1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5  */
6 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
7 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
8 #include <linux/module.h>		/* search_exception_table	*/
9 #include <linux/bootmem.h>		/* max_low_pfn			*/
10 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
11 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
12 #include <linux/perf_event.h>		/* perf_sw_event		*/
13 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
14 #include <linux/prefetch.h>		/* prefetchw			*/
15 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
16 
17 #include <asm/traps.h>			/* dotraplinkage, ...		*/
18 #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
19 #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
20 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
21 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
22 
23 #define CREATE_TRACE_POINTS
24 #include <asm/trace/exceptions.h>
25 
26 /*
27  * Page fault error code bits:
28  *
29  *   bit 0 ==	 0: no page found	1: protection fault
30  *   bit 1 ==	 0: read access		1: write access
31  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
32  *   bit 3 ==				1: use of reserved bit detected
33  *   bit 4 ==				1: fault was an instruction fetch
34  */
35 enum x86_pf_error_code {
36 
37 	PF_PROT		=		1 << 0,
38 	PF_WRITE	=		1 << 1,
39 	PF_USER		=		1 << 2,
40 	PF_RSVD		=		1 << 3,
41 	PF_INSTR	=		1 << 4,
42 };
43 
44 /*
45  * Returns 0 if mmiotrace is disabled, or if the fault is not
46  * handled by mmiotrace:
47  */
48 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
50 {
51 	if (unlikely(is_kmmio_active()))
52 		if (kmmio_handler(regs, addr) == 1)
53 			return -1;
54 	return 0;
55 }
56 
kprobes_fault(struct pt_regs * regs)57 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
58 {
59 	int ret = 0;
60 
61 	/* kprobe_running() needs smp_processor_id() */
62 	if (kprobes_built_in() && !user_mode(regs)) {
63 		preempt_disable();
64 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 			ret = 1;
66 		preempt_enable();
67 	}
68 
69 	return ret;
70 }
71 
72 /*
73  * Prefetch quirks:
74  *
75  * 32-bit mode:
76  *
77  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78  *   Check that here and ignore it.
79  *
80  * 64-bit mode:
81  *
82  *   Sometimes the CPU reports invalid exceptions on prefetch.
83  *   Check that here and ignore it.
84  *
85  * Opcode checker based on code by Richard Brunner.
86  */
87 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)88 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 		      unsigned char opcode, int *prefetch)
90 {
91 	unsigned char instr_hi = opcode & 0xf0;
92 	unsigned char instr_lo = opcode & 0x0f;
93 
94 	switch (instr_hi) {
95 	case 0x20:
96 	case 0x30:
97 		/*
98 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 		 * In X86_64 long mode, the CPU will signal invalid
100 		 * opcode if some of these prefixes are present so
101 		 * X86_64 will never get here anyway
102 		 */
103 		return ((instr_lo & 7) == 0x6);
104 #ifdef CONFIG_X86_64
105 	case 0x40:
106 		/*
107 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 		 * Need to figure out under what instruction mode the
109 		 * instruction was issued. Could check the LDT for lm,
110 		 * but for now it's good enough to assume that long
111 		 * mode only uses well known segments or kernel.
112 		 */
113 		return (!user_mode(regs) || user_64bit_mode(regs));
114 #endif
115 	case 0x60:
116 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
117 		return (instr_lo & 0xC) == 0x4;
118 	case 0xF0:
119 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 		return !instr_lo || (instr_lo>>1) == 1;
121 	case 0x00:
122 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
123 		if (probe_kernel_address(instr, opcode))
124 			return 0;
125 
126 		*prefetch = (instr_lo == 0xF) &&
127 			(opcode == 0x0D || opcode == 0x18);
128 		return 0;
129 	default:
130 		return 0;
131 	}
132 }
133 
134 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)135 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
136 {
137 	unsigned char *max_instr;
138 	unsigned char *instr;
139 	int prefetch = 0;
140 
141 	/*
142 	 * If it was a exec (instruction fetch) fault on NX page, then
143 	 * do not ignore the fault:
144 	 */
145 	if (error_code & PF_INSTR)
146 		return 0;
147 
148 	instr = (void *)convert_ip_to_linear(current, regs);
149 	max_instr = instr + 15;
150 
151 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
152 		return 0;
153 
154 	while (instr < max_instr) {
155 		unsigned char opcode;
156 
157 		if (probe_kernel_address(instr, opcode))
158 			break;
159 
160 		instr++;
161 
162 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 			break;
164 	}
165 	return prefetch;
166 }
167 
168 static void
force_sig_info_fault(int si_signo,int si_code,unsigned long address,struct task_struct * tsk,int fault)169 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
170 		     struct task_struct *tsk, int fault)
171 {
172 	unsigned lsb = 0;
173 	siginfo_t info;
174 
175 	info.si_signo	= si_signo;
176 	info.si_errno	= 0;
177 	info.si_code	= si_code;
178 	info.si_addr	= (void __user *)address;
179 	if (fault & VM_FAULT_HWPOISON_LARGE)
180 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 	if (fault & VM_FAULT_HWPOISON)
182 		lsb = PAGE_SHIFT;
183 	info.si_addr_lsb = lsb;
184 
185 	force_sig_info(si_signo, &info, tsk);
186 }
187 
188 DEFINE_SPINLOCK(pgd_lock);
189 LIST_HEAD(pgd_list);
190 
191 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)192 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
193 {
194 	unsigned index = pgd_index(address);
195 	pgd_t *pgd_k;
196 	pud_t *pud, *pud_k;
197 	pmd_t *pmd, *pmd_k;
198 
199 	pgd += index;
200 	pgd_k = init_mm.pgd + index;
201 
202 	if (!pgd_present(*pgd_k))
203 		return NULL;
204 
205 	/*
206 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 	 * and redundant with the set_pmd() on non-PAE. As would
208 	 * set_pud.
