1 /*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2              ethernet driver for Linux.
3 
4     Copyright 1994, 1995 Digital Equipment Corporation.
5 
6     Testing resources for this driver have been made available
7     in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8 
9     The author may be reached at davies@maniac.ultranet.com.
10 
11     This program is free software; you can redistribute  it and/or modify it
12     under  the terms of  the GNU General  Public License as published by the
13     Free Software Foundation;  either version 2 of the  License, or (at your
14     option) any later version.
15 
16     THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
17     WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18     MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19     NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
20     INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21     NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22     USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23     ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25     THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27     You should have received a copy of the  GNU General Public License along
28     with this program; if not, write  to the Free Software Foundation, Inc.,
29     675 Mass Ave, Cambridge, MA 02139, USA.
30 
31     Originally,   this  driver  was    written  for the  Digital   Equipment
32     Corporation series of EtherWORKS ethernet cards:
33 
34         DE425 TP/COAX EISA
35 	DE434 TP PCI
36 	DE435 TP/COAX/AUI PCI
37 	DE450 TP/COAX/AUI PCI
38 	DE500 10/100 PCI Fasternet
39 
40     but it  will  now attempt  to  support all  cards which   conform to the
41     Digital Semiconductor   SROM   Specification.    The  driver   currently
42     recognises the following chips:
43 
44         DC21040  (no SROM)
45 	DC21041[A]
46 	DC21140[A]
47 	DC21142
48 	DC21143
49 
50     So far the driver is known to work with the following cards:
51 
52         KINGSTON
53 	Linksys
54 	ZNYX342
55 	SMC8432
56 	SMC9332 (w/new SROM)
57 	ZNYX31[45]
58 	ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59 
60     The driver has been tested on a relatively busy network using the DE425,
61     DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62     16M of data to a DECstation 5000/200 as follows:
63 
64                 TCP           UDP
65              TX     RX     TX     RX
66     DE425   1030k  997k   1170k  1128k
67     DE434   1063k  995k   1170k  1125k
68     DE435   1063k  995k   1170k  1125k
69     DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
70 
71     All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
72     measurement. Their error is +/-20k on a quiet (private) network and also
73     depend on what load the CPU has.
74 
75     =========================================================================
76     This driver  has been written substantially  from  scratch, although its
77     inheritance of style and stack interface from 'ewrk3.c' and in turn from
78     Donald Becker's 'lance.c' should be obvious. With the module autoload of
79     every  usable DECchip board,  I  pinched Donald's 'next_module' field to
80     link my modules together.
81 
82     Up to 15 EISA cards can be supported under this driver, limited primarily
83     by the available IRQ lines.  I have  checked different configurations of
84     multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
85     problem yet (provided you have at least depca.c v0.38) ...
86 
87     PCI support has been added  to allow the driver  to work with the DE434,
88     DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89     to the differences in the EISA and PCI CSR address offsets from the base
90     address.
91 
92     The ability to load this  driver as a loadable  module has been included
93     and used extensively  during the driver development  (to save those long
94     reboot sequences).  Loadable module support  under PCI and EISA has been
95     achieved by letting the driver autoprobe as if it were compiled into the
96     kernel. Do make sure  you're not sharing  interrupts with anything  that
97     cannot accommodate  interrupt  sharing!
98 
99     To utilise this ability, you have to do 8 things:
100 
101     0) have a copy of the loadable modules code installed on your system.
102     1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
103     temporary directory.
104     2) for fixed  autoprobes (not  recommended),  edit the source code  near
105     line 5594 to reflect the I/O address  you're using, or assign these when
106     loading by:
107 
108                    insmod de4x5 io=0xghh           where g = bus number
109 		                                        hh = device number
110 
111        NB: autoprobing for modules is now supported by default. You may just
112            use:
113 
114                    insmod de4x5
115 
116            to load all available boards. For a specific board, still use
117 	   the 'io=?' above.
118     3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
119     that the correct bits are compiled (see end of source code).
120     4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
121     kernel with the de4x5 configuration turned off and reboot.
122     5) insmod de4x5 [io=0xghh]
123     6) run the net startup bits for your new eth?? interface(s) manually
124     (usually /etc/rc.inet[12] at boot time).
125     7) enjoy!
126 
127     To unload a module, turn off the associated interface(s)
128     'ifconfig eth?? down' then 'rmmod de4x5'.
129 
130     Automedia detection is included so that in  principal you can disconnect
131     from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
132     pause whilst the   driver figures out   where its media went).  My tests
133     using ping showed that it appears to work....
134 
135     By  default,  the driver will  now   autodetect any  DECchip based card.
136     Should you have a need to restrict the driver to DIGITAL only cards, you
137     can compile with a  DEC_ONLY define, or if  loading as a module, use the
138     'dec_only=1'  parameter.
139 
140     I've changed the timing routines to  use the kernel timer and scheduling
141     functions  so that the  hangs  and other assorted problems that occurred
142     while autosensing the  media  should be gone.  A  bonus  for the DC21040
143     auto  media sense algorithm is  that it can now  use one that is more in
144     line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
145     The downside is the 1 'jiffies' (10ms) resolution.
146 
147     IEEE 802.3u MII interface code has  been added in anticipation that some
148     products may use it in the future.
149 
150     The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
151     patched this  driver to detect it  because the SROM format used complies
152     to a previous DEC-STD format.
153 
154     I have removed the buffer copies needed for receive on Intels.  I cannot
155     remove them for   Alphas since  the  Tulip hardware   only does longword
156     aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
157     longword aligned data copies (which makes them really slow). No comment.
158 
159     I  have added SROM decoding  routines to make this  driver work with any
160     card that  supports the Digital  Semiconductor SROM spec. This will help
161     all  cards running the dc2114x  series chips in particular.  Cards using
162     the dc2104x  chips should run correctly with  the basic  driver.  I'm in
163     debt to <mjacob@feral.com> for the  testing and feedback that helped get
164     this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
165     (with the latest SROM complying  with the SROM spec  V3: their first was
166     broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
167     (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
168     wired IRQs.
169 
170     I have added a temporary fix for interrupt problems when some SCSI cards
171     share the same interrupt as the DECchip based  cards. The problem occurs
172     because  the SCSI card wants to  grab the interrupt  as a fast interrupt
173     (runs the   service routine with interrupts turned   off) vs.  this card
174     which really needs to run the service routine with interrupts turned on.
175     This driver will  now   add the interrupt service   routine  as  a  fast
176     interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
177     RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
178     until  people   sort  out their  compatibility    issues and the  kernel
179     interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
180     INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181     run on the same interrupt. PCMCIA/CardBus is another can of worms...
182 
183     Finally, I think  I have really  fixed  the module  loading problem with
184     more than one DECchip based  card.  As a  side effect, I don't mess with
185     the  device structure any  more which means that  if more than 1 card in
186     2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
187     linux/drivers/net/Space.c  to make room for  them. Hence, module loading
188     is  the preferred way to use   this driver, since  it  doesn't have this
189     limitation.
190 
191     Where SROM media  detection is used and  full duplex is specified in the
192     SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
193     time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
194     below]).  This is because there  is no way  to automatically detect full
195     duplex   links  except through   autonegotiation.    When I  include the
196     autonegotiation feature in  the SROM autoconf  code, this detection will
197     occur automatically for that case.
198 
199     Command  line arguments are  now  allowed, similar  to passing arguments
200     through LILO. This will allow a per adapter board  set up of full duplex
201     and media. The only lexical constraints  are: the board name (dev->name)
202     appears in the list before its  parameters.  The list of parameters ends
203     either at the end of the parameter list or with another board name.  The
204     following parameters are allowed:
205 
206             fdx        for full duplex
207 	    autosense  to set the media/speed; with the following
208 	               sub-parameters:
209 		       TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210 
211     Case sensitivity is important  for  the sub-parameters. They *must*   be
212     upper case. Examples:
213 
214         insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215 
216     For a compiled in driver, at or above line 548, place e.g.
217 	#define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218 
219     Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
220     examples. By default, full duplex is turned off and  AUTO is the default
221     autosense setting.  In reality, I expect only  the full duplex option to
222     be used. Note the use of single quotes in the two examples above and the
223     lack of commas to separate items. ALSO, you must get the requested media
224     correct in relation to what the adapter SROM says it has. There's no way
225     to  determine this in  advance other than by  trial and error and common
226     sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227 
228     Changed the bus probing.  EISA used to be  done first,  followed by PCI.
229     Most people probably don't even know  what a de425 is today and the EISA
230     probe has messed  up some SCSI cards  in the past,  so now PCI is always
231     probed  first  followed by  EISA if  a) the architecture allows EISA and
232     either  b) there have been no PCI cards detected or  c) an EISA probe is
233     forced by  the user.  To force  a probe  include  "force_eisa"  in  your
234     insmod "args" line;  for built-in kernels either change the driver to do
235     this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
236     line 1040 in the driver.
237 
238     TO DO:
239     ------
240 
241     Revision History
242     ----------------
243 
244     Version   Date        Description
245 
246       0.1     17-Nov-94   Initial writing. ALPHA code release.
247       0.2     13-Jan-95   Added PCI support for DE435's.
248       0.21    19-Jan-95   Added auto media detection.
249       0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250                           Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 			  Add request/release_region code.
252 			  Add loadable modules support for PCI.
253 			  Clean up loadable modules support.
254       0.23    28-Feb-95   Added DC21041 and DC21140 support.
255                           Fix missed frame counter value and initialisation.
256 			  Fixed EISA probe.
257       0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
258                           Change TX_BUFFS_AVAIL macro.
259 			  Change media autodetection to allow manual setting.
260 			  Completed DE500 (DC21140) support.
261       0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
262       0.242   10-May-95   Minor changes.
263       0.30    12-Jun-95   Timer fix for DC21140.
264                           Portability changes.
265 			  Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 			  Add DE500 semi automatic autosense.
267 			  Add Link Fail interrupt TP failure detection.
268 			  Add timer based link change detection.
269 			  Plugged a memory leak in de4x5_queue_pkt().
270       0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
271       0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
272                           suggestion by <heiko@colossus.escape.de>.
273       0.33     8-Aug-95   Add shared interrupt support (not released yet).
274       0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
275                           Fix de4x5_interrupt().
276                           Fix dc21140_autoconf() mess.
277 			  No shared interrupt support.
278       0.332   11-Sep-95   Added MII management interface routines.
279       0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280                           Add kernel timer code (h/w is too flaky).
281 			  Add MII based PHY autosense.
282 			  Add new multicasting code.
283 			  Add new autosense algorithms for media/mode
284 			  selection using kernel scheduling/timing.
285 			  Re-formatted.
286 			  Made changes suggested by <jeff@router.patch.net>:
287 			    Change driver to detect all DECchip based cards
288 			    with DEC_ONLY restriction a special case.
289 			    Changed driver to autoprobe as a module. No irq
290 			    checking is done now - assume BIOS is good!
291 			  Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292       0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
293                           only <niles@axp745gsfc.nasa.gov>
294 			  Fix for multiple PCI cards reported by <jos@xos.nl>
295 			  Duh, put the IRQF_SHARED flag into request_interrupt().
296 			  Fix SMC ethernet address in enet_det[].
297 			  Print chip name instead of "UNKNOWN" during boot.
298       0.42    26-Apr-96   Fix MII write TA bit error.
299                           Fix bug in dc21040 and dc21041 autosense code.
300 			  Remove buffer copies on receive for Intels.
301 			  Change sk_buff handling during media disconnects to
302 			   eliminate DUP packets.
303 			  Add dynamic TX thresholding.
304 			  Change all chips to use perfect multicast filtering.
305 			  Fix alloc_device() bug <jari@markkus2.fimr.fi>
306       0.43   21-Jun-96    Fix unconnected media TX retry bug.
307                           Add Accton to the list of broken cards.
308 			  Fix TX under-run bug for non DC21140 chips.
309 			  Fix boot command probe bug in alloc_device() as
310 			   reported by <koen.gadeyne@barco.com> and
311 			   <orava@nether.tky.hut.fi>.
312 			  Add cache locks to prevent a race condition as
313 			   reported by <csd@microplex.com> and
314 			   <baba@beckman.uiuc.edu>.
315 			  Upgraded alloc_device() code.
316       0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
317                           with <csd@microplex.com>
318       0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
319                           Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 			  and <michael@compurex.com>.
321       0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
322                            with a loopback packet.
323       0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
324                            by <bhat@mundook.cs.mu.OZ.AU>
325       0.45    8-Dec-96    Include endian functions for PPC use, from work
326                            by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327       0.451  28-Dec-96    Added fix to allow autoprobe for modules after
328                            suggestion from <mjacob@feral.com>.
329       0.5    30-Jan-97    Added SROM decoding functions.
330                           Updated debug flags.
331 			  Fix sleep/wakeup calls for PCI cards, bug reported
332 			   by <cross@gweep.lkg.dec.com>.
333 			  Added multi-MAC, one SROM feature from discussion
334 			   with <mjacob@feral.com>.
335 			  Added full module autoprobe capability.
336 			  Added attempt to use an SMC9332 with broken SROM.
337 			  Added fix for ZYNX multi-mac cards that didn't
338 			   get their IRQs wired correctly.
339       0.51   13-Feb-97    Added endian fixes for the SROM accesses from
340 			   <paubert@iram.es>
341 			  Fix init_connection() to remove extra device reset.
342 			  Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 			  Fix initialisation problem with lp->timeout in
344 			   typeX_infoblock() from <paubert@iram.es>.
345 			  Fix MII PHY reset problem from work done by
346 			   <paubert@iram.es>.
347       0.52   26-Apr-97    Some changes may not credit the right people -
348                            a disk crash meant I lost some mail.
349 			  Change RX interrupt routine to drop rather than
350 			   defer packets to avoid hang reported by
351 			   <g.thomas@opengroup.org>.
352 			  Fix srom_exec() to return for COMPACT and type 1
353 			   infoblocks.
354 			  Added DC21142 and DC21143 functions.
355 			  Added byte counters from <phil@tazenda.demon.co.uk>
356 			  Added IRQF_DISABLED temporary fix from
357 			   <mjacob@feral.com>.
358       0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
359                            module load: bug reported by
360 			   <Piete.Brooks@cl.cam.ac.uk>
361 			  Fix multi-MAC, one SROM, to work with 2114x chips:
362 			   bug reported by <cmetz@inner.net>.
363 			  Make above search independent of BIOS device scan
364 			   direction.
365 			  Completed DC2114[23] autosense functions.
366       0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
367                            <robin@intercore.com
368 			  Fix type1_infoblock() bug introduced in 0.53, from
369 			   problem reports by
370 			   <parmee@postecss.ncrfran.france.ncr.com> and
371 			   <jo@ice.dillingen.baynet.de>.
372 			  Added argument list to set up each board from either
373 			   a module's command line or a compiled in #define.
374 			  Added generic MII PHY functionality to deal with
375 			   newer PHY chips.
376 			  Fix the mess in 2.1.67.
377       0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
378                            <redhat@cococo.net>.
379                           Fix bug in pci_probe() for 64 bit systems reported
380 			   by <belliott@accessone.com>.
381       0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382       0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
383       0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
384       0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
385 			  **Incompatible with 2.0.x from here.**
386       0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
387                            from <lma@varesearch.com>
388 			  Add TP, AUI and BNC cases to 21140m_autoconf() for
389 			   case where a 21140 under SROM control uses, e.g. AUI
390 			   from problem report by <delchini@lpnp09.in2p3.fr>
391 			  Add MII parallel detection to 2114x_autoconf() for
392 			   case where no autonegotiation partner exists from
393 			   problem report by <mlapsley@ndirect.co.uk>.
394 			  Add ability to force connection type directly even
395 			   when using SROM control from problem report by
396 			   <earl@exis.net>.
397 			  Updated the PCI interface to conform with the latest
398 			   version. I hope nothing is broken...
399           		  Add TX done interrupt modification from suggestion
400 			   by <Austin.Donnelly@cl.cam.ac.uk>.
401 			  Fix is_anc_capable() bug reported by
402 			   <Austin.Donnelly@cl.cam.ac.uk>.
403 			  Fix type[13]_infoblock() bug: during MII search, PHY
404 			   lp->rst not run because lp->ibn not initialised -
405 			   from report & fix by <paubert@iram.es>.
406 			  Fix probe bug with EISA & PCI cards present from
407                            report by <eirik@netcom.com>.
408       0.541  24-Aug-98    Fix compiler problems associated with i386-string
409                            ops from multiple bug reports and temporary fix
410 			   from <paubert@iram.es>.
411 			  Fix pci_probe() to correctly emulate the old
412 			   pcibios_find_class() function.
413 			  Add an_exception() for old ZYNX346 and fix compile
414 			   warning on PPC & SPARC, from <ecd@skynet.be>.
415 			  Fix lastPCI to correctly work with compiled in
416 			   kernels and modules from bug report by
417 			   <Zlatko.Calusic@CARNet.hr> et al.
418       0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
419                            when media is unconnected.
420 			  Change dev->interrupt to lp->interrupt to ensure
421 			   alignment for Alpha's and avoid their unaligned
422 			   access traps. This flag is merely for log messages:
423 			   should do something more definitive though...
424       0.543  30-Dec-98    Add SMP spin locking.
425       0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
426                            a 21143 by <mmporter@home.com>.
427 			  Change PCI/EISA bus probing order.
428       0.545  28-Nov-99    Further Moto SROM bug fix from
429                            <mporter@eng.mcd.mot.com>
430                           Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 			   from report by <geert@linux-m68k.org>
432       0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
433                            was causing a page fault when initializing the
434                            variable 'pb', on a non de4x5 PCI device, in this
435                            case a PCI bridge (DEC chip 21152). The value of
436                            'pb' is now only initialized if a de4x5 chip is
437                            present.
438                            <france@handhelds.org>
439       0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
440       0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
441                            generic DMA APIs. Fixed DE425 support on Alpha.
