1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16
17 #include <asm/traps.h> /* dotraplinkage, ... */
18 #include <asm/pgalloc.h> /* pgd_*(), ... */
19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
21 #include <asm/vsyscall.h> /* emulate_vsyscall */
22
23 #define CREATE_TRACE_POINTS
24 #include <asm/trace/exceptions.h>
25
26 /*
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
34 */
35 enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42 };
43
44 /*
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
47 */
48 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
50 {
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
54 return 0;
55 }
56
kprobes_fault(struct pt_regs * regs)57 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
58 {
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
62 if (kprobes_built_in() && !user_mode(regs)) {
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70 }
71
72 /*
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * 64-bit mode:
81 *
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
86 */
87 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)88 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90 {
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104 #ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
113 return (!user_mode(regs) || user_64bit_mode(regs));
114 #endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132 }
133
134 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)135 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
136 {
137 unsigned char *max_instr;
138 unsigned char *instr;
139 int prefetch = 0;
140
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
145 if (error_code & PF_INSTR)
146 return 0;
147
148 instr = (void *)convert_ip_to_linear(current, regs);
149 max_instr = instr + 15;
150
151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
152 return 0;
153
154 while (instr < max_instr) {
155 unsigned char opcode;
156
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr++;
161
162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 break;
164 }
165 return prefetch;
166 }
167
168 static void
force_sig_info_fault(int si_signo,int si_code,unsigned long address,struct task_struct * tsk,int fault)169 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
170 struct task_struct *tsk, int fault)
171 {
172 unsigned lsb = 0;
173 siginfo_t info;
174
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
184
185 force_sig_info(si_signo, &info, tsk);
186 }
187
188 DEFINE_SPINLOCK(pgd_lock);
189 LIST_HEAD(pgd_list);
190
191 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)192 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
193 {
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
198
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
220 if (!pmd_present(*pmd))
221 set_pmd(pmd, *pmd_k);
222 else
223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
224
225 return pmd_k;
226 }
227
vmalloc_sync_all(void)228 void vmalloc_sync_all(void)
229 {
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
238 struct page *page;
239
240 spin_lock(&pgd_lock);
241 list_for_each_entry(page, &pgd_list, lru) {
242 spinlock_t *pgt_lock;
243 pmd_t *ret;
244
245 /* the pgt_lock only for Xen */
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
253 break;
254 }
255 spin_unlock(&pgd_lock);
256 }
257 }
258
259 /*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
vmalloc_fault(unsigned long address)264 static noinline int vmalloc_fault(unsigned long address)
265 {
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
274 WARN_ON_ONCE(in_nmi());
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 if (pmd_huge(*pmd_k))
289 return 0;
290
291 pte_k = pte_offset_kernel(pmd_k, address);
292 if (!pte_present(*pte_k))
293 return -1;
294
295 return 0;
296 }
297 NOKPROBE_SYMBOL(vmalloc_fault);
298
299 /*
300 * Did it hit the DOS screen memory VA from vm86 mode?
301 */
302 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)303 check_v8086_mode(struct pt_regs *regs, unsigned long address,
304 struct task_struct *tsk)
305 {
306 unsigned long bit;
307
308 if (!v8086_mode(regs))
309 return;
310
311 bit = (address - 0xA0000) >> PAGE_SHIFT;
312 if (bit < 32)
313 tsk->thread.screen_bitmap |= 1 << bit;
314 }
315
low_pfn(unsigned long pfn)316 static bool low_pfn(unsigned long pfn)
317 {
318 return pfn < max_low_pfn;
319 }
320
dump_pagetable(unsigned long address)321 static void dump_pagetable(unsigned long address)
322 {
323 pgd_t *base = __va(read_cr3());
324 pgd_t *pgd = &base[pgd_index(address)];
325 pmd_t *pmd;
326 pte_t *pte;
327
328 #ifdef CONFIG_X86_PAE
329 printk("*pdpt = %016Lx ", pgd_val(*pgd));
330 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
331 goto out;
332 #endif
333 pmd = pmd_offset(pud_offset(pgd, address), address);
334 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
335
336 /*
337 * We must not directly access the pte in the highpte
338 * case if the page table is located in highmem.