209 	 */
210 	pud = pud_offset(pgd, address);
211 	pud_k = pud_offset(pgd_k, address);
212 	if (!pud_present(*pud_k))
213 		return NULL;
214 
215 	pmd = pmd_offset(pud, address);
216 	pmd_k = pmd_offset(pud_k, address);
217 	if (!pmd_present(*pmd_k))
218 		return NULL;
219 
220 	if (!pmd_present(*pmd))
221 		set_pmd(pmd, *pmd_k);
222 	else
223 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
224 
225 	return pmd_k;
226 }
227 
vmalloc_sync_all(void)228 void vmalloc_sync_all(void)
229 {
230 	unsigned long address;
231 
232 	if (SHARED_KERNEL_PMD)
233 		return;
234 
235 	for (address = VMALLOC_START & PMD_MASK;
236 	     address >= TASK_SIZE && address < FIXADDR_TOP;
237 	     address += PMD_SIZE) {
238 		struct page *page;
239 
240 		spin_lock(&pgd_lock);
241 		list_for_each_entry(page, &pgd_list, lru) {
242 			spinlock_t *pgt_lock;
243 			pmd_t *ret;
244 
245 			/* the pgt_lock only for Xen */
246 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247 
248 			spin_lock(pgt_lock);
249 			ret = vmalloc_sync_one(page_address(page), address);
250 			spin_unlock(pgt_lock);
251 
252 			if (!ret)
253 				break;
254 		}
255 		spin_unlock(&pgd_lock);
256 	}
257 }
258 
259 /*
260  * 32-bit:
261  *
262  *   Handle a fault on the vmalloc or module mapping area
263  */
vmalloc_fault(unsigned long address)264 static noinline int vmalloc_fault(unsigned long address)
265 {
266 	unsigned long pgd_paddr;
267 	pmd_t *pmd_k;
268 	pte_t *pte_k;
269 
270 	/* Make sure we are in vmalloc area: */
271 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 		return -1;
273 
274 	WARN_ON_ONCE(in_nmi());
275 
276 	/*
277 	 * Synchronize this task's top level page-table
278 	 * with the 'reference' page table.
279 	 *
280 	 * Do _not_ use "current" here. We might be inside
281 	 * an interrupt in the middle of a task switch..
282 	 */
283 	pgd_paddr = read_cr3();
284 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 	if (!pmd_k)
286 		return -1;
287 
288 	if (pmd_huge(*pmd_k))
289 		return 0;
290 
291 	pte_k = pte_offset_kernel(pmd_k, address);
292 	if (!pte_present(*pte_k))
293 		return -1;
294 
295 	return 0;
296 }
297 NOKPROBE_SYMBOL(vmalloc_fault);
298 
299 /*
300  * Did it hit the DOS screen memory VA from vm86 mode?
301  */
302 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)303 check_v8086_mode(struct pt_regs *regs, unsigned long address,
304 		 struct task_struct *tsk)
305 {
306 	unsigned long bit;
307 
308 	if (!v8086_mode(regs))
309 		return;
310 
311 	bit = (address - 0xA0000) >> PAGE_SHIFT;
312 	if (bit < 32)
313 		tsk->thread.screen_bitmap |= 1 << bit;
314 }
315 
low_pfn(unsigned long pfn)316 static bool low_pfn(unsigned long pfn)
317 {
318 	return pfn < max_low_pfn;
319 }
320 
dump_pagetable(unsigned long address)321 static void dump_pagetable(unsigned long address)
322 {
323 	pgd_t *base = __va(read_cr3());
324 	pgd_t *pgd = &base[pgd_index(address)];
325 	pmd_t *pmd;
326 	pte_t *pte;
327 
328 #ifdef CONFIG_X86_PAE
329 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
330 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
331 		goto out;
332 #endif
333 	pmd = pmd_offset(pud_offset(pgd, address), address);
334 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
335 
336 	/*
337 	 * We must not directly access the pte in the highpte
338 	 * case if the page table is located in highmem.