442 			   <maz@wild-wind.fr.eu.org>
443     =========================================================================
444 */
445 
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470 
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479 
480 #include "de4x5.h"
481 
482 static const char version[] =
483 	KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484 
485 #define c_char const char
486 
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491     int reset;              /* Hard reset required?                         */
492     int id;                 /* IEEE OUI                                     */
493     int ta;                 /* One cycle TA time - 802.3u is confusing here */
494     struct {                /* Non autonegotiation (parallel) speed det.    */
495 	int reg;
496 	int mask;
497 	int value;
498     } spd;
499 };
500 
501 struct mii_phy {
502     int reset;              /* Hard reset required?                      */
503     int id;                 /* IEEE OUI                                  */
504     int ta;                 /* One cycle TA time                         */
505     struct {                /* Non autonegotiation (parallel) speed det. */
506 	int reg;
507 	int mask;
508 	int value;
509     } spd;
510     int addr;               /* MII address for the PHY                   */
511     u_char  *gep;           /* Start of GEP sequence block in SROM       */
512     u_char  *rst;           /* Start of reset sequence in SROM           */
513     u_int mc;               /* Media Capabilities                        */
514     u_int ana;              /* NWay Advertisement                        */
515     u_int fdx;              /* Full DupleX capabilities for each media   */
516     u_int ttm;              /* Transmit Threshold Mode for each media    */
517     u_int mci;              /* 21142 MII Connector Interrupt info        */
518 };
519 
520 #define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
521 
522 struct sia_phy {
523     u_char mc;              /* Media Code                                */
524     u_char ext;             /* csr13-15 valid when set                   */
525     int csr13;              /* SIA Connectivity Register                 */
526     int csr14;              /* SIA TX/RX Register                        */
527     int csr15;              /* SIA General Register                      */
528     int gepc;               /* SIA GEP Control Information               */
529     int gep;                /* SIA GEP Data                              */
530 };
531 
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537     {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
538     {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
539     {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
540     {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
541     {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
542 };
543 
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
552 
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557     {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558     {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560 
561 #define SMC    1
562 #define ACCTON 2
563 
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570     {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
571      0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572      0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573      0x00,0x18,}
574 };
575 
576 
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583 
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 **     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598 
599 struct parameters {
600     bool fdx;
601     int autosense;
602 };
603 
604 #define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
605 
606 #define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
607 
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH    32
612 #define ETH_PROM_SIG    0xAA5500FFUL
613 
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ	1536            /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ    1518            /* Packet + CRC */
619 #define MAX_PKT_SZ   	1514            /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ   	1500            /* Maximum ethernet data length */
621 #define MIN_DAT_SZ   	1               /* Minimum ethernet data length */
622 #define PKT_HDR_LEN     14              /* Addresses and data length info */
623 #define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
625 
626 
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
632 
633 #define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
634 
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637 
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639 
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH    32
644 #define ETH_PROM_SIG    0xAA5500FFUL
645 
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM      8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
651 #define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
652 
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
660 #define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
661 #define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
662 #define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
663 #define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
664 #define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
665 
666 #define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN   CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671 
672 #ifndef DEC_ONLY                        /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677 
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682     imr |= lp->irq_en;\
683     outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
684 }
685 
686 #define DISABLE_IRQs {\
687     imr = inl(DE4X5_IMR);\
688     imr &= ~lp->irq_en;\
689     outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
690 }
691 
692 #define UNMASK_IRQs {\
693     imr |= lp->irq_mask;\
694     outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
695 }
696 
697 #define MASK_IRQs {\
698     imr = inl(DE4X5_IMR);\
699     imr &= ~lp->irq_mask;\
700     outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
701 }
702 
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707     omr = inl(DE4X5_OMR);\
708     omr |= OMR_ST | OMR_SR;\
709     outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
710 }
711 
712 #define STOP_DE4X5 {\
713     omr = inl(DE4X5_OMR);\
714     omr &= ~(OMR_ST|OMR_SR);\
715     outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
716 }
717 
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
722 
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS  250
727 
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732     char sub_vendor_id[2];
733     char sub_system_id[2];
734     char reserved[12];
735     char id_block_crc;
736     char reserved2;
737     char version;
738     char num_controllers;
739     char ieee_addr[6];
740     char info[100];
741     short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744 
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8                   /* Number of RX descriptors   */
754 #define NUM_TX_DESC 32                  /* Number of TX descriptors   */
755 #define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
756                                         /* Multiple of 4 for DC21040  */
757                                         /* Allows 512 byte alignment  */
758 struct de4x5_desc {
759     volatile __le32 status;
760     __le32 des1;
761     __le32 buf;
762     __le32 next;
763     DESC_ALIGN
764 };
765 
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
771                                             increase DE4X5_PKT_STAT_SZ */
772 
773 struct pkt_stats {
774 	u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
775 	u_int unicast;
776 	u_int multicast;
777 	u_int broadcast;
778 	u_int excessive_collisions;
779 	u_int tx_underruns;
780 	u_int excessive_underruns;
781 	u_int rx_runt_frames;
782 	u_int rx_collision;
783 	u_int rx_dribble;
784 	u_int rx_overflow;
785 };
786 
787 struct de4x5_private {
788     char adapter_name[80];                  /* Adapter name                 */
789     u_long interrupt;                       /* Aligned ISR flag             */
790     struct de4x5_desc *rx_ring;		    /* RX descriptor ring           */
791     struct de4x5_desc *tx_ring;		    /* TX descriptor ring           */
792     struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
793     struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
794     int rx_new, rx_old;                     /* RX descriptor ring pointers  */
795     int tx_new, tx_old;                     /* TX descriptor ring pointers  */
796     char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
797     char frame[64];                         /* Min sized packet for loopback*/
798     spinlock_t lock;                        /* Adapter specific spinlock    */
799     struct net_device_stats stats;          /* Public stats                 */
800     struct pkt_stats pktStats;	            /* Private stats counters	    */
801     char rxRingSize;
802     char txRingSize;
803     int  bus;                               /* EISA or PCI                  */
804     int  bus_num;                           /* PCI Bus number               */
805     int  device;                            /* Device number on PCI bus     */
806     int  state;                             /* Adapter OPENED or CLOSED     */
807     int  chipset;                           /* DC21040, DC21041 or DC21140  */
808     s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
809     s32  irq_en;                            /* Summary interrupt bits       */
810     int  media;                             /* Media (eg TP), mode (eg 100B)*/
811     int  c_media;                           /* Remember the last media conn */
812     bool fdx;                               /* media full duplex flag       */
813     int  linkOK;                            /* Link is OK                   */
814     int  autosense;                         /* Allow/disallow autosensing   */
815     bool tx_enable;                         /* Enable descriptor polling    */
816     int  setup_f;                           /* Setup frame filtering type   */
817     int  local_state;                       /* State within a 'media' state */
818     struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
819     struct sia_phy sia;                     /* SIA PHY Information          */
820     int  active;                            /* Index to active PHY device   */
821     int  mii_cnt;                           /* Number of attached PHY's     */
822     int  timeout;                           /* Scheduling counter           */
823     struct timer_list timer;                /* Timer info for kernel        */
824     int tmp;                                /* Temporary global per card    */
825     struct {
826 	u_long lock;                        /* Lock the cache accesses      */
827 	s32 csr0;                           /* Saved Bus Mode Register      */
828 	s32 csr6;                           /* Saved Operating Mode Reg.    */
829 	s32 csr7;                           /* Saved IRQ Mask Register      */
830 	s32 gep;                            /* Saved General Purpose Reg.   */
831 	s32 gepc;                           /* Control info for GEP         */
832 	s32 csr13;                          /* Saved SIA Connectivity Reg.  */
833 	s32 csr14;                          /* Saved SIA TX/RX Register     */
834 	s32 csr15;                          /* Saved SIA General Register   */
835 	int save_cnt;                       /* Flag if state already saved  */
836 	struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
837     } cache;
838     struct de4x5_srom srom;                 /* A copy of the SROM           */
839     int cfrv;				    /* Card CFRV copy */
840     int rx_ovf;                             /* Check for 'RX overflow' tag  */
841     bool useSROM;                           /* For non-DEC card use SROM    */
842     bool useMII;                            /* Infoblock using the MII      */
843     int asBitValid;                         /* Autosense bits in GEP?       */
844     int asPolarity;                         /* 0 => asserted high           */
845     int asBit;                              /* Autosense bit number in GEP  */
846     int defMedium;                          /* SROM default medium          */
847     int tcount;                             /* Last infoblock number        */
848     int infoblock_init;                     /* Initialised this infoblock?  */
849     int infoleaf_offset;                    /* SROM infoleaf for controller */
850     s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
851     int infoblock_media;                    /* infoblock media              */
852     int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
853     u_char *rst;                            /* Pointer to Type 5 reset info */
854     u_char  ibn;                            /* Infoblock number             */
855     struct parameters params;               /* Command line/ #defined params */
856     struct device *gendev;	            /* Generic device */
857     dma_addr_t dma_rings;		    /* DMA handle for rings	    */
858     int dma_size;			    /* Size of the DMA area	    */
859     char *rx_bufs;			    /* rx bufs on alpha, sparc, ... */
860 };
861 
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 **      o the chipset is the same
868 **      o the bus number is the same and > 0
869 **      o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875     int chipset;
876     int bus;
877     int irq;
878     u_char addr[ETH_ALEN];
879 } last = {0,};
880 
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 **    tx_old            = tx_new    Empty ring
885 **    tx_old            = tx_new+1  Full ring
886 **    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 			lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 			lp->tx_old               -lp->tx_new-1)
891 
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893 
894 /*
895 ** Public Functions
896 */
897 static int     de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 					 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int     de4x5_close(struct net_device *dev);
902 static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void    set_multicast_list(struct net_device *dev);
905 static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906 
907 /*
908 ** Private functions
909 */
910 static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int     de4x5_init(struct net_device *dev);
912 static int     de4x5_sw_reset(struct net_device *dev);
913 static int     de4x5_rx(struct net_device *dev);
914 static int     de4x5_tx(struct net_device *dev);
915 static void    de4x5_ast(struct net_device *dev);
916 static int     de4x5_txur(struct net_device *dev);
917 static int     de4x5_rx_ovfc(struct net_device *dev);
918 
919 static int     autoconf_media(struct net_device *dev);
920 static void    create_packet(struct net_device *dev, char *frame, int len);
921 static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int     dc21040_autoconf(struct net_device *dev);
923 static int     dc21041_autoconf(struct net_device *dev);
924 static int     dc21140m_autoconf(struct net_device *dev);
925 static int     dc2114x_autoconf(struct net_device *dev);
926 static int     srom_autoconf(struct net_device *dev);
927 static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int     test_for_100Mb(struct net_device *dev, int msec);
931 static int     wait_for_link(struct net_device *dev);
932 static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int     is_spd_100(struct net_device *dev);
934 static int     is_100_up(struct net_device *dev);
935 static int     is_10_up(struct net_device *dev);
936 static int     is_anc_capable(struct net_device *dev);
937 static int     ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void    de4x5_free_rx_buffs(struct net_device *dev);
940 static void    de4x5_free_tx_buffs(struct net_device *dev);
941 static void    de4x5_save_skbs(struct net_device *dev);
942 static void    de4x5_rst_desc_ring(struct net_device *dev);
943 static void    de4x5_cache_state(struct net_device *dev, int flag);
944 static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void    de4x5_setup_intr(struct net_device *dev);
948 static void    de4x5_init_connection(struct net_device *dev);
949 static int     de4x5_reset_phy(struct net_device *dev);
950 static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int     test_tp(struct net_device *dev, s32 msec);
953 static int     EISA_signature(char *name, struct device *device);
954 static int     PCI_signature(char *name, struct de4x5_private *lp);
955 static void    DevicePresent(struct net_device *dev, u_long iobase);
956 static void    enet_addr_rst(u_long aprom_addr);
957 static int     de4x5_bad_srom(struct de4x5_private *lp);
958 static short   srom_rd(u_long address, u_char offset);
959 static void    srom_latch(u_int command, u_long address);
960 static void    srom_command(u_int command, u_long address);
961 static void    srom_address(u_int command, u_long address, u_char offset);
962 static short   srom_data(u_int command, u_long address);
963 /*static void    srom_busy(u_int command, u_long address);*/
964 static void    sendto_srom(u_int command, u_long addr);
965 static int     getfrom_srom(u_long addr);
966 static int     srom_map_media(struct net_device *dev);
967 static int     srom_infoleaf_info(struct net_device *dev);
968 static void    srom_init(struct net_device *dev);
969 static void    srom_exec(struct net_device *dev, u_char *p);
970 static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int     mii_rdata(u_long ioaddr);
973 static void    mii_wdata(int data, int len, u_long ioaddr);
974 static void    mii_ta(u_long rw, u_long ioaddr);
975 static int     mii_swap(int data, int len);
976 static void    mii_address(u_char addr, u_long ioaddr);
977 static void    sendto_mii(u32 command, int data, u_long ioaddr);
978 static int     getfrom_mii(u32 command, u_long ioaddr);
979 static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int     mii_get_phy(struct net_device *dev);
981 static void    SetMulticastFilter(struct net_device *dev);
982 static int     get_hw_addr(struct net_device *dev);
983 static void    srom_repair(struct net_device *dev, int card);
984 static int     test_bad_enet(struct net_device *dev, int status);
985 static int     an_exception(struct de4x5_private *lp);
986 static char    *build_setup_frame(struct net_device *dev, int mode);
987 static void    disable_ast(struct net_device *dev);
988 static long    de4x5_switch_mac_port(struct net_device *dev);
989 static int     gep_rd(struct net_device *dev);
990 static void    gep_wr(s32 data, struct net_device *dev);
991 static void    yawn(struct net_device *dev, int state);
992 static void    de4x5_parse_params(struct net_device *dev);
993 static void    de4x5_dbg_open(struct net_device *dev);
994 static void    de4x5_dbg_mii(struct net_device *dev, int k);
995 static void    de4x5_dbg_media(struct net_device *dev);
996 static void    de4x5_dbg_srom(struct de4x5_srom *p);
997 static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int     dc21041_infoleaf(struct net_device *dev);
999 static int     dc21140_infoleaf(struct net_device *dev);
1000 static int     dc21142_infoleaf(struct net_device *dev);
1001 static int     dc21143_infoleaf(struct net_device *dev);
1002 static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 
1010 /*
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1014 */
1015 
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1017 
1018 module_param(io, int, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1022 
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1028 
1029 /*
1030 ** List the SROM infoleaf functions and chipsets
1031 */
1032 struct InfoLeaf {
1033     int chipset;
1034     int (*fn)(struct net_device *);
1035 };
1036 static struct InfoLeaf infoleaf_array[] = {
1037     {DC21041, dc21041_infoleaf},
1038     {DC21140, dc21140_infoleaf},
1039     {DC21142, dc21142_infoleaf},
1040     {DC21143, dc21143_infoleaf}
1041 };
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043 
1044 /*
1045 ** List the SROM info block functions
1046 */
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048     type0_infoblock,
1049     type1_infoblock,
1050     type2_infoblock,
1051     type3_infoblock,
1052     type4_infoblock,
1053     type5_infoblock,
1054     compact_infoblock
1055 };
1056 
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058 
1059 /*
1060 ** Miscellaneous defines...
1061 */
1062 #define RESET_DE4X5 {\
1063     int i;\
1064     i=inl(DE4X5_BMR);\
1065     mdelay(1);\
1066     outl(i | BMR_SWR, DE4X5_BMR);\
1067     mdelay(1);\
1068     outl(i, DE4X5_BMR);\
1069     mdelay(1);\
1070     for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071     mdelay(1);\
1072 }
1073 
1074 #define PHY_HARD_RESET {\
1075     outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1076     mdelay(1);                           /* Assert for 1ms */\
1077     outl(0x00, DE4X5_GEP);\
1078     mdelay(2);                           /* Wait for 2ms */\
1079 }
1080 
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082     .ndo_open		= de4x5_open,
1083     .ndo_stop		= de4x5_close,
1084     .ndo_start_xmit	= de4x5_queue_pkt,
1085     .ndo_get_stats	= de4x5_get_stats,
1086     .ndo_set_rx_mode	= set_multicast_list,
1087     .ndo_do_ioctl	= de4x5_ioctl,
1088     .ndo_change_mtu	= eth_change_mtu,
1089     .ndo_set_mac_address= eth_mac_addr,
1090     .ndo_validate_addr	= eth_validate_addr,
1091 };
1092 
1093 
1094 static int
de4x5_hw_init(struct net_device * dev,u_long iobase,struct device * gendev)1095 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1096 {
1097     char name[DE4X5_NAME_LENGTH + 1];
1098     struct de4x5_private *lp = netdev_priv(dev);
1099     struct pci_dev *pdev = NULL;
1100     int i, status=0;
1101 
1102     dev_set_drvdata(gendev, dev);
1103 
1104     /* Ensure we're not sleeping */
1105     if (lp->bus == EISA) {
1106 	outb(WAKEUP, PCI_CFPM);
1107     } else {
1108 	pdev = to_pci_dev (gendev);
1109 	pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1110     }
1111     mdelay(10);
1112 
1113     RESET_DE4X5;
1114 
1115     if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1116 	return -ENXIO;                       /* Hardware could not reset */
1117     }
1118 
1119     /*
1120     ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1121     */
1122     lp->useSROM = false;
1123     if (lp->bus == PCI) {
1124 	PCI_signature(name, lp);
1125     } else {
1126 	EISA_signature(name, gendev);
1127     }
1128 
1129     if (*name == '\0') {                     /* Not found a board signature */
1130 	return -ENXIO;
1131     }
1132 
1133     dev->base_addr = iobase;
1134     printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1135 
1136     status = get_hw_addr(dev);
1137     printk(", h/w address %pM\n", dev->dev_addr);
1138 
1139     if (status != 0) {
1140 	printk("      which has an Ethernet PROM CRC error.\n");
1141 	return -ENXIO;
1142     } else {
1143 	skb_queue_head_init(&lp->cache.queue);
1144 	lp->cache.gepc = GEP_INIT;
1145 	lp->asBit = GEP_SLNK;
1146 	lp->asPolarity = GEP_SLNK;
1147 	lp->asBitValid = ~0;
1148 	lp->timeout = -1;
1149 	lp->gendev = gendev;
1150 	spin_lock_init(&lp->lock);
1151 	init_timer(&lp->timer);
1152 	lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1153 	lp->timer.data = (unsigned long)dev;
1154 	de4x5_parse_params(dev);
1155 
1156 	/*
1157 	** Choose correct autosensing in case someone messed up
1158 	*/
1159         lp->autosense = lp->params.autosense;
1160         if (lp->chipset != DC21140) {
1161             if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1162                 lp->params.autosense = TP;
1163             }
1164             if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1165                 lp->params.autosense = BNC;
1166             }
1167         }
1168 	lp->fdx = lp->params.fdx;
1169 	sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1170 
1171 	lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1172 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1173 	lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1174 #endif
1175 	lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1176 					 &lp->dma_rings, GFP_ATOMIC);
1177 	if (lp->rx_ring == NULL) {
1178 	    return -ENOMEM;
1179 	}
1180 
1181 	lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1182 
1183 	/*
1184 	** Set up the RX descriptor ring (Intels)
1185 	** Allocate contiguous receive buffers, long word aligned (Alphas)
1186 	*/
1187 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1188 	for (i=0; i<NUM_RX_DESC; i++) {
1189 	    lp->rx_ring[i].status = 0;
1190 	    lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1191 	    lp->rx_ring[i].buf = 0;
1192 	    lp->rx_ring[i].next = 0;
1193 	    lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1194 	}
1195 
1196 #else
1197 	{
1198 		dma_addr_t dma_rx_bufs;
1199 
1200 		dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1201 		      	* sizeof(struct de4x5_desc);
1202 		dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1203 		lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1204 		      	+ NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1205 		for (i=0; i<NUM_RX_DESC; i++) {
1206 	    		lp->rx_ring[i].status = 0;
1207 	    		lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1208 	    		lp->rx_ring[i].buf =
1209 				cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1210 	    		lp->rx_ring[i].next = 0;
1211 	    		lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1212 		}
1213 
1214 	}
1215 #endif
1216 
1217 	barrier();
1218 
1219 	lp->rxRingSize = NUM_RX_DESC;
1220 	lp->txRingSize = NUM_TX_DESC;
1221 
1222 	/* Write the end of list marker to the descriptor lists */
1223 	lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1224 	lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1225 
1226 	/* Tell the adapter where the TX/RX rings are located. */
1227 	outl(lp->dma_rings, DE4X5_RRBA);
1228 	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1229 	     DE4X5_TRBA);
1230 
1231 	/* Initialise the IRQ mask and Enable/Disable */
1232 	lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1233 	lp->irq_en   = IMR_NIM | IMR_AIM;
1234 
1235 	/* Create a loopback packet frame for later media probing */
1236 	create_packet(dev, lp->frame, sizeof(lp->frame));
1237 
1238 	/* Check if the RX overflow bug needs testing for */
1239 	i = lp->cfrv & 0x000000fe;
1240 	if ((lp->chipset == DC21140) && (i == 0x20)) {
1241 	    lp->rx_ovf = 1;
1242 	}
1243 
1244 	/* Initialise the SROM pointers if possible */
1245 	if (lp->useSROM) {
1246 	    lp->state = INITIALISED;
1247 	    if (srom_infoleaf_info(dev)) {
1248 	        dma_free_coherent (gendev, lp->dma_size,
1249 			       lp->rx_ring, lp->dma_rings);
1250 		return -ENXIO;
1251 	    }
1252 	    srom_init(dev);
1253 	}
1254 
1255 	lp->state = CLOSED;
1256 
1257 	/*
1258 	** Check for an MII interface
1259 	*/
1260 	if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1261 	    mii_get_phy(dev);
1262 	}
1263 
1264 	printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1265 	       ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1266     }
1267 
1268     if (de4x5_debug & DEBUG_VERSION) {
1269 	printk(version);
1270     }
1271 
1272     /* The DE4X5-specific entries in the device structure. */
1273     SET_NETDEV_DEV(dev, gendev);
1274     dev->netdev_ops = &de4x5_netdev_ops;
1275     dev->mem_start = 0;
1276 
1277     /* Fill in the generic fields of the device structure. */
1278     if ((status = register_netdev (dev))) {
1279 	    dma_free_coherent (gendev, lp->dma_size,
1280 			       lp->rx_ring, lp->dma_rings);
1281 	    return status;
1282     }
1283 
1284     /* Let the adapter sleep to save power */
1285     yawn(dev, SLEEP);
1286 
1287     return status;
1288 }
1289 
1290 
1291 static int
de4x5_open(struct net_device * dev)1292 de4x5_open(struct net_device *dev)
1293 {
1294     struct de4x5_private *lp = netdev_priv(dev);
1295     u_long iobase = dev->base_addr;
1296     int i, status = 0;
1297     s32 omr;
1298 
1299     /* Allocate the RX buffers */
1300     for (i=0; i<lp->rxRingSize; i++) {
1301 	if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1302 	    de4x5_free_rx_buffs(dev);
1303 	    return -EAGAIN;
1304 	}
1305     }
1306 
1307     /*
1308     ** Wake up the adapter
1309     */
1310     yawn(dev, WAKEUP);
1311 
1312     /*
1313     ** Re-initialize the DE4X5...
1314     */
1315     status = de4x5_init(dev);
1316     spin_lock_init(&lp->lock);
1317     lp->state = OPEN;
1318     de4x5_dbg_open(dev);
1319 
1320     if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321 		                                     lp->adapter_name, dev)) {
1322 	printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1323 	if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1324 			                             lp->adapter_name, dev)) {
1325 	    printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1326 	    disable_ast(dev);
1327 	    de4x5_free_rx_buffs(dev);
1328 	    de4x5_free_tx_buffs(dev);
1329 	    yawn(dev, SLEEP);
1330 	    lp->state = CLOSED;
1331 	    return -EAGAIN;
1332 	} else {
1333 	    printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1334 	    printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1335 	}
1336     }
1337 
1338     lp->interrupt = UNMASK_INTERRUPTS;
1339     dev->trans_start = jiffies; /* prevent tx timeout */
1340 
1341     START_DE4X5;
1342 
1343     de4x5_setup_intr(dev);
1344 
1345     if (de4x5_debug & DEBUG_OPEN) {
1346 	printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1347 	printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1348 	printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1349 	printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1350 	printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1351 	printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1352 	printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1353 	printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1354     }
1355 
1356     return status;
1357 }
1358 
1359 /*
1360 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1361 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1362 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1363 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1364 ** to be data corruption problems if it is larger (UDP errors seen from a
1365 ** ttcp source).
1366 */
1367 static int
de4x5_init(struct net_device * dev)1368 de4x5_init(struct net_device *dev)
1369 {
1370     /* Lock out other processes whilst setting up the hardware */
1371     netif_stop_queue(dev);
1372 
1373     de4x5_sw_reset(dev);
1374 
1375     /* Autoconfigure the connected port */
1376     autoconf_media(dev);
1377 
1378     return 0;
1379 }
1380 
1381 static int
de4x5_sw_reset(struct net_device * dev)1382 de4x5_sw_reset(struct net_device *dev)
1383 {
1384     struct de4x5_private *lp = netdev_priv(dev);
1385     u_long iobase = dev->base_addr;
1386     int i, j, status = 0;
1387     s32 bmr, omr;
1388 
1389     /* Select the MII or SRL port now and RESET the MAC */
1390     if (!lp->useSROM) {
1391 	if (lp->phy[lp->active].id != 0) {
1392 	    lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1393 	} else {
1394 	    lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1395 	}
1396 	de4x5_switch_mac_port(dev);
1397     }
1398 
1399     /*
1400     ** Set the programmable burst length to 8 longwords for all the DC21140
1401     ** Fasternet chips and 4 longwords for all others: DMA errors result
1402     ** without these values. Cache align 16 long.