339 * And let's rather not kmap-atomic the pte, just in case
340 * it's allocated already:
341 */
342 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
343 goto out;
344
345 pte = pte_offset_kernel(pmd, address);
346 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
347 out:
348 printk("\n");
349 }
350
351 #else /* CONFIG_X86_64: */
352
vmalloc_sync_all(void)353 void vmalloc_sync_all(void)
354 {
355 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
356 }
357
358 /*
359 * 64-bit:
360 *
361 * Handle a fault on the vmalloc area
362 */
vmalloc_fault(unsigned long address)363 static noinline int vmalloc_fault(unsigned long address)
364 {
365 pgd_t *pgd, *pgd_ref;
366 pud_t *pud, *pud_ref;
367 pmd_t *pmd, *pmd_ref;
368 pte_t *pte, *pte_ref;
369
370 /* Make sure we are in vmalloc area: */
371 if (!(address >= VMALLOC_START && address < VMALLOC_END))
372 return -1;
373
374 WARN_ON_ONCE(in_nmi());
375
376 /*
377 * Copy kernel mappings over when needed. This can also
378 * happen within a race in page table update. In the later
379 * case just flush:
380 */
381 pgd = pgd_offset(current->active_mm, address);
382 pgd_ref = pgd_offset_k(address);
383 if (pgd_none(*pgd_ref))
384 return -1;
385
386 if (pgd_none(*pgd)) {
387 set_pgd(pgd, *pgd_ref);
388 arch_flush_lazy_mmu_mode();
389 } else {
390 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
391 }
392
393 /*
394 * Below here mismatches are bugs because these lower tables
395 * are shared:
396 */
397
398 pud = pud_offset(pgd, address);
399 pud_ref = pud_offset(pgd_ref, address);
400 if (pud_none(*pud_ref))
401 return -1;
402
403 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
404 BUG();
405
406 if (pud_huge(*pud))
407 return 0;
408
409 pmd = pmd_offset(pud, address);
410 pmd_ref = pmd_offset(pud_ref, address);
411 if (pmd_none(*pmd_ref))
412 return -1;
413
414 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
415 BUG();
416
417 if (pmd_huge(*pmd))
418 return 0;
419
420 pte_ref = pte_offset_kernel(pmd_ref, address);
421 if (!pte_present(*pte_ref))
422 return -1;
423
424 pte = pte_offset_kernel(pmd, address);
425
426 /*
427 * Don't use pte_page here, because the mappings can point
428 * outside mem_map, and the NUMA hash lookup cannot handle
429 * that:
430 */
431 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
432 BUG();
433
434 return 0;
435 }
436 NOKPROBE_SYMBOL(vmalloc_fault);
437
438 #ifdef CONFIG_CPU_SUP_AMD
439 static const char errata93_warning[] =
440 KERN_ERR
441 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
442 "******* Working around it, but it may cause SEGVs or burn power.\n"
443 "******* Please consider a BIOS update.\n"
444 "******* Disabling USB legacy in the BIOS may also help.\n";
445 #endif
446
447 /*
448 * No vm86 mode in 64-bit mode:
449 */
450 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)451 check_v8086_mode(struct pt_regs *regs, unsigned long address,
452 struct task_struct *tsk)
453 {
454 }
455
bad_address(void * p)456 static int bad_address(void *p)
457 {
458 unsigned long dummy;
459
460 return probe_kernel_address((unsigned long *)p, dummy);
461 }
462
dump_pagetable(unsigned long address)463 static void dump_pagetable(unsigned long address)
464 {
465 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
466 pgd_t *pgd = base + pgd_index(address);
467 pud_t *pud;
468 pmd_t *pmd;
469 pte_t *pte;
470
471 if (bad_address(pgd))
472 goto bad;
473
474 printk("PGD %lx ", pgd_val(*pgd));
475
476 if (!pgd_present(*pgd))
477 goto out;
478
479 pud = pud_offset(pgd, address);
480 if (bad_address(pud))
481 goto bad;
482
483 printk("PUD %lx ", pud_val(*pud));
484 if (!pud_present(*pud) || pud_large(*pud))
485 goto out;
486
487 pmd = pmd_offset(pud, address);
488 if (bad_address(pmd))
489 goto bad;
490
491 printk("PMD %lx ", pmd_val(*pmd));
492 if (!pmd_present(*pmd) || pmd_large(*pmd))
493 goto out;
494
495 pte = pte_offset_kernel(pmd, address);
496 if (bad_address(pte))
497 goto bad;
498
499 printk("PTE %lx", pte_val(*pte));
500 out:
501 printk("\n");
502 return;
503 bad:
504 printk("BAD\n");
505 }
506
507 #endif /* CONFIG_X86_64 */
508
509 /*
510 * Workaround for K8 erratum #93 & buggy BIOS.
