1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6 
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9 #include <linux/errno.h>
10 
11 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
12 	CONFIG_PGTABLE_LEVELS
13 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
14 #endif
15 
16 /*
17  * On almost all architectures and configurations, 0 can be used as the
18  * upper ceiling to free_pgtables(): on many architectures it has the same
19  * effect as using TASK_SIZE.  However, there is one configuration which
20  * must impose a more careful limit, to avoid freeing kernel pgtables.
21  */
22 #ifndef USER_PGTABLES_CEILING
23 #define USER_PGTABLES_CEILING	0UL
24 #endif
25 
26 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27 extern int ptep_set_access_flags(struct vm_area_struct *vma,
28 				 unsigned long address, pte_t *ptep,
29 				 pte_t entry, int dirty);
30 #endif
31 
32 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
34 				 unsigned long address, pmd_t *pmdp,
35 				 pmd_t entry, int dirty);
36 #endif
37 
38 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)39 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
40 					    unsigned long address,
41 					    pte_t *ptep)
42 {
43 	pte_t pte = *ptep;
44 	int r = 1;
45 	if (!pte_young(pte))
46 		r = 0;
47 	else
48 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
49 	return r;
50 }
51 #endif
52 
53 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)55 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 					    unsigned long address,
57 					    pmd_t *pmdp)
58 {
59 	pmd_t pmd = *pmdp;
60 	int r = 1;
61 	if (!pmd_young(pmd))
62 		r = 0;
63 	else
64 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
65 	return r;
66 }
67 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)68 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
69 					    unsigned long address,
70 					    pmd_t *pmdp)
71 {
72 	BUG();
73 	return 0;
74 }
75 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
76 #endif
77 
78 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
79 int ptep_clear_flush_young(struct vm_area_struct *vma,
80 			   unsigned long address, pte_t *ptep);
81 #endif
82 
83 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
84 int pmdp_clear_flush_young(struct vm_area_struct *vma,
85 			   unsigned long address, pmd_t *pmdp);
86 #endif
87 
88 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)89 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
90 				       unsigned long address,
91 				       pte_t *ptep)
92 {
93 	pte_t pte = *ptep;
94 	pte_clear(mm, address, ptep);
95 	return pte;
96 }
97 #endif
98 
99 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)101 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
102 				       unsigned long address,
103 				       pmd_t *pmdp)
104 {
105 	pmd_t pmd = *pmdp;
106 	pmd_clear(pmdp);
107 	return pmd;
108 }
109 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
110 #endif
111 
112 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
113 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_get_and_clear_full(struct mm_struct * mm,unsigned long address,pmd_t * pmdp,int full)114 static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
115 					    unsigned long address, pmd_t *pmdp,
116 					    int full)
117 {
118 	return pmdp_get_and_clear(mm, address, pmdp);
119 }
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121 #endif
122 
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)124 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
125 					    unsigned long address, pte_t *ptep,
126 					    int full)
127 {
128 	pte_t pte;
129 	pte = ptep_get_and_clear(mm, address, ptep);
130 	return pte;
131 }
132 #endif
133 
134 /*
135  * Some architectures may be able to avoid expensive synchronization
136  * primitives when modifications are made to PTE's which are already
137  * not present, or in the process of an address space destruction.
138  */
139 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)140 static inline void pte_clear_not_present_full(struct mm_struct *mm,
141 					      unsigned long address,
142 					      pte_t *ptep,
143 					      int full)
144 {
145 	pte_clear(mm, address, ptep);
146 }
147 #endif
148 
149 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
150 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
151 			      unsigned long address,
152 			      pte_t *ptep);
153 #endif
154 
155 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
156 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
157 			      unsigned long address,
158 			      pmd_t *pmdp);
159 #endif
160 
161 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
162 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)163 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
164 {
165 	pte_t old_pte = *ptep;
166 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
167 }
168 #endif
169 
170 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)172 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
173 				      unsigned long address, pmd_t *pmdp)
174 {
175 	pmd_t old_pmd = *pmdp;
176 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
177 }
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)179 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
180 				      unsigned long address, pmd_t *pmdp)
181 {
182 	BUG();
183 }
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185 #endif
186 
187 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
188 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
189 				 unsigned long address, pmd_t *pmdp);
190 #endif
191 
192 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
193 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
194 				       pgtable_t pgtable);
195 #endif
196 
197 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
198 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
199 #endif
200 
201 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
202 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
203 			    pmd_t *pmdp);
204 #endif
205 
206 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)207 static inline int pte_same(pte_t pte_a, pte_t pte_b)
208 {
209 	return pte_val(pte_a) == pte_val(pte_b);
210 }
211 #endif
212 
213 #ifndef __HAVE_ARCH_PTE_UNUSED
214 /*
215  * Some architectures provide facilities to virtualization guests
216  * so that they can flag allocated pages as unused. This allows the
217  * host to transparently reclaim unused pages. This function returns
218  * whether the pte's page is unused.