1403     */
1404     bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1405     bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1406     outl(bmr, DE4X5_BMR);
1407 
1408     omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1409     if (lp->chipset == DC21140) {
1410 	omr |= (OMR_SDP | OMR_SB);
1411     }
1412     lp->setup_f = PERFECT;
1413     outl(lp->dma_rings, DE4X5_RRBA);
1414     outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1415 	 DE4X5_TRBA);
1416 
1417     lp->rx_new = lp->rx_old = 0;
1418     lp->tx_new = lp->tx_old = 0;
1419 
1420     for (i = 0; i < lp->rxRingSize; i++) {
1421 	lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1422     }
1423 
1424     for (i = 0; i < lp->txRingSize; i++) {
1425 	lp->tx_ring[i].status = cpu_to_le32(0);
1426     }
1427 
1428     barrier();
1429 
1430     /* Build the setup frame depending on filtering mode */
1431     SetMulticastFilter(dev);
1432 
1433     load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1434     outl(omr|OMR_ST, DE4X5_OMR);
1435 
1436     /* Poll for setup frame completion (adapter interrupts are disabled now) */
1437 
1438     for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1439 	mdelay(1);
1440 	if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1441     }
1442     outl(omr, DE4X5_OMR);                        /* Stop everything! */
1443 
1444     if (j == 0) {
1445 	printk("%s: Setup frame timed out, status %08x\n", dev->name,
1446 	       inl(DE4X5_STS));
1447 	status = -EIO;
1448     }
1449 
1450     lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1451     lp->tx_old = lp->tx_new;
1452 
1453     return status;
1454 }
1455 
1456 /*
1457 ** Writes a socket buffer address to the next available transmit descriptor.
1458 */
1459 static netdev_tx_t
de4x5_queue_pkt(struct sk_buff * skb,struct net_device * dev)1460 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1461 {
1462     struct de4x5_private *lp = netdev_priv(dev);
1463     u_long iobase = dev->base_addr;
1464     u_long flags = 0;
1465 
1466     netif_stop_queue(dev);
1467     if (!lp->tx_enable)                   /* Cannot send for now */
1468 	return NETDEV_TX_LOCKED;
1469 
1470     /*
1471     ** Clean out the TX ring asynchronously to interrupts - sometimes the
1472     ** interrupts are lost by delayed descriptor status updates relative to
1473     ** the irq assertion, especially with a busy PCI bus.
1474     */
1475     spin_lock_irqsave(&lp->lock, flags);
1476     de4x5_tx(dev);
1477     spin_unlock_irqrestore(&lp->lock, flags);
1478 
1479     /* Test if cache is already locked - requeue skb if so */
1480     if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1481 	return NETDEV_TX_LOCKED;
1482 
1483     /* Transmit descriptor ring full or stale skb */
1484     if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1485 	if (lp->interrupt) {
1486 	    de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1487 	} else {
1488 	    de4x5_put_cache(dev, skb);
1489 	}
1490 	if (de4x5_debug & DEBUG_TX) {
1491 	    printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1492 	}
1493     } else if (skb->len > 0) {
1494 	/* If we already have stuff queued locally, use that first */
1495 	if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1496 	    de4x5_put_cache(dev, skb);
1497 	    skb = de4x5_get_cache(dev);
1498 	}
1499 
1500 	while (skb && !netif_queue_stopped(dev) &&
1501 	       (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1502 	    spin_lock_irqsave(&lp->lock, flags);
1503 	    netif_stop_queue(dev);
1504 	    load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1505  	    lp->stats.tx_bytes += skb->len;
1506 	    outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1507 
1508 	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1509 
1510 	    if (TX_BUFFS_AVAIL) {
1511 		netif_start_queue(dev);         /* Another pkt may be queued */
1512 	    }
1513 	    skb = de4x5_get_cache(dev);
1514 	    spin_unlock_irqrestore(&lp->lock, flags);
1515 	}
1516 	if (skb) de4x5_putb_cache(dev, skb);
1517     }
1518 
1519     lp->cache.lock = 0;
1520 
1521     return NETDEV_TX_OK;
1522 }
1523 
1524 /*
1525 ** The DE4X5 interrupt handler.
1526 **
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1534 */
1535 static irqreturn_t
de4x5_interrupt(int irq,void * dev_id)1536 de4x5_interrupt(int irq, void *dev_id)
1537 {
1538     struct net_device *dev = dev_id;
1539     struct de4x5_private *lp;
1540     s32 imr, omr, sts, limit;
1541     u_long iobase;
1542     unsigned int handled = 0;
1543 
1544     lp = netdev_priv(dev);
1545     spin_lock(&lp->lock);
1546     iobase = dev->base_addr;
1547 
1548     DISABLE_IRQs;                        /* Ensure non re-entrancy */
1549 
1550     if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551 	printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552 
1553     synchronize_irq(dev->irq);
1554 
1555     for (limit=0; limit<8; limit++) {
1556 	sts = inl(DE4X5_STS);            /* Read IRQ status */
1557 	outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1558 
1559 	if (!(sts & lp->irq_mask)) break;/* All done */
1560 	handled = 1;
1561 
1562 	if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1563 	  de4x5_rx(dev);
1564 
1565 	if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1566 	  de4x5_tx(dev);
1567 
1568 	if (sts & STS_LNF) {             /* TP Link has failed */
1569 	    lp->irq_mask &= ~IMR_LFM;
1570 	}
1571 
1572 	if (sts & STS_UNF) {             /* Transmit underrun */
1573 	    de4x5_txur(dev);
1574 	}
1575 
1576 	if (sts & STS_SE) {              /* Bus Error */
1577 	    STOP_DE4X5;
1578 	    printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579 		   dev->name, sts);
1580 	    spin_unlock(&lp->lock);
1581 	    return IRQ_HANDLED;
1582 	}
1583     }
1584 
1585     /* Load the TX ring with any locally stored packets */
1586     if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587 	while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588 	    de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589 	}
1590 	lp->cache.lock = 0;
1591     }
1592 
1593     lp->interrupt = UNMASK_INTERRUPTS;
1594     ENABLE_IRQs;
1595     spin_unlock(&lp->lock);
1596 
1597     return IRQ_RETVAL(handled);
1598 }
1599 
1600 static int
de4x5_rx(struct net_device * dev)1601 de4x5_rx(struct net_device *dev)
1602 {
1603     struct de4x5_private *lp = netdev_priv(dev);
1604     u_long iobase = dev->base_addr;
1605     int entry;
1606     s32 status;
1607 
1608     for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609 	                                                    entry=lp->rx_new) {
1610 	status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611 
1612 	if (lp->rx_ovf) {
1613 	    if (inl(DE4X5_MFC) & MFC_FOCM) {
1614 		de4x5_rx_ovfc(dev);
1615 		break;
1616 	    }
1617 	}
1618 
1619 	if (status & RD_FS) {                 /* Remember the start of frame */
1620 	    lp->rx_old = entry;
1621 	}
1622 
1623 	if (status & RD_LS) {                 /* Valid frame status */
1624 	    if (lp->tx_enable) lp->linkOK++;
1625 	    if (status & RD_ES) {	      /* There was an error. */
1626 		lp->stats.rx_errors++;        /* Update the error stats. */
1627 		if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628 		if (status & RD_CE)           lp->stats.rx_crc_errors++;
1629 		if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1630 		if (status & RD_TL)           lp->stats.rx_length_errors++;
1631 		if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1632 		if (status & RD_CS)           lp->pktStats.rx_collision++;
1633 		if (status & RD_DB)           lp->pktStats.rx_dribble++;
1634 		if (status & RD_OF)           lp->pktStats.rx_overflow++;
1635 	    } else {                          /* A valid frame received */
1636 		struct sk_buff *skb;
1637 		short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638 					                            >> 16) - 4;
1639 
1640 		if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641 		    printk("%s: Insufficient memory; nuking packet.\n",
1642 			                                            dev->name);
1643 		    lp->stats.rx_dropped++;
1644 		} else {
1645 		    de4x5_dbg_rx(skb, pkt_len);
1646 
1647 		    /* Push up the protocol stack */
1648 		    skb->protocol=eth_type_trans(skb,dev);
1649 		    de4x5_local_stats(dev, skb->data, pkt_len);
1650 		    netif_rx(skb);
1651 
1652 		    /* Update stats */
1653 		    lp->stats.rx_packets++;
1654  		    lp->stats.rx_bytes += pkt_len;
1655 		}
1656 	    }
1657 
1658 	    /* Change buffer ownership for this frame, back to the adapter */
1659 	    for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660 		lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661 		barrier();
1662 	    }
1663 	    lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664 	    barrier();
1665 	}
1666 
1667 	/*
1668 	** Update entry information
1669 	*/
1670 	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671     }
1672 
1673     return 0;
1674 }
1675 
1676 static inline void
de4x5_free_tx_buff(struct de4x5_private * lp,int entry)1677 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678 {
1679     dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680 		     le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681 		     DMA_TO_DEVICE);
1682     if ((u_long) lp->tx_skb[entry] > 1)
1683 	dev_kfree_skb_irq(lp->tx_skb[entry]);
1684     lp->tx_skb[entry] = NULL;
1685 }
1686 
1687 /*
1688 ** Buffer sent - check for TX buffer errors.
1689 */
1690 static int
de4x5_tx(struct net_device * dev)1691 de4x5_tx(struct net_device *dev)
1692 {
1693     struct de4x5_private *lp = netdev_priv(dev);
1694     u_long iobase = dev->base_addr;
1695     int entry;
1696     s32 status;
1697 
1698     for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699 	status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700 	if (status < 0) {                     /* Buffer not sent yet */
1701 	    break;
1702 	} else if (status != 0x7fffffff) {    /* Not setup frame */
1703 	    if (status & TD_ES) {             /* An error happened */
1704 		lp->stats.tx_errors++;
1705 		if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706 		if (status & TD_LC) lp->stats.tx_window_errors++;
1707 		if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708 		if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709 		if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710 
1711 		if (TX_PKT_PENDING) {
1712 		    outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713 		}
1714 	    } else {                      /* Packet sent */
1715 		lp->stats.tx_packets++;
1716 		if (lp->tx_enable) lp->linkOK++;
1717 	    }
1718 	    /* Update the collision counter */
1719 	    lp->stats.collisions += ((status & TD_EC) ? 16 :
1720 				                      ((status & TD_CC) >> 3));
1721 
1722 	    /* Free the buffer. */
1723 	    if (lp->tx_skb[entry] != NULL)
1724 	    	de4x5_free_tx_buff(lp, entry);
1725 	}
1726 
1727 	/* Update all the pointers */
1728 	lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729     }
1730 
1731     /* Any resources available? */
1732     if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733 	if (lp->interrupt)
1734 	    netif_wake_queue(dev);
1735 	else
1736 	    netif_start_queue(dev);
1737     }
1738 
1739     return 0;
1740 }
1741 
1742 static void
de4x5_ast(struct net_device * dev)1743 de4x5_ast(struct net_device *dev)
1744 {
1745 	struct de4x5_private *lp = netdev_priv(dev);
1746 	int next_tick = DE4X5_AUTOSENSE_MS;
1747 	int dt;
1748 
1749 	if (lp->useSROM)
1750 		next_tick = srom_autoconf(dev);
1751 	else if (lp->chipset == DC21140)
1752 		next_tick = dc21140m_autoconf(dev);
1753 	else if (lp->chipset == DC21041)
1754 		next_tick = dc21041_autoconf(dev);
1755 	else if (lp->chipset == DC21040)
1756 		next_tick = dc21040_autoconf(dev);
1757 	lp->linkOK = 0;
1758 
1759 	dt = (next_tick * HZ) / 1000;
1760 
1761 	if (!dt)
1762 		dt = 1;
1763 
1764 	mod_timer(&lp->timer, jiffies + dt);
1765 }
1766 
1767 static int
de4x5_txur(struct net_device * dev)1768 de4x5_txur(struct net_device *dev)
1769 {
1770     struct de4x5_private *lp = netdev_priv(dev);
1771     u_long iobase = dev->base_addr;
1772     int omr;
1773 
1774     omr = inl(DE4X5_OMR);
1775     if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1776 	omr &= ~(OMR_ST|OMR_SR);
1777 	outl(omr, DE4X5_OMR);
1778 	while (inl(DE4X5_STS) & STS_TS);
1779 	if ((omr & OMR_TR) < OMR_TR) {
1780 	    omr += 0x4000;
1781 	} else {
1782 	    omr |= OMR_SF;
1783 	}
1784 	outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1785     }
1786 
1787     return 0;
1788 }
1789 
1790 static int
de4x5_rx_ovfc(struct net_device * dev)1791 de4x5_rx_ovfc(struct net_device *dev)
1792 {
1793     struct de4x5_private *lp = netdev_priv(dev);
1794     u_long iobase = dev->base_addr;
1795     int omr;
1796 
1797     omr = inl(DE4X5_OMR);
1798     outl(omr & ~OMR_SR, DE4X5_OMR);
1799     while (inl(DE4X5_STS) & STS_RS);
1800 
1801     for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1802 	lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1803 	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1804     }
1805 
1806     outl(omr, DE4X5_OMR);
1807 
1808     return 0;
1809 }
1810 
1811 static int
de4x5_close(struct net_device * dev)1812 de4x5_close(struct net_device *dev)
1813 {
1814     struct de4x5_private *lp = netdev_priv(dev);
1815     u_long iobase = dev->base_addr;
1816     s32 imr, omr;
1817 
1818     disable_ast(dev);
1819 
1820     netif_stop_queue(dev);
1821 
1822     if (de4x5_debug & DEBUG_CLOSE) {
1823 	printk("%s: Shutting down ethercard, status was %8.8x.\n",
1824 	       dev->name, inl(DE4X5_STS));
1825     }
1826 
1827     /*
1828     ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1829     */
1830     DISABLE_IRQs;
1831     STOP_DE4X5;
1832 
1833     /* Free the associated irq */
1834     free_irq(dev->irq, dev);
1835     lp->state = CLOSED;
1836 
1837     /* Free any socket buffers */
1838     de4x5_free_rx_buffs(dev);
1839     de4x5_free_tx_buffs(dev);
1840 
1841     /* Put the adapter to sleep to save power */
1842     yawn(dev, SLEEP);
1843 
1844     return 0;
1845 }
1846 
1847 static struct net_device_stats *
de4x5_get_stats(struct net_device * dev)1848 de4x5_get_stats(struct net_device *dev)
1849 {
1850     struct de4x5_private *lp = netdev_priv(dev);
1851     u_long iobase = dev->base_addr;
1852 
1853     lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1854 
1855     return &lp->stats;
1856 }
1857 
1858 static void
de4x5_local_stats(struct net_device * dev,char * buf,int pkt_len)1859 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1860 {
1861     struct de4x5_private *lp = netdev_priv(dev);
1862     int i;
1863 
1864     for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1865         if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1866 	    lp->pktStats.bins[i]++;
1867 	    i = DE4X5_PKT_STAT_SZ;
1868 	}
1869     }
1870     if (is_multicast_ether_addr(buf)) {
1871         if (is_broadcast_ether_addr(buf)) {
1872 	    lp->pktStats.broadcast++;
1873 	} else {
1874 	    lp->pktStats.multicast++;
1875 	}
1876     } else if (ether_addr_equal(buf, dev->dev_addr)) {
1877         lp->pktStats.unicast++;
1878     }
1879 
1880     lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1881     if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1882         memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1883     }
1884 }
1885 
1886 /*
1887 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1888 ** If the flag is changed on a descriptor that is being read by the hardware,
1889 ** I assume PCI transaction ordering will mean you are either successful or
1890 ** just miss asserting the change to the hardware. Anyway you're messing with
1891 ** a descriptor you don't own, but this shouldn't kill the chip provided
1892 ** the descriptor register is read only to the hardware.
1893 */
1894 static void
load_packet(struct net_device * dev,char * buf,u32 flags,struct sk_buff * skb)1895 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1896 {
1897     struct de4x5_private *lp = netdev_priv(dev);
1898     int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1899     dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1900 
1901     lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1902     lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1903     lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1904     lp->tx_skb[lp->tx_new] = skb;
1905     lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1906     barrier();
1907 
1908     lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1909     barrier();
1910 }
1911 
1912 /*
1913 ** Set or clear the multicast filter for this adaptor.
1914 */
1915 static void
set_multicast_list(struct net_device * dev)1916 set_multicast_list(struct net_device *dev)
1917 {
1918     struct de4x5_private *lp = netdev_priv(dev);
1919     u_long iobase = dev->base_addr;
1920 
1921     /* First, double check that the adapter is open */
1922     if (lp->state == OPEN) {
1923 	if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1924 	    u32 omr;
1925 	    omr = inl(DE4X5_OMR);
1926 	    omr |= OMR_PR;
1927 	    outl(omr, DE4X5_OMR);
1928 	} else {
1929 	    SetMulticastFilter(dev);
1930 	    load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1931 			                                SETUP_FRAME_LEN, (struct sk_buff *)1);
1932 
1933 	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1934 	    outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1935 	    dev->trans_start = jiffies; /* prevent tx timeout */
1936 	}
1937     }
1938 }
1939 
1940 /*
1941 ** Calculate the hash code and update the logical address filter
1942 ** from a list of ethernet multicast addresses.
1943 ** Little endian crc one liner from Matt Thomas, DEC.
1944 */
1945 static void
SetMulticastFilter(struct net_device * dev)1946 SetMulticastFilter(struct net_device *dev)
1947 {
1948     struct de4x5_private *lp = netdev_priv(dev);
1949     struct netdev_hw_addr *ha;
1950     u_long iobase = dev->base_addr;
1951     int i, bit, byte;
1952     u16 hashcode;
1953     u32 omr, crc;
1954     char *pa;
1955     unsigned char *addrs;
1956 
1957     omr = inl(DE4X5_OMR);
1958     omr &= ~(OMR_PR | OMR_PM);
1959     pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1960 
1961     if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1962 	omr |= OMR_PM;                       /* Pass all multicasts */
1963     } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1964 	netdev_for_each_mc_addr(ha, dev) {
1965 		crc = ether_crc_le(ETH_ALEN, ha->addr);
1966 		hashcode = crc & HASH_BITS;  /* hashcode is 9 LSb of CRC */
1967 
1968 		byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1969 		bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1970 
1971 		byte <<= 1;                  /* calc offset into setup frame */
1972 		if (byte & 0x02) {
1973 		    byte -= 1;
1974 		}
1975 		lp->setup_frame[byte] |= bit;
1976 	}
1977     } else {                                 /* Perfect filtering */
1978 	netdev_for_each_mc_addr(ha, dev) {
1979 	    addrs = ha->addr;
1980 	    for (i=0; i<ETH_ALEN; i++) {
1981 		*(pa + (i&1)) = *addrs++;
1982 		if (i & 0x01) pa += 4;
1983 	    }
1984 	}
1985     }
1986     outl(omr, DE4X5_OMR);
1987 }
1988 
1989 #ifdef CONFIG_EISA
1990 
1991 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1992 
de4x5_eisa_probe(struct device * gendev)1993 static int __init de4x5_eisa_probe (struct device *gendev)
1994 {
1995 	struct eisa_device *edev;
1996 	u_long iobase;
1997 	u_char irq, regval;
1998 	u_short vendor;
1999 	u32 cfid;
2000 	int status, device;
2001 	struct net_device *dev;
2002 	struct de4x5_private *lp;
2003 
2004 	edev = to_eisa_device (gendev);
2005 	iobase = edev->base_addr;
2006 
2007 	if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2008 		return -EBUSY;
2009 
2010 	if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2011 			     DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2012 		status = -EBUSY;
2013 		goto release_reg_1;
2014 	}
2015 
2016 	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2017 		status = -ENOMEM;
2018 		goto release_reg_2;
2019 	}
2020 	lp = netdev_priv(dev);
2021 
2022 	cfid = (u32) inl(PCI_CFID);
2023 	lp->cfrv = (u_short) inl(PCI_CFRV);
2024 	device = (cfid >> 8) & 0x00ffff00;
2025 	vendor = (u_short) cfid;
2026 
2027 	/* Read the EISA Configuration Registers */
2028 	regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2029 #ifdef CONFIG_ALPHA
2030 	/* Looks like the Jensen firmware (rev 2.2) doesn't really
2031 	 * care about the EISA configuration, and thus doesn't
2032 	 * configure the PLX bridge properly. Oh well... Simply mimic
2033 	 * the EISA config file to sort it out. */
2034 
2035 	/* EISA REG1: Assert DecChip 21040 HW Reset */
2036 	outb (ER1_IAM | 1, EISA_REG1);
2037 	mdelay (1);
2038 
2039         /* EISA REG1: Deassert DecChip 21040 HW Reset */
2040 	outb (ER1_IAM, EISA_REG1);
2041 	mdelay (1);
2042 
2043 	/* EISA REG3: R/W Burst Transfer Enable */
2044 	outb (ER3_BWE | ER3_BRE, EISA_REG3);
2045 
2046 	/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2047 	outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2048 #endif
2049 	irq = de4x5_irq[(regval >> 1) & 0x03];
2050 
2051 	if (is_DC2114x) {
2052 	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2053 	}
2054 	lp->chipset = device;
2055 	lp->bus = EISA;
2056 
2057 	/* Write the PCI Configuration Registers */
2058 	outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2059 	outl(0x00006000, PCI_CFLT);
2060 	outl(iobase, PCI_CBIO);
2061 
2062 	DevicePresent(dev, EISA_APROM);
2063 
2064 	dev->irq = irq;
2065 
2066 	if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2067 		return 0;
2068 	}
2069 
2070 	free_netdev (dev);
2071  release_reg_2:
2072 	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2073  release_reg_1:
2074 	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2075 
2076 	return status;
2077 }
2078 
de4x5_eisa_remove(struct device * device)2079 static int de4x5_eisa_remove(struct device *device)
2080 {
2081 	struct net_device *dev;
2082 	u_long iobase;
2083 
2084 	dev = dev_get_drvdata(device);
2085 	iobase = dev->base_addr;
2086 
2087 	unregister_netdev (dev);
2088 	free_netdev (dev);
2089 	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2090 	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2091 
2092 	return 0;
2093 }
2094 
2095 static struct eisa_device_id de4x5_eisa_ids[] = {
2096         { "DEC4250", 0 },	/* 0 is the board name index... */
2097         { "" }
2098 };
2099 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2100 
2101 static struct eisa_driver de4x5_eisa_driver = {
2102         .id_table = de4x5_eisa_ids,
2103         .driver   = {
2104                 .name    = "de4x5",
2105                 .probe   = de4x5_eisa_probe,
2106 		.remove  = de4x5_eisa_remove,
2107         }
2108 };
2109 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2110 #endif
2111 
2112 #ifdef CONFIG_PCI
2113 
2114 /*
2115 ** This function searches the current bus (which is >0) for a DECchip with an
2116 ** SROM, so that in multiport cards that have one SROM shared between multiple
2117 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2118 ** For single port cards this is a time waster...