511 *
512 * BIOS SMM functions are required to use a specific workaround
513 * to avoid corruption of the 64bit RIP register on C stepping K8.
514 *
515 * A lot of BIOS that didn't get tested properly miss this.
516 *
517 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
518 * Try to work around it here.
519 *
520 * Note we only handle faults in kernel here.
521 * Does nothing on 32-bit.
522 */
is_errata93(struct pt_regs * regs,unsigned long address)523 static int is_errata93(struct pt_regs *regs, unsigned long address)
524 {
525 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
526 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
527 || boot_cpu_data.x86 != 0xf)
528 return 0;
529
530 if (address != regs->ip)
531 return 0;
532
533 if ((address >> 32) != 0)
534 return 0;
535
536 address |= 0xffffffffUL << 32;
537 if ((address >= (u64)_stext && address <= (u64)_etext) ||
538 (address >= MODULES_VADDR && address <= MODULES_END)) {
539 printk_once(errata93_warning);
540 regs->ip = address;
541 return 1;
542 }
543 #endif
544 return 0;
545 }
546
547 /*
548 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
549 * to illegal addresses >4GB.
550 *
551 * We catch this in the page fault handler because these addresses
552 * are not reachable. Just detect this case and return. Any code
553 * segment in LDT is compatibility mode.
554 */
is_errata100(struct pt_regs * regs,unsigned long address)555 static int is_errata100(struct pt_regs *regs, unsigned long address)
556 {
557 #ifdef CONFIG_X86_64
558 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
559 return 1;
560 #endif
561 return 0;
562 }
563
is_f00f_bug(struct pt_regs * regs,unsigned long address)564 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
565 {
566 #ifdef CONFIG_X86_F00F_BUG
567 unsigned long nr;
568
569 /*
570 * Pentium F0 0F C7 C8 bug workaround:
571 */
572 if (boot_cpu_has_bug(X86_BUG_F00F)) {
573 nr = (address - idt_descr.address) >> 3;
574
575 if (nr == 6) {
576 do_invalid_op(regs, 0);
577 return 1;
578 }
579 }
580 #endif
581 return 0;
582 }
583
584 static const char nx_warning[] = KERN_CRIT
585 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
586 static const char smep_warning[] = KERN_CRIT
587 "unable to execute userspace code (SMEP?) (uid: %d)\n";
588
589 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)590 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
591 unsigned long address)
592 {
593 if (!oops_may_print())
594 return;
595
596 if (error_code & PF_INSTR) {
597 unsigned int level;
598 pgd_t *pgd;
599 pte_t *pte;
600
601 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
602 pgd += pgd_index(address);
603
604 pte = lookup_address_in_pgd(pgd, address, &level);
605
606 if (pte && pte_present(*pte) && !pte_exec(*pte))
607 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
608 if (pte && pte_present(*pte) && pte_exec(*pte) &&
609 (pgd_flags(*pgd) & _PAGE_USER) &&
610 (__read_cr4() & X86_CR4_SMEP))
611 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
612 }
613
614 printk(KERN_ALERT "BUG: unable to handle kernel ");
615 if (address < PAGE_SIZE)
616 printk(KERN_CONT "NULL pointer dereference");
617 else
618 printk(KERN_CONT "paging request");
619
620 printk(KERN_CONT " at %p\n", (void *) address);
621 printk(KERN_ALERT "IP:");
622 printk_address(regs->ip);
623
624 dump_pagetable(address);
625 }
626
627 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)628 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
629 unsigned long address)
630 {
631 struct task_struct *tsk;
632 unsigned long flags;
633 int sig;
634
635 flags = oops_begin();
636 tsk = current;
637 sig = SIGKILL;
638
639 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
640 tsk->comm, address);
641 dump_pagetable(address);
642
643 tsk->thread.cr2 = address;
644 tsk->thread.trap_nr = X86_TRAP_PF;
645 tsk->thread.error_code = error_code;
646
647 if (__die("Bad pagetable", regs, error_code))
648 sig = 0;
649
650 oops_end(flags, regs, sig);
651 }
652
653 static noinline void
no_context(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)654 no_context(struct pt_regs *regs, unsigned long error_code,
655 unsigned long address, int signal, int si_code)
656 {
657 struct task_struct *tsk = current;
658 unsigned long flags;
659 int sig;
660
661 /* Are we prepared to handle this kernel fault? */
662 if (fixup_exception(regs)) {
663 /*
664 * Any interrupt that takes a fault gets the fixup. This makes
665 * the below recursive fault logic only apply to a faults from
666 * task context.
