1 /**
2  * @file buffer_sync.c
3  *
4  * @remark Copyright 2002-2009 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf
9  * @author Robert Richter <robert.richter@amd.com>
10  *
11  * This is the core of the buffer management. Each
12  * CPU buffer is processed and entered into the
13  * global event buffer. Such processing is necessary
14  * in several circumstances, mentioned below.
15  *
16  * The processing does the job of converting the
17  * transitory EIP value into a persistent dentry/offset
18  * value that the profiler can record at its leisure.
19  *
20  * See fs/dcookies.c for a description of the dentry/offset
21  * objects.
22  */
23 
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/workqueue.h>
27 #include <linux/notifier.h>
28 #include <linux/dcookies.h>
29 #include <linux/profile.h>
30 #include <linux/module.h>
31 #include <linux/fs.h>
32 #include <linux/oprofile.h>
33 #include <linux/sched.h>
34 #include <linux/gfp.h>
35 
36 #include "oprofile_stats.h"
37 #include "event_buffer.h"
38 #include "cpu_buffer.h"
39 #include "buffer_sync.h"
40 
41 static LIST_HEAD(dying_tasks);
42 static LIST_HEAD(dead_tasks);
43 static cpumask_var_t marked_cpus;
44 static DEFINE_SPINLOCK(task_mortuary);
45 static void process_task_mortuary(void);
46 
47 /* Take ownership of the task struct and place it on the
48  * list for processing. Only after two full buffer syncs
49  * does the task eventually get freed, because by then
50  * we are sure we will not reference it again.
51  * Can be invoked from softirq via RCU callback due to
52  * call_rcu() of the task struct, hence the _irqsave.
53  */
54 static int
task_free_notify(struct notifier_block * self,unsigned long val,void * data)55 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
56 {
57 	unsigned long flags;
58 	struct task_struct *task = data;
59 	spin_lock_irqsave(&task_mortuary, flags);
60 	list_add(&task->tasks, &dying_tasks);
61 	spin_unlock_irqrestore(&task_mortuary, flags);
62 	return NOTIFY_OK;
63 }
64 
65 
66 /* The task is on its way out. A sync of the buffer means we can catch
67  * any remaining samples for this task.
68  */
69 static int
task_exit_notify(struct notifier_block * self,unsigned long val,void * data)70 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
71 {
72 	/* To avoid latency problems, we only process the current CPU,
73 	 * hoping that most samples for the task are on this CPU
74 	 */
75 	sync_buffer(raw_smp_processor_id());
76 	return 0;
77 }
78 
79 
80 /* The task is about to try a do_munmap(). We peek at what it's going to
81  * do, and if it's an executable region, process the samples first, so
82  * we don't lose any. This does not have to be exact, it's a QoI issue
83  * only.
84  */
85 static int
munmap_notify(struct notifier_block * self,unsigned long val,void * data)86 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
87 {
88 	unsigned long addr = (unsigned long)data;
89 	struct mm_struct *mm = current->mm;
90 	struct vm_area_struct *mpnt;
91 
92 	down_read(&mm->mmap_sem);
93 
94 	mpnt = find_vma(mm, addr);
95 	if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
96 		up_read(&mm->mmap_sem);
97 		/* To avoid latency problems, we only process the current CPU,
98 		 * hoping that most samples for the task are on this CPU
99 		 */
100 		sync_buffer(raw_smp_processor_id());
101 		return 0;
102 	}
103 
104 	up_read(&mm->mmap_sem);
105 	return 0;
106 }
107 
108 
109 /* We need to be told about new modules so we don't attribute to a previously
110  * loaded module, or drop the samples on the floor.
