406 	struct ceph_options *ceph_opts = NULL;
5407 	struct rbd_options *rbd_opts = NULL;
5408 	struct rbd_spec *spec = NULL;
5409 	struct rbd_client *rbdc;
5410 	bool read_only;
5411 	int rc = -ENOMEM;
5412 
5413 	if (!try_module_get(THIS_MODULE))
5414 		return -ENODEV;
5415 
5416 	/* parse add command */
5417 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5418 	if (rc < 0)
5419 		goto err_out_module;
5420 	read_only = rbd_opts->read_only;
5421 	kfree(rbd_opts);
5422 	rbd_opts = NULL;	/* done with this */
5423 
5424 	rbdc = rbd_get_client(ceph_opts);
5425 	if (IS_ERR(rbdc)) {
5426 		rc = PTR_ERR(rbdc);
5427 		goto err_out_args;
5428 	}
5429 
5430 	/* pick the pool */
5431 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5432 	if (rc < 0) {
5433 		if (rc == -ENOENT)
5434 			pr_info("pool %s does not exist\n", spec->pool_name);
5435 		goto err_out_client;
5436 	}
5437 	spec->pool_id = (u64)rc;
5438 
5439 	/* The ceph file layout needs to fit pool id in 32 bits */
5440 
5441 	if (spec->pool_id > (u64)U32_MAX) {
5442 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5443 				(unsigned long long)spec->pool_id, U32_MAX);
5444 		rc = -EIO;
5445 		goto err_out_client;
5446 	}
5447 
5448 	rbd_dev = rbd_dev_create(rbdc, spec);
5449 	if (!rbd_dev)
5450 		goto err_out_client;
5451 	rbdc = NULL;		/* rbd_dev now owns this */
5452 	spec = NULL;		/* rbd_dev now owns this */
5453 
5454 	rc = rbd_dev_image_probe(rbd_dev, 0);
5455 	if (rc < 0)
5456 		goto err_out_rbd_dev;
5457 
5458 	/* If we are mapping a snapshot it must be marked read-only */
5459 
5460 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5461 		read_only = true;
5462 	rbd_dev->mapping.read_only = read_only;
5463 
5464 	rc = rbd_dev_device_setup(rbd_dev);
5465 	if (rc) {
5466 		/*
5467 		 * rbd_dev_header_unwatch_sync() can't be moved into
5468 		 * rbd_dev_image_release() without refactoring, see
5469 		 * commit 1f3ef78861ac.
5470 		 */
5471 		rbd_dev_header_unwatch_sync(rbd_dev);
5472 		rbd_dev_image_release(rbd_dev);
5473 		goto err_out_module;
5474 	}
5475 
5476 	return count;
5477 
5478 err_out_rbd_dev:
5479 	rbd_dev_destroy(rbd_dev);
5480 err_out_client:
5481 	rbd_put_client(rbdc);
5482 err_out_args:
5483 	rbd_spec_put(spec);
5484 err_out_module:
5485 	module_put(THIS_MODULE);
5486 
5487 	dout("Error adding device %s\n", buf);
5488 
5489 	return (ssize_t)rc;
5490 }
5491 
rbd_add(struct bus_type * bus,const char * buf,size_t count)5492 static ssize_t rbd_add(struct bus_type *bus,
5493 		       const char *buf,
5494 		       size_t count)
5495 {
5496 	if (single_major)
5497 		return -EINVAL;
5498 
5499 	return do_rbd_add(bus, buf, count);
5500 }
5501 
rbd_add_single_major(struct bus_type * bus,const char * buf,size_t count)5502 static ssize_t rbd_add_single_major(struct bus_type *bus,
5503 				    const char *buf,
5504 				    size_t count)
5505 {
5506 	return do_rbd_add(bus, buf, count);
5507 }
5508 
rbd_dev_device_release(struct device * dev)5509 static void rbd_dev_device_release(struct device *dev)
5510 {
5511 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5512 
5513 	rbd_free_disk(rbd_dev);
5514 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5515 	rbd_dev_mapping_clear(rbd_dev);
5516 	if (!single_major)
5517 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5518 	rbd_dev_id_put(rbd_dev);
5519 	rbd_dev_mapping_clear(rbd_dev);
5520 }
5521 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)5522 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5523 {
5524 	while (rbd_dev->parent) {
5525 		struct rbd_device *first = rbd_dev;
5526 		struct rbd_device *second = first->parent;
5527 		struct rbd_device *third;
5528 
5529 		/*
5530 		 * Follow to the parent with no grandparent and
5531 		 * remove it.