667 */
668 if (in_interrupt())
669 return;
670
671 /*
672 * Per the above we're !in_interrupt(), aka. task context.
673 *
674 * In this case we need to make sure we're not recursively
675 * faulting through the emulate_vsyscall() logic.
676 */
677 if (current_thread_info()->sig_on_uaccess_error && signal) {
678 tsk->thread.trap_nr = X86_TRAP_PF;
679 tsk->thread.error_code = error_code | PF_USER;
680 tsk->thread.cr2 = address;
681
682 /* XXX: hwpoison faults will set the wrong code. */
683 force_sig_info_fault(signal, si_code, address, tsk, 0);
684 }
685
686 /*
687 * Barring that, we can do the fixup and be happy.
688 */
689 return;
690 }
691
692 /*
693 * 32-bit:
694 *
695 * Valid to do another page fault here, because if this fault
696 * had been triggered by is_prefetch fixup_exception would have
697 * handled it.
698 *
699 * 64-bit:
700 *
701 * Hall of shame of CPU/BIOS bugs.
702 */
703 if (is_prefetch(regs, error_code, address))
704 return;
705
706 if (is_errata93(regs, address))
707 return;
708
709 /*
710 * Oops. The kernel tried to access some bad page. We'll have to
711 * terminate things with extreme prejudice:
712 */
713 flags = oops_begin();
714
715 show_fault_oops(regs, error_code, address);
716
717 if (task_stack_end_corrupted(tsk))
718 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
719
720 tsk->thread.cr2 = address;
721 tsk->thread.trap_nr = X86_TRAP_PF;
722 tsk->thread.error_code = error_code;
723
724 sig = SIGKILL;
725 if (__die("Oops", regs, error_code))
726 sig = 0;
727
728 /* Executive summary in case the body of the oops scrolled away */
729 printk(KERN_DEFAULT "CR2: %016lx\n", address);
730
731 oops_end(flags, regs, sig);
732 }
733
734 /*
735 * Print out info about fatal segfaults, if the show_unhandled_signals
736 * sysctl is set:
737 */
738 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)739 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
740 unsigned long address, struct task_struct *tsk)
741 {
742 if (!unhandled_signal(tsk, SIGSEGV))
743 return;
744
745 if (!printk_ratelimit())
746 return;
747
748 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
749 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
750 tsk->comm, task_pid_nr(tsk), address,
751 (void *)regs->ip, (void *)regs->sp, error_code);
752
753 print_vma_addr(KERN_CONT " in ", regs->ip);
754
755 printk(KERN_CONT "\n");
756 }
757
758 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,int si_code)759 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
760 unsigned long address, int si_code)
761 {
762 struct task_struct *tsk = current;
763
764 /* User mode accesses just cause a SIGSEGV */
765 if (error_code & PF_USER) {
766 /*
767 * It's possible to have interrupts off here:
768 */
769 local_irq_enable();
770
771 /*
772 * Valid to do another page fault here because this one came
773 * from user space:
774 */
775 if (is_prefetch(regs, error_code, address))
776 return;
777
778 if (is_errata100(regs, address))
779 return;
780
781 #ifdef CONFIG_X86_64
782 /*
783 * Instruction fetch faults in the vsyscall page might need
784 * emulation.