111  */
112 static int
module_load_notify(struct notifier_block * self,unsigned long val,void * data)113 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
114 {
115 #ifdef CONFIG_MODULES
116 	if (val != MODULE_STATE_COMING)
117 		return 0;
118 
119 	/* FIXME: should we process all CPU buffers ? */
120 	mutex_lock(&buffer_mutex);
121 	add_event_entry(ESCAPE_CODE);
122 	add_event_entry(MODULE_LOADED_CODE);
123 	mutex_unlock(&buffer_mutex);
124 #endif
125 	return 0;
126 }
127 
128 
129 static struct notifier_block task_free_nb = {
130 	.notifier_call	= task_free_notify,
131 };
132 
133 static struct notifier_block task_exit_nb = {
134 	.notifier_call	= task_exit_notify,
135 };
136 
137 static struct notifier_block munmap_nb = {
138 	.notifier_call	= munmap_notify,
139 };
140 
141 static struct notifier_block module_load_nb = {
142 	.notifier_call = module_load_notify,
143 };
144 
free_all_tasks(void)145 static void free_all_tasks(void)
146 {
147 	/* make sure we don't leak task structs */
148 	process_task_mortuary();
149 	process_task_mortuary();
150 }
151 
sync_start(void)152 int sync_start(void)
153 {
154 	int err;
155 
156 	if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
157 		return -ENOMEM;
158 
159 	err = task_handoff_register(&task_free_nb);
160 	if (err)
161 		goto out1;
162 	err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
163 	if (err)
164 		goto out2;
165 	err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
166 	if (err)
167 		goto out3;
168 	err = register_module_notifier(&module_load_nb);
169 	if (err)
170 		goto out4;
171 
172 	start_cpu_work();
173 
174 out:
175 	return err;
176 out4:
177 	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
178 out3:
179 	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
180 out2:
181 	task_handoff_unregister(&task_free_nb);
182 	free_all_tasks();
183 out1:
184 	free_cpumask_var(marked_cpus);
185 	goto out;
186 }
187 
188 
sync_stop(void)189 void sync_stop(void)
190 {
191 	end_cpu_work();
192 	unregister_module_notifier(&module_load_nb);
193 	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
194 	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
195 	task_handoff_unregister(&task_free_nb);
196 	barrier();			/* do all of the above first */
197 
198 	flush_cpu_work();
199 
200 	free_all_tasks();
201 	free_cpumask_var(marked_cpus);
202 }
203 
204 
205 /* Optimisation. We can manage without taking the dcookie sem
206  * because we cannot reach this code without at least one
207  * dcookie user still being registered (namely, the reader
208  * of the event buffer). */
fast_get_dcookie(struct path * path)209 static inline unsigned long fast_get_dcookie(struct path *path)
210 {
211 	unsigned long cookie;
212 
213 	if (path->dentry->d_flags & DCACHE_COOKIE)
214 		return (unsigned long)path->dentry;
215 	get_dcookie(path, &cookie);
216 	return cookie;
217 }
218 
219 
220 /* Look up the dcookie for the task's mm->exe_file,
221  * which corresponds loosely to "application name". This is
222  * not strictly necessary but allows oprofile to associate
223  * shared-library samples with particular applications
224  */
get_exec_dcookie(struct mm_struct * mm)225 static unsigned long get_exec_dcookie(struct mm_struct *mm)
226 {
227 	unsigned long cookie = NO_COOKIE;
228 	struct file *exe_file;
229 
230 	if (!mm)
231 		goto done;
232 
233 	exe_file = get_mm_exe_file(mm);
234 	if (!exe_file)
235 		goto done;
236 
237 	cookie = fast_get_dcookie(&exe_file->f_path);
238 	fput(exe_file);
239 done:
240 	return cookie;
241 }
242 
243 
244 /* Convert the EIP value of a sample into a persistent dentry/offset
245  * pair that can then be added to the global event buffer. We make
246  * sure to do this lookup before a mm->mmap modification happens so
247  * we don't lose track.
248  *
249  * The caller must ensure the mm is not nil (ie: not a kernel thread).
250  */
251 static unsigned long
lookup_dcookie(struct mm_struct * mm,unsigned long addr,off_t * offset)252 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
253 {
254 	unsigned long cookie = NO_COOKIE;
255 	struct vm_area_struct *vma;
256 
257 	down_read(&mm->mmap_sem);
258 	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
259 
260 		if (addr < vma->vm_start || addr >= vma->vm_end)
261 			continue;
262 
263 		if (vma->vm_file) {
264 			cookie = fast_get_dcookie(&vma->vm_file->f_path);
265 			*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