5532 		 */
5533 		while (second && (third = second->parent)) {
5534 			first = second;
5535 			second = third;
5536 		}
5537 		rbd_assert(second);
5538 		rbd_dev_image_release(second);
5539 		first->parent = NULL;
5540 		first->parent_overlap = 0;
5541 
5542 		rbd_assert(first->parent_spec);
5543 		rbd_spec_put(first->parent_spec);
5544 		first->parent_spec = NULL;
5545 	}
5546 }
5547 
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)5548 static ssize_t do_rbd_remove(struct bus_type *bus,
5549 			     const char *buf,
5550 			     size_t count)
5551 {
5552 	struct rbd_device *rbd_dev = NULL;
5553 	struct list_head *tmp;
5554 	int dev_id;
5555 	unsigned long ul;
5556 	bool already = false;
5557 	int ret;
5558 
5559 	ret = kstrtoul(buf, 10, &ul);
5560 	if (ret)
5561 		return ret;
5562 
5563 	/* convert to int; abort if we lost anything in the conversion */
5564 	dev_id = (int)ul;
5565 	if (dev_id != ul)
5566 		return -EINVAL;
5567 
5568 	ret = -ENOENT;
5569 	spin_lock(&rbd_dev_list_lock);
5570 	list_for_each(tmp, &rbd_dev_list) {
5571 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5572 		if (rbd_dev->dev_id == dev_id) {
5573 			ret = 0;
5574 			break;
5575 		}
5576 	}
5577 	if (!ret) {
5578 		spin_lock_irq(&rbd_dev->lock);
5579 		if (rbd_dev->open_count)
5580 			ret = -EBUSY;
5581 		else
5582 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5583 							&rbd_dev->flags);
5584 		spin_unlock_irq(&rbd_dev->lock);
5585 	}
5586 	spin_unlock(&rbd_dev_list_lock);
5587 	if (ret < 0 || already)
5588 		return ret;
5589 
5590 	rbd_dev_header_unwatch_sync(rbd_dev);
5591 	/*
5592 	 * flush remaining watch callbacks - these must be complete
5593 	 * before the osd_client is shutdown
5594 	 */
5595 	dout("%s: flushing notifies", __func__);
5596 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5597 
5598 	/*
5599 	 * Don't free anything from rbd_dev->disk until after all
5600 	 * notifies are completely processed. Otherwise
5601 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5602 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5603 	 */
5604 	rbd_bus_del_dev(rbd_dev);
5605 	rbd_dev_image_release(rbd_dev);
5606 	module_put(THIS_MODULE);
5607 
5608 	return count;
5609 }
5610 
rbd_remove(struct bus_type * bus,const char * buf,size_t count)5611 static ssize_t rbd_remove(struct bus_type *bus,
5612 			  const char *buf,
5613 			  size_t count)
5614 {
5615 	if (single_major)
5616 		return -EINVAL;
5617 
5618 	return do_rbd_remove(bus, buf, count);
5619 }
5620 
rbd_remove_single_major(struct bus_type * bus,const char * buf,size_t count)5621 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5622 				       const char *buf,
5623 				       size_t count)
5624 {
5625 	return do_rbd_remove(bus, buf, count);
5626 }
5627 
5628 /*
5629  * create control files in sysfs
5630  * /sys/bus/rbd/...