785 */
786 if (unlikely((error_code & PF_INSTR) &&
787 ((address & ~0xfff) == VSYSCALL_ADDR))) {
788 if (emulate_vsyscall(regs, address))
789 return;
790 }
791 #endif
792 /* Kernel addresses are always protection faults: */
793 if (address >= TASK_SIZE)
794 error_code |= PF_PROT;
795
796 if (likely(show_unhandled_signals))
797 show_signal_msg(regs, error_code, address, tsk);
798
799 tsk->thread.cr2 = address;
800 tsk->thread.error_code = error_code;
801 tsk->thread.trap_nr = X86_TRAP_PF;
802
803 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
804
805 return;
806 }
807
808 if (is_f00f_bug(regs, address))
809 return;
810
811 no_context(regs, error_code, address, SIGSEGV, si_code);
812 }
813
814 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)815 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
816 unsigned long address)
817 {
818 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
819 }
820
821 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,int si_code)822 __bad_area(struct pt_regs *regs, unsigned long error_code,
823 unsigned long address, int si_code)
824 {
825 struct mm_struct *mm = current->mm;
826
827 /*
828 * Something tried to access memory that isn't in our memory map..
829 * Fix it, but check if it's kernel or user first..
830 */
831 up_read(&mm->mmap_sem);
832
833 __bad_area_nosemaphore(regs, error_code, address, si_code);
834 }
835
836 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)837 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
838 {
839 __bad_area(regs, error_code, address, SEGV_MAPERR);
840 }
841
842 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address)843 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
844 unsigned long address)
845 {
846 __bad_area(regs, error_code, address, SEGV_ACCERR);
847 }
848
849 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,unsigned int fault)850 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
851 unsigned int fault)
852 {
853 struct task_struct *tsk = current;
854 int code = BUS_ADRERR;
855
856 /* Kernel mode? Handle exceptions or die: */
857 if (!(error_code & PF_USER)) {
858 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
859 return;
860 }
861
862 /* User-space => ok to do another page fault: */
863 if (is_prefetch(regs, error_code, address))
864 return;
865
866 tsk->thread.cr2 = address;
867 tsk->thread.error_code = error_code;
868 tsk->thread.trap_nr = X86_TRAP_PF;
869
870 #ifdef CONFIG_MEMORY_FAILURE
871 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
872 printk(KERN_ERR
873 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
874 tsk->comm, tsk->pid, address);
875 code = BUS_MCEERR_AR;
876 }
877 #endif
878 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
879 }
880
881 static noinline void
mm_fault_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,unsigned int fault)882 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
883 unsigned long address, unsigned int fault)
884 {
885 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
886 no_context(regs, error_code, address, 0, 0);
887 return;
888 }
889
890 if (fault & VM_FAULT_OOM) {
891 /* Kernel mode? Handle exceptions or die: */
892 if (!(error_code & PF_USER)) {
893 no_context(regs, error_code, address,
894 SIGSEGV, SEGV_MAPERR);
895 return;
896 }
897
898 /*
899 * We ran out of memory, call the OOM killer, and return the
900 * userspace (which will retry the fault, or kill us if we got
901 * oom-killed):
902 */
903 pagefault_out_of_memory();
904 } else {
905 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
906 VM_FAULT_HWPOISON_LARGE))
907 do_sigbus(regs, error_code, address, fault);
908 else if (fault & VM_FAULT_SIGSEGV)
909 bad_area_nosemaphore(regs, error_code, address);
910 else
911 BUG();
912 }
913 }
914
spurious_fault_check(unsigned long error_code,pte_t * pte)915 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
916 {
917 if ((error_code & PF_WRITE) && !pte_write(*pte))
918 return 0;
919
920 if ((error_code & PF_INSTR) && !pte_exec(*pte))
921 return 0;
922
923 return 1;
924 }
925
926 /*
927 * Handle a spurious fault caused by a stale TLB entry.
928 *
929 * This allows us to lazily refresh the TLB when increasing the
930 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
931 * eagerly is very expensive since that implies doing a full
932 * cross-processor TLB flush, even if no stale TLB entries exist
933 * on other processors.
934 *
935 * Spurious faults may only occur if the TLB contains an entry with
936 * fewer permission than the page table entry. Non-present (P = 0)
937 * and reserved bit (R = 1) faults are never spurious.
938 *
939 * There are no security implications to leaving a stale TLB when
940 * increasing the permissions on a page.