266 				vma->vm_start;
267 		} else {
268 			/* must be an anonymous map */
269 			*offset = addr;
270 		}
271 
272 		break;
273 	}
274 
275 	if (!vma)
276 		cookie = INVALID_COOKIE;
277 	up_read(&mm->mmap_sem);
278 
279 	return cookie;
280 }
281 
282 static unsigned long last_cookie = INVALID_COOKIE;
283 
add_cpu_switch(int i)284 static void add_cpu_switch(int i)
285 {
286 	add_event_entry(ESCAPE_CODE);
287 	add_event_entry(CPU_SWITCH_CODE);
288 	add_event_entry(i);
289 	last_cookie = INVALID_COOKIE;
290 }
291 
add_kernel_ctx_switch(unsigned int in_kernel)292 static void add_kernel_ctx_switch(unsigned int in_kernel)
293 {
294 	add_event_entry(ESCAPE_CODE);
295 	if (in_kernel)
296 		add_event_entry(KERNEL_ENTER_SWITCH_CODE);
297 	else
298 		add_event_entry(KERNEL_EXIT_SWITCH_CODE);
299 }
300 
301 static void
add_user_ctx_switch(struct task_struct const * task,unsigned long cookie)302 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
303 {
304 	add_event_entry(ESCAPE_CODE);
305 	add_event_entry(CTX_SWITCH_CODE);
306 	add_event_entry(task->pid);
307 	add_event_entry(cookie);
308 	/* Another code for daemon back-compat */
309 	add_event_entry(ESCAPE_CODE);
310 	add_event_entry(CTX_TGID_CODE);
311 	add_event_entry(task->tgid);
312 }
313 
314 
add_cookie_switch(unsigned long cookie)315 static void add_cookie_switch(unsigned long cookie)
316 {
317 	add_event_entry(ESCAPE_CODE);
318 	add_event_entry(COOKIE_SWITCH_CODE);
319 	add_event_entry(cookie);
320 }
321 
322 
add_trace_begin(void)323 static void add_trace_begin(void)
324 {
325 	add_event_entry(ESCAPE_CODE);
326 	add_event_entry(TRACE_BEGIN_CODE);
327 }
328 
add_data(struct op_entry * entry,struct mm_struct * mm)329 static void add_data(struct op_entry *entry, struct mm_struct *mm)
330 {
331 	unsigned long code, pc, val;
332 	unsigned long cookie;
333 	off_t offset;
334 
335 	if (!op_cpu_buffer_get_data(entry, &code))
336 		return;
337 	if (!op_cpu_buffer_get_data(entry, &pc))
338 		return;
339 	if (!op_cpu_buffer_get_size(entry))
340 		return;
341 
342 	if (mm) {
343 		cookie = lookup_dcookie(mm, pc, &offset);
344 
345 		if (cookie == NO_COOKIE)
346 			offset = pc;
347 		if (cookie == INVALID_COOKIE) {
348 			atomic_inc(&oprofile_stats.sample_lost_no_mapping);
349 			offset = pc;
350 		}
351 		if (cookie != last_cookie) {
352 			add_cookie_switch(cookie);
353 			last_cookie = cookie;
354 		}
355 	} else
356 		offset = pc;
357 
358 	add_event_entry(ESCAPE_CODE);
359 	add_event_entry(code);
360 	add_event_entry(offset);	/* Offset from Dcookie */
361 
362 	while (op_cpu_buffer_get_data(entry, &val))
363 		add_event_entry(val);
364 }
365 
add_sample_entry(unsigned long offset,unsigned long event)366 static inline void add_sample_entry(unsigned long offset, unsigned long event)
367 {
368 	add_event_entry(offset);
369 	add_event_entry(event);
370 }
371 
372 
373 /*
374  * Add a sample to the global event buffer. If possible the
375  * sample is converted into a persistent dentry/offset pair
376  * for later lookup from userspace. Return 0 on failure.
377  */
378 static int
add_sample(struct mm_struct * mm,struct op_sample * s,int in_kernel)379 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
380 {
381 	unsigned long cookie;
382 	off_t offset;
383 
384 	if (in_kernel) {
385 		add_sample_entry(s->eip, s->event);
386 		return 1;
387 	}
388 
389 	/* add userspace sample */
390 
391 	if (!mm) {
392 		atomic_inc(&oprofile_stats.sample_lost_no_mm);
393 		return 0;
394 	}
395 
396 	cookie = lookup_dcookie(mm, s->eip, &offset);
397 
398 	if (cookie == INVALID_COOKIE) {
399 		atomic_inc(&oprofile_stats.sample_lost_no_mapping);
400 		return 0;
401 	}
402 
403 	if (cookie != last_cookie) {
404 		add_cookie_switch(cookie);
405 		last_cookie = cookie;
406 	}
407 
408 	add_sample_entry(offset, s->event);
409 
410 	return 1;
411 }
412 
413 
release_mm(struct mm_struct * mm)414 static void release_mm(struct mm_struct *mm)
415 {
416 	if (!mm)
417 		return;
418 	mmput(mm);
419 }
420 
is_code(unsigned long val)421 static inline int is_code(unsigned long val)
422 {
423 	return val == ESCAPE_CODE;
424 }
425 
426 
427 /* Move tasks along towards death. Any tasks on dead_tasks
428  * will definitely have no remaining references in any
429  * CPU buffers at this point, because we use two lists,
430  * and to have reached the list, it must have gone through
431  * one full sync already.