5631  */
rbd_sysfs_init(void)5632 static int rbd_sysfs_init(void)
5633 {
5634 	int ret;
5635 
5636 	ret = device_register(&rbd_root_dev);
5637 	if (ret < 0)
5638 		return ret;
5639 
5640 	ret = bus_register(&rbd_bus_type);
5641 	if (ret < 0)
5642 		device_unregister(&rbd_root_dev);
5643 
5644 	return ret;
5645 }
5646 
rbd_sysfs_cleanup(void)5647 static void rbd_sysfs_cleanup(void)
5648 {
5649 	bus_unregister(&rbd_bus_type);
5650 	device_unregister(&rbd_root_dev);
5651 }
5652 
rbd_slab_init(void)5653 static int rbd_slab_init(void)
5654 {
5655 	rbd_assert(!rbd_img_request_cache);
5656 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5657 					sizeof (struct rbd_img_request),
5658 					__alignof__(struct rbd_img_request),
5659 					0, NULL);
5660 	if (!rbd_img_request_cache)
5661 		return -ENOMEM;
5662 
5663 	rbd_assert(!rbd_obj_request_cache);
5664 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5665 					sizeof (struct rbd_obj_request),
5666 					__alignof__(struct rbd_obj_request),
5667 					0, NULL);
5668 	if (!rbd_obj_request_cache)
5669 		goto out_err;
5670 
5671 	rbd_assert(!rbd_segment_name_cache);
5672 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5673 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5674 	if (rbd_segment_name_cache)
5675 		return 0;
5676 out_err:
5677 	if (rbd_obj_request_cache) {
5678 		kmem_cache_destroy(rbd_obj_request_cache);
5679 		rbd_obj_request_cache = NULL;
5680 	}
5681 
5682 	kmem_cache_destroy(rbd_img_request_cache);
5683 	rbd_img_request_cache = NULL;
5684 
5685 	return -ENOMEM;
5686 }
5687 
rbd_slab_exit(void)5688 static void rbd_slab_exit(void)
5689 {
5690 	rbd_assert(rbd_segment_name_cache);
5691 	kmem_cache_destroy(rbd_segment_name_cache);
5692 	rbd_segment_name_cache = NULL;
5693 
5694 	rbd_assert(rbd_obj_request_cache);
5695 	kmem_cache_destroy(rbd_obj_request_cache);
5696 	rbd_obj_request_cache = NULL;
5697 
5698 	rbd_assert(rbd_img_request_cache);
5699 	kmem_cache_destroy(rbd_img_request_cache);
5700 	rbd_img_request_cache = NULL;
5701 }
5702 
rbd_init(void)5703 static int __init rbd_init(void)
5704 {
5705 	int rc;
5706 
5707 	if (!libceph_compatible(NULL)) {
5708 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5709 		return -EINVAL;
5710 	}
5711 
5712 	rc = rbd_slab_init();
5713 	if (rc)
5714 		return rc;
5715 
5716 	/*
5717 	 * The number of active work items is limited by the number of
5718 	 * rbd devices * queue depth, so leave @max_active at default.
5719 	 */
5720 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5721 	if (!rbd_wq) {
5722 		rc = -ENOMEM;
5723 		goto err_out_slab;
5724 	}
5725 
5726 	if (single_major) {
5727 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5728 		if (rbd_major < 0) {
5729 			rc = rbd_major;
5730 			goto err_out_wq;
5731 		}
5732 	}
5733 
5734 	rc = rbd_sysfs_init();
5735 	if (rc)
5736 		goto err_out_blkdev;
5737 
5738 	if (single_major)
5739 		pr_info("loaded (major %d)\n", rbd_major);
5740 	else
5741 		pr_info("loaded\n");
5742 
5743 	return 0;
5744 
5745 err_out_blkdev:
5746 	if (single_major)
5747 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5748 err_out_wq:
5749 	destroy_workqueue(rbd_wq);
5750 err_out_slab:
5751 	rbd_slab_exit();
5752 	return rc;
5753 }
5754 
rbd_exit(void)5755 static void __exit rbd_exit(void)
5756 {
5757 	ida_destroy(&rbd_dev_id_ida);
5758 	rbd_sysfs_cleanup();
5759 	if (single_major)
5760 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5761 	destroy_workqueue(rbd_wq);
5762 	rbd_slab_exit();
5763 }
5764 
5765 module_init(rbd_init);
5766 module_exit(rbd_exit);
5767 
5768 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5769 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5770 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5771 /* following authorship retained from original osdblk.c */
5772 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5773 
5774 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5775 MODULE_LICENSE("GPL");
5776