941 *
942 * Returns non-zero if a spurious fault was handled, zero otherwise.
943 *
944 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
945 * (Optional Invalidation).
946 */
947 static noinline int
spurious_fault(unsigned long error_code,unsigned long address)948 spurious_fault(unsigned long error_code, unsigned long address)
949 {
950 pgd_t *pgd;
951 pud_t *pud;
952 pmd_t *pmd;
953 pte_t *pte;
954 int ret;
955
956 /*
957 * Only writes to RO or instruction fetches from NX may cause
958 * spurious faults.
959 *
960 * These could be from user or supervisor accesses but the TLB
961 * is only lazily flushed after a kernel mapping protection
962 * change, so user accesses are not expected to cause spurious
963 * faults.
964 */
965 if (error_code != (PF_WRITE | PF_PROT)
966 && error_code != (PF_INSTR | PF_PROT))
967 return 0;
968
969 pgd = init_mm.pgd + pgd_index(address);
970 if (!pgd_present(*pgd))
971 return 0;
972
973 pud = pud_offset(pgd, address);
974 if (!pud_present(*pud))
975 return 0;
976
977 if (pud_large(*pud))
978 return spurious_fault_check(error_code, (pte_t *) pud);
979
980 pmd = pmd_offset(pud, address);
981 if (!pmd_present(*pmd))
982 return 0;
983
984 if (pmd_large(*pmd))
985 return spurious_fault_check(error_code, (pte_t *) pmd);
986
987 pte = pte_offset_kernel(pmd, address);
988 if (!pte_present(*pte))
989 return 0;
990
991 ret = spurious_fault_check(error_code, pte);
992 if (!ret)
993 return 0;
994
995 /*
996 * Make sure we have permissions in PMD.
997 * If not, then there's a bug in the page tables:
998 */
999 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1000 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1001
1002 return ret;
1003 }
1004 NOKPROBE_SYMBOL(spurious_fault);
1005
1006 int show_unhandled_signals = 1;
1007
1008 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1009 access_error(unsigned long error_code, struct vm_area_struct *vma)
1010 {
1011 if (error_code & PF_WRITE) {
1012 /* write, present and write, not present: */
1013 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1014 return 1;
1015 return 0;
1016 }
1017
1018 /* read, present: */
1019 if (unlikely(error_code & PF_PROT))
1020 return 1;
1021
1022 /* read, not present: */
1023 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1024 return 1;
1025
1026 return 0;
1027 }
1028
fault_in_kernel_space(unsigned long address)1029 static int fault_in_kernel_space(unsigned long address)
1030 {
1031 return address >= TASK_SIZE_MAX;
1032 }
1033
smap_violation(int error_code,struct pt_regs * regs)1034 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1035 {
1036 if (!IS_ENABLED(CONFIG_X86_SMAP))
1037 return false;
1038
1039 if (!static_cpu_has(X86_FEATURE_SMAP))
1040 return false;
1041
1042 if (error_code & PF_USER)
1043 return false;
1044
1045 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1046 return false;
1047
1048 return true;
1049 }
1050
1051 /*
1052 * This routine handles page faults. It determines the address,
1053 * and the problem, and then passes it off to one of the appropriate
1054 * routines.
1055 *
1056 * This function must have noinline because both callers
1057 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1058 * guarantees there's a function trace entry.
1059 */
1060 static noinline void
__do_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1061 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1062 unsigned long address)
1063 {
1064 struct vm_area_struct *vma;
1065 struct task_struct *tsk;
1066 struct mm_struct *mm;
1067 int fault, major = 0;
1068 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1069
1070 tsk = current;
1071 mm = tsk->mm;
1072
1073 /*
1074 * Detect and handle instructions that would cause a page fault for
1075 * both a tracked kernel page and a userspace page.
1076 */
1077 if (kmemcheck_active(regs))
1078 kmemcheck_hide(regs);
1079 prefetchw(&mm->mmap_sem);
1080
1081 if (unlikely(kmmio_fault(regs, address)))
1082 return;
1083
1084 /*
1085 * We fault-in kernel-space virtual memory on-demand. The
1086 * 'reference' page table is init_mm.pgd.
