1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_VMX),
61 {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76 enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96 * If nested=1, nested virtualization is supported, i.e., guests may use
97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98 * use VMX instructions.
99 */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON \
111 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS \
113 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
114 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125 * ple_gap: upper bound on the amount of time between two successive
126 * executions of PAUSE in a loop. Also indicate if ple enabled.
127 * According to test, this time is usually smaller than 128 cycles.
128 * ple_window: upper bound on the amount of time a guest is allowed to execute
129 * in a PAUSE loop. Tests indicate that most spinlocks are held for
130 * less than 2^12 cycles
131 * Time is measured based on a counter that runs at the same rate as the TSC,
132 * refer SDM volume 3b section 21.6.13 & 22.1.3.
133 */
134 #define KVM_VMX_DEFAULT_PLE_GAP 128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
139 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166 u32 revision_id;
167 u32 abort;
168 char data[0];
169 };
170
171 /*
172 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174 * loaded on this CPU (so we can clear them if the CPU goes down).
175 */
176 struct loaded_vmcs {
177 struct vmcs *vmcs;
178 int cpu;
179 int launched;
180 struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184 unsigned index;
185 u64 data;
186 u64 mask;
187 };
188
189 /*
190 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195 * More than one of these structures may exist, if L1 runs multiple L2 guests.
196 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197 * underlying hardware which will be used to run L2.
198 * This structure is packed to ensure that its layout is identical across
199 * machines (necessary for live migration).
200 * If there are changes in this struct, VMCS12_REVISION must be changed.
201 */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204 /* According to the Intel spec, a VMCS region must start with the
205 * following two fields. Then follow implementation-specific data.
206 */
207 u32 revision_id;
208 u32 abort;
209
210 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211 u32 padding[7]; /* room for future expansion */
212
213 u64 io_bitmap_a;
214 u64 io_bitmap_b;
215 u64 msr_bitmap;
216 u64 vm_exit_msr_store_addr;
217 u64 vm_exit_msr_load_addr;
218 u64 vm_entry_msr_load_addr;
219 u64 tsc_offset;
220 u64 virtual_apic_page_addr;
221 u64 apic_access_addr;
222 u64 posted_intr_desc_addr;
223 u64 ept_pointer;
224 u64 eoi_exit_bitmap0;
225 u64 eoi_exit_bitmap1;
226 u64 eoi_exit_bitmap2;
227 u64 eoi_exit_bitmap3;
228 u64 xss_exit_bitmap;
229 u64 guest_physical_address;
230 u64 vmcs_link_pointer;
231 u64 guest_ia32_debugctl;
232 u64 guest_ia32_pat;
233 u64 guest_ia32_efer;
234 u64 guest_ia32_perf_global_ctrl;
235 u64 guest_pdptr0;
236 u64 guest_pdptr1;
237 u64 guest_pdptr2;
238 u64 guest_pdptr3;
239 u64 guest_bndcfgs;
240 u64 host_ia32_pat;
241 u64 host_ia32_efer;
242 u64 host_ia32_perf_global_ctrl;
243 u64 padding64[8]; /* room for future expansion */
244 /*
245 * To allow migration of L1 (complete with its L2 guests) between
246 * machines of different natural widths (32 or 64 bit), we cannot have
247 * unsigned long fields with no explict size. We use u64 (aliased
248 * natural_width) instead. Luckily, x86 is little-endian.
249 */
250 natural_width cr0_guest_host_mask;
251 natural_width cr4_guest_host_mask;
252 natural_width cr0_read_shadow;
253 natural_width cr4_read_shadow;
254 natural_width cr3_target_value0;
255 natural_width cr3_target_value1;
256 natural_width cr3_target_value2;
257 natural_width cr3_target_value3;
258 natural_width exit_qualification;
259 natural_width guest_linear_address;
260 natural_width guest_cr0;
261 natural_width guest_cr3;
262 natural_width guest_cr4;
263 natural_width guest_es_base;
264 natural_width guest_cs_base;
265 natural_width guest_ss_base;
266 natural_width guest_ds_base;
267 natural_width guest_fs_base;
268 natural_width guest_gs_base;
269 natural_width guest_ldtr_base;
270 natural_width guest_tr_base;
271 natural_width guest_gdtr_base;
272 natural_width guest_idtr_base;
273 natural_width guest_dr7;
274 natural_width guest_rsp;
275 natural_width guest_rip;
276 natural_width guest_rflags;
277 natural_width guest_pending_dbg_exceptions;
278 natural_width guest_sysenter_esp;
279 natural_width guest_sysenter_eip;
280 natural_width host_cr0;
281 natural_width host_cr3;
282 natural_width host_cr4;
283 natural_width host_fs_base;
284 natural_width host_gs_base;
285 natural_width host_tr_base;
286 natural_width host_gdtr_base;
287 natural_width host_idtr_base;
288 natural_width host_ia32_sysenter_esp;
289 natural_width host_ia32_sysenter_eip;
290 natural_width host_rsp;
291 natural_width host_rip;
292 natural_width paddingl[8]; /* room for future expansion */
293 u32 pin_based_vm_exec_control;
294 u32 cpu_based_vm_exec_control;
295 u32 exception_bitmap;
296 u32 page_fault_error_code_mask;
297 u32 page_fault_error_code_match;
298 u32 cr3_target_count;
299 u32 vm_exit_controls;
300 u32 vm_exit_msr_store_count;
301 u32 vm_exit_msr_load_count;
302 u32 vm_entry_controls;
303 u32 vm_entry_msr_load_count;
304 u32 vm_entry_intr_info_field;
305 u32 vm_entry_exception_error_code;
306 u32 vm_entry_instruction_len;
307 u32 tpr_threshold;
308 u32 secondary_vm_exec_control;
309 u32 vm_instruction_error;
310 u32 vm_exit_reason;
311 u32 vm_exit_intr_info;
312 u32 vm_exit_intr_error_code;
313 u32 idt_vectoring_info_field;
314 u32 idt_vectoring_error_code;
315 u32 vm_exit_instruction_len;
316 u32 vmx_instruction_info;
317 u32 guest_es_limit;
318 u32 guest_cs_limit;
319 u32 guest_ss_limit;
320 u32 guest_ds_limit;
321 u32 guest_fs_limit;
322 u32 guest_gs_limit;
323 u32 guest_ldtr_limit;
324 u32 guest_tr_limit;
325 u32 guest_gdtr_limit;
326 u32 guest_idtr_limit;
327 u32 guest_es_ar_bytes;
328 u32 guest_cs_ar_bytes;
329 u32 guest_ss_ar_bytes;
330 u32 guest_ds_ar_bytes;
331 u32 guest_fs_ar_bytes;
332 u32 guest_gs_ar_bytes;
333 u32 guest_ldtr_ar_bytes;
334 u32 guest_tr_ar_bytes;
335 u32 guest_interruptibility_info;
336 u32 guest_activity_state;
337 u32 guest_sysenter_cs;
338 u32 host_ia32_sysenter_cs;
339 u32 vmx_preemption_timer_value;
340 u32 padding32[7]; /* room for future expansion */
341 u16 virtual_processor_id;
342 u16 posted_intr_nv;
343 u16 guest_es_selector;
344 u16 guest_cs_selector;
345 u16 guest_ss_selector;
346 u16 guest_ds_selector;
347 u16 guest_fs_selector;
348 u16 guest_gs_selector;
349 u16 guest_ldtr_selector;
350 u16 guest_tr_selector;
351 u16 guest_intr_status;
352 u16 host_es_selector;
353 u16 host_cs_selector;
354 u16 host_ss_selector;
355 u16 host_ds_selector;
356 u16 host_fs_selector;
357 u16 host_gs_selector;
358 u16 host_tr_selector;
359 };
360
361 /*
362 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365 */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371 * current implementation, 4K are reserved to avoid future complications.