2119 */
2120 static void
srom_search(struct net_device * dev,struct pci_dev * pdev)2121 srom_search(struct net_device *dev, struct pci_dev *pdev)
2122 {
2123     u_char pb;
2124     u_short vendor, status;
2125     u_int irq = 0, device;
2126     u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2127     int i, j;
2128     struct de4x5_private *lp = netdev_priv(dev);
2129     struct pci_dev *this_dev;
2130 
2131     list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2132 	vendor = this_dev->vendor;
2133 	device = this_dev->device << 8;
2134 	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2135 
2136 	/* Get the chip configuration revision register */
2137 	pb = this_dev->bus->number;
2138 
2139 	/* Set the device number information */
2140 	lp->device = PCI_SLOT(this_dev->devfn);
2141 	lp->bus_num = pb;
2142 
2143 	/* Set the chipset information */
2144 	if (is_DC2114x) {
2145 	    device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2146 		      ? DC21142 : DC21143);
2147 	}
2148 	lp->chipset = device;
2149 
2150 	/* Get the board I/O address (64 bits on sparc64) */
2151 	iobase = pci_resource_start(this_dev, 0);
2152 
2153 	/* Fetch the IRQ to be used */
2154 	irq = this_dev->irq;
2155 	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2156 
2157 	/* Check if I/O accesses are enabled */
2158 	pci_read_config_word(this_dev, PCI_COMMAND, &status);
2159 	if (!(status & PCI_COMMAND_IO)) continue;
2160 
2161 	/* Search for a valid SROM attached to this DECchip */
2162 	DevicePresent(dev, DE4X5_APROM);
2163 	for (j=0, i=0; i<ETH_ALEN; i++) {
2164 	    j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2165 	}
2166 	if (j != 0 && j != 6 * 0xff) {
2167 	    last.chipset = device;
2168 	    last.bus = pb;
2169 	    last.irq = irq;
2170 	    for (i=0; i<ETH_ALEN; i++) {
2171 		last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2172 	    }
2173 	    return;
2174 	}
2175     }
2176 }
2177 
2178 /*
2179 ** PCI bus I/O device probe
2180 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2181 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2182 ** enabled by the user first in the set up utility. Hence we just check for
2183 ** enabled features and silently ignore the card if they're not.
2184 **
2185 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2186 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2187 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2188 ** PC doesn't conform to the PCI standard)!
2189 **
2190 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2191 ** kernels use the V0.535[n] drivers.
2192 */
2193 
de4x5_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2194 static int de4x5_pci_probe(struct pci_dev *pdev,
2195 			   const struct pci_device_id *ent)
2196 {
2197 	u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2198 	u_short vendor, status;
2199 	u_int irq = 0, device;
2200 	u_long iobase = 0;	/* Clear upper 32 bits in Alphas */
2201 	int error;
2202 	struct net_device *dev;
2203 	struct de4x5_private *lp;
2204 
2205 	dev_num = PCI_SLOT(pdev->devfn);
2206 	pb = pdev->bus->number;
2207 
2208 	if (io) { /* probe a single PCI device */
2209 		pbus = (u_short)(io >> 8);
2210 		dnum = (u_short)(io & 0xff);
2211 		if ((pbus != pb) || (dnum != dev_num))
2212 			return -ENODEV;
2213 	}
2214 
2215 	vendor = pdev->vendor;
2216 	device = pdev->device << 8;
2217 	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2218 		return -ENODEV;
2219 
2220 	/* Ok, the device seems to be for us. */
2221 	if ((error = pci_enable_device (pdev)))
2222 		return error;
2223 
2224 	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2225 		error = -ENOMEM;
2226 		goto disable_dev;
2227 	}
2228 
2229 	lp = netdev_priv(dev);
2230 	lp->bus = PCI;
2231 	lp->bus_num = 0;
2232 
2233 	/* Search for an SROM on this bus */
2234 	if (lp->bus_num != pb) {
2235 	    lp->bus_num = pb;
2236 	    srom_search(dev, pdev);
2237 	}
2238 
2239 	/* Get the chip configuration revision register */
2240 	lp->cfrv = pdev->revision;
2241 
2242 	/* Set the device number information */
2243 	lp->device = dev_num;
2244 	lp->bus_num = pb;
2245 
2246 	/* Set the chipset information */
2247 	if (is_DC2114x) {
2248 	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2249 	}
2250 	lp->chipset = device;
2251 
2252 	/* Get the board I/O address (64 bits on sparc64) */
2253 	iobase = pci_resource_start(pdev, 0);
2254 
2255 	/* Fetch the IRQ to be used */
2256 	irq = pdev->irq;
2257 	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2258 		error = -ENODEV;
2259 		goto free_dev;
2260 	}
2261 
2262 	/* Check if I/O accesses and Bus Mastering are enabled */
2263 	pci_read_config_word(pdev, PCI_COMMAND, &status);
2264 #ifdef __powerpc__
2265 	if (!(status & PCI_COMMAND_IO)) {
2266 	    status |= PCI_COMMAND_IO;
2267 	    pci_write_config_word(pdev, PCI_COMMAND, status);
2268 	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2269 	}
2270 #endif /* __powerpc__ */
2271 	if (!(status & PCI_COMMAND_IO)) {
2272 		error = -ENODEV;
2273 		goto free_dev;
2274 	}
2275 
2276 	if (!(status & PCI_COMMAND_MASTER)) {
2277 	    status |= PCI_COMMAND_MASTER;
2278 	    pci_write_config_word(pdev, PCI_COMMAND, status);
2279 	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2280 	}
2281 	if (!(status & PCI_COMMAND_MASTER)) {
2282 		error = -ENODEV;
2283 		goto free_dev;
2284 	}
2285 
2286 	/* Check the latency timer for values >= 0x60 */
2287 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2288 	if (timer < 0x60) {
2289 	    pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2290 	}
2291 
2292 	DevicePresent(dev, DE4X5_APROM);
2293 
2294 	if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2295 		error = -EBUSY;
2296 		goto free_dev;
2297 	}
2298 
2299 	dev->irq = irq;
2300 
2301 	if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2302 		goto release;
2303 	}
2304 
2305 	return 0;
2306 
2307  release:
2308 	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2309  free_dev:
2310 	free_netdev (dev);
2311  disable_dev:
2312 	pci_disable_device (pdev);
2313 	return error;
2314 }
2315 
de4x5_pci_remove(struct pci_dev * pdev)2316 static void de4x5_pci_remove(struct pci_dev *pdev)
2317 {
2318 	struct net_device *dev;
2319 	u_long iobase;
2320 
2321 	dev = pci_get_drvdata(pdev);
2322 	iobase = dev->base_addr;
2323 
2324 	unregister_netdev (dev);
2325 	free_netdev (dev);
2326 	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2327 	pci_disable_device (pdev);
2328 }
2329 
2330 static const struct pci_device_id de4x5_pci_tbl[] = {
2331         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2332           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2333         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2334           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2335         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2336 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2337         { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2338 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2339         { },
2340 };
2341 
2342 static struct pci_driver de4x5_pci_driver = {
2343         .name           = "de4x5",
2344         .id_table       = de4x5_pci_tbl,
2345         .probe          = de4x5_pci_probe,
2346 	.remove         = de4x5_pci_remove,
2347 };
2348 
2349 #endif
2350 
2351 /*
2352 ** Auto configure the media here rather than setting the port at compile
2353 ** time. This routine is called by de4x5_init() and when a loss of media is
2354 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2355 ** [TP] or no recent receive activity) to check whether the user has been
2356 ** sneaky and changed the port on us.
2357 */
2358 static int
autoconf_media(struct net_device * dev)2359 autoconf_media(struct net_device *dev)
2360 {
2361 	struct de4x5_private *lp = netdev_priv(dev);
2362 	u_long iobase = dev->base_addr;
2363 
2364 	disable_ast(dev);
2365 
2366 	lp->c_media = AUTO;                     /* Bogus last media */
2367 	inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2368 	lp->media = INIT;
2369 	lp->tcount = 0;
2370 
2371 	de4x5_ast(dev);
2372 
2373 	return lp->media;
2374 }
2375 
2376 /*
2377 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2378 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2379 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2380 ** The only way to test for that is to place a loopback packet onto the
2381 ** network and watch for errors. Since we're messing with the interrupt mask
2382 ** register, disable the board interrupts and do not allow any more packets to
2383 ** be queued to the hardware. Re-enable everything only when the media is
2384 ** found.
2385 ** I may have to "age out" locally queued packets so that the higher layer
2386 ** timeouts don't effectively duplicate packets on the network.
2387 */
2388 static int
dc21040_autoconf(struct net_device * dev)2389 dc21040_autoconf(struct net_device *dev)
2390 {
2391     struct de4x5_private *lp = netdev_priv(dev);
2392     u_long iobase = dev->base_addr;
2393     int next_tick = DE4X5_AUTOSENSE_MS;
2394     s32 imr;
2395 
2396     switch (lp->media) {
2397     case INIT:
2398 	DISABLE_IRQs;
2399 	lp->tx_enable = false;
2400 	lp->timeout = -1;
2401 	de4x5_save_skbs(dev);
2402 	if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2403 	    lp->media = TP;
2404 	} else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2405 	    lp->media = BNC_AUI;
2406 	} else if (lp->autosense == EXT_SIA) {
2407 	    lp->media = EXT_SIA;
2408 	} else {
2409 	    lp->media = NC;
2410 	}
2411 	lp->local_state = 0;
2412 	next_tick = dc21040_autoconf(dev);
2413 	break;
2414 
2415     case TP:
2416 	next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2417 		                                         TP_SUSPECT, test_tp);
2418 	break;
2419 
2420     case TP_SUSPECT:
2421 	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2422 	break;
2423 
2424     case BNC:
2425     case AUI:
2426     case BNC_AUI:
2427 	next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2428 		                                  BNC_AUI_SUSPECT, ping_media);
2429 	break;
2430 
2431     case BNC_AUI_SUSPECT:
2432 	next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2433 	break;
2434 
2435     case EXT_SIA:
2436 	next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2437 		                              NC, EXT_SIA_SUSPECT, ping_media);
2438 	break;
2439 
2440     case EXT_SIA_SUSPECT:
2441 	next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2442 	break;
2443 
2444     case NC:
2445 	/* default to TP for all */
2446 	reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2447 	if (lp->media != lp->c_media) {
2448 	    de4x5_dbg_media(dev);
2449 	    lp->c_media = lp->media;
2450 	}
2451 	lp->media = INIT;
2452 	lp->tx_enable = false;
2453 	break;
2454     }
2455 
2456     return next_tick;
2457 }
2458 
2459 static int
dc21040_state(struct net_device * dev,int csr13,int csr14,int csr15,int timeout,int next_state,int suspect_state,int (* fn)(struct net_device *,int))2460 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2461 	      int next_state, int suspect_state,
2462 	      int (*fn)(struct net_device *, int))
2463 {
2464     struct de4x5_private *lp = netdev_priv(dev);
2465     int next_tick = DE4X5_AUTOSENSE_MS;
2466     int linkBad;
2467 
2468     switch (lp->local_state) {
2469     case 0:
2470 	reset_init_sia(dev, csr13, csr14, csr15);
2471 	lp->local_state++;
2472 	next_tick = 500;
2473 	break;
2474 
2475     case 1:
2476 	if (!lp->tx_enable) {
2477 	    linkBad = fn(dev, timeout);
2478 	    if (linkBad < 0) {
2479 		next_tick = linkBad & ~TIMER_CB;
2480 	    } else {
2481 		if (linkBad && (lp->autosense == AUTO)) {
2482 		    lp->local_state = 0;
2483 		    lp->media = next_state;
2484 		} else {
2485 		    de4x5_init_connection(dev);
2486 		}
2487 	    }
2488 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2489 	    lp->media = suspect_state;
2490 	    next_tick = 3000;
2491 	}
2492 	break;
2493     }
2494 
2495     return next_tick;
2496 }
2497 
2498 static int
de4x5_suspect_state(struct net_device * dev,int timeout,int prev_state,int (* fn)(struct net_device *,int),int (* asfn)(struct net_device *))2499 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2500 		      int (*fn)(struct net_device *, int),
2501 		      int (*asfn)(struct net_device *))
2502 {
2503     struct de4x5_private *lp = netdev_priv(dev);
2504     int next_tick = DE4X5_AUTOSENSE_MS;
2505     int linkBad;
2506 
2507     switch (lp->local_state) {
2508     case 1:
2509 	if (lp->linkOK) {
2510 	    lp->media = prev_state;
2511 	} else {
2512 	    lp->local_state++;
2513 	    next_tick = asfn(dev);
2514 	}
2515 	break;
2516 
2517     case 2:
2518 	linkBad = fn(dev, timeout);
2519 	if (linkBad < 0) {
2520 	    next_tick = linkBad & ~TIMER_CB;
2521 	} else if (!linkBad) {
2522 	    lp->local_state--;
2523 	    lp->media = prev_state;
2524 	} else {
2525 	    lp->media = INIT;
2526 	    lp->tcount++;
2527 	}
2528     }
2529 
2530     return next_tick;
2531 }
2532 
2533 /*
2534 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2535 ** before BNC, because the BNC port will indicate activity if it's not
2536 ** terminated correctly. The only way to test for that is to place a loopback
2537 ** packet onto the network and watch for errors. Since we're messing with
2538 ** the interrupt mask register, disable the board interrupts and do not allow
2539 ** any more packets to be queued to the hardware. Re-enable everything only
2540 ** when the media is found.
2541 */
2542 static int
dc21041_autoconf(struct net_device * dev)2543 dc21041_autoconf(struct net_device *dev)
2544 {
2545     struct de4x5_private *lp = netdev_priv(dev);
2546     u_long iobase = dev->base_addr;
2547     s32 sts, irqs, irq_mask, imr, omr;
2548     int next_tick = DE4X5_AUTOSENSE_MS;
2549 
2550     switch (lp->media) {
2551     case INIT:
2552 	DISABLE_IRQs;
2553 	lp->tx_enable = false;
2554 	lp->timeout = -1;
2555 	de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2556 	if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2557 	    lp->media = TP;            /* On chip auto negotiation is broken */
2558 	} else if (lp->autosense == TP) {
2559 	    lp->media = TP;
2560 	} else if (lp->autosense == BNC) {
2561 	    lp->media = BNC;
2562 	} else if (lp->autosense == AUI) {
2563 	    lp->media = AUI;
2564 	} else {
2565 	    lp->media = NC;
2566 	}
2567 	lp->local_state = 0;
2568 	next_tick = dc21041_autoconf(dev);
2569 	break;
2570 
2571     case TP_NW:
2572 	if (lp->timeout < 0) {
2573 	    omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2574 	    outl(omr | OMR_FDX, DE4X5_OMR);
2575 	}
2576 	irqs = STS_LNF | STS_LNP;
2577 	irq_mask = IMR_LFM | IMR_LPM;
2578 	sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2579 	if (sts < 0) {
2580 	    next_tick = sts & ~TIMER_CB;
2581 	} else {
2582 	    if (sts & STS_LNP) {
2583 		lp->media = ANS;
2584 	    } else {
2585 		lp->media = AUI;
2586 	    }
2587 	    next_tick = dc21041_autoconf(dev);
2588 	}
2589 	break;
2590 
2591     case ANS:
2592 	if (!lp->tx_enable) {
2593 	    irqs = STS_LNP;
2594 	    irq_mask = IMR_LPM;
2595 	    sts = test_ans(dev, irqs, irq_mask, 3000);
2596 	    if (sts < 0) {
2597 		next_tick = sts & ~TIMER_CB;
2598 	    } else {
2599 		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2600 		    lp->media = TP;
2601 		    next_tick = dc21041_autoconf(dev);
2602 		} else {
2603 		    lp->local_state = 1;
2604 		    de4x5_init_connection(dev);
2605 		}
2606 	    }
2607 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2608 	    lp->media = ANS_SUSPECT;
2609 	    next_tick = 3000;
2610 	}
2611 	break;
2612 
2613     case ANS_SUSPECT:
2614 	next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2615 	break;
2616 
2617     case TP:
2618 	if (!lp->tx_enable) {
2619 	    if (lp->timeout < 0) {
2620 		omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2621 		outl(omr & ~OMR_FDX, DE4X5_OMR);
2622 	    }
2623 	    irqs = STS_LNF | STS_LNP;
2624 	    irq_mask = IMR_LFM | IMR_LPM;
2625 	    sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2626 	    if (sts < 0) {
2627 		next_tick = sts & ~TIMER_CB;
2628 	    } else {
2629 		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2630 		    if (inl(DE4X5_SISR) & SISR_NRA) {
2631 			lp->media = AUI;       /* Non selected port activity */
2632 		    } else {
2633 			lp->media = BNC;
2634 		    }
2635 		    next_tick = dc21041_autoconf(dev);
2636 		} else {
2637 		    lp->local_state = 1;
2638 		    de4x5_init_connection(dev);
2639 		}
2640 	    }
2641 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2642 	    lp->media = TP_SUSPECT;
2643 	    next_tick = 3000;
2644 	}
2645 	break;
2646 
2647     case TP_SUSPECT:
2648 	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2649 	break;
2650 
2651     case AUI:
2652 	if (!lp->tx_enable) {
2653 	    if (lp->timeout < 0) {
2654 		omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2655 		outl(omr & ~OMR_FDX, DE4X5_OMR);
2656 	    }
2657 	    irqs = 0;
2658 	    irq_mask = 0;
2659 	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2660 	    if (sts < 0) {
2661 		next_tick = sts & ~TIMER_CB;
2662 	    } else {
2663 		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2664 		    lp->media = BNC;
2665 		    next_tick = dc21041_autoconf(dev);
2666 		} else {
2667 		    lp->local_state = 1;
2668 		    de4x5_init_connection(dev);
2669 		}
2670 	    }
2671 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2672 	    lp->media = AUI_SUSPECT;
2673 	    next_tick = 3000;
2674 	}
2675 	break;
2676 
2677     case AUI_SUSPECT:
2678 	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2679 	break;
2680 
2681     case BNC:
2682 	switch (lp->local_state) {
2683 	case 0:
2684 	    if (lp->timeout < 0) {
2685 		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2686 		outl(omr & ~OMR_FDX, DE4X5_OMR);
2687 	    }
2688 	    irqs = 0;
2689 	    irq_mask = 0;
2690 	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2691 	    if (sts < 0) {
2692 		next_tick = sts & ~TIMER_CB;
2693 	    } else {
2694 		lp->local_state++;             /* Ensure media connected */
2695 		next_tick = dc21041_autoconf(dev);
2696 	    }
2697 	    break;
2698 
2699 	case 1:
2700 	    if (!lp->tx_enable) {
2701 		if ((sts = ping_media(dev, 3000)) < 0) {
2702 		    next_tick = sts & ~TIMER_CB;
2703 		} else {
2704 		    if (sts) {
2705 			lp->local_state = 0;
2706 			lp->media = NC;
2707 		    } else {
2708 			de4x5_init_connection(dev);
2709 		    }
2710 		}
2711 	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2712 		lp->media = BNC_SUSPECT;
2713 		next_tick = 3000;
2714 	    }
2715 	    break;
2716 	}
2717 	break;
2718 
2719     case BNC_SUSPECT:
2720 	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2721 	break;
2722 
2723     case NC:
2724 	omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2725 	outl(omr | OMR_FDX, DE4X5_OMR);
2726 	reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2727 	if (lp->media != lp->c_media) {
2728 	    de4x5_dbg_media(dev);
2729 	    lp->c_media = lp->media;
2730 	}
2731 	lp->media = INIT;
2732 	lp->tx_enable = false;
2733 	break;
2734     }
2735 
2736     return next_tick;
2737 }
2738 
2739 /*
2740 ** Some autonegotiation chips are broken in that they do not return the
2741 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2742 ** register, except at the first power up negotiation.