219  */
pte_unused(pte_t pte)220 static inline int pte_unused(pte_t pte)
221 {
222 	return 0;
223 }
224 #endif
225 
226 #ifndef __HAVE_ARCH_PMD_SAME
227 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_same(pmd_t pmd_a,pmd_t pmd_b)228 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
229 {
230 	return pmd_val(pmd_a) == pmd_val(pmd_b);
231 }
232 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmd_same(pmd_t pmd_a,pmd_t pmd_b)233 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
234 {
235 	BUG();
236 	return 0;
237 }
238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
239 #endif
240 
241 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
242 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
243 #endif
244 
245 #ifndef __HAVE_ARCH_MOVE_PTE
246 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
247 #endif
248 
249 #ifndef pte_accessible
250 # define pte_accessible(mm, pte)	((void)(pte), 1)
251 #endif
252 
253 #ifndef flush_tlb_fix_spurious_fault
254 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
255 #endif
256 
257 #ifndef pgprot_noncached
258 #define pgprot_noncached(prot)	(prot)
259 #endif
260 
261 #ifndef pgprot_writecombine
262 #define pgprot_writecombine pgprot_noncached
263 #endif
264 
265 #ifndef pgprot_device
266 #define pgprot_device pgprot_noncached
267 #endif
268 
269 #ifndef pgprot_modify
270 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)271 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
272 {
273 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
274 		newprot = pgprot_noncached(newprot);
275 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
276 		newprot = pgprot_writecombine(newprot);
277 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
278 		newprot = pgprot_device(newprot);
279 	return newprot;
280 }
281 #endif
282 
283 /*
284  * When walking page tables, get the address of the next boundary,
285  * or the end address of the range if that comes earlier.  Although no
286  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
287  */
288 
289 #define pgd_addr_end(addr, end)						\
290 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
291 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
292 })
293 
294 #ifndef pud_addr_end
295 #define pud_addr_end(addr, end)						\
296 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
297 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
298 })
299 #endif
300 
301 #ifndef pmd_addr_end
302 #define pmd_addr_end(addr, end)						\
303 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
304 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
305 })
306 #endif
307 
308 /*
309  * When walking page tables, we usually want to skip any p?d_none entries;
310  * and any p?d_bad entries - reporting the error before resetting to none.
311  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
312  */
313 void pgd_clear_bad(pgd_t *);
314 void pud_clear_bad(pud_t *);
315 void pmd_clear_bad(pmd_t *);
316 
pgd_none_or_clear_bad(pgd_t * pgd)317 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
318 {
319 	if (pgd_none(*pgd))
320 		return 1;
321 	if (unlikely(pgd_bad(*pgd))) {
322 		pgd_clear_bad(pgd);
323 		return 1;
324 	}
325 	return 0;
326 }
327 
pud_none_or_clear_bad(pud_t * pud)328 static inline int pud_none_or_clear_bad(pud_t *pud)
329 {
330 	if (pud_none(*pud))
331 		return 1;
332 	if (unlikely(pud_bad(*pud))) {
333 		pud_clear_bad(pud);
334 		return 1;
335 	}
336 	return 0;
337 }
338 
pmd_none_or_clear_bad(pmd_t * pmd)339 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
340 {
341 	if (pmd_none(*pmd))
342 		return 1;
343 	if (unlikely(pmd_bad(*pmd))) {
344 		pmd_clear_bad(pmd);
345 		return 1;
346 	}
347 	return 0;
348 }
349 
__ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)350 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
351 					     unsigned long addr,
352 					     pte_t *ptep)
353 {
354 	/*
355 	 * Get the current pte state, but zero it out to make it
356 	 * non-present, preventing the hardware from asynchronously
357 	 * updating it.