1087 *
1088 * NOTE! We MUST NOT take any locks for this case. We may
1089 * be in an interrupt or a critical region, and should
1090 * only copy the information from the master page table,
1091 * nothing more.
1092 *
1093 * This verifies that the fault happens in kernel space
1094 * (error_code & 4) == 0, and that the fault was not a
1095 * protection error (error_code & 9) == 0.
1096 */
1097 if (unlikely(fault_in_kernel_space(address))) {
1098 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1099 if (vmalloc_fault(address) >= 0)
1100 return;
1101
1102 if (kmemcheck_fault(regs, address, error_code))
1103 return;
1104 }
1105
1106 /* Can handle a stale RO->RW TLB: */
1107 if (spurious_fault(error_code, address))
1108 return;
1109
1110 /* kprobes don't want to hook the spurious faults: */
1111 if (kprobes_fault(regs))
1112 return;
1113 /*
1114 * Don't take the mm semaphore here. If we fixup a prefetch
1115 * fault we could otherwise deadlock:
1116 */
1117 bad_area_nosemaphore(regs, error_code, address);
1118
1119 return;
1120 }
1121
1122 /* kprobes don't want to hook the spurious faults: */
1123 if (unlikely(kprobes_fault(regs)))
1124 return;
1125
1126 if (unlikely(error_code & PF_RSVD))
1127 pgtable_bad(regs, error_code, address);
1128
1129 if (unlikely(smap_violation(error_code, regs))) {
1130 bad_area_nosemaphore(regs, error_code, address);
1131 return;
1132 }
1133
1134 /*
1135 * If we're in an interrupt, have no user context or are running
1136 * in an atomic region then we must not take the fault:
1137 */
1138 if (unlikely(in_atomic() || !mm)) {
1139 bad_area_nosemaphore(regs, error_code, address);
1140 return;
1141 }
1142
1143 /*
1144 * It's safe to allow irq's after cr2 has been saved and the
1145 * vmalloc fault has been handled.
1146 *
1147 * User-mode registers count as a user access even for any
1148 * potential system fault or CPU buglet:
1149 */
1150 if (user_mode(regs)) {
1151 local_irq_enable();
1152 error_code |= PF_USER;
1153 flags |= FAULT_FLAG_USER;
1154 } else {
1155 if (regs->flags & X86_EFLAGS_IF)
1156 local_irq_enable();
1157 }
1158
1159 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1160
1161 if (error_code & PF_WRITE)
1162 flags |= FAULT_FLAG_WRITE;
1163
1164 /*
1165 * When running in the kernel we expect faults to occur only to
1166 * addresses in user space. All other faults represent errors in
1167 * the kernel and should generate an OOPS. Unfortunately, in the
1168 * case of an erroneous fault occurring in a code path which already
1169 * holds mmap_sem we will deadlock attempting to validate the fault
1170 * against the address space. Luckily the kernel only validly
1171 * references user space from well defined areas of code, which are
1172 * listed in the exceptions table.
1173 *
1174 * As the vast majority of faults will be valid we will only perform
1175 * the source reference check when there is a possibility of a
1176 * deadlock. Attempt to lock the address space, if we cannot we then
1177 * validate the source. If this is invalid we can skip the address
1178 * space check, thus avoiding the deadlock:
1179 */
1180 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1181 if ((error_code & PF_USER) == 0 &&
1182 !search_exception_tables(regs->ip)) {
1183 bad_area_nosemaphore(regs, error_code, address);
1184 return;
1185 }
1186 retry:
1187 down_read(&mm->mmap_sem);
1188 } else {
1189 /*
1190 * The above down_read_trylock() might have succeeded in
1191 * which case we'll have missed the might_sleep() from
1192 * down_read():
1193 */
1194 might_sleep();
1195 }
1196
1197 vma = find_vma(mm, address);
1198 if (unlikely(!vma)) {
1199 bad_area(regs, error_code, address);
1200 return;
1201 }
1202 if (likely(vma->vm_start <= address))
1203 goto good_area;
1204 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1205 bad_area(regs, error_code, address);
1206 return;
1207 }
1208 if (error_code & PF_USER) {
1209 /*
1210 * Accessing the stack below %sp is always a bug.
1211 * The large cushion allows instructions like enter
1212 * and pusha to work. ("enter $65535, $31" pushes
1213 * 32 pointers and then decrements %sp by 65535.)