2743 */
2744 static int
dc21140m_autoconf(struct net_device * dev)2745 dc21140m_autoconf(struct net_device *dev)
2746 {
2747     struct de4x5_private *lp = netdev_priv(dev);
2748     int ana, anlpa, cap, cr, slnk, sr;
2749     int next_tick = DE4X5_AUTOSENSE_MS;
2750     u_long imr, omr, iobase = dev->base_addr;
2751 
2752     switch(lp->media) {
2753     case INIT:
2754         if (lp->timeout < 0) {
2755 	    DISABLE_IRQs;
2756 	    lp->tx_enable = false;
2757 	    lp->linkOK = 0;
2758 	    de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2759 	}
2760 	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2761 	    next_tick &= ~TIMER_CB;
2762 	} else {
2763 	    if (lp->useSROM) {
2764 		if (srom_map_media(dev) < 0) {
2765 		    lp->tcount++;
2766 		    return next_tick;
2767 		}
2768 		srom_exec(dev, lp->phy[lp->active].gep);
2769 		if (lp->infoblock_media == ANS) {
2770 		    ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2771 		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2772 		}
2773 	    } else {
2774 		lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2775 		SET_10Mb;
2776 		if (lp->autosense == _100Mb) {
2777 		    lp->media = _100Mb;
2778 		} else if (lp->autosense == _10Mb) {
2779 		    lp->media = _10Mb;
2780 		} else if ((lp->autosense == AUTO) &&
2781 			            ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2782 		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2783 		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2784 		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2785 		    lp->media = ANS;
2786 		} else if (lp->autosense == AUTO) {
2787 		    lp->media = SPD_DET;
2788 		} else if (is_spd_100(dev) && is_100_up(dev)) {
2789 		    lp->media = _100Mb;
2790 		} else {
2791 		    lp->media = NC;
2792 		}
2793 	    }
2794 	    lp->local_state = 0;
2795 	    next_tick = dc21140m_autoconf(dev);
2796 	}
2797 	break;
2798 
2799     case ANS:
2800 	switch (lp->local_state) {
2801 	case 0:
2802 	    if (lp->timeout < 0) {
2803 		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2804 	    }
2805 	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2806 	    if (cr < 0) {
2807 		next_tick = cr & ~TIMER_CB;
2808 	    } else {
2809 		if (cr) {
2810 		    lp->local_state = 0;
2811 		    lp->media = SPD_DET;
2812 		} else {
2813 		    lp->local_state++;
2814 		}
2815 		next_tick = dc21140m_autoconf(dev);
2816 	    }
2817 	    break;
2818 
2819 	case 1:
2820 	    if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2821 		next_tick = sr & ~TIMER_CB;
2822 	    } else {
2823 		lp->media = SPD_DET;
2824 		lp->local_state = 0;
2825 		if (sr) {                         /* Success! */
2826 		    lp->tmp = MII_SR_ASSC;
2827 		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2828 		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2829 		    if (!(anlpa & MII_ANLPA_RF) &&
2830 			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2831 			if (cap & MII_ANA_100M) {
2832 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2833 			    lp->media = _100Mb;
2834 			} else if (cap & MII_ANA_10M) {
2835 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2836 
2837 			    lp->media = _10Mb;
2838 			}
2839 		    }
2840 		}                       /* Auto Negotiation failed to finish */
2841 		next_tick = dc21140m_autoconf(dev);
2842 	    }                           /* Auto Negotiation failed to start */
2843 	    break;
2844 	}
2845 	break;
2846 
2847     case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2848         if (lp->timeout < 0) {
2849 	    lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2850 		                                  (~gep_rd(dev) & GEP_LNP));
2851 	    SET_100Mb_PDET;
2852 	}
2853         if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2854 	    next_tick = slnk & ~TIMER_CB;
2855 	} else {
2856 	    if (is_spd_100(dev) && is_100_up(dev)) {
2857 		lp->media = _100Mb;
2858 	    } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2859 		lp->media = _10Mb;
2860 	    } else {
2861 		lp->media = NC;
2862 	    }
2863 	    next_tick = dc21140m_autoconf(dev);
2864 	}
2865 	break;
2866 
2867     case _100Mb:                               /* Set 100Mb/s */
2868         next_tick = 3000;
2869 	if (!lp->tx_enable) {
2870 	    SET_100Mb;
2871 	    de4x5_init_connection(dev);
2872 	} else {
2873 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2874 		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2875 		    lp->media = INIT;
2876 		    lp->tcount++;
2877 		    next_tick = DE4X5_AUTOSENSE_MS;
2878 		}
2879 	    }
2880 	}
2881 	break;
2882 
2883     case BNC:
2884     case AUI:
2885     case _10Mb:                                /* Set 10Mb/s */
2886         next_tick = 3000;
2887 	if (!lp->tx_enable) {
2888 	    SET_10Mb;
2889 	    de4x5_init_connection(dev);
2890 	} else {
2891 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2892 		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2893 		    lp->media = INIT;
2894 		    lp->tcount++;
2895 		    next_tick = DE4X5_AUTOSENSE_MS;
2896 		}
2897 	    }
2898 	}
2899 	break;
2900 
2901     case NC:
2902         if (lp->media != lp->c_media) {
2903 	    de4x5_dbg_media(dev);
2904 	    lp->c_media = lp->media;
2905 	}
2906 	lp->media = INIT;
2907 	lp->tx_enable = false;
2908 	break;
2909     }
2910 
2911     return next_tick;
2912 }
2913 
2914 /*
2915 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2916 ** changing how I figure out the media - but trying to keep it backwards
2917 ** compatible with the de500-xa and de500-aa.
2918 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2919 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2920 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2921 ** active.
2922 ** When autonegotiation is working, the ANS part searches the SROM for
2923 ** the highest common speed (TP) link that both can run and if that can
2924 ** be full duplex. That infoblock is executed and then the link speed set.
2925 **
2926 ** Only _10Mb and _100Mb are tested here.
2927 */
2928 static int
dc2114x_autoconf(struct net_device * dev)2929 dc2114x_autoconf(struct net_device *dev)
2930 {
2931     struct de4x5_private *lp = netdev_priv(dev);
2932     u_long iobase = dev->base_addr;
2933     s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2934     int next_tick = DE4X5_AUTOSENSE_MS;
2935 
2936     switch (lp->media) {
2937     case INIT:
2938         if (lp->timeout < 0) {
2939 	    DISABLE_IRQs;
2940 	    lp->tx_enable = false;
2941 	    lp->linkOK = 0;
2942             lp->timeout = -1;
2943 	    de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2944 	    if (lp->params.autosense & ~AUTO) {
2945 		srom_map_media(dev);         /* Fixed media requested      */
2946 		if (lp->media != lp->params.autosense) {
2947 		    lp->tcount++;
2948 		    lp->media = INIT;
2949 		    return next_tick;
2950 		}
2951 		lp->media = INIT;
2952 	    }
2953 	}
2954 	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2955 	    next_tick &= ~TIMER_CB;
2956 	} else {
2957 	    if (lp->autosense == _100Mb) {
2958 		lp->media = _100Mb;
2959 	    } else if (lp->autosense == _10Mb) {
2960 		lp->media = _10Mb;
2961 	    } else if (lp->autosense == TP) {
2962 		lp->media = TP;
2963 	    } else if (lp->autosense == BNC) {
2964 		lp->media = BNC;
2965 	    } else if (lp->autosense == AUI) {
2966 		lp->media = AUI;
2967 	    } else {
2968 		lp->media = SPD_DET;
2969 		if ((lp->infoblock_media == ANS) &&
2970 		                    ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2971 		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2972 		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2973 		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2974 		    lp->media = ANS;
2975 		}
2976 	    }
2977 	    lp->local_state = 0;
2978 	    next_tick = dc2114x_autoconf(dev);
2979         }
2980 	break;
2981 
2982     case ANS:
2983 	switch (lp->local_state) {
2984 	case 0:
2985 	    if (lp->timeout < 0) {
2986 		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2987 	    }
2988 	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2989 	    if (cr < 0) {
2990 		next_tick = cr & ~TIMER_CB;
2991 	    } else {
2992 		if (cr) {
2993 		    lp->local_state = 0;
2994 		    lp->media = SPD_DET;
2995 		} else {
2996 		    lp->local_state++;
2997 		}
2998 		next_tick = dc2114x_autoconf(dev);
2999 	    }
3000 	    break;
3001 
3002 	case 1:
3003 	    sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3004 	    if (sr < 0) {
3005 		next_tick = sr & ~TIMER_CB;
3006 	    } else {
3007 		lp->media = SPD_DET;
3008 		lp->local_state = 0;
3009 		if (sr) {                         /* Success! */
3010 		    lp->tmp = MII_SR_ASSC;
3011 		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3012 		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3013 		    if (!(anlpa & MII_ANLPA_RF) &&
3014 			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3015 			if (cap & MII_ANA_100M) {
3016 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3017 			    lp->media = _100Mb;
3018 			} else if (cap & MII_ANA_10M) {
3019 			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3020 			    lp->media = _10Mb;
3021 			}
3022 		    }
3023 		}                       /* Auto Negotiation failed to finish */
3024 		next_tick = dc2114x_autoconf(dev);
3025 	    }                           /* Auto Negotiation failed to start  */
3026 	    break;
3027 	}
3028 	break;
3029 
3030     case AUI:
3031 	if (!lp->tx_enable) {
3032 	    if (lp->timeout < 0) {
3033 		omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3034 		outl(omr & ~OMR_FDX, DE4X5_OMR);
3035 	    }
3036 	    irqs = 0;
3037 	    irq_mask = 0;
3038 	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3039 	    if (sts < 0) {
3040 		next_tick = sts & ~TIMER_CB;
3041 	    } else {
3042 		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3043 		    lp->media = BNC;
3044 		    next_tick = dc2114x_autoconf(dev);
3045 		} else {
3046 		    lp->local_state = 1;
3047 		    de4x5_init_connection(dev);
3048 		}
3049 	    }
3050 	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
3051 	    lp->media = AUI_SUSPECT;
3052 	    next_tick = 3000;
3053 	}
3054 	break;
3055 
3056     case AUI_SUSPECT:
3057 	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3058 	break;
3059 
3060     case BNC:
3061 	switch (lp->local_state) {
3062 	case 0:
3063 	    if (lp->timeout < 0) {
3064 		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3065 		outl(omr & ~OMR_FDX, DE4X5_OMR);
3066 	    }
3067 	    irqs = 0;
3068 	    irq_mask = 0;
3069 	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3070 	    if (sts < 0) {
3071 		next_tick = sts & ~TIMER_CB;
3072 	    } else {
3073 		lp->local_state++;             /* Ensure media connected */
3074 		next_tick = dc2114x_autoconf(dev);
3075 	    }
3076 	    break;
3077 
3078 	case 1:
3079 	    if (!lp->tx_enable) {
3080 		if ((sts = ping_media(dev, 3000)) < 0) {
3081 		    next_tick = sts & ~TIMER_CB;
3082 		} else {
3083 		    if (sts) {
3084 			lp->local_state = 0;
3085 			lp->tcount++;
3086 			lp->media = INIT;
3087 		    } else {
3088 			de4x5_init_connection(dev);
3089 		    }
3090 		}
3091 	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3092 		lp->media = BNC_SUSPECT;
3093 		next_tick = 3000;
3094 	    }
3095 	    break;
3096 	}
3097 	break;
3098 
3099     case BNC_SUSPECT:
3100 	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3101 	break;
3102 
3103     case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3104 	  if (srom_map_media(dev) < 0) {
3105 	      lp->tcount++;
3106 	      lp->media = INIT;
3107 	      return next_tick;
3108 	  }
3109 	  if (lp->media == _100Mb) {
3110 	      if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3111 		  lp->media = SPD_DET;
3112 		  return slnk & ~TIMER_CB;
3113 	      }
3114 	  } else {
3115 	      if (wait_for_link(dev) < 0) {
3116 		  lp->media = SPD_DET;
3117 		  return PDET_LINK_WAIT;
3118 	      }
3119 	  }
3120 	  if (lp->media == ANS) {           /* Do MII parallel detection */
3121 	      if (is_spd_100(dev)) {
3122 		  lp->media = _100Mb;
3123 	      } else {
3124 		  lp->media = _10Mb;
3125 	      }
3126 	      next_tick = dc2114x_autoconf(dev);
3127 	  } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3128 		     (((lp->media == _10Mb) || (lp->media == TP) ||
3129 		       (lp->media == BNC)   || (lp->media == AUI)) &&
3130 		      is_10_up(dev))) {
3131 	      next_tick = dc2114x_autoconf(dev);
3132 	  } else {
3133 	      lp->tcount++;
3134 	      lp->media = INIT;
3135 	  }
3136 	  break;
3137 
3138     case _10Mb:
3139         next_tick = 3000;
3140 	if (!lp->tx_enable) {
3141 	    SET_10Mb;
3142 	    de4x5_init_connection(dev);
3143 	} else {
3144 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3145 		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3146 		    lp->media = INIT;
3147 		    lp->tcount++;
3148 		    next_tick = DE4X5_AUTOSENSE_MS;
3149 		}
3150 	    }
3151 	}
3152 	break;
3153 
3154     case _100Mb:
3155         next_tick = 3000;
3156 	if (!lp->tx_enable) {
3157 	    SET_100Mb;
3158 	    de4x5_init_connection(dev);
3159 	} else {
3160 	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3161 		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3162 		    lp->media = INIT;
3163 		    lp->tcount++;
3164 		    next_tick = DE4X5_AUTOSENSE_MS;
3165 		}
3166 	    }
3167 	}
3168 	break;
3169 
3170     default:
3171 	lp->tcount++;
3172 printk("Huh?: media:%02x\n", lp->media);
3173 	lp->media = INIT;
3174 	break;
3175     }
3176 
3177     return next_tick;
3178 }
3179 
3180 static int
srom_autoconf(struct net_device * dev)3181 srom_autoconf(struct net_device *dev)
3182 {
3183     struct de4x5_private *lp = netdev_priv(dev);
3184 
3185     return lp->infoleaf_fn(dev);
3186 }
3187 
3188 /*
3189 ** This mapping keeps the original media codes and FDX flag unchanged.
3190 ** While it isn't strictly necessary, it helps me for the moment...
3191 ** The early return avoids a media state / SROM media space clash.
3192 */
3193 static int
srom_map_media(struct net_device * dev)3194 srom_map_media(struct net_device *dev)
3195 {
3196     struct de4x5_private *lp = netdev_priv(dev);
3197 
3198     lp->fdx = false;
3199     if (lp->infoblock_media == lp->media)
3200       return 0;
3201 
3202     switch(lp->infoblock_media) {
3203       case SROM_10BASETF:
3204 	if (!lp->params.fdx) return -1;
3205 	lp->fdx = true;
3206       case SROM_10BASET:
3207 	if (lp->params.fdx && !lp->fdx) return -1;
3208 	if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3209 	    lp->media = _10Mb;
3210 	} else {
3211 	    lp->media = TP;
3212 	}
3213 	break;
3214 
3215       case SROM_10BASE2:
3216 	lp->media = BNC;
3217 	break;
3218 
3219       case SROM_10BASE5:
3220 	lp->media = AUI;
3221 	break;
3222 
3223       case SROM_100BASETF:
3224         if (!lp->params.fdx) return -1;
3225 	lp->fdx = true;
3226       case SROM_100BASET:
3227 	if (lp->params.fdx && !lp->fdx) return -1;
3228 	lp->media = _100Mb;
3229 	break;
3230 
3231       case SROM_100BASET4:
3232 	lp->media = _100Mb;
3233 	break;
3234 
3235       case SROM_100BASEFF:
3236 	if (!lp->params.fdx) return -1;
3237 	lp->fdx = true;
3238       case SROM_100BASEF:
3239 	if (lp->params.fdx && !lp->fdx) return -1;
3240 	lp->media = _100Mb;
3241 	break;
3242 
3243       case ANS:
3244 	lp->media = ANS;
3245 	lp->fdx = lp->params.fdx;
3246 	break;
3247 
3248       default:
3249 	printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3250 	                                                  lp->infoblock_media);
3251 	return -1;
3252     }
3253 
3254     return 0;
3255 }
3256 
3257 static void
de4x5_init_connection(struct net_device * dev)3258 de4x5_init_connection(struct net_device *dev)
3259 {
3260     struct de4x5_private *lp = netdev_priv(dev);
3261     u_long iobase = dev->base_addr;
3262     u_long flags = 0;
3263 
3264     if (lp->media != lp->c_media) {
3265         de4x5_dbg_media(dev);
3266 	lp->c_media = lp->media;          /* Stop scrolling media messages */
3267     }
3268 
3269     spin_lock_irqsave(&lp->lock, flags);
3270     de4x5_rst_desc_ring(dev);
3271     de4x5_setup_intr(dev);
3272     lp->tx_enable = true;
3273     spin_unlock_irqrestore(&lp->lock, flags);
3274     outl(POLL_DEMAND, DE4X5_TPD);
3275 
3276     netif_wake_queue(dev);
3277 }
3278 
3279 /*
3280 ** General PHY reset function. Some MII devices don't reset correctly
3281 ** since their MII address pins can float at voltages that are dependent
3282 ** on the signal pin use. Do a double reset to ensure a reset.
3283 */
3284 static int
de4x5_reset_phy(struct net_device * dev)3285 de4x5_reset_phy(struct net_device *dev)
3286 {
3287     struct de4x5_private *lp = netdev_priv(dev);
3288     u_long iobase = dev->base_addr;
3289     int next_tick = 0;
3290 
3291     if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3292 	if (lp->timeout < 0) {
3293 	    if (lp->useSROM) {
3294 		if (lp->phy[lp->active].rst) {
3295 		    srom_exec(dev, lp->phy[lp->active].rst);
3296 		    srom_exec(dev, lp->phy[lp->active].rst);
3297 		} else if (lp->rst) {          /* Type 5 infoblock reset */
3298 		    srom_exec(dev, lp->rst);
3299 		    srom_exec(dev, lp->rst);
3300 		}
3301 	    } else {
3302 		PHY_HARD_RESET;
3303 	    }
3304 	    if (lp->useMII) {
3305 	        mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3306             }
3307         }
3308 	if (lp->useMII) {
3309 	    next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3310 	}
3311     } else if (lp->chipset == DC21140) {
3312 	PHY_HARD_RESET;
3313     }
3314 
3315     return next_tick;
3316 }
3317 
3318 static int
test_media(struct net_device * dev,s32 irqs,s32 irq_mask,s32 csr13,s32 csr14,s32 csr15,s32 msec)3319 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3320 {
3321     struct de4x5_private *lp = netdev_priv(dev);
3322     u_long iobase = dev->base_addr;
3323     s32 sts, csr12;
3324 
3325     if (lp->timeout < 0) {
3326 	lp->timeout = msec/100;
3327 	if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3328 	    reset_init_sia(dev, csr13, csr14, csr15);
3329 	}
3330 
3331 	/* set up the interrupt mask */
3332 	outl(irq_mask, DE4X5_IMR);
3333 
3334 	/* clear all pending interrupts */
3335 	sts = inl(DE4X5_STS);
3336 	outl(sts, DE4X5_STS);
3337 
3338 	/* clear csr12 NRA and SRA bits */
3339 	if ((lp->chipset == DC21041) || lp->useSROM) {
3340 	    csr12 = inl(DE4X5_SISR);
3341 	    outl(csr12, DE4X5_SISR);
3342 	}
3343     }
3344 
3345     sts = inl(DE4X5_STS) & ~TIMER_CB;
3346 
3347     if (!(sts & irqs) && --lp->timeout) {
3348 	sts = 100 | TIMER_CB;
3349     } else {
3350 	lp->timeout = -1;
3351     }
3352 
3353     return sts;
3354 }
3355 
3356 static int
test_tp(struct net_device * dev,s32 msec)3357 test_tp(struct net_device *dev, s32 msec)
3358 {
3359     struct de4x5_private *lp = netdev_priv(dev);
3360     u_long iobase = dev->base_addr;
3361     int sisr;
3362 
3363     if (lp->timeout < 0) {
3364 	lp->timeout = msec/100;
3365     }
3366 
3367     sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3368 
3369     if (sisr && --lp->timeout) {
3370 	sisr = 100 | TIMER_CB;
3371     } else {
3372 	lp->timeout = -1;
3373     }
3374 
3375     return sisr;
3376 }
3377 
3378 /*
3379 ** Samples the 100Mb Link State Signal. The sample interval is important
3380 ** because too fast a rate can give erroneous results and confuse the
3381 ** speed sense algorithm.
3382 */
3383 #define SAMPLE_INTERVAL 500  /* ms */
3384 #define SAMPLE_DELAY    2000 /* ms */
3385 static int
test_for_100Mb(struct net_device * dev,int msec)3386 test_for_100Mb(struct net_device *dev, int msec)
3387 {
3388     struct de4x5_private *lp = netdev_priv(dev);
3389     int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3390 
3391     if (lp->timeout < 0) {
3392 	if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3393 	if (msec > SAMPLE_DELAY) {
3394 	    lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3395 	    gep = SAMPLE_DELAY | TIMER_CB;
3396 	    return gep;
3397 	} else {
3398 	    lp->timeout = msec/SAMPLE_INTERVAL;
3399 	}
3400     }
3401 
3402     if (lp->phy[lp->active].id || lp->useSROM) {
3403 	gep = is_100_up(dev) | is_spd_100(dev);
3404     } else {
3405 	gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3406     }
3407     if (!(gep & ret) && --lp->timeout) {
3408 	gep = SAMPLE_INTERVAL | TIMER_CB;
3409     } else {
3410 	lp->timeout = -1;
3411     }
3412 
3413     return gep;
3414 }
3415 
3416 static int
wait_for_link(struct net_device * dev)3417 wait_for_link(struct net_device *dev)
3418 {
3419     struct de4x5_private *lp = netdev_priv(dev);
3420 
3421     if (lp->timeout < 0) {
3422 	lp->timeout = 1;
3423     }
3424 
3425     if (lp->timeout--) {
3426 	return TIMER_CB;
3427     } else {
3428 	lp->timeout = -1;
3429     }
3430 
3431     return 0;
3432 }
3433 
3434 /*
3435 **
3436 **
3437 */
3438 static int
test_mii_reg(struct net_device * dev,int reg,int mask,bool pol,long msec)3439 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3440 {
3441     struct de4x5_private *lp = netdev_priv(dev);
3442     int test;
3443     u_long iobase = dev->base_addr;
3444 
3445     if (lp->timeout < 0) {
3446 	lp->timeout = msec/100;
3447     }
3448 
3449     reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3450     test = (reg ^ (pol ? ~0 : 0)) & mask;
3451 
3452     if (test && --lp->timeout) {
3453 	reg = 100 | TIMER_CB;
3454     } else {
3455 	lp->timeout = -1;
3456     }
3457 
3458     return reg;
3459 }
3460 
3461 static int
is_spd_100(struct net_device * dev)3462 is_spd_100(struct net_device *dev)
3463 {
3464     struct de4x5_private *lp = netdev_priv(dev);
3465     u_long iobase = dev->base_addr;
3466     int spd;
3467 
3468     if (lp->useMII) {
3469 	spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3470 	spd = ~(spd ^ lp->phy[lp->active].spd.value);
3471 	spd &= lp->phy[lp->active].spd.mask;
3472     } else if (!lp->useSROM) {                      /* de500-xa */
3473 	spd = ((~gep_rd(dev)) & GEP_SLNK);
3474     } else {
3475 	if ((lp->ibn == 2) || !lp->asBitValid)
3476 	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3477 
3478 	spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3479 	          (lp->linkOK & ~lp->asBitValid);
3480     }
3481 
3482     return spd;
3483 }
3484 
3485 static int
is_100_up(struct net_device * dev)3486 is_100_up(struct net_device *dev)
3487 {
3488     struct de4x5_private *lp = netdev_priv(dev);
3489     u_long iobase = dev->base_addr;
3490 
3491     if (lp->useMII) {
3492 	/* Double read for sticky bits & temporary drops */
3493 	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3494 	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3495     } else if (!lp->useSROM) {                       /* de500-xa */
3496 	return (~gep_rd(dev)) & GEP_SLNK;
3497     } else {
3498 	if ((lp->ibn == 2) || !lp->asBitValid)
3499 	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3500 
3501         return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3502 		(lp->linkOK & ~lp->asBitValid);
3503     }
3504 }
3505 
3506 static int
is_10_up(struct net_device * dev)3507 is_10_up(struct net_device *dev)
3508 {
3509     struct de4x5_private *lp = netdev_priv(dev);
3510     u_long iobase = dev->base_addr;
3511 
3512     if (lp->useMII) {
3513 	/* Double read for sticky bits & temporary drops */
3514 	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3515 	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3516     } else if (!lp->useSROM) {                       /* de500-xa */
3517 	return (~gep_rd(dev)) & GEP_LNP;
3518     } else {
3519 	if ((lp->ibn == 2) || !lp->asBitValid)
3520 	    return ((lp->chipset & ~0x00ff) == DC2114x) ?