358 	 */
359 	return ptep_get_and_clear(mm, addr, ptep);
360 }
361 
__ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)362 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
363 					     unsigned long addr,
364 					     pte_t *ptep, pte_t pte)
365 {
366 	/*
367 	 * The pte is non-present, so there's no hardware state to
368 	 * preserve.
369 	 */
370 	set_pte_at(mm, addr, ptep, pte);
371 }
372 
373 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
374 /*
375  * Start a pte protection read-modify-write transaction, which
376  * protects against asynchronous hardware modifications to the pte.
377  * The intention is not to prevent the hardware from making pte
378  * updates, but to prevent any updates it may make from being lost.
379  *
380  * This does not protect against other software modifications of the
381  * pte; the appropriate pte lock must be held over the transation.
382  *
383  * Note that this interface is intended to be batchable, meaning that
384  * ptep_modify_prot_commit may not actually update the pte, but merely
385  * queue the update to be done at some later time.  The update must be
386  * actually committed before the pte lock is released, however.
387  */
ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)388 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
389 					   unsigned long addr,
390 					   pte_t *ptep)
391 {
392 	return __ptep_modify_prot_start(mm, addr, ptep);
393 }
394 
395 /*
396  * Commit an update to a pte, leaving any hardware-controlled bits in
397  * the PTE unmodified.
398  */
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)399 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
400 					   unsigned long addr,
401 					   pte_t *ptep, pte_t pte)
402 {
403 	__ptep_modify_prot_commit(mm, addr, ptep, pte);
404 }
405 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
406 #endif /* CONFIG_MMU */
407 
408 /*
409  * A facility to provide lazy MMU batching.  This allows PTE updates and
410  * page invalidations to be delayed until a call to leave lazy MMU mode
411  * is issued.  Some architectures may benefit from doing this, and it is
412  * beneficial for both shadow and direct mode hypervisors, which may batch
413  * the PTE updates which happen during this window.  Note that using this
414  * interface requires that read hazards be removed from the code.  A read
415  * hazard could result in the direct mode hypervisor case, since the actual
416  * write to the page tables may not yet have taken place, so reads though
417  * a raw PTE pointer after it has been modified are not guaranteed to be
418  * up to date.  This mode can only be entered and left under the protection of
419  * the page table locks for all page tables which may be modified.  In the UP
420  * case, this is required so that preemption is disabled, and in the SMP case,
421  * it must synchronize the delayed page table writes properly on other CPUs.
422  */
423 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
424 #define arch_enter_lazy_mmu_mode()	do {} while (0)
425 #define arch_leave_lazy_mmu_mode()	do {} while (0)
426 #define arch_flush_lazy_mmu_mode()	do {} while (0)
427 #endif
428 
429 /*
430  * A facility to provide batching of the reload of page tables and
431  * other process state with the actual context switch code for
432  * paravirtualized guests.  By convention, only one of the batched
433  * update (lazy) modes (CPU, MMU) should be active at any given time,
434  * entry should never be nested, and entry and exits should always be
435  * paired.  This is for sanity of maintaining and reasoning about the
436  * kernel code.  In this case, the exit (end of the context switch) is
437  * in architecture-specific code, and so doesn't need a generic
438  * definition.