1214 */
1215 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1216 bad_area(regs, error_code, address);
1217 return;
1218 }
1219 }
1220 if (unlikely(expand_stack(vma, address))) {
1221 bad_area(regs, error_code, address);
1222 return;
1223 }
1224
1225 /*
1226 * Ok, we have a good vm_area for this memory access, so
1227 * we can handle it..
1228 */
1229 good_area:
1230 if (unlikely(access_error(error_code, vma))) {
1231 bad_area_access_error(regs, error_code, address);
1232 return;
1233 }
1234
1235 /*
1236 * If for any reason at all we couldn't handle the fault,
1237 * make sure we exit gracefully rather than endlessly redo
1238 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1239 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1240 */
1241 fault = handle_mm_fault(mm, vma, address, flags);
1242 major |= fault & VM_FAULT_MAJOR;
1243
1244 /*
1245 * If we need to retry the mmap_sem has already been released,
1246 * and if there is a fatal signal pending there is no guarantee
1247 * that we made any progress. Handle this case first.
1248 */
1249 if (unlikely(fault & VM_FAULT_RETRY)) {
1250 /* Retry at most once */
1251 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1252 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1253 flags |= FAULT_FLAG_TRIED;
1254 if (!fatal_signal_pending(tsk))
1255 goto retry;
1256 }
1257
1258 /* User mode? Just return to handle the fatal exception */
1259 if (flags & FAULT_FLAG_USER)
1260 return;
1261
1262 /* Not returning to user mode? Handle exceptions or die: */
1263 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1264 return;
1265 }
1266
1267 up_read(&mm->mmap_sem);
1268 if (unlikely(fault & VM_FAULT_ERROR)) {
1269 mm_fault_error(regs, error_code, address, fault);
1270 return;
1271 }
1272
1273 /*
1274 * Major/minor page fault accounting. If any of the events
1275 * returned VM_FAULT_MAJOR, we account it as a major fault.
1276 */
1277 if (major) {
1278 tsk->maj_flt++;
1279 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1280 } else {
1281 tsk->min_flt++;
1282 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1283 }
1284
1285 check_v8086_mode(regs, address, tsk);
1286 }
1287 NOKPROBE_SYMBOL(__do_page_fault);
1288
1289 dotraplinkage void notrace
do_page_fault(struct pt_regs * regs,unsigned long error_code)1290 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1291 {
1292 unsigned long address = read_cr2(); /* Get the faulting address */
1293 enum ctx_state prev_state;
1294
1295 /*
1296 * We must have this function tagged with __kprobes, notrace and call
1297 * read_cr2() before calling anything else. To avoid calling any kind
1298 * of tracing machinery before we've observed the CR2 value.
1299 *
1300 * exception_{enter,exit}() contain all sorts of tracepoints.
1301 */
1302
1303 prev_state = exception_enter();
1304 __do_page_fault(regs, error_code, address);
1305 exception_exit(prev_state);
1306 }
1307 NOKPROBE_SYMBOL(do_page_fault);
1308
1309 #ifdef CONFIG_TRACING
1310 static nokprobe_inline void
trace_page_fault_entries(unsigned long address,struct pt_regs * regs,unsigned long error_code)1311 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1312 unsigned long error_code)
1313 {
1314 if (user_mode(regs))
1315 trace_page_fault_user(address, regs, error_code);
1316 else
1317 trace_page_fault_kernel(address, regs, error_code);
1318 }
1319
1320 dotraplinkage void notrace
trace_do_page_fault(struct pt_regs * regs,unsigned long error_code)1321 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1322 {
1323 /*
1324 * The exception_enter and tracepoint processing could
1325 * trigger another page faults (user space callchain
1326 * reading) and destroy the original cr2 value, so read
1327 * the faulting address now.
1328 */
1329 unsigned long address = read_cr2();
1330 enum ctx_state prev_state;
1331
1332 prev_state = exception_enter();
1333 trace_page_fault_entries(address, regs, error_code);
1334 __do_page_fault(regs, error_code, address);
1335 exception_exit(prev_state);
1336 }
1337 NOKPROBE_SYMBOL(trace_do_page_fault);
1338 #endif /* CONFIG_TRACING */
1339