3521 		    (~inl(DE4X5_SISR)&SISR_LS10):
3522 		    0;
3523 
3524 	return	(lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3525 		(lp->linkOK & ~lp->asBitValid);
3526     }
3527 }
3528 
3529 static int
is_anc_capable(struct net_device * dev)3530 is_anc_capable(struct net_device *dev)
3531 {
3532     struct de4x5_private *lp = netdev_priv(dev);
3533     u_long iobase = dev->base_addr;
3534 
3535     if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3536 	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3537     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3538 	return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3539     } else {
3540 	return 0;
3541     }
3542 }
3543 
3544 /*
3545 ** Send a packet onto the media and watch for send errors that indicate the
3546 ** media is bad or unconnected.
3547 */
3548 static int
ping_media(struct net_device * dev,int msec)3549 ping_media(struct net_device *dev, int msec)
3550 {
3551     struct de4x5_private *lp = netdev_priv(dev);
3552     u_long iobase = dev->base_addr;
3553     int sisr;
3554 
3555     if (lp->timeout < 0) {
3556 	lp->timeout = msec/100;
3557 
3558 	lp->tmp = lp->tx_new;                /* Remember the ring position */
3559 	load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3560 	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3561 	outl(POLL_DEMAND, DE4X5_TPD);
3562     }
3563 
3564     sisr = inl(DE4X5_SISR);
3565 
3566     if ((!(sisr & SISR_NCR)) &&
3567 	((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3568 	 (--lp->timeout)) {
3569 	sisr = 100 | TIMER_CB;
3570     } else {
3571 	if ((!(sisr & SISR_NCR)) &&
3572 	    !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3573 	    lp->timeout) {
3574 	    sisr = 0;
3575 	} else {
3576 	    sisr = 1;
3577 	}
3578 	lp->timeout = -1;
3579     }
3580 
3581     return sisr;
3582 }
3583 
3584 /*
3585 ** This function does 2 things: on Intels it kmalloc's another buffer to
3586 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3587 ** into which the packet is copied.
3588 */
3589 static struct sk_buff *
de4x5_alloc_rx_buff(struct net_device * dev,int index,int len)3590 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3591 {
3592     struct de4x5_private *lp = netdev_priv(dev);
3593     struct sk_buff *p;
3594 
3595 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3596     struct sk_buff *ret;
3597     u_long i=0, tmp;
3598 
3599     p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3600     if (!p) return NULL;
3601 
3602     tmp = virt_to_bus(p->data);
3603     i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3604     skb_reserve(p, i);
3605     lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3606 
3607     ret = lp->rx_skb[index];
3608     lp->rx_skb[index] = p;
3609 
3610     if ((u_long) ret > 1) {
3611 	skb_put(ret, len);
3612     }
3613 
3614     return ret;
3615 
3616 #else
3617     if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3618 
3619     p = netdev_alloc_skb(dev, len + 2);
3620     if (!p) return NULL;
3621 
3622     skb_reserve(p, 2);	                               /* Align */
3623     if (index < lp->rx_old) {                          /* Wrapped buffer */
3624 	short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3625 	memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3626 	memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3627     } else {                                           /* Linear buffer */
3628 	memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3629     }
3630 
3631     return p;
3632 #endif
3633 }
3634 
3635 static void
de4x5_free_rx_buffs(struct net_device * dev)3636 de4x5_free_rx_buffs(struct net_device *dev)
3637 {
3638     struct de4x5_private *lp = netdev_priv(dev);
3639     int i;
3640 
3641     for (i=0; i<lp->rxRingSize; i++) {
3642 	if ((u_long) lp->rx_skb[i] > 1) {
3643 	    dev_kfree_skb(lp->rx_skb[i]);
3644 	}
3645 	lp->rx_ring[i].status = 0;
3646 	lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3647     }
3648 }
3649 
3650 static void
de4x5_free_tx_buffs(struct net_device * dev)3651 de4x5_free_tx_buffs(struct net_device *dev)
3652 {
3653     struct de4x5_private *lp = netdev_priv(dev);
3654     int i;
3655 
3656     for (i=0; i<lp->txRingSize; i++) {
3657 	if (lp->tx_skb[i])
3658 	    de4x5_free_tx_buff(lp, i);
3659 	lp->tx_ring[i].status = 0;
3660     }
3661 
3662     /* Unload the locally queued packets */
3663     __skb_queue_purge(&lp->cache.queue);
3664 }
3665 
3666 /*
3667 ** When a user pulls a connection, the DECchip can end up in a
3668 ** 'running - waiting for end of transmission' state. This means that we
3669 ** have to perform a chip soft reset to ensure that we can synchronize
3670 ** the hardware and software and make any media probes using a loopback
3671 ** packet meaningful.
3672 */
3673 static void
de4x5_save_skbs(struct net_device * dev)3674 de4x5_save_skbs(struct net_device *dev)
3675 {
3676     struct de4x5_private *lp = netdev_priv(dev);
3677     u_long iobase = dev->base_addr;
3678     s32 omr;
3679 
3680     if (!lp->cache.save_cnt) {
3681 	STOP_DE4X5;
3682 	de4x5_tx(dev);                          /* Flush any sent skb's */
3683 	de4x5_free_tx_buffs(dev);
3684 	de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3685 	de4x5_sw_reset(dev);
3686 	de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3687 	lp->cache.save_cnt++;
3688 	START_DE4X5;
3689     }
3690 }
3691 
3692 static void
de4x5_rst_desc_ring(struct net_device * dev)3693 de4x5_rst_desc_ring(struct net_device *dev)
3694 {
3695     struct de4x5_private *lp = netdev_priv(dev);
3696     u_long iobase = dev->base_addr;
3697     int i;
3698     s32 omr;
3699 
3700     if (lp->cache.save_cnt) {
3701 	STOP_DE4X5;
3702 	outl(lp->dma_rings, DE4X5_RRBA);
3703 	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3704 	     DE4X5_TRBA);
3705 
3706 	lp->rx_new = lp->rx_old = 0;
3707 	lp->tx_new = lp->tx_old = 0;
3708 
3709 	for (i = 0; i < lp->rxRingSize; i++) {
3710 	    lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3711 	}
3712 
3713 	for (i = 0; i < lp->txRingSize; i++) {
3714 	    lp->tx_ring[i].status = cpu_to_le32(0);
3715 	}
3716 
3717 	barrier();
3718 	lp->cache.save_cnt--;
3719 	START_DE4X5;
3720     }
3721 }
3722 
3723 static void
de4x5_cache_state(struct net_device * dev,int flag)3724 de4x5_cache_state(struct net_device *dev, int flag)
3725 {
3726     struct de4x5_private *lp = netdev_priv(dev);
3727     u_long iobase = dev->base_addr;
3728 
3729     switch(flag) {
3730       case DE4X5_SAVE_STATE:
3731 	lp->cache.csr0 = inl(DE4X5_BMR);
3732 	lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3733 	lp->cache.csr7 = inl(DE4X5_IMR);
3734 	break;
3735 
3736       case DE4X5_RESTORE_STATE:
3737 	outl(lp->cache.csr0, DE4X5_BMR);
3738 	outl(lp->cache.csr6, DE4X5_OMR);
3739 	outl(lp->cache.csr7, DE4X5_IMR);
3740 	if (lp->chipset == DC21140) {
3741 	    gep_wr(lp->cache.gepc, dev);
3742 	    gep_wr(lp->cache.gep, dev);
3743 	} else {
3744 	    reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3745 			                                      lp->cache.csr15);
3746 	}
3747 	break;
3748     }
3749 }
3750 
3751 static void
de4x5_put_cache(struct net_device * dev,struct sk_buff * skb)3752 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3753 {
3754     struct de4x5_private *lp = netdev_priv(dev);
3755 
3756     __skb_queue_tail(&lp->cache.queue, skb);
3757 }
3758 
3759 static void
de4x5_putb_cache(struct net_device * dev,struct sk_buff * skb)3760 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3761 {
3762     struct de4x5_private *lp = netdev_priv(dev);
3763 
3764     __skb_queue_head(&lp->cache.queue, skb);
3765 }
3766 
3767 static struct sk_buff *
de4x5_get_cache(struct net_device * dev)3768 de4x5_get_cache(struct net_device *dev)
3769 {
3770     struct de4x5_private *lp = netdev_priv(dev);
3771 
3772     return __skb_dequeue(&lp->cache.queue);
3773 }
3774 
3775 /*
3776 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3777 ** is received and the auto-negotiation status is NWAY OK.
3778 */
3779 static int
test_ans(struct net_device * dev,s32 irqs,s32 irq_mask,s32 msec)3780 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3781 {
3782     struct de4x5_private *lp = netdev_priv(dev);
3783     u_long iobase = dev->base_addr;
3784     s32 sts, ans;
3785 
3786     if (lp->timeout < 0) {
3787 	lp->timeout = msec/100;
3788 	outl(irq_mask, DE4X5_IMR);
3789 
3790 	/* clear all pending interrupts */
3791 	sts = inl(DE4X5_STS);
3792 	outl(sts, DE4X5_STS);
3793     }
3794 
3795     ans = inl(DE4X5_SISR) & SISR_ANS;
3796     sts = inl(DE4X5_STS) & ~TIMER_CB;
3797 
3798     if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3799 	sts = 100 | TIMER_CB;
3800     } else {
3801 	lp->timeout = -1;
3802     }
3803 
3804     return sts;
3805 }
3806 
3807 static void
de4x5_setup_intr(struct net_device * dev)3808 de4x5_setup_intr(struct net_device *dev)
3809 {
3810     struct de4x5_private *lp = netdev_priv(dev);
3811     u_long iobase = dev->base_addr;
3812     s32 imr, sts;
3813 
3814     if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3815 	imr = 0;
3816 	UNMASK_IRQs;
3817 	sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3818 	outl(sts, DE4X5_STS);
3819 	ENABLE_IRQs;
3820     }
3821 }
3822 
3823 /*
3824 **
3825 */
3826 static void
reset_init_sia(struct net_device * dev,s32 csr13,s32 csr14,s32 csr15)3827 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3828 {
3829     struct de4x5_private *lp = netdev_priv(dev);
3830     u_long iobase = dev->base_addr;
3831 
3832     RESET_SIA;
3833     if (lp->useSROM) {
3834 	if (lp->ibn == 3) {
3835 	    srom_exec(dev, lp->phy[lp->active].rst);
3836 	    srom_exec(dev, lp->phy[lp->active].gep);
3837 	    outl(1, DE4X5_SICR);
3838 	    return;
3839 	} else {
3840 	    csr15 = lp->cache.csr15;
3841 	    csr14 = lp->cache.csr14;
3842 	    csr13 = lp->cache.csr13;
3843 	    outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3844 	    outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3845 	}
3846     } else {
3847 	outl(csr15, DE4X5_SIGR);
3848     }
3849     outl(csr14, DE4X5_STRR);
3850     outl(csr13, DE4X5_SICR);
3851 
3852     mdelay(10);
3853 }
3854 
3855 /*
3856 ** Create a loopback ethernet packet
3857 */
3858 static void
create_packet(struct net_device * dev,char * frame,int len)3859 create_packet(struct net_device *dev, char *frame, int len)
3860 {
3861     int i;
3862     char *buf = frame;
3863 
3864     for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3865 	*buf++ = dev->dev_addr[i];
3866     }
3867     for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3868 	*buf++ = dev->dev_addr[i];
3869     }
3870 
3871     *buf++ = 0;                              /* Packet length (2 bytes) */
3872     *buf++ = 1;
3873 }
3874 
3875 /*
3876 ** Look for a particular board name in the EISA configuration space
3877 */
3878 static int
EISA_signature(char * name,struct device * device)3879 EISA_signature(char *name, struct device *device)
3880 {
3881     int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3882     struct eisa_device *edev;
3883 
3884     *name = '\0';
3885     edev = to_eisa_device (device);
3886     i = edev->id.driver_data;
3887 
3888     if (i >= 0 && i < siglen) {
3889 	    strcpy (name, de4x5_signatures[i]);
3890 	    status = 1;
3891     }
3892 
3893     return status;                         /* return the device name string */
3894 }
3895 
3896 /*
3897 ** Look for a particular board name in the PCI configuration space
3898 */
3899 static int
PCI_signature(char * name,struct de4x5_private * lp)3900 PCI_signature(char *name, struct de4x5_private *lp)
3901 {
3902     int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3903 
3904     if (lp->chipset == DC21040) {
3905 	strcpy(name, "DE434/5");
3906 	return status;
3907     } else {                           /* Search for a DEC name in the SROM */
3908 	int tmp = *((char *)&lp->srom + 19) * 3;
3909 	strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3910     }
3911     name[8] = '\0';
3912     for (i=0; i<siglen; i++) {
3913 	if (strstr(name,de4x5_signatures[i])!=NULL) break;
3914     }
3915     if (i == siglen) {
3916 	if (dec_only) {
3917 	    *name = '\0';
3918 	} else {                        /* Use chip name to avoid confusion */
3919 	    strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3920 			   ((lp->chipset == DC21041) ? "DC21041" :
3921 			    ((lp->chipset == DC21140) ? "DC21140" :
3922 			     ((lp->chipset == DC21142) ? "DC21142" :
3923 			      ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3924 			     )))))));
3925 	}
3926 	if (lp->chipset != DC21041) {
3927 	    lp->useSROM = true;             /* card is not recognisably DEC */
3928 	}
3929     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3930 	lp->useSROM = true;
3931     }
3932 
3933     return status;
3934 }
3935 
3936 /*
3937 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3938 ** the DC21040, else  read the SROM for the other chips.
3939 ** The SROM may not be present in a multi-MAC card, so first read the
3940 ** MAC address and check for a bad address. If there is a bad one then exit
3941 ** immediately with the prior srom contents intact (the h/w address will
3942 ** be fixed up later).
3943 */
3944 static void
DevicePresent(struct net_device * dev,u_long aprom_addr)3945 DevicePresent(struct net_device *dev, u_long aprom_addr)
3946 {
3947     int i, j=0;
3948     struct de4x5_private *lp = netdev_priv(dev);
3949 
3950     if (lp->chipset == DC21040) {
3951 	if (lp->bus == EISA) {
3952 	    enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3953 	} else {
3954 	    outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3955 	}
3956     } else {                           /* Read new srom */
3957 	u_short tmp;
3958 	__le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3959 	for (i=0; i<(ETH_ALEN>>1); i++) {
3960 	    tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3961 	    j += tmp;	/* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3962 	    *p = cpu_to_le16(tmp);
3963 	}
3964 	if (j == 0 || j == 3 * 0xffff) {
3965 		/* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3966 		return;
3967 	}
3968 
3969 	p = (__le16 *)&lp->srom;
3970 	for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3971 	    tmp = srom_rd(aprom_addr, i);
3972 	    *p++ = cpu_to_le16(tmp);
3973 	}
3974 	de4x5_dbg_srom(&lp->srom);
3975     }
3976 }
3977 
3978 /*
3979 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3980 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3981 ** it...from depca.c.
3982 */
3983 static void
enet_addr_rst(u_long aprom_addr)3984 enet_addr_rst(u_long aprom_addr)
3985 {
3986     union {
3987 	struct {
3988 	    u32 a;
3989 	    u32 b;
3990 	} llsig;
3991 	char Sig[sizeof(u32) << 1];
3992     } dev;
3993     short sigLength=0;
3994     s8 data;
3995     int i, j;
3996 
3997     dev.llsig.a = ETH_PROM_SIG;
3998     dev.llsig.b = ETH_PROM_SIG;
3999     sigLength = sizeof(u32) << 1;
4000 
4001     for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4002 	data = inb(aprom_addr);
4003 	if (dev.Sig[j] == data) {    /* track signature */
4004 	    j++;
4005 	} else {                     /* lost signature; begin search again */
4006 	    if (data == dev.Sig[0]) {  /* rare case.... */
4007 		j=1;
4008 	    } else {
4009 		j=0;
4010 	    }
4011 	}
4012     }
4013 }
4014 
4015 /*
4016 ** For the bad status case and no SROM, then add one to the previous
4017 ** address. However, need to add one backwards in case we have 0xff
4018 ** as one or more of the bytes. Only the last 3 bytes should be checked
4019 ** as the first three are invariant - assigned to an organisation.
4020 */
4021 static int
get_hw_addr(struct net_device * dev)4022 get_hw_addr(struct net_device *dev)
4023 {
4024     u_long iobase = dev->base_addr;
4025     int broken, i, k, tmp, status = 0;
4026     u_short j,chksum;
4027     struct de4x5_private *lp = netdev_priv(dev);
4028 
4029     broken = de4x5_bad_srom(lp);
4030 
4031     for (i=0,k=0,j=0;j<3;j++) {
4032 	k <<= 1;
4033 	if (k > 0xffff) k-=0xffff;
4034 
4035 	if (lp->bus == PCI) {
4036 	    if (lp->chipset == DC21040) {
4037 		while ((tmp = inl(DE4X5_APROM)) < 0);
4038 		k += (u_char) tmp;
4039 		dev->dev_addr[i++] = (u_char) tmp;
4040 		while ((tmp = inl(DE4X5_APROM)) < 0);
4041 		k += (u_short) (tmp << 8);
4042 		dev->dev_addr[i++] = (u_char) tmp;
4043 	    } else if (!broken) {
4044 		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4045 		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4046 	    } else if ((broken == SMC) || (broken == ACCTON)) {
4047 		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4048 		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4049 	    }
4050 	} else {
4051 	    k += (u_char) (tmp = inb(EISA_APROM));
4052 	    dev->dev_addr[i++] = (u_char) tmp;
4053 	    k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4054 	    dev->dev_addr[i++] = (u_char) tmp;
4055 	}
4056 
4057 	if (k > 0xffff) k-=0xffff;
4058     }
4059     if (k == 0xffff) k=0;
4060 
4061     if (lp->bus == PCI) {
4062 	if (lp->chipset == DC21040) {
4063 	    while ((tmp = inl(DE4X5_APROM)) < 0);
4064 	    chksum = (u_char) tmp;
4065 	    while ((tmp = inl(DE4X5_APROM)) < 0);
4066 	    chksum |= (u_short) (tmp << 8);
4067 	    if ((k != chksum) && (dec_only)) status = -1;
4068 	}
4069     } else {
4070 	chksum = (u_char) inb(EISA_APROM);
4071 	chksum |= (u_short) (inb(EISA_APROM) << 8);
4072 	if ((k != chksum) && (dec_only)) status = -1;
4073     }
4074 
4075     /* If possible, try to fix a broken card - SMC only so far */
4076     srom_repair(dev, broken);
4077 
4078 #ifdef CONFIG_PPC_PMAC
4079     /*
4080     ** If the address starts with 00 a0, we have to bit-reverse
4081     ** each byte of the address.
4082     */
4083     if ( machine_is(powermac) &&
4084 	 (dev->dev_addr[0] == 0) &&
4085 	 (dev->dev_addr[1] == 0xa0) )
4086     {
4087 	    for (i = 0; i < ETH_ALEN; ++i)
4088 	    {
4089 		    int x = dev->dev_addr[i];
4090 		    x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4091 		    x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4092 		    dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4093 	    }
4094     }
4095 #endif /* CONFIG_PPC_PMAC */
4096 
4097     /* Test for a bad enet address */
4098     status = test_bad_enet(dev, status);
4099 
4100     return status;
4101 }
4102 
4103 /*
4104 ** Test for enet addresses in the first 32 bytes.
4105 */
4106 static int
de4x5_bad_srom(struct de4x5_private * lp)4107 de4x5_bad_srom(struct de4x5_private *lp)
4108 {
4109     int i, status = 0;
4110 
4111     for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4112 	if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4113 	    !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4114 	    if (i == 0) {
4115 		status = SMC;
4116 	    } else if (i == 1) {
4117 		status = ACCTON;
4118 	    }
4119 	    break;
4120 	}
4121     }
4122 
4123     return status;
4124 }
4125 
4126 static void
srom_repair(struct net_device * dev,int card)4127 srom_repair(struct net_device *dev, int card)
4128 {
4129     struct de4x5_private *lp = netdev_priv(dev);
4130 
4131     switch(card) {
4132       case SMC:
4133 	memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4134 	memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4135 	memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4136 	lp->useSROM = true;
4137 	break;
4138     }
4139 }
4140 
4141 /*
4142 ** Assume that the irq's do not follow the PCI spec - this is seems
4143 ** to be true so far (2 for 2).