439  */
440 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
441 #define arch_start_context_switch(prev)	do {} while (0)
442 #endif
443 
444 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)445 static inline int pte_soft_dirty(pte_t pte)
446 {
447 	return 0;
448 }
449 
pmd_soft_dirty(pmd_t pmd)450 static inline int pmd_soft_dirty(pmd_t pmd)
451 {
452 	return 0;
453 }
454 
pte_mksoft_dirty(pte_t pte)455 static inline pte_t pte_mksoft_dirty(pte_t pte)
456 {
457 	return pte;
458 }
459 
pmd_mksoft_dirty(pmd_t pmd)460 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
461 {
462 	return pmd;
463 }
464 
pte_swp_mksoft_dirty(pte_t pte)465 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
466 {
467 	return pte;
468 }
469 
pte_swp_soft_dirty(pte_t pte)470 static inline int pte_swp_soft_dirty(pte_t pte)
471 {
472 	return 0;
473 }
474 
pte_swp_clear_soft_dirty(pte_t pte)475 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
476 {
477 	return pte;
478 }
479 #endif
480 
481 #ifndef __HAVE_PFNMAP_TRACKING
482 /*
483  * Interfaces that can be used by architecture code to keep track of
484  * memory type of pfn mappings specified by the remap_pfn_range,
485  * vm_insert_pfn.
486  */
487 
488 /*
489  * track_pfn_remap is called when a _new_ pfn mapping is being established
490  * by remap_pfn_range() for physical range indicated by pfn and size.
491  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)492 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
493 				  unsigned long pfn, unsigned long addr,
494 				  unsigned long size)
495 {
496 	return 0;
497 }
498 
499 /*
500  * track_pfn_insert is called when a _new_ single pfn is established
501  * by vm_insert_pfn().
502  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn)503 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
504 				   unsigned long pfn)
505 {
506 	return 0;
507 }
508 
509 /*
510  * track_pfn_copy is called when vma that is covering the pfnmap gets
511  * copied through copy_page_range().
512  */
track_pfn_copy(struct vm_area_struct * vma)513 static inline int track_pfn_copy(struct vm_area_struct *vma)
514 {
515 	return 0;
516 }
517 
518 /*
519  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
520  * untrack can be called for a specific region indicated by pfn and size or
521  * can be for the entire vma (in which case pfn, size are zero).
522  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)523 static inline void untrack_pfn(struct vm_area_struct *vma,
524 			       unsigned long pfn, unsigned long size)
525 {
526 }
527 #else
528 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
529 			   unsigned long pfn, unsigned long addr,
530 			   unsigned long size);
531 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
532 			    unsigned long pfn);
533 extern int track_pfn_copy(struct vm_area_struct *vma);
534 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
535 			unsigned long size);
536 #endif
537 
538 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)539 static inline int is_zero_pfn(unsigned long pfn)
540 {
541 	extern unsigned long zero_pfn;
542 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
543 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
544 }
545 
546 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
547 
548 #else
is_zero_pfn(unsigned long pfn)549 static inline int is_zero_pfn(unsigned long pfn)
550 {
551 	extern unsigned long zero_pfn;
552 	return pfn == zero_pfn;
553 }
554 
my_zero_pfn(unsigned long addr)555 static inline unsigned long my_zero_pfn(unsigned long addr)
556 {
557 	extern unsigned long zero_pfn;
558 	return zero_pfn;
559 }
560 #endif
561 
562 #ifdef CONFIG_MMU
563 
564 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)565 static inline int pmd_trans_huge(pmd_t pmd)
566 {
567 	return 0;
568 }
pmd_trans_splitting(pmd_t pmd)569 static inline int pmd_trans_splitting(pmd_t pmd)
570 {
571 	return 0;
572 }
573 #ifndef __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)574 static inline int pmd_write(pmd_t pmd)
575 {
576 	BUG();
577 	return 0;
578 }
579 #endif /* __HAVE_ARCH_PMD_WRITE */
580 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
581 
582 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)583 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
584 {
585 	/*
586 	 * Depend on compiler for an atomic pmd read. NOTE: this is
587 	 * only going to work, if the pmdval_t isn't larger than
588 	 * an unsigned long.
589 	 */
590 	return *pmdp;
591 }
592 #endif
593 
594 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl)595 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
596 					 spinlock_t *old_pmd_ptl)
597 {
598 	/*
599 	 * With split pmd lock we also need to move preallocated
600 	 * PTE page table if new_pmd is on different PMD page table.