372 */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377 struct list_head list;
378 gpa_t vmptr;
379 struct loaded_vmcs vmcs02;
380 };
381
382 /*
383 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385 */
386 struct nested_vmx {
387 /* Has the level1 guest done vmxon? */
388 bool vmxon;
389 gpa_t vmxon_ptr;
390
391 /* The guest-physical address of the current VMCS L1 keeps for L2 */
392 gpa_t current_vmptr;
393 /* The host-usable pointer to the above */
394 struct page *current_vmcs12_page;
395 struct vmcs12 *current_vmcs12;
396 struct vmcs *current_shadow_vmcs;
397 /*
398 * Indicates if the shadow vmcs must be updated with the
399 * data hold by vmcs12
400 */
401 bool sync_shadow_vmcs;
402
403 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404 struct list_head vmcs02_pool;
405 int vmcs02_num;
406 u64 vmcs01_tsc_offset;
407 /* L2 must run next, and mustn't decide to exit to L1. */
408 bool nested_run_pending;
409 /*
410 * Guest pages referred to in vmcs02 with host-physical pointers, so
411 * we must keep them pinned while L2 runs.
412 */
413 struct page *apic_access_page;
414 struct page *virtual_apic_page;
415 struct page *pi_desc_page;
416 struct pi_desc *pi_desc;
417 bool pi_pending;
418 u16 posted_intr_nv;
419 u64 msr_ia32_feature_control;
420
421 struct hrtimer preemption_timer;
422 bool preemption_timer_expired;
423
424 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425 u64 vmcs01_debugctl;
426
427 u32 nested_vmx_procbased_ctls_low;
428 u32 nested_vmx_procbased_ctls_high;
429 u32 nested_vmx_true_procbased_ctls_low;
430 u32 nested_vmx_secondary_ctls_low;
431 u32 nested_vmx_secondary_ctls_high;
432 u32 nested_vmx_pinbased_ctls_low;
433 u32 nested_vmx_pinbased_ctls_high;
434 u32 nested_vmx_exit_ctls_low;
435 u32 nested_vmx_exit_ctls_high;
436 u32 nested_vmx_true_exit_ctls_low;
437 u32 nested_vmx_entry_ctls_low;
438 u32 nested_vmx_entry_ctls_high;
439 u32 nested_vmx_true_entry_ctls_low;
440 u32 nested_vmx_misc_low;
441 u32 nested_vmx_misc_high;
442 u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON 0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448 u32 pir[8]; /* Posted interrupt requested */
449 u32 control; /* bit 0 of control is outstanding notification bit */
450 u32 rsvd[7];
451 } __aligned(64);
452
pi_test_and_set_on(struct pi_desc * pi_desc)453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455 return test_and_set_bit(POSTED_INTR_ON,
456 (unsigned long *)&pi_desc->control);
457 }
458
pi_test_and_clear_on(struct pi_desc * pi_desc)459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461 return test_and_clear_bit(POSTED_INTR_ON,
462 (unsigned long *)&pi_desc->control);
463 }
464
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471 struct kvm_vcpu vcpu;
472 unsigned long host_rsp;
473 u8 fail;
474 bool nmi_known_unmasked;
475 u32 exit_intr_info;
476 u32 idt_vectoring_info;
477 ulong rflags;
478 struct shared_msr_entry *guest_msrs;
479 int nmsrs;
480 int save_nmsrs;
481 unsigned long host_idt_base;
482 #ifdef CONFIG_X86_64
483 u64 msr_host_kernel_gs_base;
484 u64 msr_guest_kernel_gs_base;
485 #endif
486 u32 vm_entry_controls_shadow;
487 u32 vm_exit_controls_shadow;
488 /*
489 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490 * non-nested (L1) guest, it always points to vmcs01. For a nested
491 * guest (L2), it points to a different VMCS.
492 */
493 struct loaded_vmcs vmcs01;
494 struct loaded_vmcs *loaded_vmcs;
495 bool __launched; /* temporary, used in vmx_vcpu_run */
496 struct msr_autoload {
497 unsigned nr;
498 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500 } msr_autoload;
501 struct {
502 int loaded;
503 u16 fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505 u16 ds_sel, es_sel;
506 #endif
507 int gs_ldt_reload_needed;
508 int fs_reload_needed;
509 u64 msr_host_bndcfgs;
510 unsigned long vmcs_host_cr4; /* May not match real cr4 */
511 } host_state;
512 struct {
513 int vm86_active;
514 ulong save_rflags;
515 struct kvm_segment segs[8];
516 } rmode;
517 struct {
518 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519 struct kvm_save_segment {
520 u16 selector;
521 unsigned long base;
522 u32 limit;
523 u32 ar;
524 } seg[8];
525 } segment_cache;
526 int vpid;
527 bool emulation_required;
528
529 /* Support for vnmi-less CPUs */
530 int soft_vnmi_blocked;
531 ktime_t entry_time;
532 s64 vnmi_blocked_time;
533 u32 exit_reason;
534
535 bool rdtscp_enabled;
536
537 /* Posted interrupt descriptor */
538 struct pi_desc pi_desc;
539
540 /* Support for a guest hypervisor (nested VMX) */
541 struct nested_vmx nested;
542
543 /* Dynamic PLE window. */
544 int ple_window;
545 bool ple_window_dirty;
546
547 /* Support for PML */
548 #define PML_ENTITY_NUM 512
549 struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553 SEG_FIELD_SEL = 0,
554 SEG_FIELD_BASE = 1,
555 SEG_FIELD_LIMIT = 2,
556 SEG_FIELD_AR = 3,
557
558 SEG_FIELD_NR = 4
559 };
560
to_vmx(struct kvm_vcpu * vcpu)561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563 return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
569 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573 /*
574 * We do NOT shadow fields that are modified when L0
575 * traps and emulates any vmx instruction (e.g. VMPTRLD,
576 * VMXON...) executed by L1.
577 * For example, VM_INSTRUCTION_ERROR is read
578 * by L1 if a vmx instruction fails (part of the error path).
579 * Note the code assumes this logic. If for some reason
580 * we start shadowing these fields then we need to
581 * force a shadow sync when L0 emulates vmx instructions
582 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583 * by nested_vmx_failValid)
584 */
585 VM_EXIT_REASON,
586 VM_EXIT_INTR_INFO,
587 VM_EXIT_INSTRUCTION_LEN,
588 IDT_VECTORING_INFO_FIELD,
589 IDT_VECTORING_ERROR_CODE,
590 VM_EXIT_INTR_ERROR_CODE,
591 EXIT_QUALIFICATION,
592 GUEST_LINEAR_ADDRESS,
593 GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596 ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599 TPR_THRESHOLD,
600 GUEST_RIP,
601 GUEST_RSP,
602 GUEST_CR0,
603 GUEST_CR3,
604 GUEST_CR4,
605 GUEST_INTERRUPTIBILITY_INFO,
606 GUEST_RFLAGS,
607 GUEST_CS_SELECTOR,
608 GUEST_CS_AR_BYTES,
609 GUEST_CS_LIMIT,
610 GUEST_CS_BASE,
611 GUEST_ES_BASE,
612 GUEST_BNDCFGS,
613 CR0_GUEST_HOST_MASK,
614 CR0_READ_SHADOW,
615 CR4_READ_SHADOW,
616 TSC_OFFSET,
617 EXCEPTION_BITMAP,
618 CPU_BASED_VM_EXEC_CONTROL,
619 VM_ENTRY_EXCEPTION_ERROR_CODE,
620 VM_ENTRY_INTR_INFO_FIELD,
621 VM_ENTRY_INSTRUCTION_LEN,
622 VM_ENTRY_EXCEPTION_ERROR_CODE,
623 HOST_FS_BASE,
624 HOST_GS_BASE,