339 	 * And let's rather not kmap-atomic the pte, just in case
340 	 * it's allocated already:
341 	 */
342 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
343 		goto out;
344 
345 	pte = pte_offset_kernel(pmd, address);
346 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
347 out:
348 	printk("\n");
349 }
350 
351 #else /* CONFIG_X86_64: */
352 
vmalloc_sync_all(void)353 void vmalloc_sync_all(void)
354 {
355 	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
356 }
357 
358 /*
359  * 64-bit:
360  *
361  *   Handle a fault on the vmalloc area
362  */
vmalloc_fault(unsigned long address)363 static noinline int vmalloc_fault(unsigned long address)
364 {
365 	pgd_t *pgd, *pgd_ref;
366 	pud_t *pud, *pud_ref;
367 	pmd_t *pmd, *pmd_ref;
368 	pte_t *pte, *pte_ref;
369 
370 	/* Make sure we are in vmalloc area: */
371 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
372 		return -1;
373 
374 	WARN_ON_ONCE(in_nmi());
375 
376 	/*
377 	 * Copy kernel mappings over when needed. This can also
378 	 * happen within a race in page table update. In the later
379 	 * case just flush:
380 	 */
381 	pgd = pgd_offset(current->active_mm, address);
382 	pgd_ref = pgd_offset_k(address);
383 	if (pgd_none(*pgd_ref))
384 		return -1;
385 
386 	if (pgd_none(*pgd)) {
387 		set_pgd(pgd, *pgd_ref);
388 		arch_flush_lazy_mmu_mode();
389 	} else {
390 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
391 	}
392 
393 	/*
394 	 * Below here mismatches are bugs because these lower tables
395 	 * are shared:
396 	 */
397 
398 	pud = pud_offset(pgd, address);
399 	pud_ref = pud_offset(pgd_ref, address);
400 	if (pud_none(*pud_ref))
401 		return -1;
402 
403 	if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
404 		BUG();
405 
406 	if (pud_huge(*pud))
407 		return 0;
408 
409 	pmd = pmd_offset(pud, address);
410 	pmd_ref = pmd_offset(pud_ref, address);
411 	if (pmd_none(*pmd_ref))
412 		return -1;
413 
414 	if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
415 		BUG();
416 
417 	if (pmd_huge(*pmd))
418 		return 0;
419 
420 	pte_ref = pte_offset_kernel(pmd_ref, address);
421 	if (!pte_present(*pte_ref))
422 		return -1;
423 
424 	pte = pte_offset_kernel(pmd, address);
425 
426 	/*
427 	 * Don't use pte_page here, because the mappings can point
428 	 * outside mem_map, and the NUMA hash lookup cannot handle
429 	 * that:
430 	 */
431 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
432 		BUG();
433 
434 	return 0;
435 }
436 NOKPROBE_SYMBOL(vmalloc_fault);
437 
438 #ifdef CONFIG_CPU_SUP_AMD
439 static const char errata93_warning[] =
440 KERN_ERR
441 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
442 "******* Working around it, but it may cause SEGVs or burn power.\n"
443 "******* Please consider a BIOS update.\n"
444 "******* Disabling USB legacy in the BIOS may also help.\n";
445 #endif
446 
447 /*
448  * No vm86 mode in 64-bit mode:
449  */
450 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)451 check_v8086_mode(struct pt_regs *regs, unsigned long address,
452 		 struct task_struct *tsk)
453 {
454 }
455 
bad_address(void * p)456 static int bad_address(void *p)
457 {
458 	unsigned long dummy;
459 
460 	return probe_kernel_address((unsigned long *)p, dummy);
461 }
462 
dump_pagetable(unsigned long address)463 static void dump_pagetable(unsigned long address)
464 {
465 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
466 	pgd_t *pgd = base + pgd_index(address);
467 	pud_t *pud;
468 	pmd_t *pmd;
469 	pte_t *pte;
470 
471 	if (bad_address(pgd))
472 		goto bad;
473 
474 	printk("PGD %lx ", pgd_val(*pgd));
475 
476 	if (!pgd_present(*pgd))
477 		goto out;
478 
479 	pud = pud_offset(pgd, address);
480 	if (bad_address(pud))
481 		goto bad;
482 
483 	printk("PUD %lx ", pud_val(*pud));
484 	if (!pud_present(*pud) || pud_large(*pud))
485 		goto out;
486 
487 	pmd = pmd_offset(pud, address);
488 	if (bad_address(pmd))
489 		goto bad;
490 
491 	printk("PMD %lx ", pmd_val(*pmd));
492 	if (!pmd_present(*pmd) || pmd_large(*pmd))
493 		goto out;
494 
495 	pte = pte_offset_kernel(pmd, address);
496 	if (bad_address(pte))
497 		goto bad;
498 
499 	printk("PTE %lx", pte_val(*pte));
500 out:
501 	printk("\n");
502 	return;
503 bad:
504 	printk("BAD\n");
505 }
506 
507 #endif /* CONFIG_X86_64 */
508 
509 /*
510  * Workaround for K8 erratum #93 & buggy BIOS.
511  *
512  * BIOS SMM functions are required to use a specific workaround
513  * to avoid corruption of the 64bit RIP register on C stepping K8.
514  *
515  * A lot of BIOS that didn't get tested properly miss this.
516  *
517  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
518  * Try to work around it here.
519  *
520  * Note we only handle faults in kernel here.
521  * Does nothing on 32-bit.