432  */
process_task_mortuary(void)433 static void process_task_mortuary(void)
434 {
435 	unsigned long flags;
436 	LIST_HEAD(local_dead_tasks);
437 	struct task_struct *task;
438 	struct task_struct *ttask;
439 
440 	spin_lock_irqsave(&task_mortuary, flags);
441 
442 	list_splice_init(&dead_tasks, &local_dead_tasks);
443 	list_splice_init(&dying_tasks, &dead_tasks);
444 
445 	spin_unlock_irqrestore(&task_mortuary, flags);
446 
447 	list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
448 		list_del(&task->tasks);
449 		free_task(task);
450 	}
451 }
452 
453 
mark_done(int cpu)454 static void mark_done(int cpu)
455 {
456 	int i;
457 
458 	cpumask_set_cpu(cpu, marked_cpus);
459 
460 	for_each_online_cpu(i) {
461 		if (!cpumask_test_cpu(i, marked_cpus))
462 			return;
463 	}
464 
465 	/* All CPUs have been processed at least once,
466 	 * we can process the mortuary once
467 	 */
468 	process_task_mortuary();
469 
470 	cpumask_clear(marked_cpus);
471 }
472 
473 
474 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
475  * traversal, the code switch to sb_sample_start at first kernel enter/exit
476  * switch so we need a fifth state and some special handling in sync_buffer()
477  */
478 typedef enum {
479 	sb_bt_ignore = -2,
480 	sb_buffer_start,
481 	sb_bt_start,
482 	sb_sample_start,
483 } sync_buffer_state;
484 
485 /* Sync one of the CPU's buffers into the global event buffer.
486  * Here we need to go through each batch of samples punctuated
487  * by context switch notes, taking the task's mmap_sem and doing
488  * lookup in task->mm->mmap to convert EIP into dcookie/offset
489  * value.
490  */
sync_buffer(int cpu)491 void sync_buffer(int cpu)
492 {
493 	struct mm_struct *mm = NULL;
494 	struct mm_struct *oldmm;
495 	unsigned long val;
496 	struct task_struct *new;
497 	unsigned long cookie = 0;
498 	int in_kernel = 1;
499 	sync_buffer_state state = sb_buffer_start;
500 	unsigned int i;
501 	unsigned long available;
502 	unsigned long flags;
503 	struct op_entry entry;
504 	struct op_sample *sample;
505 
506 	mutex_lock(&buffer_mutex);
507 
508 	add_cpu_switch(cpu);
509 
510 	op_cpu_buffer_reset(cpu);
511 	available = op_cpu_buffer_entries(cpu);
512 
513 	for (i = 0; i < available; ++i) {
514 		sample = op_cpu_buffer_read_entry(&entry, cpu);
515 		if (!sample)
516 			break;
517 
518 		if (is_code(sample->eip)) {
519 			flags = sample->event;
520 			if (flags & TRACE_BEGIN) {
521 				state = sb_bt_start;
522 				add_trace_begin();
523 			}
524 			if (flags & KERNEL_CTX_SWITCH) {
525 				/* kernel/userspace switch */
526 				in_kernel = flags & IS_KERNEL;
527 				if (state == sb_buffer_start)
528 					state = sb_sample_start;
529 				add_kernel_ctx_switch(flags & IS_KERNEL);
530 			}
531 			if (flags & USER_CTX_SWITCH
532 			    && op_cpu_buffer_get_data(&entry, &val)) {
533 				/* userspace context switch */
534 				new = (struct task_struct *)val;
535 				oldmm = mm;
536 				release_mm(oldmm);
537 				mm = get_task_mm(new);
538 				if (mm != oldmm)
539 					cookie = get_exec_dcookie(mm);
540 				add_user_ctx_switch(new, cookie);
541 			}
542 			if (op_cpu_buffer_get_size(&entry))
543 				add_data(&entry, mm);
544 			continue;
545 		}
546 
547 		if (state < sb_bt_start)
548 			/* ignore sample */
549 			continue;
550 
551 		if (add_sample(mm, sample, in_kernel))
552 			continue;
553 
554 		/* ignore backtraces if failed to add a sample */
555 		if (state == sb_bt_start) {
556 			state = sb_bt_ignore;
557 			atomic_inc(&oprofile_stats.bt_lost_no_mapping);
558 		}
559 	}
560 	release_mm(mm);
561 
562 	mark_done(cpu);
563 
564 	mutex_unlock(&buffer_mutex);
565 }
566 
567 /* The function can be used to add a buffer worth of data directly to
568  * the kernel buffer. The buffer is assumed to be a circular buffer.
569  * Take the entries from index start and end at index end, wrapping
570  * at max_entries.
571  */
oprofile_put_buff(unsigned long * buf,unsigned int start,unsigned int stop,unsigned int max)572 void oprofile_put_buff(unsigned long *buf, unsigned int start,
573 		       unsigned int stop, unsigned int max)
574 {
575 	int i;
576 
577 	i = start;
578 
579 	mutex_lock(&buffer_mutex);
580 	while (i != stop) {
581 		add_event_entry(buf[i++]);
582 
583 		if (i >= max)
584 			i = 0;
585 	}
586 
587 	mutex_unlock(&buffer_mutex);
588 }
589 
590