625 HOST_FS_SELECTOR,
626 HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629 ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633 FIELD(POSTED_INTR_NV, posted_intr_nv),
634 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642 FIELD(GUEST_INTR_STATUS, guest_intr_status),
643 FIELD(HOST_ES_SELECTOR, host_es_selector),
644 FIELD(HOST_CS_SELECTOR, host_cs_selector),
645 FIELD(HOST_SS_SELECTOR, host_ss_selector),
646 FIELD(HOST_DS_SELECTOR, host_ds_selector),
647 FIELD(HOST_FS_SELECTOR, host_fs_selector),
648 FIELD(HOST_GS_SELECTOR, host_gs_selector),
649 FIELD(HOST_TR_SELECTOR, host_tr_selector),
650 FIELD64(IO_BITMAP_A, io_bitmap_a),
651 FIELD64(IO_BITMAP_B, io_bitmap_b),
652 FIELD64(MSR_BITMAP, msr_bitmap),
653 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656 FIELD64(TSC_OFFSET, tsc_offset),
657 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660 FIELD64(EPT_POINTER, ept_pointer),
661 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672 FIELD64(GUEST_PDPTR0, guest_pdptr0),
673 FIELD64(GUEST_PDPTR1, guest_pdptr1),
674 FIELD64(GUEST_PDPTR2, guest_pdptr2),
675 FIELD64(GUEST_PDPTR3, guest_pdptr3),
676 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677 FIELD64(HOST_IA32_PAT, host_ia32_pat),
678 FIELD64(HOST_IA32_EFER, host_ia32_efer),
679 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682 FIELD(EXCEPTION_BITMAP, exception_bitmap),
683 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685 FIELD(CR3_TARGET_COUNT, cr3_target_count),
686 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694 FIELD(TPR_THRESHOLD, tpr_threshold),
695 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697 FIELD(VM_EXIT_REASON, vm_exit_reason),
698 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704 FIELD(GUEST_ES_LIMIT, guest_es_limit),
705 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735 FIELD(EXIT_QUALIFICATION, exit_qualification),
736 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737 FIELD(GUEST_CR0, guest_cr0),
738 FIELD(GUEST_CR3, guest_cr3),
739 FIELD(GUEST_CR4, guest_cr4),
740 FIELD(GUEST_ES_BASE, guest_es_base),
741 FIELD(GUEST_CS_BASE, guest_cs_base),
742 FIELD(GUEST_SS_BASE, guest_ss_base),
743 FIELD(GUEST_DS_BASE, guest_ds_base),
744 FIELD(GUEST_FS_BASE, guest_fs_base),
745 FIELD(GUEST_GS_BASE, guest_gs_base),
746 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747 FIELD(GUEST_TR_BASE, guest_tr_base),
748 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750 FIELD(GUEST_DR7, guest_dr7),
751 FIELD(GUEST_RSP, guest_rsp),
752 FIELD(GUEST_RIP, guest_rip),
753 FIELD(GUEST_RFLAGS, guest_rflags),
754 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757 FIELD(HOST_CR0, host_cr0),
758 FIELD(HOST_CR3, host_cr3),
759 FIELD(HOST_CR4, host_cr4),
760 FIELD(HOST_FS_BASE, host_fs_base),
761 FIELD(HOST_GS_BASE, host_gs_base),
762 FIELD(HOST_TR_BASE, host_tr_base),
763 FIELD(HOST_GDTR_BASE, host_gdtr_base),
764 FIELD(HOST_IDTR_BASE, host_idtr_base),
765 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767 FIELD(HOST_RSP, host_rsp),
768 FIELD(HOST_RIP, host_rip),
769 };
770
vmcs_field_to_offset(unsigned long field)771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776 vmcs_field_to_offset_table[field] == 0)
777 return -ENOENT;
778
779 return vmcs_field_to_offset_table[field];
780 }
781
get_vmcs12(struct kvm_vcpu * vcpu)782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784 return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
790 if (is_error_page(page))
791 return NULL;
792
793 return page;
794 }
795
nested_release_page(struct page * page)796 static void nested_release_page(struct page *page)
797 {
798 kvm_release_page_dirty(page);
799 }
800
nested_release_page_clean(struct page * page)801 static void nested_release_page_clean(struct page *page)
802 {
803 kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
814 static void vmx_set_segment(struct kvm_vcpu *vcpu,
815 struct kvm_segment *var, int seg);
816 static void vmx_get_segment(struct kvm_vcpu *vcpu,
817 struct kvm_segment *var, int seg);
818 static bool guest_state_valid(struct kvm_vcpu *vcpu);
819 static u32 vmx_segment_access_rights(struct kvm_segment *var);
820 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
821 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
822 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
823 static int alloc_identity_pagetable(struct kvm *kvm);
824
825 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
826 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
827 /*
828 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
829 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
830 */
831 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
832 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
833
834 static unsigned long *vmx_io_bitmap_a;
835 static unsigned long *vmx_io_bitmap_b;
836 static unsigned long *vmx_msr_bitmap_legacy;
837 static unsigned long *vmx_msr_bitmap_longmode;
838 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
839 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
840 static unsigned long *vmx_msr_bitmap_nested;
841 static unsigned long *vmx_vmread_bitmap;
842 static unsigned long *vmx_vmwrite_bitmap;
843
844 static bool cpu_has_load_ia32_efer;
845 static bool cpu_has_load_perf_global_ctrl;
846
847 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
848 static DEFINE_SPINLOCK(vmx_vpid_lock);
849
850 static struct vmcs_config {
851 int size;
852 int order;
853 u32 revision_id;
854 u32 pin_based_exec_ctrl;
855 u32 cpu_based_exec_ctrl;
856 u32 cpu_based_2nd_exec_ctrl;
857 u32 vmexit_ctrl;
858 u32 vmentry_ctrl;
859 } vmcs_config;
860
861 static struct vmx_capability {
862 u32 ept;
863 u32 vpid;
864 } vmx_capability;
865
866 #define VMX_SEGMENT_FIELD(seg) \
867 [VCPU_SREG_##seg] = { \
868 .selector = GUEST_##seg##_SELECTOR, \
869 .base = GUEST_##seg##_BASE, \
870 .limit = GUEST_##seg##_LIMIT, \
871 .ar_bytes = GUEST_##seg##_AR_BYTES, \
872 }
873
874 static const struct kvm_vmx_segment_field {
875 unsigned selector;
876 unsigned base;
877 unsigned limit;
878 unsigned ar_bytes;
879 } kvm_vmx_segment_fields[] = {
880 VMX_SEGMENT_FIELD(CS),
881 VMX_SEGMENT_FIELD(DS),
882 VMX_SEGMENT_FIELD(ES),
883 VMX_SEGMENT_FIELD(FS),
884 VMX_SEGMENT_FIELD(GS),
885 VMX_SEGMENT_FIELD(SS),
886 VMX_SEGMENT_FIELD(TR),
887 VMX_SEGMENT_FIELD(LDTR),
888 };
889
890 static u64 host_efer;
891
892 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
893
894 /*
895 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
896 * away by decrementing the array size.