4144 */
4145 static int
test_bad_enet(struct net_device * dev,int status)4146 test_bad_enet(struct net_device *dev, int status)
4147 {
4148     struct de4x5_private *lp = netdev_priv(dev);
4149     int i, tmp;
4150 
4151     for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4152     if ((tmp == 0) || (tmp == 0x5fa)) {
4153 	if ((lp->chipset == last.chipset) &&
4154 	    (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4155 	    for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4156 	    for (i=ETH_ALEN-1; i>2; --i) {
4157 		dev->dev_addr[i] += 1;
4158 		if (dev->dev_addr[i] != 0) break;
4159 	    }
4160 	    for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4161 	    if (!an_exception(lp)) {
4162 		dev->irq = last.irq;
4163 	    }
4164 
4165 	    status = 0;
4166 	}
4167     } else if (!status) {
4168 	last.chipset = lp->chipset;
4169 	last.bus = lp->bus_num;
4170 	last.irq = dev->irq;
4171 	for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4172     }
4173 
4174     return status;
4175 }
4176 
4177 /*
4178 ** List of board exceptions with correctly wired IRQs
4179 */
4180 static int
an_exception(struct de4x5_private * lp)4181 an_exception(struct de4x5_private *lp)
4182 {
4183     if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4184 	(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4185 	return -1;
4186     }
4187 
4188     return 0;
4189 }
4190 
4191 /*
4192 ** SROM Read
4193 */
4194 static short
srom_rd(u_long addr,u_char offset)4195 srom_rd(u_long addr, u_char offset)
4196 {
4197     sendto_srom(SROM_RD | SROM_SR, addr);
4198 
4199     srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4200     srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4201     srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4202 
4203     return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4204 }
4205 
4206 static void
srom_latch(u_int command,u_long addr)4207 srom_latch(u_int command, u_long addr)
4208 {
4209     sendto_srom(command, addr);
4210     sendto_srom(command | DT_CLK, addr);
4211     sendto_srom(command, addr);
4212 }
4213 
4214 static void
srom_command(u_int command,u_long addr)4215 srom_command(u_int command, u_long addr)
4216 {
4217     srom_latch(command, addr);
4218     srom_latch(command, addr);
4219     srom_latch((command & 0x0000ff00) | DT_CS, addr);
4220 }
4221 
4222 static void
srom_address(u_int command,u_long addr,u_char offset)4223 srom_address(u_int command, u_long addr, u_char offset)
4224 {
4225     int i, a;
4226 
4227     a = offset << 2;
4228     for (i=0; i<6; i++, a <<= 1) {
4229 	srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4230     }
4231     udelay(1);
4232 
4233     i = (getfrom_srom(addr) >> 3) & 0x01;
4234 }
4235 
4236 static short
srom_data(u_int command,u_long addr)4237 srom_data(u_int command, u_long addr)
4238 {
4239     int i;
4240     short word = 0;
4241     s32 tmp;
4242 
4243     for (i=0; i<16; i++) {
4244 	sendto_srom(command  | DT_CLK, addr);
4245 	tmp = getfrom_srom(addr);
4246 	sendto_srom(command, addr);
4247 
4248 	word = (word << 1) | ((tmp >> 3) & 0x01);
4249     }
4250 
4251     sendto_srom(command & 0x0000ff00, addr);
4252 
4253     return word;
4254 }
4255 
4256 /*
4257 static void
4258 srom_busy(u_int command, u_long addr)
4259 {
4260    sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4261 
4262    while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4263        mdelay(1);
4264    }
4265 
4266    sendto_srom(command & 0x0000ff00, addr);
4267 }
4268 */
4269 
4270 static void
sendto_srom(u_int command,u_long addr)4271 sendto_srom(u_int command, u_long addr)
4272 {
4273     outl(command, addr);
4274     udelay(1);
4275 }
4276 
4277 static int
getfrom_srom(u_long addr)4278 getfrom_srom(u_long addr)
4279 {
4280     s32 tmp;
4281 
4282     tmp = inl(addr);
4283     udelay(1);
4284 
4285     return tmp;
4286 }
4287 
4288 static int
srom_infoleaf_info(struct net_device * dev)4289 srom_infoleaf_info(struct net_device *dev)
4290 {
4291     struct de4x5_private *lp = netdev_priv(dev);
4292     int i, count;
4293     u_char *p;
4294 
4295     /* Find the infoleaf decoder function that matches this chipset */
4296     for (i=0; i<INFOLEAF_SIZE; i++) {
4297 	if (lp->chipset == infoleaf_array[i].chipset) break;
4298     }
4299     if (i == INFOLEAF_SIZE) {
4300 	lp->useSROM = false;
4301 	printk("%s: Cannot find correct chipset for SROM decoding!\n",
4302 	                                                          dev->name);
4303 	return -ENXIO;
4304     }
4305 
4306     lp->infoleaf_fn = infoleaf_array[i].fn;
4307 
4308     /* Find the information offset that this function should use */
4309     count = *((u_char *)&lp->srom + 19);
4310     p  = (u_char *)&lp->srom + 26;
4311 
4312     if (count > 1) {
4313 	for (i=count; i; --i, p+=3) {
4314 	    if (lp->device == *p) break;
4315 	}
4316 	if (i == 0) {
4317 	    lp->useSROM = false;
4318 	    printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4319 	                                               dev->name, lp->device);
4320 	    return -ENXIO;
4321 	}
4322     }
4323 
4324 	lp->infoleaf_offset = get_unaligned_le16(p + 1);
4325 
4326     return 0;
4327 }
4328 
4329 /*
4330 ** This routine loads any type 1 or 3 MII info into the mii device
4331 ** struct and executes any type 5 code to reset PHY devices for this
4332 ** controller.
4333 ** The info for the MII devices will be valid since the index used
4334 ** will follow the discovery process from MII address 1-31 then 0.
4335 */
4336 static void
srom_init(struct net_device * dev)4337 srom_init(struct net_device *dev)
4338 {
4339     struct de4x5_private *lp = netdev_priv(dev);
4340     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4341     u_char count;
4342 
4343     p+=2;
4344     if (lp->chipset == DC21140) {
4345 	lp->cache.gepc = (*p++ | GEP_CTRL);
4346 	gep_wr(lp->cache.gepc, dev);
4347     }
4348 
4349     /* Block count */
4350     count = *p++;
4351 
4352     /* Jump the infoblocks to find types */
4353     for (;count; --count) {
4354 	if (*p < 128) {
4355 	    p += COMPACT_LEN;
4356 	} else if (*(p+1) == 5) {
4357 	    type5_infoblock(dev, 1, p);
4358 	    p += ((*p & BLOCK_LEN) + 1);
4359 	} else if (*(p+1) == 4) {
4360 	    p += ((*p & BLOCK_LEN) + 1);
4361 	} else if (*(p+1) == 3) {
4362 	    type3_infoblock(dev, 1, p);
4363 	    p += ((*p & BLOCK_LEN) + 1);
4364 	} else if (*(p+1) == 2) {
4365 	    p += ((*p & BLOCK_LEN) + 1);
4366 	} else if (*(p+1) == 1) {
4367 	    type1_infoblock(dev, 1, p);
4368 	    p += ((*p & BLOCK_LEN) + 1);
4369 	} else {
4370 	    p += ((*p & BLOCK_LEN) + 1);
4371 	}
4372     }
4373 }
4374 
4375 /*
4376 ** A generic routine that writes GEP control, data and reset information
4377 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4378 */
4379 static void
srom_exec(struct net_device * dev,u_char * p)4380 srom_exec(struct net_device *dev, u_char *p)
4381 {
4382     struct de4x5_private *lp = netdev_priv(dev);
4383     u_long iobase = dev->base_addr;
4384     u_char count = (p ? *p++ : 0);
4385     u_short *w = (u_short *)p;
4386 
4387     if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4388 
4389     if (lp->chipset != DC21140) RESET_SIA;
4390 
4391     while (count--) {
4392 	gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4393 		                                   *p++ : get_unaligned_le16(w++)), dev);
4394 	mdelay(2);                          /* 2ms per action */
4395     }
4396 
4397     if (lp->chipset != DC21140) {
4398 	outl(lp->cache.csr14, DE4X5_STRR);
4399 	outl(lp->cache.csr13, DE4X5_SICR);
4400     }
4401 }
4402 
4403 /*
4404 ** Basically this function is a NOP since it will never be called,
4405 ** unless I implement the DC21041 SROM functions. There's no need
4406 ** since the existing code will be satisfactory for all boards.
4407 */
4408 static int
dc21041_infoleaf(struct net_device * dev)4409 dc21041_infoleaf(struct net_device *dev)
4410 {
4411     return DE4X5_AUTOSENSE_MS;
4412 }
4413 
4414 static int
dc21140_infoleaf(struct net_device * dev)4415 dc21140_infoleaf(struct net_device *dev)
4416 {
4417     struct de4x5_private *lp = netdev_priv(dev);
4418     u_char count = 0;
4419     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4420     int next_tick = DE4X5_AUTOSENSE_MS;
4421 
4422     /* Read the connection type */
4423     p+=2;
4424 
4425     /* GEP control */
4426     lp->cache.gepc = (*p++ | GEP_CTRL);
4427 
4428     /* Block count */
4429     count = *p++;
4430 
4431     /* Recursively figure out the info blocks */
4432     if (*p < 128) {
4433 	next_tick = dc_infoblock[COMPACT](dev, count, p);
4434     } else {
4435 	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4436     }
4437 
4438     if (lp->tcount == count) {
4439 	lp->media = NC;
4440         if (lp->media != lp->c_media) {
4441 	    de4x5_dbg_media(dev);
4442 	    lp->c_media = lp->media;
4443 	}
4444 	lp->media = INIT;
4445 	lp->tcount = 0;
4446 	lp->tx_enable = false;
4447     }
4448 
4449     return next_tick & ~TIMER_CB;
4450 }
4451 
4452 static int
dc21142_infoleaf(struct net_device * dev)4453 dc21142_infoleaf(struct net_device *dev)
4454 {
4455     struct de4x5_private *lp = netdev_priv(dev);
4456     u_char count = 0;
4457     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4458     int next_tick = DE4X5_AUTOSENSE_MS;
4459 
4460     /* Read the connection type */
4461     p+=2;
4462 
4463     /* Block count */
4464     count = *p++;
4465 
4466     /* Recursively figure out the info blocks */
4467     if (*p < 128) {
4468 	next_tick = dc_infoblock[COMPACT](dev, count, p);
4469     } else {
4470 	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4471     }
4472 
4473     if (lp->tcount == count) {
4474 	lp->media = NC;
4475         if (lp->media != lp->c_media) {
4476 	    de4x5_dbg_media(dev);
4477 	    lp->c_media = lp->media;
4478 	}
4479 	lp->media = INIT;
4480 	lp->tcount = 0;
4481 	lp->tx_enable = false;
4482     }
4483 
4484     return next_tick & ~TIMER_CB;
4485 }
4486 
4487 static int
dc21143_infoleaf(struct net_device * dev)4488 dc21143_infoleaf(struct net_device *dev)
4489 {
4490     struct de4x5_private *lp = netdev_priv(dev);
4491     u_char count = 0;
4492     u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4493     int next_tick = DE4X5_AUTOSENSE_MS;
4494 
4495     /* Read the connection type */
4496     p+=2;
4497 
4498     /* Block count */
4499     count = *p++;
4500 
4501     /* Recursively figure out the info blocks */
4502     if (*p < 128) {
4503 	next_tick = dc_infoblock[COMPACT](dev, count, p);
4504     } else {
4505 	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4506     }
4507     if (lp->tcount == count) {
4508 	lp->media = NC;
4509         if (lp->media != lp->c_media) {
4510 	    de4x5_dbg_media(dev);
4511 	    lp->c_media = lp->media;
4512 	}
4513 	lp->media = INIT;
4514 	lp->tcount = 0;
4515 	lp->tx_enable = false;
4516     }
4517 
4518     return next_tick & ~TIMER_CB;
4519 }
4520 
4521 /*
4522 ** The compact infoblock is only designed for DC21140[A] chips, so
4523 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4524 */
4525 static int
compact_infoblock(struct net_device * dev,u_char count,u_char * p)4526 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4527 {
4528     struct de4x5_private *lp = netdev_priv(dev);
4529     u_char flags, csr6;
4530 
4531     /* Recursively figure out the info blocks */
4532     if (--count > lp->tcount) {
4533 	if (*(p+COMPACT_LEN) < 128) {
4534 	    return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4535 	} else {
4536 	    return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4537 	}
4538     }
4539 
4540     if ((lp->media == INIT) && (lp->timeout < 0)) {
4541         lp->ibn = COMPACT;
4542         lp->active = 0;
4543 	gep_wr(lp->cache.gepc, dev);
4544 	lp->infoblock_media = (*p++) & COMPACT_MC;
4545 	lp->cache.gep = *p++;
4546 	csr6 = *p++;
4547 	flags = *p++;
4548 
4549 	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4550 	lp->defMedium = (flags & 0x40) ? -1 : 0;
4551 	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4552 	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4553 	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4554 	lp->useMII = false;
4555 
4556 	de4x5_switch_mac_port(dev);
4557     }
4558 
4559     return dc21140m_autoconf(dev);
4560 }
4561 
4562 /*
4563 ** This block describes non MII media for the DC21140[A] only.
4564 */
4565 static int
type0_infoblock(struct net_device * dev,u_char count,u_char * p)4566 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4567 {
4568     struct de4x5_private *lp = netdev_priv(dev);
4569     u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4570 
4571     /* Recursively figure out the info blocks */
4572     if (--count > lp->tcount) {
4573 	if (*(p+len) < 128) {
4574 	    return dc_infoblock[COMPACT](dev, count, p+len);
4575 	} else {
4576 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4577 	}
4578     }
4579 
4580     if ((lp->media == INIT) && (lp->timeout < 0)) {
4581         lp->ibn = 0;
4582         lp->active = 0;
4583         gep_wr(lp->cache.gepc, dev);
4584 	p+=2;
4585 	lp->infoblock_media = (*p++) & BLOCK0_MC;
4586 	lp->cache.gep = *p++;
4587 	csr6 = *p++;
4588 	flags = *p++;
4589 
4590 	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4591 	lp->defMedium = (flags & 0x40) ? -1 : 0;
4592 	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4593 	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4594 	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4595 	lp->useMII = false;
4596 
4597 	de4x5_switch_mac_port(dev);
4598     }
4599 
4600     return dc21140m_autoconf(dev);
4601 }
4602 
4603 /* These functions are under construction! */
4604 
4605 static int
type1_infoblock(struct net_device * dev,u_char count,u_char * p)4606 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4607 {
4608     struct de4x5_private *lp = netdev_priv(dev);
4609     u_char len = (*p & BLOCK_LEN)+1;
4610 
4611     /* Recursively figure out the info blocks */
4612     if (--count > lp->tcount) {
4613 	if (*(p+len) < 128) {
4614 	    return dc_infoblock[COMPACT](dev, count, p+len);
4615 	} else {
4616 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4617 	}
4618     }
4619 
4620     p += 2;
4621     if (lp->state == INITIALISED) {
4622         lp->ibn = 1;
4623 	lp->active = *p++;
4624 	lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4625 	lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4626 	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4627 	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4628 	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4629 	lp->phy[lp->active].ttm = get_unaligned_le16(p);
4630 	return 0;
4631     } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4632         lp->ibn = 1;
4633         lp->active = *p;
4634 	lp->infoblock_csr6 = OMR_MII_100;
4635 	lp->useMII = true;
4636 	lp->infoblock_media = ANS;
4637 
4638 	de4x5_switch_mac_port(dev);
4639     }
4640 
4641     return dc21140m_autoconf(dev);
4642 }
4643 
4644 static int
type2_infoblock(struct net_device * dev,u_char count,u_char * p)4645 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4646 {
4647     struct de4x5_private *lp = netdev_priv(dev);
4648     u_char len = (*p & BLOCK_LEN)+1;
4649 
4650     /* Recursively figure out the info blocks */
4651     if (--count > lp->tcount) {
4652 	if (*(p+len) < 128) {
4653 	    return dc_infoblock[COMPACT](dev, count, p+len);
4654 	} else {
4655 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4656 	}
4657     }
4658 
4659     if ((lp->media == INIT) && (lp->timeout < 0)) {
4660         lp->ibn = 2;
4661         lp->active = 0;
4662 	p += 2;
4663 	lp->infoblock_media = (*p) & MEDIA_CODE;
4664 
4665         if ((*p++) & EXT_FIELD) {
4666 	    lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4667 	    lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4668 	    lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4669 	} else {
4670 	    lp->cache.csr13 = CSR13;
4671 	    lp->cache.csr14 = CSR14;
4672 	    lp->cache.csr15 = CSR15;
4673 	}
4674         lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4675         lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4676 	lp->infoblock_csr6 = OMR_SIA;
4677 	lp->useMII = false;
4678 
4679 	de4x5_switch_mac_port(dev);
4680     }
4681 
4682     return dc2114x_autoconf(dev);
4683 }
4684 
4685 static int
type3_infoblock(struct net_device * dev,u_char count,u_char * p)4686 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4687 {
4688     struct de4x5_private *lp = netdev_priv(dev);
4689     u_char len = (*p & BLOCK_LEN)+1;
4690 
4691     /* Recursively figure out the info blocks */
4692     if (--count > lp->tcount) {
4693 	if (*(p+len) < 128) {
4694 	    return dc_infoblock[COMPACT](dev, count, p+len);
4695 	} else {
4696 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4697 	}
4698     }
4699 
4700     p += 2;
4701     if (lp->state == INITIALISED) {
4702         lp->ibn = 3;
4703         lp->active = *p++;
4704 	if (MOTO_SROM_BUG) lp->active = 0;
4705 	lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4706 	lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4707 	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4708 	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4709 	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4710 	lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4711 	lp->phy[lp->active].mci = *p;
4712 	return 0;
4713     } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4714         lp->ibn = 3;
4715 	lp->active = *p;
4716 	if (MOTO_SROM_BUG) lp->active = 0;
4717 	lp->infoblock_csr6 = OMR_MII_100;
4718 	lp->useMII = true;
4719 	lp->infoblock_media = ANS;
4720 
4721 	de4x5_switch_mac_port(dev);
4722     }
4723 
4724     return dc2114x_autoconf(dev);
4725 }
4726 
4727 static int
type4_infoblock(struct net_device * dev,u_char count,u_char * p)4728 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4729 {
4730     struct de4x5_private *lp = netdev_priv(dev);
4731     u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4732 
4733     /* Recursively figure out the info blocks */
4734     if (--count > lp->tcount) {
4735 	if (*(p+len) < 128) {
4736 	    return dc_infoblock[COMPACT](dev, count, p+len);
4737 	} else {
4738 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4739 	}
4740     }
4741 
4742     if ((lp->media == INIT) && (lp->timeout < 0)) {
4743         lp->ibn = 4;
4744         lp->active = 0;
4745 	p+=2;
4746 	lp->infoblock_media = (*p++) & MEDIA_CODE;
4747         lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4748 	lp->cache.csr14 = CSR14;
4749 	lp->cache.csr15 = CSR15;
4750         lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4751         lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4752 	csr6 = *p++;
4753 	flags = *p++;
4754 
4755 	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4756 	lp->defMedium = (flags & 0x40) ? -1 : 0;
4757 	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4758 	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4759 	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4760 	lp->useMII = false;
4761 
4762 	de4x5_switch_mac_port(dev);
4763     }
4764 
4765     return dc2114x_autoconf(dev);
4766 }
4767 
4768 /*
4769 ** This block type provides information for resetting external devices
4770 ** (chips) through the General Purpose Register.
4771 */
4772 static int
type5_infoblock(struct net_device * dev,u_char count,u_char * p)4773 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4774 {
4775     struct de4x5_private *lp = netdev_priv(dev);
4776     u_char len = (*p & BLOCK_LEN)+1;
4777 
4778     /* Recursively figure out the info blocks */
4779     if (--count > lp->tcount) {
4780 	if (*(p+len) < 128) {
4781 	    return dc_infoblock[COMPACT](dev, count, p+len);
4782 	} else {
4783 	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4784 	}
4785     }
4786 
4787     /* Must be initializing to run this code */
4788     if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4789 	p+=2;
4790         lp->rst = p;
4791         srom_exec(dev, lp->rst);
4792     }
4793 
4794     return DE4X5_AUTOSENSE_MS;
4795 }
4796 
4797 /*
4798 ** MII Read/Write
4799 */
4800 
4801 static int
mii_rd(u_char phyreg,u_char phyaddr,u_long ioaddr)4802 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4803 {
4804     mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4805     mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4806     mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4807     mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4808     mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4809     mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4810 
4811     return mii_rdata(ioaddr);              /* Read data                      */
4812 }
4813 
4814 static void
mii_wr(int data,u_char phyreg,u_char phyaddr,u_long ioaddr)4815 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4816 {
4817     mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4818     mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4819     mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4820     mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4821     mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4822     mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4823     data = mii_swap(data, 16);             /* Swap data bit ordering         */
4824     mii_wdata(data, 16, ioaddr);           /* Write data                     */
4825 }
4826 
4827 static int
mii_rdata(u_long ioaddr)4828 mii_rdata(u_long ioaddr)
4829 {
4830     int i;
4831     s32 tmp = 0;
4832 
4833     for (i=0; i<16; i++) {
4834 	tmp <<= 1;
4835 	tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4836     }
4837 
4838     return tmp;
4839 }
4840 
4841 static void
mii_wdata(int data,int len,u_long ioaddr)4842 mii_wdata(int data, int len, u_long ioaddr)
4843 {
4844     int i;
4845 
4846     for (i=0; i<len; i++) {
4847 	sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4848 	data >>= 1;
4849     }
4850 }
4851 
4852 static void
mii_address(u_char addr,u_long ioaddr)4853 mii_address(u_char addr, u_long ioaddr)
4854 {
4855     int i;
4856 
4857     addr = mii_swap(addr, 5);
4858     for (i=0; i<5; i++) {
4859 	sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4860 	addr >>= 1;
4861     }
4862 }
4863 
4864 static void
mii_ta(u_long rw,u_long ioaddr)4865 mii_ta(u_long rw, u_long ioaddr)
4866 {
4867     if (rw == MII_STWR) {
4868 	sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4869 	sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4870     } else {
4871 	getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4872     }
4873 }
4874 
4875 static int
mii_swap(int data,int len)4876 mii_swap(int data, int len)
4877 {
4878     int i, tmp = 0;
4879 
4880     for (i=0; i<len; i++) {
4881 	tmp <<= 1;
4882 	tmp |= (data & 1);
4883 	data >>= 1;
4884     }
4885 
4886     return tmp;
4887 }
4888 
4889 static void
sendto_mii(u32 command,int data,u_long ioaddr)4890 sendto_mii(u32 command, int data, u_long ioaddr)
4891 {
4892     u32 j;
4893 
4894     j = (data & 1) << 17;
4895     outl(command | j, ioaddr);
4896     udelay(1);
4897     outl(command | MII_MDC | j, ioaddr);
4898     udelay(1);
4899 }
4900 
4901 static int
getfrom_mii(u32 command,u_long ioaddr)4902 getfrom_mii(u32 command, u_long ioaddr)
4903 {
4904     outl(command, ioaddr);
4905     udelay(1);
4906     outl(command | MII_MDC, ioaddr);
4907     udelay(1);
4908 
4909     return (inl(ioaddr) >> 19) & 1;
4910 }
4911 
4912 /*
4913 ** Here's 3 ways to calculate the OUI from the ID registers.