522  */
is_errata93(struct pt_regs * regs,unsigned long address)523 static int is_errata93(struct pt_regs *regs, unsigned long address)
524 {
525 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
526 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
527 	    || boot_cpu_data.x86 != 0xf)
528 		return 0;
529 
530 	if (address != regs->ip)
531 		return 0;
532 
533 	if ((address >> 32) != 0)
534 		return 0;
535 
536 	address |= 0xffffffffUL << 32;
537 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
538 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
539 		printk_once(errata93_warning);
540 		regs->ip = address;
541 		return 1;
542 	}
543 #endif
544 	return 0;
545 }
546 
547 /*
548  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
549  * to illegal addresses >4GB.
550  *
551  * We catch this in the page fault handler because these addresses
552  * are not reachable. Just detect this case and return.  Any code
553  * segment in LDT is compatibility mode.
554  */
is_errata100(struct pt_regs * regs,unsigned long address)555 static int is_errata100(struct pt_regs *regs, unsigned long address)
556 {
557 #ifdef CONFIG_X86_64
558 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
559 		return 1;
560 #endif
561 	return 0;
562 }
563 
is_f00f_bug(struct pt_regs * regs,unsigned long address)564 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
565 {
566 #ifdef CONFIG_X86_F00F_BUG
567 	unsigned long nr;
568 
569 	/*
570 	 * Pentium F0 0F C7 C8 bug workaround:
571 	 */
572 	if (boot_cpu_has_bug(X86_BUG_F00F)) {
573 		nr = (address - idt_descr.address) >> 3;
574 
575 		if (nr == 6) {
576 			do_invalid_op(regs, 0);
577 			return 1;
578 		}
579 	}
580 #endif
581 	return 0;
582 }
583 
584 static const char nx_warning[] = KERN_CRIT
585 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
586 static const char smep_warning[] = KERN_CRIT
587 "unable to execute userspace code (SMEP?) (uid: %d)\n";
588 
589 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)590 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
591 		unsigned long address)
592 {
593 	if (!oops_may_print())
594 		return;
595 
596 	if (error_code & PF_INSTR) {
597 		unsigned int level;
598 		pgd_t *pgd;
599 		pte_t *pte;
600 
601 		pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
602 		pgd += pgd_index(address);
603 
604 		pte = lookup_address_in_pgd(pgd, address, &level);
605 
606 		if (pte && pte_present(*pte) && !pte_exec(*pte))
607 			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
608 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
609 				(pgd_flags(*pgd) & _PAGE_USER) &&
610 				(__read_cr4() & X86_CR4_SMEP))
611 			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
612 	}
613 
614 	printk(KERN_ALERT "BUG: unable to handle kernel ");
615 	if (address < PAGE_SIZE)
616 		printk(KERN_CONT "NULL pointer dereference");
617 	else
618 		printk(KERN_CONT "paging request");
619 
620 	printk(KERN_CONT " at %p\n", (void *) address);
621 	printk(KERN_ALERT "IP:");
622 	printk_address(regs->ip);
623 
624 	dump_pagetable(address);
625 }
626 
627 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)628 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
629 	    unsigned long address)
630 {
631 	struct task_struct *tsk;
632 	unsigned long flags;
633 	int sig;
634 
635 	flags = oops_begin();
636 	tsk = current;
637 	sig = SIGKILL;
638 
639 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
640 	       tsk->comm, address);
641 	dump_pagetable(address);
642 
643 	tsk->thread.cr2		= address;
644 	tsk->thread.trap_nr	= X86_TRAP_PF;
645 	tsk->thread.error_code	= error_code;
646 
647 	if (__die("Bad pagetable", regs, error_code))
648 		sig = 0;
649 
650 	oops_end(flags, regs, sig);
651 }
652 
653 static noinline void
no_context(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)654 no_context(struct pt_regs *regs, unsigned long error_code,
655 	   unsigned long address, int signal, int si_code)
656 {
657 	struct task_struct *tsk = current;
658 	unsigned long flags;
659 	int sig;
660 
661 	/* Are we prepared to handle this kernel fault? */
662 	if (fixup_exception(regs)) {
663 		/*
664 		 * Any interrupt that takes a fault gets the fixup. This makes
665 		 * the below recursive fault logic only apply to a faults from
666 		 * task context.
667 		 */
668 		if (in_interrupt())
669 			return;
670 
671 		/*
672 		 * Per the above we're !in_interrupt(), aka. task context.
673 		 *
674 		 * In this case we need to make sure we're not recursively
675 		 * faulting through the emulate_vsyscall() logic.
676 		 */
677 		if (current_thread_info()->sig_on_uaccess_error && signal) {
678 			tsk->thread.trap_nr = X86_TRAP_PF;
679 			tsk->thread.error_code = error_code | PF_USER;
680 			tsk->thread.cr2 = address;
681 
682 			/* XXX: hwpoison faults will set the wrong code. */
683 			force_sig_info_fault(signal, si_code, address, tsk, 0);
684 		}
685 
686 		/*
687 		 * Barring that, we can do the fixup and be happy.
688 		 */
689 		return;
690 	}
691 
692 	/*
693 	 * 32-bit:
694 	 *
695 	 *   Valid to do another page fault here, because if this fault
696 	 *   had been triggered by is_prefetch fixup_exception would have
697 	 *   handled it.