897 */
898 static const u32 vmx_msr_index[] = {
899 #ifdef CONFIG_X86_64
900 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
901 #endif
902 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
903 };
904
is_page_fault(u32 intr_info)905 static inline bool is_page_fault(u32 intr_info)
906 {
907 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
908 INTR_INFO_VALID_MASK)) ==
909 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
910 }
911
is_no_device(u32 intr_info)912 static inline bool is_no_device(u32 intr_info)
913 {
914 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
915 INTR_INFO_VALID_MASK)) ==
916 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
917 }
918
is_invalid_opcode(u32 intr_info)919 static inline bool is_invalid_opcode(u32 intr_info)
920 {
921 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
922 INTR_INFO_VALID_MASK)) ==
923 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
924 }
925
is_external_interrupt(u32 intr_info)926 static inline bool is_external_interrupt(u32 intr_info)
927 {
928 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
929 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
930 }
931
is_machine_check(u32 intr_info)932 static inline bool is_machine_check(u32 intr_info)
933 {
934 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
935 INTR_INFO_VALID_MASK)) ==
936 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
937 }
938
cpu_has_vmx_msr_bitmap(void)939 static inline bool cpu_has_vmx_msr_bitmap(void)
940 {
941 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
942 }
943
cpu_has_vmx_tpr_shadow(void)944 static inline bool cpu_has_vmx_tpr_shadow(void)
945 {
946 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
947 }
948
vm_need_tpr_shadow(struct kvm * kvm)949 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
950 {
951 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
952 }
953
cpu_has_secondary_exec_ctrls(void)954 static inline bool cpu_has_secondary_exec_ctrls(void)
955 {
956 return vmcs_config.cpu_based_exec_ctrl &
957 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
958 }
959
cpu_has_vmx_virtualize_apic_accesses(void)960 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
961 {
962 return vmcs_config.cpu_based_2nd_exec_ctrl &
963 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
964 }
965
cpu_has_vmx_virtualize_x2apic_mode(void)966 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
967 {
968 return vmcs_config.cpu_based_2nd_exec_ctrl &
969 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
970 }
971
cpu_has_vmx_apic_register_virt(void)972 static inline bool cpu_has_vmx_apic_register_virt(void)
973 {
974 return vmcs_config.cpu_based_2nd_exec_ctrl &
975 SECONDARY_EXEC_APIC_REGISTER_VIRT;
976 }
977
cpu_has_vmx_virtual_intr_delivery(void)978 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
979 {
980 return vmcs_config.cpu_based_2nd_exec_ctrl &
981 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
982 }
983
cpu_has_vmx_posted_intr(void)984 static inline bool cpu_has_vmx_posted_intr(void)
985 {
986 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
987 }
988
cpu_has_vmx_apicv(void)989 static inline bool cpu_has_vmx_apicv(void)
990 {
991 return cpu_has_vmx_apic_register_virt() &&
992 cpu_has_vmx_virtual_intr_delivery() &&
993 cpu_has_vmx_posted_intr();
994 }
995
cpu_has_vmx_flexpriority(void)996 static inline bool cpu_has_vmx_flexpriority(void)
997 {
998 return cpu_has_vmx_tpr_shadow() &&
999 cpu_has_vmx_virtualize_apic_accesses();
1000 }
1001
cpu_has_vmx_ept_execute_only(void)1002 static inline bool cpu_has_vmx_ept_execute_only(void)
1003 {
1004 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1005 }
1006
cpu_has_vmx_ept_2m_page(void)1007 static inline bool cpu_has_vmx_ept_2m_page(void)
1008 {
1009 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1010 }
1011
cpu_has_vmx_ept_1g_page(void)1012 static inline bool cpu_has_vmx_ept_1g_page(void)
1013 {
1014 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1015 }
1016
cpu_has_vmx_ept_4levels(void)1017 static inline bool cpu_has_vmx_ept_4levels(void)
1018 {
1019 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020 }
1021
cpu_has_vmx_ept_ad_bits(void)1022 static inline bool cpu_has_vmx_ept_ad_bits(void)
1023 {
1024 return vmx_capability.ept & VMX_EPT_AD_BIT;
1025 }
1026
cpu_has_vmx_invept_context(void)1027 static inline bool cpu_has_vmx_invept_context(void)
1028 {
1029 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1030 }
1031
cpu_has_vmx_invept_global(void)1032 static inline bool cpu_has_vmx_invept_global(void)
1033 {
1034 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1035 }
1036
cpu_has_vmx_invvpid_single(void)1037 static inline bool cpu_has_vmx_invvpid_single(void)
1038 {
1039 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040 }
1041
cpu_has_vmx_invvpid_global(void)1042 static inline bool cpu_has_vmx_invvpid_global(void)
1043 {
1044 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045 }
1046
cpu_has_vmx_ept(void)1047 static inline bool cpu_has_vmx_ept(void)
1048 {
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_ENABLE_EPT;
1051 }
1052
cpu_has_vmx_unrestricted_guest(void)1053 static inline bool cpu_has_vmx_unrestricted_guest(void)
1054 {
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057 }
1058
cpu_has_vmx_ple(void)1059 static inline bool cpu_has_vmx_ple(void)
1060 {
1061 return vmcs_config.cpu_based_2nd_exec_ctrl &
1062 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063 }
1064
vm_need_virtualize_apic_accesses(struct kvm * kvm)1065 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1066 {
1067 return flexpriority_enabled && irqchip_in_kernel(kvm);
1068 }
1069
cpu_has_vmx_vpid(void)1070 static inline bool cpu_has_vmx_vpid(void)
1071 {
1072 return vmcs_config.cpu_based_2nd_exec_ctrl &
1073 SECONDARY_EXEC_ENABLE_VPID;
1074 }
1075
cpu_has_vmx_rdtscp(void)1076 static inline bool cpu_has_vmx_rdtscp(void)
1077 {
1078 return vmcs_config.cpu_based_2nd_exec_ctrl &
1079 SECONDARY_EXEC_RDTSCP;
1080 }
1081
cpu_has_vmx_invpcid(void)1082 static inline bool cpu_has_vmx_invpcid(void)
1083 {
1084 return vmcs_config.cpu_based_2nd_exec_ctrl &
1085 SECONDARY_EXEC_ENABLE_INVPCID;
1086 }
1087
cpu_has_virtual_nmis(void)1088 static inline bool cpu_has_virtual_nmis(void)
1089 {
1090 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
cpu_has_vmx_wbinvd_exit(void)1093 static inline bool cpu_has_vmx_wbinvd_exit(void)
1094 {
1095 return vmcs_config.cpu_based_2nd_exec_ctrl &
1096 SECONDARY_EXEC_WBINVD_EXITING;
1097 }
1098
cpu_has_vmx_shadow_vmcs(void)1099 static inline bool cpu_has_vmx_shadow_vmcs(void)
1100 {
1101 u64 vmx_msr;
1102 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103 /* check if the cpu supports writing r/o exit information fields */
1104 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105 return false;
1106
1107 return vmcs_config.cpu_based_2nd_exec_ctrl &
1108 SECONDARY_EXEC_SHADOW_VMCS;
1109 }
1110
cpu_has_vmx_pml(void)1111 static inline bool cpu_has_vmx_pml(void)
1112 {
1113 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114 }
1115
report_flexpriority(void)1116 static inline bool report_flexpriority(void)
1117 {
1118 return flexpriority_enabled;
1119 }
1120
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1121 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122 {
1123 return vmcs12->cpu_based_vm_exec_control & bit;
1124 }
1125
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1126 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127 {
1128 return (vmcs12->cpu_based_vm_exec_control &
1129 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130 (vmcs12->secondary_vm_exec_control & bit);
1131 }
1132
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1133 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1134 {
1135 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136 }
1137
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1138 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139 {
1140 return vmcs12->pin_based_vm_exec_control &
1141 PIN_BASED_VMX_PREEMPTION_TIMER;
1142 }
1143
nested_cpu_has_ept(struct vmcs12 * vmcs12)1144 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145 {
1146 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147 }
1148
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)1149 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150 {
1151 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152 vmx_xsaves_supported();
1153 }
1154
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)1155 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156 {
1157 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158 }
1159
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)1160 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161 {
1162 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163 }
1164
nested_cpu_has_vid(struct vmcs12 * vmcs12)1165 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166 {
1167 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168 }
1169
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)1170 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171 {
1172 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173 }
1174
is_exception(u32 intr_info)1175 static inline bool is_exception(u32 intr_info)
1176 {
1177 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179 }
1180
1181 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182 u32 exit_intr_info,
1183 unsigned long exit_qualification);
1184 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185 struct vmcs12 *vmcs12,
1186 u32 reason, unsigned long qualification);
1187
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)1188 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1189 {
1190 int i;
1191
1192 for (i = 0; i < vmx->nmsrs; ++i)
1193 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1194 return i;
1195 return -1;
1196 }
1197
__invvpid(int ext,u16 vpid,gva_t gva)1198 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199 {
1200 struct {
1201 u64 vpid : 16;
1202 u64 rsvd : 48;
1203 u64 gva;
1204 } operand = { vpid, 0, gva };
1205
1206 asm volatile (__ex(ASM_VMX_INVVPID)
1207 /* CF==1 or ZF==1 --> rc = -1 */
1208 "; ja 1f ; ud2 ; 1:"
1209 : : "a"(&operand), "c"(ext) : "cc", "memory");
1210 }
1211
__invept(int ext,u64 eptp,gpa_t gpa)1212 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213 {
1214 struct {
1215 u64 eptp, gpa;
1216 } operand = {eptp, gpa};
1217
1218 asm volatile (__ex(ASM_VMX_INVEPT)
1219 /* CF==1 or ZF==1 --> rc = -1 */
1220 "; ja 1f ; ud2 ; 1:\n"
1221 : : "a" (&operand), "c" (ext) : "cc", "memory");
1222 }
1223
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)1224 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1225 {
1226 int i;
1227
1228 i = __find_msr_index(vmx, msr);
1229 if (i >= 0)
1230 return &vmx->guest_msrs[i];
1231 return NULL;
1232 }
1233
vmcs_clear(struct vmcs * vmcs)1234 static void vmcs_clear(struct vmcs *vmcs)
1235 {
1236 u64 phys_addr = __pa(vmcs);
1237 u8 error;
1238
1239 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1240 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1241 : "cc", "memory");
1242 if (error)
1243 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244 vmcs, phys_addr);
1245 }
1246
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)1247 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248 {
1249 vmcs_clear(loaded_vmcs->vmcs);
1250 loaded_vmcs->cpu = -1;
1251 loaded_vmcs->launched = 0;
1252 }
1253
vmcs_load(struct vmcs * vmcs)1254 static void vmcs_load(struct vmcs *vmcs)
1255 {
1256 u64 phys_addr = __pa(vmcs);
1257 u8 error;
1258
1259 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1260 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1261 : "cc", "memory");
1262 if (error)
1263 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1264 vmcs, phys_addr);
1265 }
1266
1267 #ifdef CONFIG_KEXEC
1268 /*
1269 * This bitmap is used to indicate whether the vmclear
1270 * operation is enabled on all cpus. All disabled by
1271 * default.