601 	 */
602 	return new_pmd_ptl != old_pmd_ptl;
603 }
604 #endif
605 
606 /*
607  * This function is meant to be used by sites walking pagetables with
608  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
609  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
610  * into a null pmd and the transhuge page fault can convert a null pmd
611  * into an hugepmd or into a regular pmd (if the hugepage allocation
612  * fails). While holding the mmap_sem in read mode the pmd becomes
613  * stable and stops changing under us only if it's not null and not a
614  * transhuge pmd. When those races occurs and this function makes a
615  * difference vs the standard pmd_none_or_clear_bad, the result is
616  * undefined so behaving like if the pmd was none is safe (because it
617  * can return none anyway). The compiler level barrier() is critically
618  * important to compute the two checks atomically on the same pmdval.
619  *
620  * For 32bit kernels with a 64bit large pmd_t this automatically takes
621  * care of reading the pmd atomically to avoid SMP race conditions
622  * against pmd_populate() when the mmap_sem is hold for reading by the
623  * caller (a special atomic read not done by "gcc" as in the generic
624  * version above, is also needed when THP is disabled because the page
625  * fault can populate the pmd from under us).
626  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)627 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
628 {
629 	pmd_t pmdval = pmd_read_atomic(pmd);
630 	/*
631 	 * The barrier will stabilize the pmdval in a register or on
632 	 * the stack so that it will stop changing under the code.
633 	 *
634 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
635 	 * pmd_read_atomic is allowed to return a not atomic pmdval
636 	 * (for example pointing to an hugepage that has never been
637 	 * mapped in the pmd). The below checks will only care about
638 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
639 	 * exception of pmd_none(). So the important thing is that if
640 	 * the low part of the pmd is found null, the high part will
641 	 * be also null or the pmd_none() check below would be
642 	 * confused.
643 	 */
644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
645 	barrier();
646 #endif
647 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
648 		return 1;
649 	if (unlikely(pmd_bad(pmdval))) {
650 		pmd_clear_bad(pmd);
651 		return 1;
652 	}
653 	return 0;
654 }
655 
656 /*
657  * This is a noop if Transparent Hugepage Support is not built into
658  * the kernel. Otherwise it is equivalent to
659  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
660  * places that already verified the pmd is not none and they want to
661  * walk ptes while holding the mmap sem in read mode (write mode don't
662  * need this). If THP is not enabled, the pmd can't go away under the
663  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
664  * run a pmd_trans_unstable before walking the ptes after
665  * split_huge_page_pmd returns (because it may have run when the pmd
666  * become null, but then a page fault can map in a THP and not a
667  * regular page).
668  */
pmd_trans_unstable(pmd_t * pmd)669 static inline int pmd_trans_unstable(pmd_t *pmd)
670 {
671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
672 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
673 #else
674 	return 0;
675 #endif
676 }
677 
678 #ifndef CONFIG_NUMA_BALANCING
679 /*
680  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
681  * the only case the kernel cares is for NUMA balancing and is only ever set
682  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
683  * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
684  * is the responsibility of the caller to distinguish between PROT_NONE
685  * protections and NUMA hinting fault protections.
686  */
pte_protnone(pte_t pte)687 static inline int pte_protnone(pte_t pte)
688 {
689 	return 0;
690 }
691 
pmd_protnone(pmd_t pmd)692 static inline int pmd_protnone(pmd_t pmd)
693 {
694 	return 0;
695 }
696 #endif /* CONFIG_NUMA_BALANCING */
697 
698 #endif /* CONFIG_MMU */
699 
700 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
701 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
702 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
703 int pud_clear_huge(pud_t *pud);
704 int pmd_clear_huge(pmd_t *pmd);
705 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)706 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
707 {
708 	return 0;
709 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)710 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
711 {
712 	return 0;
713 }
pud_clear_huge(pud_t * pud)714 static inline int pud_clear_huge(pud_t *pud)
715 {
716 	return 0;
717 }
pmd_clear_huge(pmd_t * pmd)718 static inline int pmd_clear_huge(pmd_t *pmd)
719 {
720 	return 0;
721 }
722 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
723 
724 #endif /* !__ASSEMBLY__ */
725 
726 #ifndef io_remap_pfn_range
727 #define io_remap_pfn_range remap_pfn_range
728 #endif
729 
730 #endif /* _ASM_GENERIC_PGTABLE_H */
731