698 	 *
699 	 * 64-bit:
700 	 *
701 	 *   Hall of shame of CPU/BIOS bugs.
702 	 */
703 	if (is_prefetch(regs, error_code, address))
704 		return;
705 
706 	if (is_errata93(regs, address))
707 		return;
708 
709 	/*
710 	 * Oops. The kernel tried to access some bad page. We'll have to
711 	 * terminate things with extreme prejudice:
712 	 */
713 	flags = oops_begin();
714 
715 	show_fault_oops(regs, error_code, address);
716 
717 	if (task_stack_end_corrupted(tsk))
718 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
719 
720 	tsk->thread.cr2		= address;
721 	tsk->thread.trap_nr	= X86_TRAP_PF;
722 	tsk->thread.error_code	= error_code;
723 
724 	sig = SIGKILL;
725 	if (__die("Oops", regs, error_code))
726 		sig = 0;
727 
728 	/* Executive summary in case the body of the oops scrolled away */
729 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
730 
731 	oops_end(flags, regs, sig);
732 }
733 
734 /*
735  * Print out info about fatal segfaults, if the show_unhandled_signals
736  * sysctl is set:
737  */
738 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)739 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
740 		unsigned long address, struct task_struct *tsk)
741 {
742 	if (!unhandled_signal(tsk, SIGSEGV))
743 		return;
744 
745 	if (!printk_ratelimit())
746 		return;
747 
748 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
749 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
750 		tsk->comm, task_pid_nr(tsk), address,
751 		(void *)regs->ip, (void *)regs->sp, error_code);
752 
753 	print_vma_addr(KERN_CONT " in ", regs->ip);
754 
755 	printk(KERN_CONT "\n");
756 }
757 
758 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,int si_code)759 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
760 		       unsigned long address, int si_code)
761 {
762 	struct task_struct *tsk = current;
763 
764 	/* User mode accesses just cause a SIGSEGV */
765 	if (error_code & PF_USER) {
766 		/*
767 		 * It's possible to have interrupts off here:
768 		 */
769 		local_irq_enable();
770 
771 		/*
772 		 * Valid to do another page fault here because this one came
773 		 * from user space:
774 		 */
775 		if (is_prefetch(regs, error_code, address))
776 			return;
777 
778 		if (is_errata100(regs, address))
779 			return;
780 
781 #ifdef CONFIG_X86_64
782 		/*
783 		 * Instruction fetch faults in the vsyscall page might need
784 		 * emulation.
785 		 */
786 		if (unlikely((error_code & PF_INSTR) &&
787 			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
788 			if (emulate_vsyscall(regs, address))
789 				return;
790 		}
791 #endif
792 		/* Kernel addresses are always protection faults: */
793 		if (address >= TASK_SIZE)
794 			error_code |= PF_PROT;
795 
796 		if (likely(show_unhandled_signals))
797 			show_signal_msg(regs, error_code, address, tsk);
798 
799 		tsk->thread.cr2		= address;
800 		tsk->thread.error_code	= error_code;
801 		tsk->thread.trap_nr	= X86_TRAP_PF;
802 
803 		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
804 
805 		return;
806 	}
807 
808 	if (is_f00f_bug(regs, address))
809 		return;
810 
811 	no_context(regs, error_code, address, SIGSEGV, si_code);
812 }
813 
814 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)815 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
816 		     unsigned long address)
817 {
818 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
819 }
820 
821 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,int si_code)822 __bad_area(struct pt_regs *regs, unsigned long error_code,
823 	   unsigned long address, int si_code)
824 {
825 	struct mm_struct *mm = current->mm;
826 
827 	/*
828 	 * Something tried to access memory that isn't in our memory map..
829 	 * Fix it, but check if it's kernel or user first..
830 	 */
831 	up_read(&mm->mmap_sem);
832 
833 	__bad_area_nosemaphore(regs, error_code, address, si_code);
834 }
835 
836 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)837 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
838 {
839 	__bad_area(regs, error_code, address, SEGV_MAPERR);
840 }
841 
842 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address)843 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
844 		      unsigned long address)
845 {
846 	__bad_area(regs, error_code, address, SEGV_ACCERR);
847 }
848 
849 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,unsigned int fault)850 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
851 	  unsigned int fault)
852 {
853 	struct task_struct *tsk = current;
854 	int code = BUS_ADRERR;
855 
856 	/* Kernel mode? Handle exceptions or die: */
857 	if (!(error_code & PF_USER)) {
858 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
859 		return;
860 	}
861 
862 	/* User-space => ok to do another page fault: */
863 	if (is_prefetch(regs, error_code, address))
864 		return;
865 
866 	tsk->thread.cr2		= address;
867 	tsk->thread.error_code	= error_code;
868 	tsk->thread.trap_nr	= X86_TRAP_PF;
869 
870 #ifdef CONFIG_MEMORY_FAILURE
871 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
872 		printk(KERN_ERR
873 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
874 			tsk->comm, tsk->pid, address);
875 		code = BUS_MCEERR_AR;
876 	}
877 #endif
878 	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
879 }
880 
881 static noinline void
mm_fault_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,unsigned int fault)882 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
883 	       unsigned long address, unsigned int fault)
884 {
885 	if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
886 		no_context(regs, error_code, address, 0, 0);
887 		return;
888 	}
889 
890 	if (fault & VM_FAULT_OOM) {
891 		/* Kernel mode? Handle exceptions or die: */
892 		if (!(error_code & PF_USER)) {
893 			no_context(regs, error_code, address,
894 				   SIGSEGV, SEGV_MAPERR);
895 			return;
896 		}
897 
898 		/*
899 		 * We ran out of memory, call the OOM killer, and return the
900 		 * userspace (which will retry the fault, or kill us if we got
901 		 * oom-killed):
902 		 */
903 		pagefault_out_of_memory();
904 	} else {
905 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
906 			     VM_FAULT_HWPOISON_LARGE))
907 			do_sigbus(regs, error_code, address, fault);
908 		else if (fault & VM_FAULT_SIGSEGV)
909 			bad_area_nosemaphore(regs, error_code, address);
910 		else
911 			BUG();
912 	}
913 }
914 
spurious_fault_check(unsigned long error_code,pte_t * pte)915 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
916 {
917 	if ((error_code & PF_WRITE) && !pte_write(*pte))
918 		return 0;
919 
920 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
921 		return 0;
922 
923 	return 1;
924 }
925 
926 /*
927  * Handle a spurious fault caused by a stale TLB entry.