1272 */
1273 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
crash_enable_local_vmclear(int cpu)1275 static inline void crash_enable_local_vmclear(int cpu)
1276 {
1277 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278 }
1279
crash_disable_local_vmclear(int cpu)1280 static inline void crash_disable_local_vmclear(int cpu)
1281 {
1282 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283 }
1284
crash_local_vmclear_enabled(int cpu)1285 static inline int crash_local_vmclear_enabled(int cpu)
1286 {
1287 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288 }
1289
crash_vmclear_local_loaded_vmcss(void)1290 static void crash_vmclear_local_loaded_vmcss(void)
1291 {
1292 int cpu = raw_smp_processor_id();
1293 struct loaded_vmcs *v;
1294
1295 if (!crash_local_vmclear_enabled(cpu))
1296 return;
1297
1298 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299 loaded_vmcss_on_cpu_link)
1300 vmcs_clear(v->vmcs);
1301 }
1302 #else
crash_enable_local_vmclear(int cpu)1303 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)1304 static inline void crash_disable_local_vmclear(int cpu) { }
1305 #endif /* CONFIG_KEXEC */
1306
__loaded_vmcs_clear(void * arg)1307 static void __loaded_vmcs_clear(void *arg)
1308 {
1309 struct loaded_vmcs *loaded_vmcs = arg;
1310 int cpu = raw_smp_processor_id();
1311
1312 if (loaded_vmcs->cpu != cpu)
1313 return; /* vcpu migration can race with cpu offline */
1314 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1315 per_cpu(current_vmcs, cpu) = NULL;
1316 crash_disable_local_vmclear(cpu);
1317 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1318
1319 /*
1320 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321 * is before setting loaded_vmcs->vcpu to -1 which is done in
1322 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323 * then adds the vmcs into percpu list before it is deleted.
1324 */
1325 smp_wmb();
1326
1327 loaded_vmcs_init(loaded_vmcs);
1328 crash_enable_local_vmclear(cpu);
1329 }
1330
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)1331 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1332 {
1333 int cpu = loaded_vmcs->cpu;
1334
1335 if (cpu != -1)
1336 smp_call_function_single(cpu,
1337 __loaded_vmcs_clear, loaded_vmcs, 1);
1338 }
1339
vpid_sync_vcpu_single(struct vcpu_vmx * vmx)1340 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1341 {
1342 if (vmx->vpid == 0)
1343 return;
1344
1345 if (cpu_has_vmx_invvpid_single())
1346 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1347 }
1348
vpid_sync_vcpu_global(void)1349 static inline void vpid_sync_vcpu_global(void)
1350 {
1351 if (cpu_has_vmx_invvpid_global())
1352 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353 }
1354
vpid_sync_context(struct vcpu_vmx * vmx)1355 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356 {
1357 if (cpu_has_vmx_invvpid_single())
1358 vpid_sync_vcpu_single(vmx);
1359 else
1360 vpid_sync_vcpu_global();
1361 }
1362
ept_sync_global(void)1363 static inline void ept_sync_global(void)
1364 {
1365 if (cpu_has_vmx_invept_global())
1366 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367 }
1368
ept_sync_context(u64 eptp)1369 static inline void ept_sync_context(u64 eptp)
1370 {
1371 if (enable_ept) {
1372 if (cpu_has_vmx_invept_context())
1373 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374 else
1375 ept_sync_global();
1376 }
1377 }
1378
vmcs_readl(unsigned long field)1379 static __always_inline unsigned long vmcs_readl(unsigned long field)
1380 {
1381 unsigned long value;
1382
1383 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384 : "=a"(value) : "d"(field) : "cc");
1385 return value;
1386 }
1387
vmcs_read16(unsigned long field)1388 static __always_inline u16 vmcs_read16(unsigned long field)
1389 {
1390 return vmcs_readl(field);
1391 }
1392
vmcs_read32(unsigned long field)1393 static __always_inline u32 vmcs_read32(unsigned long field)
1394 {
1395 return vmcs_readl(field);
1396 }
1397
vmcs_read64(unsigned long field)1398 static __always_inline u64 vmcs_read64(unsigned long field)
1399 {
1400 #ifdef CONFIG_X86_64
1401 return vmcs_readl(field);
1402 #else
1403 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404 #endif
1405 }
1406
vmwrite_error(unsigned long field,unsigned long value)1407 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408 {
1409 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411 dump_stack();
1412 }
1413
vmcs_writel(unsigned long field,unsigned long value)1414 static void vmcs_writel(unsigned long field, unsigned long value)
1415 {
1416 u8 error;
1417
1418 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1419 : "=q"(error) : "a"(value), "d"(field) : "cc");
1420 if (unlikely(error))
1421 vmwrite_error(field, value);
1422 }
1423
vmcs_write16(unsigned long field,u16 value)1424 static void vmcs_write16(unsigned long field, u16 value)
1425 {
1426 vmcs_writel(field, value);
1427 }
1428
vmcs_write32(unsigned long field,u32 value)1429 static void vmcs_write32(unsigned long field, u32 value)
1430 {
1431 vmcs_writel(field, value);
1432 }
1433
vmcs_write64(unsigned long field,u64 value)1434 static void vmcs_write64(unsigned long field, u64 value)
1435 {
1436 vmcs_writel(field, value);
1437 #ifndef CONFIG_X86_64
1438 asm volatile ("");
1439 vmcs_writel(field+1, value >> 32);
1440 #endif
1441 }
1442
vmcs_clear_bits(unsigned long field,u32 mask)1443 static void vmcs_clear_bits(unsigned long field, u32 mask)
1444 {
1445 vmcs_writel(field, vmcs_readl(field) & ~mask);
1446 }
1447
vmcs_set_bits(unsigned long field,u32 mask)1448 static void vmcs_set_bits(unsigned long field, u32 mask)
1449 {
1450 vmcs_writel(field, vmcs_readl(field) | mask);
1451 }
1452
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)1453 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454 {
1455 vmcs_write32(VM_ENTRY_CONTROLS, val);
1456 vmx->vm_entry_controls_shadow = val;
1457 }
1458
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)1459 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460 {
1461 if (vmx->vm_entry_controls_shadow != val)
1462 vm_entry_controls_init(vmx, val);
1463 }
1464
vm_entry_controls_get(struct vcpu_vmx * vmx)1465 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466 {
1467 return vmx->vm_entry_controls_shadow;
1468 }
1469
1470
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)1471 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472 {
1473 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474 }
1475
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1476 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477 {
1478 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479 }
1480
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)1481 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482 {
1483 vmcs_write32(VM_EXIT_CONTROLS, val);
1484 vmx->vm_exit_controls_shadow = val;
1485 }
1486
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)1487 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488 {
1489 if (vmx->vm_exit_controls_shadow != val)
1490 vm_exit_controls_init(vmx, val);
1491 }
1492
vm_exit_controls_get(struct vcpu_vmx * vmx)1493 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494 {
1495 return vmx->vm_exit_controls_shadow;
1496 }
1497
1498
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)1499 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500 {
1501 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502 }
1503
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1504 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505 {
1506 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507 }
1508
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1509 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510 {
1511 vmx->segment_cache.bitmask = 0;
1512 }
1513
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1514 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515 unsigned field)
1516 {
1517 bool ret;
1518 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522 vmx->segment_cache.bitmask = 0;
1523 }
1524 ret = vmx->segment_cache.bitmask & mask;
1525 vmx->segment_cache.bitmask |= mask;
1526 return ret;
1527 }
1528
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1529 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530 {
1531 u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535 return *p;
1536 }
1537
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1538 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539 {
1540 ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544 return *p;
1545 }
1546
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1547 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548 {
1549 u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553 return *p;
1554 }
1555
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1556 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557 {
1558 u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562 return *p;
1563 }
1564
update_exception_bitmap(struct kvm_vcpu * vcpu)1565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566 {
1567 u32 eb;
1568
1569 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1571 if ((vcpu->guest_debug &
1572 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574 eb |= 1u << BP_VECTOR;
1575 if (to_vmx(vcpu)->rmode.vm86_active)
1576 eb = ~0;
1577 if (enable_ept)
1578 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1579 if (vcpu->fpu_active)
1580 eb &= ~(1u << NM_VECTOR);
1581
1582 /* When we are running a nested L2 guest and L1 specified for it a
1583 * certain exception bitmap, we must trap the same exceptions and pass
1584 * them to L1. When running L2, we will only handle the exceptions
1585 * specified above if L1 did not want them.