4914 */
4915 static int
mii_get_oui(u_char phyaddr,u_long ioaddr)4916 mii_get_oui(u_char phyaddr, u_long ioaddr)
4917 {
4918 /*
4919     union {
4920 	u_short reg;
4921 	u_char breg[2];
4922     } a;
4923     int i, r2, r3, ret=0;*/
4924     int r2, r3;
4925 
4926     /* Read r2 and r3 */
4927     r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4928     r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4929                                                 /* SEEQ and Cypress way * /
4930     / * Shuffle r2 and r3 * /
4931     a.reg=0;
4932     r3 = ((r3>>10)|(r2<<6))&0x0ff;
4933     r2 = ((r2>>2)&0x3fff);
4934 
4935     / * Bit reverse r3 * /
4936     for (i=0;i<8;i++) {
4937 	ret<<=1;
4938 	ret |= (r3&1);
4939 	r3>>=1;
4940     }
4941 
4942     / * Bit reverse r2 * /
4943     for (i=0;i<16;i++) {
4944 	a.reg<<=1;
4945 	a.reg |= (r2&1);
4946 	r2>>=1;
4947     }
4948 
4949     / * Swap r2 bytes * /
4950     i=a.breg[0];
4951     a.breg[0]=a.breg[1];
4952     a.breg[1]=i;
4953 
4954     return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4955 /*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4956     return r2;                                  /* (I did it) My way */
4957 }
4958 
4959 /*
4960 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4961 */
4962 static int
mii_get_phy(struct net_device * dev)4963 mii_get_phy(struct net_device *dev)
4964 {
4965     struct de4x5_private *lp = netdev_priv(dev);
4966     u_long iobase = dev->base_addr;
4967     int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4968     int id;
4969 
4970     lp->active = 0;
4971     lp->useMII = true;
4972 
4973     /* Search the MII address space for possible PHY devices */
4974     for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4975 	lp->phy[lp->active].addr = i;
4976 	if (i==0) n++;                             /* Count cycles */
4977 	while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4978 	id = mii_get_oui(i, DE4X5_MII);
4979 	if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
4980 	for (j=0; j<limit; j++) {                  /* Search PHY table */
4981 	    if (id != phy_info[j].id) continue;    /* ID match? */
4982 	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4983 	    if (k < DE4X5_MAX_PHY) {
4984 		memcpy((char *)&lp->phy[k],
4985 		       (char *)&phy_info[j], sizeof(struct phy_table));
4986 		lp->phy[k].addr = i;
4987 		lp->mii_cnt++;
4988 		lp->active++;
4989 	    } else {
4990 		goto purgatory;                    /* Stop the search */
4991 	    }
4992 	    break;
4993 	}
4994 	if ((j == limit) && (i < DE4X5_MAX_MII)) {
4995 	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4996 	    lp->phy[k].addr = i;
4997 	    lp->phy[k].id = id;
4998 	    lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
4999 	    lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5000 	    lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5001 	    lp->mii_cnt++;
5002 	    lp->active++;
5003 	    printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5004 	    j = de4x5_debug;
5005 	    de4x5_debug |= DEBUG_MII;
5006 	    de4x5_dbg_mii(dev, k);
5007 	    de4x5_debug = j;
5008 	    printk("\n");
5009 	}
5010     }
5011   purgatory:
5012     lp->active = 0;
5013     if (lp->phy[0].id) {                           /* Reset the PHY devices */
5014 	for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5015 	    mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5016 	    while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5017 
5018 	    de4x5_dbg_mii(dev, k);
5019 	}
5020     }
5021     if (!lp->mii_cnt) lp->useMII = false;
5022 
5023     return lp->mii_cnt;
5024 }
5025 
5026 static char *
build_setup_frame(struct net_device * dev,int mode)5027 build_setup_frame(struct net_device *dev, int mode)
5028 {
5029     struct de4x5_private *lp = netdev_priv(dev);
5030     int i;
5031     char *pa = lp->setup_frame;
5032 
5033     /* Initialise the setup frame */
5034     if (mode == ALL) {
5035 	memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5036     }
5037 
5038     if (lp->setup_f == HASH_PERF) {
5039 	for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5040 	    *(pa + i) = dev->dev_addr[i];                 /* Host address */
5041 	    if (i & 0x01) pa += 2;
5042 	}
5043 	*(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5044     } else {
5045 	for (i=0; i<ETH_ALEN; i++) { /* Host address */
5046 	    *(pa + (i&1)) = dev->dev_addr[i];
5047 	    if (i & 0x01) pa += 4;
5048 	}
5049 	for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5050 	    *(pa + (i&1)) = (char) 0xff;
5051 	    if (i & 0x01) pa += 4;
5052 	}
5053     }
5054 
5055     return pa;                     /* Points to the next entry */
5056 }
5057 
5058 static void
disable_ast(struct net_device * dev)5059 disable_ast(struct net_device *dev)
5060 {
5061 	struct de4x5_private *lp = netdev_priv(dev);
5062 	del_timer_sync(&lp->timer);
5063 }
5064 
5065 static long
de4x5_switch_mac_port(struct net_device * dev)5066 de4x5_switch_mac_port(struct net_device *dev)
5067 {
5068     struct de4x5_private *lp = netdev_priv(dev);
5069     u_long iobase = dev->base_addr;
5070     s32 omr;
5071 
5072     STOP_DE4X5;
5073 
5074     /* Assert the OMR_PS bit in CSR6 */
5075     omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5076 			                                             OMR_FDX));
5077     omr |= lp->infoblock_csr6;
5078     if (omr & OMR_PS) omr |= OMR_HBD;
5079     outl(omr, DE4X5_OMR);
5080 
5081     /* Soft Reset */
5082     RESET_DE4X5;
5083 
5084     /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5085     if (lp->chipset == DC21140) {
5086 	gep_wr(lp->cache.gepc, dev);
5087 	gep_wr(lp->cache.gep, dev);
5088     } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5089 	reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5090     }
5091 
5092     /* Restore CSR6 */
5093     outl(omr, DE4X5_OMR);
5094 
5095     /* Reset CSR8 */
5096     inl(DE4X5_MFC);
5097 
5098     return omr;
5099 }
5100 
5101 static void
gep_wr(s32 data,struct net_device * dev)5102 gep_wr(s32 data, struct net_device *dev)
5103 {
5104     struct de4x5_private *lp = netdev_priv(dev);
5105     u_long iobase = dev->base_addr;
5106 
5107     if (lp->chipset == DC21140) {
5108 	outl(data, DE4X5_GEP);
5109     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5110 	outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5111     }
5112 }
5113 
5114 static int
gep_rd(struct net_device * dev)5115 gep_rd(struct net_device *dev)
5116 {
5117     struct de4x5_private *lp = netdev_priv(dev);
5118     u_long iobase = dev->base_addr;
5119 
5120     if (lp->chipset == DC21140) {
5121 	return inl(DE4X5_GEP);
5122     } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5123 	return inl(DE4X5_SIGR) & 0x000fffff;
5124     }
5125 
5126     return 0;
5127 }
5128 
5129 static void
yawn(struct net_device * dev,int state)5130 yawn(struct net_device *dev, int state)
5131 {
5132     struct de4x5_private *lp = netdev_priv(dev);
5133     u_long iobase = dev->base_addr;
5134 
5135     if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5136 
5137     if(lp->bus == EISA) {
5138 	switch(state) {
5139 	  case WAKEUP:
5140 	    outb(WAKEUP, PCI_CFPM);
5141 	    mdelay(10);
5142 	    break;
5143 
5144 	  case SNOOZE:
5145 	    outb(SNOOZE, PCI_CFPM);
5146 	    break;
5147 
5148 	  case SLEEP:
5149 	    outl(0, DE4X5_SICR);
5150 	    outb(SLEEP, PCI_CFPM);
5151 	    break;
5152 	}
5153     } else {
5154 	struct pci_dev *pdev = to_pci_dev (lp->gendev);
5155 	switch(state) {
5156 	  case WAKEUP:
5157 	    pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5158 	    mdelay(10);
5159 	    break;
5160 
5161 	  case SNOOZE:
5162 	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5163 	    break;
5164 
5165 	  case SLEEP:
5166 	    outl(0, DE4X5_SICR);
5167 	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5168 	    break;
5169 	}
5170     }
5171 }
5172 
5173 static void
de4x5_parse_params(struct net_device * dev)5174 de4x5_parse_params(struct net_device *dev)
5175 {
5176     struct de4x5_private *lp = netdev_priv(dev);
5177     char *p, *q, t;
5178 
5179     lp->params.fdx = false;
5180     lp->params.autosense = AUTO;
5181 
5182     if (args == NULL) return;
5183 
5184     if ((p = strstr(args, dev->name))) {
5185 	if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5186 	t = *q;
5187 	*q = '\0';
5188 
5189 	if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5190 
5191 	if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5192 	    if (strstr(p, "TP_NW")) {
5193 		lp->params.autosense = TP_NW;
5194 	    } else if (strstr(p, "TP")) {
5195 		lp->params.autosense = TP;
5196 	    } else if (strstr(p, "BNC_AUI")) {
5197 		lp->params.autosense = BNC;
5198 	    } else if (strstr(p, "BNC")) {
5199 		lp->params.autosense = BNC;
5200 	    } else if (strstr(p, "AUI")) {
5201 		lp->params.autosense = AUI;
5202 	    } else if (strstr(p, "10Mb")) {
5203 		lp->params.autosense = _10Mb;
5204 	    } else if (strstr(p, "100Mb")) {
5205 		lp->params.autosense = _100Mb;
5206 	    } else if (strstr(p, "AUTO")) {
5207 		lp->params.autosense = AUTO;
5208 	    }
5209 	}
5210 	*q = t;
5211     }
5212 }
5213 
5214 static void
de4x5_dbg_open(struct net_device * dev)5215 de4x5_dbg_open(struct net_device *dev)
5216 {
5217     struct de4x5_private *lp = netdev_priv(dev);
5218     int i;
5219 
5220     if (de4x5_debug & DEBUG_OPEN) {
5221 	printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5222 	printk("\tphysical address: %pM\n", dev->dev_addr);
5223 	printk("Descriptor head addresses:\n");
5224 	printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5225 	printk("Descriptor addresses:\nRX: ");
5226 	for (i=0;i<lp->rxRingSize-1;i++){
5227 	    if (i < 3) {
5228 		printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5229 	    }
5230 	}
5231 	printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5232 	printk("TX: ");
5233 	for (i=0;i<lp->txRingSize-1;i++){
5234 	    if (i < 3) {
5235 		printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5236 	    }
5237 	}
5238 	printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5239 	printk("Descriptor buffers:\nRX: ");
5240 	for (i=0;i<lp->rxRingSize-1;i++){
5241 	    if (i < 3) {
5242 		printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5243 	    }
5244 	}
5245 	printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5246 	printk("TX: ");
5247 	for (i=0;i<lp->txRingSize-1;i++){
5248 	    if (i < 3) {
5249 		printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5250 	    }
5251 	}
5252 	printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5253 	printk("Ring size:\nRX: %d\nTX: %d\n",
5254 	       (short)lp->rxRingSize,
5255 	       (short)lp->txRingSize);
5256     }
5257 }
5258 
5259 static void
de4x5_dbg_mii(struct net_device * dev,int k)5260 de4x5_dbg_mii(struct net_device *dev, int k)
5261 {
5262     struct de4x5_private *lp = netdev_priv(dev);
5263     u_long iobase = dev->base_addr;
5264 
5265     if (de4x5_debug & DEBUG_MII) {
5266 	printk("\nMII device address: %d\n", lp->phy[k].addr);
5267 	printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5268 	printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5269 	printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5270 	printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5271 	if (lp->phy[k].id != BROADCOM_T4) {
5272 	    printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5273 	    printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5274 	}
5275 	printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5276 	if (lp->phy[k].id != BROADCOM_T4) {
5277 	    printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5278 	    printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5279 	} else {
5280 	    printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5281 	}
5282     }
5283 }
5284 
5285 static void
de4x5_dbg_media(struct net_device * dev)5286 de4x5_dbg_media(struct net_device *dev)
5287 {
5288     struct de4x5_private *lp = netdev_priv(dev);
5289 
5290     if (lp->media != lp->c_media) {
5291 	if (de4x5_debug & DEBUG_MEDIA) {
5292 	    printk("%s: media is %s%s\n", dev->name,
5293 		   (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5294 		    (lp->media == TP  ? "TP" :
5295 		     (lp->media == ANS ? "TP/Nway" :
5296 		      (lp->media == BNC ? "BNC" :
5297 		       (lp->media == AUI ? "AUI" :
5298 			(lp->media == BNC_AUI ? "BNC/AUI" :
5299 			 (lp->media == EXT_SIA ? "EXT SIA" :
5300 			  (lp->media == _100Mb  ? "100Mb/s" :
5301 			   (lp->media == _10Mb   ? "10Mb/s" :
5302 			    "???"
5303 			    ))))))))), (lp->fdx?" full duplex.":"."));
5304 	}
5305 	lp->c_media = lp->media;
5306     }
5307 }
5308 
5309 static void
de4x5_dbg_srom(struct de4x5_srom * p)5310 de4x5_dbg_srom(struct de4x5_srom *p)
5311 {
5312     int i;
5313 
5314     if (de4x5_debug & DEBUG_SROM) {
5315 	printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5316 	printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5317 	printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5318 	printk("SROM version:         %02x\n", (u_char)(p->version));
5319 	printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5320 
5321 	printk("Hardware Address:     %pM\n", p->ieee_addr);
5322 	printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5323 	for (i=0; i<64; i++) {
5324 	    printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5325 	}
5326     }
5327 }
5328 
5329 static void
de4x5_dbg_rx(struct sk_buff * skb,int len)5330 de4x5_dbg_rx(struct sk_buff *skb, int len)
5331 {
5332     int i, j;
5333 
5334     if (de4x5_debug & DEBUG_RX) {
5335 	printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5336 	       skb->data, &skb->data[6],
5337 	       (u_char)skb->data[12],
5338 	       (u_char)skb->data[13],
5339 	       len);
5340 	for (j=0; len>0;j+=16, len-=16) {
5341 	  printk("    %03x: ",j);
5342 	  for (i=0; i<16 && i<len; i++) {
5343 	    printk("%02x ",(u_char)skb->data[i+j]);
5344 	  }
5345 	  printk("\n");
5346 	}
5347     }
5348 }
5349 
5350 /*
5351 ** Perform IOCTL call functions here. Some are privileged operations and the
5352 ** effective uid is checked in those cases. In the normal course of events
5353 ** this function is only used for my testing.
5354 */
5355 static int
de4x5_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5356 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5357 {
5358     struct de4x5_private *lp = netdev_priv(dev);
5359     struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5360     u_long iobase = dev->base_addr;
5361     int i, j, status = 0;
5362     s32 omr;
5363     union {
5364 	u8  addr[144];
5365 	u16 sval[72];
5366 	u32 lval[36];
5367     } tmp;
5368     u_long flags = 0;
5369 
5370     switch(ioc->cmd) {
5371     case DE4X5_GET_HWADDR:           /* Get the hardware address */
5372 	ioc->len = ETH_ALEN;
5373 	for (i=0; i<ETH_ALEN; i++) {
5374 	    tmp.addr[i] = dev->dev_addr[i];
5375 	}
5376 	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5377 	break;
5378 
5379     case DE4X5_SET_HWADDR:           /* Set the hardware address */
5380 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5381 	if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5382 	if (netif_queue_stopped(dev))
5383 		return -EBUSY;
5384 	netif_stop_queue(dev);
5385 	for (i=0; i<ETH_ALEN; i++) {
5386 	    dev->dev_addr[i] = tmp.addr[i];
5387 	}
5388 	build_setup_frame(dev, PHYS_ADDR_ONLY);
5389 	/* Set up the descriptor and give ownership to the card */
5390 	load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5391 		                                       SETUP_FRAME_LEN, (struct sk_buff *)1);
5392 	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5393 	outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5394 	netif_wake_queue(dev);                      /* Unlock the TX ring */
5395 	break;
5396 
5397     case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5398 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5399 	printk("%s: Boo!\n", dev->name);
5400 	break;
5401 
5402     case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5403 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5404 	omr = inl(DE4X5_OMR);
5405 	omr |= OMR_PM;
5406 	outl(omr, DE4X5_OMR);
5407 	break;
5408 
5409     case DE4X5_GET_STATS:            /* Get the driver statistics */
5410     {
5411         struct pkt_stats statbuf;
5412 	ioc->len = sizeof(statbuf);
5413 	spin_lock_irqsave(&lp->lock, flags);
5414 	memcpy(&statbuf, &lp->pktStats, ioc->len);
5415 	spin_unlock_irqrestore(&lp->lock, flags);
5416 	if (copy_to_user(ioc->data, &statbuf, ioc->len))
5417 		return -EFAULT;
5418 	break;
5419     }
5420     case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5421 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5422 	spin_lock_irqsave(&lp->lock, flags);
5423 	memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5424 	spin_unlock_irqrestore(&lp->lock, flags);
5425 	break;
5426 
5427     case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5428 	tmp.addr[0] = inl(DE4X5_OMR);
5429 	if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5430 	break;
5431 
5432     case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5433 	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5434 	if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5435 	outl(tmp.addr[0], DE4X5_OMR);
5436 	break;
5437 
5438     case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5439 	j = 0;
5440 	tmp.lval[0] = inl(DE4X5_STS); j+=4;
5441 	tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5442 	tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5443 	tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5444 	tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5445 	tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5446 	tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5447 	tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5448 	ioc->len = j;
5449 	if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5450 		return -EFAULT;
5451 	break;
5452 
5453 #define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5454 /*
5455       case DE4X5_DUMP:
5456 	j = 0;
5457 	tmp.addr[j++] = dev->irq;
5458 	for (i=0; i<ETH_ALEN; i++) {
5459 	    tmp.addr[j++] = dev->dev_addr[i];
5460 	}
5461 	tmp.addr[j++] = lp->rxRingSize;
5462 	tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5463 	tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5464 
5465 	for (i=0;i<lp->rxRingSize-1;i++){
5466 	    if (i < 3) {
5467 		tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5468 	    }
5469 	}
5470 	tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471 	for (i=0;i<lp->txRingSize-1;i++){
5472 	    if (i < 3) {
5473 		tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5474 	    }
5475 	}
5476 	tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477 
5478 	for (i=0;i<lp->rxRingSize-1;i++){
5479 	    if (i < 3) {
5480 		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5481 	    }
5482 	}
5483 	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484 	for (i=0;i<lp->txRingSize-1;i++){
5485 	    if (i < 3) {
5486 		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5487 	    }
5488 	}
5489 	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490 
5491 	for (i=0;i<lp->rxRingSize;i++){
5492 	    tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5493 	}
5494 	for (i=0;i<lp->txRingSize;i++){
5495 	    tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5496 	}
5497 
5498 	tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5499 	tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5500 	tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5501 	tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5502 	tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5503 	tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5504 	tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5505 	tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5506 	tmp.lval[j>>2] = lp->chipset; j+=4;
5507 	if (lp->chipset == DC21140) {
5508 	    tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5509 	} else {
5510 	    tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5511 	    tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5512 	    tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5513 	    tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5514 	}
5515 	tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5516 	if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5517 	    tmp.lval[j>>2] = lp->active; j+=4;
5518 	    tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5519 	    tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5520 	    tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5521 	    tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522 	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5523 		tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524 		tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525 	    }
5526 	    tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527 	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5528 		tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529 		tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530 	    } else {
5531 		tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532 	    }
5533 	}
5534 
5535 	tmp.addr[j++] = lp->txRingSize;
5536 	tmp.addr[j++] = netif_queue_stopped(dev);
5537 
5538 	ioc->len = j;
5539 	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5540 	break;
5541 
5542 */
5543     default:
5544 	return -EOPNOTSUPP;
5545     }
5546 
5547     return status;
5548 }
5549 
de4x5_module_init(void)5550 static int __init de4x5_module_init (void)
5551 {
5552 	int err = 0;
5553 
5554 #ifdef CONFIG_PCI
5555 	err = pci_register_driver(&de4x5_pci_driver);
5556 #endif
5557 #ifdef CONFIG_EISA
5558 	err |= eisa_driver_register (&de4x5_eisa_driver);
5559 #endif
5560 
5561 	return err;
5562 }
5563 
de4x5_module_exit(void)5564 static void __exit de4x5_module_exit (void)
5565 {
5566 #ifdef CONFIG_PCI
5567 	pci_unregister_driver (&de4x5_pci_driver);
5568 #endif
5569 #ifdef CONFIG_EISA
5570 	eisa_driver_unregister (&de4x5_eisa_driver);
5571 #endif
5572 }
5573 
5574 module_init (de4x5_module_init);
5575 module_exit (de4x5_module_exit);
5576