928  *
929  * This allows us to lazily refresh the TLB when increasing the
930  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
931  * eagerly is very expensive since that implies doing a full
932  * cross-processor TLB flush, even if no stale TLB entries exist
933  * on other processors.
934  *
935  * Spurious faults may only occur if the TLB contains an entry with
936  * fewer permission than the page table entry.  Non-present (P = 0)
937  * and reserved bit (R = 1) faults are never spurious.
938  *
939  * There are no security implications to leaving a stale TLB when
940  * increasing the permissions on a page.
941  *
942  * Returns non-zero if a spurious fault was handled, zero otherwise.
943  *
944  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
945  * (Optional Invalidation).
946  */
947 static noinline int
spurious_fault(unsigned long error_code,unsigned long address)948 spurious_fault(unsigned long error_code, unsigned long address)
949 {
950 	pgd_t *pgd;
951 	pud_t *pud;
952 	pmd_t *pmd;
953 	pte_t *pte;
954 	int ret;
955 
956 	/*
957 	 * Only writes to RO or instruction fetches from NX may cause
958 	 * spurious faults.
959 	 *
960 	 * These could be from user or supervisor accesses but the TLB
961 	 * is only lazily flushed after a kernel mapping protection
962 	 * change, so user accesses are not expected to cause spurious
963 	 * faults.
964 	 */
965 	if (error_code != (PF_WRITE | PF_PROT)
966 	    && error_code != (PF_INSTR | PF_PROT))
967 		return 0;
968 
969 	pgd = init_mm.pgd + pgd_index(address);
970 	if (!pgd_present(*pgd))
971 		return 0;
972 
973 	pud = pud_offset(pgd, address);
974 	if (!pud_present(*pud))
975 		return 0;
976 
977 	if (pud_large(*pud))
978 		return spurious_fault_check(error_code, (pte_t *) pud);
979 
980 	pmd = pmd_offset(pud, address);
981 	if (!pmd_present(*pmd))
982 		return 0;
983 
984 	if (pmd_large(*pmd))
985 		return spurious_fault_check(error_code, (pte_t *) pmd);
986 
987 	pte = pte_offset_kernel(pmd, address);
988 	if (!pte_present(*pte))
989 		return 0;
990 
991 	ret = spurious_fault_check(error_code, pte);
992 	if (!ret)
993 		return 0;
994 
995 	/*
996 	 * Make sure we have permissions in PMD.
997 	 * If not, then there's a bug in the page tables:
998 	 */
999 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1000 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1001 
1002 	return ret;
1003 }
1004 NOKPROBE_SYMBOL(spurious_fault);
1005 
1006 int show_unhandled_signals = 1;
1007 
1008 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1009 access_error(unsigned long error_code, struct vm_area_struct *vma)
1010 {
1011 	if (error_code & PF_WRITE) {
1012 		/* write, present and write, not present: */
1013 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1014 			return 1;
1015 		return 0;
1016 	}
1017 
1018 	/* read, present: */
1019 	if (unlikely(error_code & PF_PROT))
1020 		return 1;
1021 
1022 	/* read, not present: */
1023 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1024 		return 1;
1025 
1026 	return 0;
1027 }
1028 
fault_in_kernel_space(unsigned long address)1029 static int fault_in_kernel_space(unsigned long address)
1030 {
1031 	return address >= TASK_SIZE_MAX;
1032 }
1033 
smap_violation(int error_code,struct pt_regs * regs)1034 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1035 {
1036 	if (!IS_ENABLED(CONFIG_X86_SMAP))
1037 		return false;
1038 
1039 	if (!static_cpu_has(X86_FEATURE_SMAP))
1040 		return false;
1041 
1042 	if (error_code & PF_USER)
1043 		return false;
1044 
1045 	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1046 		return false;
1047 
1048 	return true;
1049 }
1050 
1051 /*
1052  * This routine handles page faults.  It determines the address,
1053  * and the problem, and then passes it off to one of the appropriate
1054  * routines.