1586 */
1587 if (is_guest_mode(vcpu))
1588 eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
1590 vmcs_write32(EXCEPTION_BITMAP, eb);
1591 }
1592
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)1593 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594 unsigned long entry, unsigned long exit)
1595 {
1596 vm_entry_controls_clearbit(vmx, entry);
1597 vm_exit_controls_clearbit(vmx, exit);
1598 }
1599
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1600 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601 {
1602 unsigned i;
1603 struct msr_autoload *m = &vmx->msr_autoload;
1604
1605 switch (msr) {
1606 case MSR_EFER:
1607 if (cpu_has_load_ia32_efer) {
1608 clear_atomic_switch_msr_special(vmx,
1609 VM_ENTRY_LOAD_IA32_EFER,
1610 VM_EXIT_LOAD_IA32_EFER);
1611 return;
1612 }
1613 break;
1614 case MSR_CORE_PERF_GLOBAL_CTRL:
1615 if (cpu_has_load_perf_global_ctrl) {
1616 clear_atomic_switch_msr_special(vmx,
1617 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619 return;
1620 }
1621 break;
1622 }
1623
1624 for (i = 0; i < m->nr; ++i)
1625 if (m->guest[i].index == msr)
1626 break;
1627
1628 if (i == m->nr)
1629 return;
1630 --m->nr;
1631 m->guest[i] = m->guest[m->nr];
1632 m->host[i] = m->host[m->nr];
1633 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635 }
1636
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1637 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638 unsigned long entry, unsigned long exit,
1639 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640 u64 guest_val, u64 host_val)
1641 {
1642 vmcs_write64(guest_val_vmcs, guest_val);
1643 vmcs_write64(host_val_vmcs, host_val);
1644 vm_entry_controls_setbit(vmx, entry);
1645 vm_exit_controls_setbit(vmx, exit);
1646 }
1647
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1648 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649 u64 guest_val, u64 host_val)
1650 {
1651 unsigned i;
1652 struct msr_autoload *m = &vmx->msr_autoload;
1653
1654 switch (msr) {
1655 case MSR_EFER:
1656 if (cpu_has_load_ia32_efer) {
1657 add_atomic_switch_msr_special(vmx,
1658 VM_ENTRY_LOAD_IA32_EFER,
1659 VM_EXIT_LOAD_IA32_EFER,
1660 GUEST_IA32_EFER,
1661 HOST_IA32_EFER,
1662 guest_val, host_val);
1663 return;
1664 }
1665 break;
1666 case MSR_CORE_PERF_GLOBAL_CTRL:
1667 if (cpu_has_load_perf_global_ctrl) {
1668 add_atomic_switch_msr_special(vmx,
1669 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671 GUEST_IA32_PERF_GLOBAL_CTRL,
1672 HOST_IA32_PERF_GLOBAL_CTRL,
1673 guest_val, host_val);
1674 return;
1675 }
1676 break;
1677 case MSR_IA32_PEBS_ENABLE:
1678 /* PEBS needs a quiescent period after being disabled (to write
1679 * a record). Disabling PEBS through VMX MSR swapping doesn't
1680 * provide that period, so a CPU could write host's record into
1681 * guest's memory.
1682 */
1683 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1684 }
1685
1686 for (i = 0; i < m->nr; ++i)
1687 if (m->guest[i].index == msr)
1688 break;
1689
1690 if (i == NR_AUTOLOAD_MSRS) {
1691 printk_once(KERN_WARNING "Not enough msr switch entries. "
1692 "Can't add msr %x\n", msr);
1693 return;
1694 } else if (i == m->nr) {
1695 ++m->nr;
1696 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1697 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1698 }
1699
1700 m->guest[i].index = msr;
1701 m->guest[i].value = guest_val;
1702 m->host[i].index = msr;
1703 m->host[i].value = host_val;
1704 }
1705
reload_tss(void)1706 static void reload_tss(void)
1707 {
1708 /*
1709 * VT restores TR but not its size. Useless.
1710 */
1711 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1712 struct desc_struct *descs;
1713
1714 descs = (void *)gdt->address;
1715 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1716 load_TR_desc();
1717 }
1718
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)1719 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1720 {
1721 u64 guest_efer = vmx->vcpu.arch.efer;
1722 u64 ignore_bits = 0;
1723
1724 if (!enable_ept) {
1725 /*
1726 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1727 * host CPUID is more efficient than testing guest CPUID
1728 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1729 */
1730 if (boot_cpu_has(X86_FEATURE_SMEP))
1731 guest_efer |= EFER_NX;
1732 else if (!(guest_efer & EFER_NX))
1733 ignore_bits |= EFER_NX;
1734 }
1735
1736 /*
1737 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1738 */
1739 ignore_bits |= EFER_SCE;
1740 #ifdef CONFIG_X86_64
1741 ignore_bits |= EFER_LMA | EFER_LME;
1742 /* SCE is meaningful only in long mode on Intel */
1743 if (guest_efer & EFER_LMA)
1744 ignore_bits &= ~(u64)EFER_SCE;
1745 #endif
1746
1747 clear_atomic_switch_msr(vmx, MSR_EFER);
1748
1749 /*
1750 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1751 * On CPUs that support "load IA32_EFER", always switch EFER
1752 * atomically, since it's faster than switching it manually.
1753 */
1754 if (cpu_has_load_ia32_efer ||
1755 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1756 if (!(guest_efer & EFER_LMA))
1757 guest_efer &= ~EFER_LME;
1758 if (guest_efer != host_efer)
1759 add_atomic_switch_msr(vmx, MSR_EFER,
1760 guest_efer, host_efer);
1761 return false;
1762 } else {
1763 guest_efer &= ~ignore_bits;
1764 guest_efer |= host_efer & ignore_bits;
1765
1766 vmx->guest_msrs[efer_offset].data = guest_efer;
1767 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1768
1769 return true;
1770 }
1771 }
1772
segment_base(u16 selector)1773 static unsigned long segment_base(u16 selector)
1774 {
1775 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1776 struct desc_struct *d;
1777 unsigned long table_base;
1778 unsigned long v;
1779
1780 if (!(selector & ~3))
1781 return 0;
1782
1783 table_base = gdt->address;
1784
1785 if (selector & 4) { /* from ldt */
1786 u16 ldt_selector = kvm_read_ldt();
1787
1788 if (!(ldt_selector & ~3))
1789 return 0;
1790
1791 table_base = segment_base(ldt_selector);
1792 }
1793 d = (struct desc_struct *)(table_base + (selector & ~7));
1794 v = get_desc_base(d);
1795 #ifdef CONFIG_X86_64
1796 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1797 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1798 #endif
1799 return v;
1800 }
1801
kvm_read_tr_base(void)1802 static inline unsigned long kvm_read_tr_base(void)
1803 {
1804 u16 tr;
1805 asm("str %0" : "=g"(tr));
1806 return segment_base(tr);
1807 }
1808
vmx_save_host_state(struct kvm_vcpu * vcpu)1809 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1810 {
1811 struct vcpu_vmx *vmx = to_vmx(vcpu);
1812 int i;
1813
1814 if (vmx->host_state.loaded)
1815 return;
1816
1817 vmx->host_state.loaded = 1;
1818 /*
1819 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1820 * allow segment selectors with cpl > 0 or ti == 1.