1055  *
1056  * This function must have noinline because both callers
1057  * {,trace_}do_page_fault() have notrace on. Having this an actual function
1058  * guarantees there's a function trace entry.
1059  */
1060 static noinline void
__do_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1061 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1062 		unsigned long address)
1063 {
1064 	struct vm_area_struct *vma;
1065 	struct task_struct *tsk;
1066 	struct mm_struct *mm;
1067 	int fault, major = 0;
1068 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1069 
1070 	tsk = current;
1071 	mm = tsk->mm;
1072 
1073 	/*
1074 	 * Detect and handle instructions that would cause a page fault for
1075 	 * both a tracked kernel page and a userspace page.
1076 	 */
1077 	if (kmemcheck_active(regs))
1078 		kmemcheck_hide(regs);
1079 	prefetchw(&mm->mmap_sem);
1080 
1081 	if (unlikely(kmmio_fault(regs, address)))
1082 		return;
1083 
1084 	/*
1085 	 * We fault-in kernel-space virtual memory on-demand. The
1086 	 * 'reference' page table is init_mm.pgd.
1087 	 *
1088 	 * NOTE! We MUST NOT take any locks for this case. We may
1089 	 * be in an interrupt or a critical region, and should
1090 	 * only copy the information from the master page table,
1091 	 * nothing more.
1092 	 *
1093 	 * This verifies that the fault happens in kernel space
1094 	 * (error_code & 4) == 0, and that the fault was not a
1095 	 * protection error (error_code & 9) == 0.
1096 	 */
1097 	if (unlikely(fault_in_kernel_space(address))) {
1098 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1099 			if (vmalloc_fault(address) >= 0)
1100 				return;
1101 
1102 			if (kmemcheck_fault(regs, address, error_code))
1103 				return;
1104 		}
1105 
1106 		/* Can handle a stale RO->RW TLB: */
1107 		if (spurious_fault(error_code, address))
1108 			return;
1109 
1110 		/* kprobes don't want to hook the spurious faults: */
1111 		if (kprobes_fault(regs))
1112 			return;
1113 		/*
1114 		 * Don't take the mm semaphore here. If we fixup a prefetch
1115 		 * fault we could otherwise deadlock:
1116 		 */
1117 		bad_area_nosemaphore(regs, error_code, address);
1118 
1119 		return;
1120 	}
1121 
1122 	/* kprobes don't want to hook the spurious faults: */
1123 	if (unlikely(kprobes_fault(regs)))
1124 		return;
1125 
1126 	if (unlikely(error_code & PF_RSVD))
1127 		pgtable_bad(regs, error_code, address);
1128 
1129 	if (unlikely(smap_violation(error_code, regs))) {
1130 		bad_area_nosemaphore(regs, error_code, address);
1131 		return;
1132 	}
1133 
1134 	/*
1135 	 * If we're in an interrupt, have no user context or are running
1136 	 * in an atomic region then we must not take the fault:
1137 	 */
1138 	if (unlikely(in_atomic() || !mm)) {
1139 		bad_area_nosemaphore(regs, error_code, address);
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * It's safe to allow irq's after cr2 has been saved and the
1145 	 * vmalloc fault has been handled.
1146 	 *
1147 	 * User-mode registers count as a user access even for any
1148 	 * potential system fault or CPU buglet:
1149 	 */
1150 	if (user_mode(regs)) {
1151 		local_irq_enable();
1152 		error_code |= PF_USER;
1153 		flags |= FAULT_FLAG_USER;
1154 	} else {
1155 		if (regs->flags & X86_EFLAGS_IF)
1156 			local_irq_enable();
1157 	}
1158 
1159 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1160 
1161 	if (error_code & PF_WRITE)
1162 		flags |= FAULT_FLAG_WRITE;
1163 
1164 	/*
1165 	 * When running in the kernel we expect faults to occur only to
1166 	 * addresses in user space.  All other faults represent errors in
1167 	 * the kernel and should generate an OOPS.  Unfortunately, in the
1168 	 * case of an erroneous fault occurring in a code path which already
1169 	 * holds mmap_sem we will deadlock attempting to validate the fault
1170 	 * against the address space.  Luckily the kernel only validly
1171 	 * references user space from well defined areas of code, which are
1172 	 * listed in the exceptions table.
1173 	 *
1174 	 * As the vast majority of faults will be valid we will only perform
1175 	 * the source reference check when there is a possibility of a
1176 	 * deadlock. Attempt to lock the address space, if we cannot we then
1177 	 * validate the source. If this is invalid we can skip the address
1178 	 * space check, thus avoiding the deadlock:
1179 	 */
1180 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1181 		if ((error_code & PF_USER) == 0 &&
1182 		    !search_exception_tables(regs->ip)) {
1183 			bad_area_nosemaphore(regs, error_code, address);
1184 			return;
1185 		}
1186 retry:
1187 		down_read(&mm->mmap_sem);
1188 	} else {
1189 		/*
1190 		 * The above down_read_trylock() might have succeeded in
1191 		 * which case we'll have missed the might_sleep() from
1192 		 * down_read():
1193 		 */
1194 		might_sleep();
1195 	}
1196 
1197 	vma = find_vma(mm, address);
1198 	if (unlikely(!vma)) {
1199 		bad_area(regs, error_code, address);
1200 		return;
1201 	}
1202 	if (likely(vma->vm_start <= address))
1203 		goto good_area;
1204 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1205 		bad_area(regs, error_code, address);
1206 		return;
1207 	}
1208 	if (error_code & PF_USER) {
1209 		/*
1210 		 * Accessing the stack below %sp is always a bug.
1211 		 * The large cushion allows instructions like enter
1212 		 * and pusha to work. ("enter $65535, $31" pushes
1213 		 * 32 pointers and then decrements %sp by 65535.)
1214 		 */
1215 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1216 			bad_area(regs, error_code, address);
1217 			return;
1218 		}
1219 	}
1220 	if (unlikely(expand_stack(vma, address))) {
1221 		bad_area(regs, error_code, address);
1222 		return;
1223 	}
1224 
1225 	/*
1226 	 * Ok, we have a good vm_area for this memory access, so
1227 	 * we can handle it..
1228 	 */
1229 good_area:
1230 	if (unlikely(access_error(error_code, vma))) {
1231 		bad_area_access_error(regs, error_code, address);
1232 		return;
1233 	}
1234 
1235 	/*
1236 	 * If for any reason at all we couldn't handle the fault,
1237 	 * make sure we exit gracefully rather than endlessly redo
1238 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1239 	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1240 	 */
1241 	fault = handle_mm_fault(mm, vma, address, flags);
1242 	major |= fault & VM_FAULT_MAJOR;
1243 
1244 	/*
1245 	 * If we need to retry the mmap_sem has already been released,
1246 	 * and if there is a fatal signal pending there is no guarantee
1247 	 * that we made any progress. Handle this case first.
1248 	 */
1249 	if (unlikely(fault & VM_FAULT_RETRY)) {
1250 		/* Retry at most once */
1251 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1252 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1253 			flags |= FAULT_FLAG_TRIED;
1254 			if (!fatal_signal_pending(tsk))
1255 				goto retry;
1256 		}
1257 
1258 		/* User mode? Just return to handle the fatal exception */
1259 		if (flags & FAULT_FLAG_USER)
1260 			return;
1261 
1262 		/* Not returning to user mode? Handle exceptions or die: */
1263 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1264 		return;
1265 	}
1266 
1267 	up_read(&mm->mmap_sem);
1268 	if (unlikely(fault & VM_FAULT_ERROR)) {
1269 		mm_fault_error(regs, error_code, address, fault);
1270 		return;
1271 	}
1272 
1273 	/*
1274 	 * Major/minor page fault accounting. If any of the events
1275 	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1276 	 */
1277 	if (major) {
1278 		tsk->maj_flt++;
1279 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1280 	} else {
1281 		tsk->min_flt++;
1282 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1283 	}
1284 
1285 	check_v8086_mode(regs, address, tsk);
1286 }
1287 NOKPROBE_SYMBOL(__do_page_fault);
1288 
1289 dotraplinkage void notrace
do_page_fault(struct pt_regs * regs,unsigned long error_code)1290 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1291 {
1292 	unsigned long address = read_cr2(); /* Get the faulting address */
1293 	enum ctx_state prev_state;
1294 
1295 	/*
1296 	 * We must have this function tagged with __kprobes, notrace and call
1297 	 * read_cr2() before calling anything else. To avoid calling any kind
1298 	 * of tracing machinery before we've observed the CR2 value.
1299 	 *
1300 	 * exception_{enter,exit}() contain all sorts of tracepoints.
1301 	 */
1302 
1303 	prev_state = exception_enter();
1304 	__do_page_fault(regs, error_code, address);
1305 	exception_exit(prev_state);
1306 }
1307 NOKPROBE_SYMBOL(do_page_fault);
1308 
1309 #ifdef CONFIG_TRACING
1310 static nokprobe_inline void
trace_page_fault_entries(unsigned long address,struct pt_regs * regs,unsigned long error_code)1311 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1312 			 unsigned long error_code)
1313 {
1314 	if (user_mode(regs))
1315 		trace_page_fault_user(address, regs, error_code);
1316 	else
1317 		trace_page_fault_kernel(address, regs, error_code);
1318 }
1319 
1320 dotraplinkage void notrace
trace_do_page_fault(struct pt_regs * regs,unsigned long error_code)1321 trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1322 {
1323 	/*
1324 	 * The exception_enter and tracepoint processing could
1325 	 * trigger another page faults (user space callchain
1326 	 * reading) and destroy the original cr2 value, so read
1327 	 * the faulting address now.
1328 	 */
1329 	unsigned long address = read_cr2();
1330 	enum ctx_state prev_state;
1331 
1332 	prev_state = exception_enter();
1333 	trace_page_fault_entries(address, regs, error_code);
1334 	__do_page_fault(regs, error_code, address);
1335 	exception_exit(prev_state);
1336 }
1337 NOKPROBE_SYMBOL(trace_do_page_fault);
1338 #endif /* CONFIG_TRACING */
1339