1821 */
1822 vmx->host_state.ldt_sel = kvm_read_ldt();
1823 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1824 savesegment(fs, vmx->host_state.fs_sel);
1825 if (!(vmx->host_state.fs_sel & 7)) {
1826 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1827 vmx->host_state.fs_reload_needed = 0;
1828 } else {
1829 vmcs_write16(HOST_FS_SELECTOR, 0);
1830 vmx->host_state.fs_reload_needed = 1;
1831 }
1832 savesegment(gs, vmx->host_state.gs_sel);
1833 if (!(vmx->host_state.gs_sel & 7))
1834 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1835 else {
1836 vmcs_write16(HOST_GS_SELECTOR, 0);
1837 vmx->host_state.gs_ldt_reload_needed = 1;
1838 }
1839
1840 #ifdef CONFIG_X86_64
1841 savesegment(ds, vmx->host_state.ds_sel);
1842 savesegment(es, vmx->host_state.es_sel);
1843 #endif
1844
1845 #ifdef CONFIG_X86_64
1846 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1847 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1848 #else
1849 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1850 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1851 #endif
1852
1853 #ifdef CONFIG_X86_64
1854 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1855 if (is_long_mode(&vmx->vcpu))
1856 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1857 #endif
1858 if (boot_cpu_has(X86_FEATURE_MPX))
1859 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1860 for (i = 0; i < vmx->save_nmsrs; ++i)
1861 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1862 vmx->guest_msrs[i].data,
1863 vmx->guest_msrs[i].mask);
1864 }
1865
__vmx_load_host_state(struct vcpu_vmx * vmx)1866 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1867 {
1868 if (!vmx->host_state.loaded)
1869 return;
1870
1871 ++vmx->vcpu.stat.host_state_reload;
1872 vmx->host_state.loaded = 0;
1873 #ifdef CONFIG_X86_64
1874 if (is_long_mode(&vmx->vcpu))
1875 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1876 #endif
1877 if (vmx->host_state.gs_ldt_reload_needed) {
1878 kvm_load_ldt(vmx->host_state.ldt_sel);
1879 #ifdef CONFIG_X86_64
1880 load_gs_index(vmx->host_state.gs_sel);
1881 #else
1882 loadsegment(gs, vmx->host_state.gs_sel);
1883 #endif
1884 }
1885 if (vmx->host_state.fs_reload_needed)
1886 loadsegment(fs, vmx->host_state.fs_sel);
1887 #ifdef CONFIG_X86_64
1888 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1889 loadsegment(ds, vmx->host_state.ds_sel);
1890 loadsegment(es, vmx->host_state.es_sel);
1891 }
1892 #endif
1893 reload_tss();
1894 #ifdef CONFIG_X86_64
1895 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1896 #endif
1897 if (vmx->host_state.msr_host_bndcfgs)
1898 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1899 /*
1900 * If the FPU is not active (through the host task or
1901 * the guest vcpu), then restore the cr0.TS bit.
1902 */
1903 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1904 stts();
1905 load_gdt(this_cpu_ptr(&host_gdt));
1906 }
1907
vmx_load_host_state(struct vcpu_vmx * vmx)1908 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1909 {
1910 preempt_disable();
1911 __vmx_load_host_state(vmx);
1912 preempt_enable();
1913 }
1914
1915 /*
1916 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1917 * vcpu mutex is already taken.
1918 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1919 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1920 {
1921 struct vcpu_vmx *vmx = to_vmx(vcpu);
1922 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1923
1924 if (!vmm_exclusive)
1925 kvm_cpu_vmxon(phys_addr);
1926 else if (vmx->loaded_vmcs->cpu != cpu)
1927 loaded_vmcs_clear(vmx->loaded_vmcs);
1928
1929 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1930 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1931 vmcs_load(vmx->loaded_vmcs->vmcs);
1932 }
1933
1934 if (vmx->loaded_vmcs->cpu != cpu) {
1935 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1936 unsigned long sysenter_esp;
1937
1938 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1939 local_irq_disable();
1940 crash_disable_local_vmclear(cpu);
1941
1942 /*
1943 * Read loaded_vmcs->cpu should be before fetching
1944 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1945 * See the comments in __loaded_vmcs_clear().
1946 */
1947 smp_rmb();
1948
1949 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1950 &per_cpu(loaded_vmcss_on_cpu, cpu));
1951 crash_enable_local_vmclear(cpu);
1952 local_irq_enable();
1953
1954 /*
1955 * Linux uses per-cpu TSS and GDT, so set these when switching
1956 * processors.
1957 */
1958 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1959 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1960
1961 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1962 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1963 vmx->loaded_vmcs->cpu = cpu;
1964 }
1965 }
1966
vmx_vcpu_put(struct kvm_vcpu * vcpu)1967 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1968 {
1969 __vmx_load_host_state(to_vmx(vcpu));
1970 if (!vmm_exclusive) {
1971 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1972 vcpu->cpu = -1;
1973 kvm_cpu_vmxoff();
1974 }
1975 }
1976
vmx_fpu_activate(struct kvm_vcpu * vcpu)1977 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1978 {
1979 ulong cr0;
1980
1981 if (vcpu->fpu_active)
1982 return;
1983 vcpu->fpu_active = 1;
1984 cr0 = vmcs_readl(GUEST_CR0);
1985 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1986 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1987 vmcs_writel(GUEST_CR0, cr0);
1988 update_exception_bitmap(vcpu);
1989 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1990 if (is_guest_mode(vcpu))
1991 vcpu->arch.cr0_guest_owned_bits &=
1992 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1993 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1994 }
1995
1996 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1997
1998 /*
1999 * Return the cr0 value that a nested guest would read. This is a combination
2000 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2001 * its hypervisor (cr0_read_shadow).
2002 */
nested_read_cr0(struct vmcs12 * fields)2003 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2004 {
2005 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2006 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2007 }
nested_read_cr4(struct vmcs12 * fields)2008 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2009 {
2010 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2011 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2012 }
2013
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)2014 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2015 {
2016 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2017 * set this *before* calling this function.
2018 */
2019 vmx_decache_cr0_guest_bits(vcpu);
2020 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2021 update_exception_bitmap(vcpu);
2022 vcpu->arch.cr0_guest_owned_bits = 0;
2023 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2024 if (is_guest_mode(vcpu)) {
2025 /*
2026 * L1's specified read shadow might not contain the TS bit,
2027 * so now that we turned on shadowing of this bit, we need to
2028 * set this bit of the shadow. Like in nested_vmx_run we need
2029 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2030 * up-to-date here because we just decached cr0.TS (and we'll
2031 * only update vmcs12->guest_cr0 on nested exit).
2032 */
2033 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2034 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2035 (vcpu->arch.cr0 & X86_CR0_TS);
2036 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2037 } else
2038 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2039 }
2040
vmx_get_rflags(struct kvm_vcpu * vcpu)2041 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2042 {
2043 unsigned long rflags, save_rflags;
2044
2045 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2046 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2047 rflags = vmcs_readl(GUEST_RFLAGS);
2048 if (to_vmx(vcpu)->rmode.vm86_active) {
2049 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2050 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2051 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2052 }
2053 to_vmx(vcpu)->rflags = rflags;
2054 }
2055 return to_vmx(vcpu)->rflags;
2056 }
2057
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2058 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2059 {
2060 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2061 to_vmx(vcpu)->rflags = rflags;
2062 if (to_vmx(vcpu)->rmode.vm86_active) {
2063 to_vmx(vcpu)->rmode.save_rflags = rflags;
2064 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2065 }
2066 vmcs_writel(GUEST_RFLAGS, rflags);
2067 }
2068
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)2069 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2070 {
2071 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2072 int ret = 0;
2073
2074 if (interruptibility & GUEST_INTR_STATE_STI)
2075 ret |= KVM_X86_SHADOW_INT_STI;
2076 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2077 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2078
2079 return ret;
2080 }
2081
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)2082 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2083 {
2084 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2085 u32 interruptibility = interruptibility_old;
2086
2087 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2088
2089 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2090 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2091 else if (mask & KVM_X86_SHADOW_INT_STI)
2092 interruptibility |= GUEST_INTR_STATE_STI;
2093
2094 if ((interruptibility != interruptibility_old))
2095 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2096 }
2097
skip_emulated_instruction(struct kvm_vcpu * vcpu)2098 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2099 {
2100 unsigned long rip;
2101
2102 rip = kvm_rip_read(vcpu);
2103 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2104 kvm_rip_write(vcpu, rip);
2105
2106 /* skipping an emulated instruction also counts */
2107 vmx_set_interrupt_shadow(vcpu, 0);
2108 }
2109
2110 /*
2111 * KVM wants to inject page-faults which it got to the guest. This function
2112 * checks whether in a nested guest, we need to inject them to L1 or L2.
2113 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned nr)2114 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2115 {
2116 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2117
2118 if (!(vmcs12->exception_bitmap & (1u << nr)))
2119 return 0;
2120
2121 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2122 vmcs_read32(VM_EXIT_INTR_INFO),
2123 vmcs_readl(EXIT_QUALIFICATION));
2124 return 1;
2125 }
2126
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)2127 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2128 bool has_error_code, u32 error_code,
2129 bool reinject)
2130 {
2131 struct vcpu_vmx *vmx = to_vmx(vcpu);
2132 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2133
2134 if (!reinject && is_guest_mode(vcpu) &&
2135 nested_vmx_check_exception(vcpu, nr))
2136 return;
2137
2138 if (has_error_code) {
2139 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2140 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2141 }
2142
2143 if (vmx->rmode.vm86_active) {
2144 int inc_eip = 0;
2145 if (kvm_exception_is_soft(nr))
2146 inc_eip = vcpu->arch.event_exit_inst_len;
2147 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2148 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2149 return;
2150 }
2151
2152 if (kvm_exception_is_soft(nr)) {
2153 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2154 vmx->vcpu.arch.event_exit_inst_len);
2155 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2156 } else
2157 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2158
2159 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2160 }
2161
vmx_rdtscp_supported(void)2162 static bool vmx_rdtscp_supported(void)
2163 {
2164 return cpu_has_vmx_rdtscp();
2165 }
2166
vmx_invpcid_supported(void)2167 static bool vmx_invpcid_supported(void)
2168 {
2169 return cpu_has_vmx_invpcid() && enable_ept;
2170 }
2171
2172 /*
2173 * Swap MSR entry in host/guest MSR entry array.
2174 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)2175 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2176 {
2177 struct shared_msr_entry tmp;
2178
2179 tmp = vmx->guest_msrs[to];
2180 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2181 vmx->guest_msrs[from] = tmp;
2182 }
2183
vmx_set_msr_bitmap(struct kvm_vcpu * vcpu)2184 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2185 {
2186 unsigned long *msr_bitmap;
2187
2188 if (is_guest_mode(vcpu))
2189 msr_bitmap = vmx_msr_bitmap_nested;
2190 else if (irqchip_in_kernel(vcpu->kvm) &&
2191 apic_x2apic_mode(vcpu->arch.apic)) {
2192 if (is_long_mode(vcpu))
2193 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2194 else
2195 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2196 } else {
2197 if (is_long_mode(vcpu))
2198 msr_bitmap = vmx_msr_bitmap_longmode;
2199 else
2200 msr_bitmap = vmx_msr_bitmap_legacy;
2201 }
2202
2203 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2204 }
2205
2206 /*
2207 * Set up the vmcs to automatically save and restore system
2208 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2209 * mode, as fiddling with msrs is very expensive.
2210 */
setup_msrs(struct vcpu_vmx * vmx)2211 static void setup_msrs(struct vcpu_vmx *vmx)
2212 {
2213 int save_nmsrs, index;
2214
2215 save_nmsrs = 0;
2216 #ifdef CONFIG_X86_64
2217 if (is_long_mode(&vmx->vcpu)) {
2218 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2219 if (index >= 0)
2220 move_msr_up(vmx, index, save_nmsrs++);
2221 index = __find_msr_index(vmx, MSR_LSTAR);
2222 if (index >= 0)
2223 move_msr_up(vmx, index, save_nmsrs++);
2224 index = __find_msr_index(vmx, MSR_CSTAR);
2225 if (index >= 0)
2226 move_msr_up(vmx, index, save_nmsrs++);
2227 index = __find_msr_index(vmx, MSR_TSC_AUX);
2228 if (index >= 0 && vmx->rdtscp_enabled)
2229 move_msr_up(vmx, index, save_nmsrs++);
2230 /*
2231 * MSR_STAR is only needed on long mode guests, and only
2232 * if efer.sce is enabled.
2233 */
2234 index = __find_msr_index(vmx, MSR_STAR);
2235 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2236 move_msr_up(vmx, index, save_nmsrs++);
2237 }
2238 #endif
2239 index = __find_msr_index(vmx, MSR_EFER);
2240 if (index >= 0 && update_transition_efer(vmx, index))
2241 move_msr_up(vmx, index, save_nmsrs++);
2242
2243 vmx->save_nmsrs = save_nmsrs;
2244
2245 if (cpu_has_vmx_msr_bitmap())
2246 vmx_set_msr_bitmap(&vmx->vcpu);
2247 }
2248
2249 /*
2250 * reads and returns guest's timestamp counter "register"
2251 * guest_tsc = host_tsc + tsc_offset -- 21.3
2252 */
guest_read_tsc(void)2253 static u64 guest_read_tsc(void)
2254 {
2255 u64 host_tsc, tsc_offset;
2256
2257 rdtscll(host_tsc);
2258 tsc_offset = vmcs_read64(TSC_OFFSET);
2259 return host_tsc + tsc_offset;
2260 }
2261
2262 /*
2263 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2264 * counter, even if a nested guest (L2) is currently running.
2265 */
vmx_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2266 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2267 {
2268 u64 tsc_offset;
2269
2270 tsc_offset = is_guest_mode(vcpu) ?
2271 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2272 vmcs_read64(TSC_OFFSET);
2273 return host_tsc + tsc_offset;
2274 }
2275
2276 /*
2277 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2278 * software catchup for faster rates on slower CPUs.
2279 */
vmx_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2280 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2281 {
2282 if (!scale)
2283 return;
2284
2285 if (user_tsc_khz > tsc_khz) {
2286 vcpu->arch.tsc_catchup = 1;
2287 vcpu->arch.tsc_always_catchup = 1;
2288 } else
2289 WARN(1, "user requested TSC rate below hardware speed\n");
2290 }
2291
vmx_read_tsc_offset(struct kvm_vcpu * vcpu)2292 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2293 {
2294 return vmcs_read64(TSC_OFFSET);
2295 }
2296
2297 /*
2298 * writes 'offset' into guest's timestamp counter offset register
2299 */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2300 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2301 {
2302 if (is_guest_mode(vcpu)) {
2303 /*
2304 * We're here if L1 chose not to trap WRMSR to TSC. According
2305 * to the spec, this should set L1's TSC; The offset that L1
2306 * set for L2 remains unchanged, and still needs to be added
2307 * to the newly set TSC to get L2's TSC.
2308 */
2309 struct vmcs12 *vmcs12;
2310 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2311 /* recalculate vmcs02.TSC_OFFSET: */
2312 vmcs12 = get_vmcs12(vcpu);
2313 vmcs_write64(TSC_OFFSET, offset +
2314 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2315 vmcs12->tsc_offset : 0));
2316 } else {
2317 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2318 vmcs_read64(TSC_OFFSET), offset);
2319 vmcs_write64(TSC_OFFSET, offset);
2320 }
2321 }
2322
vmx_adjust_tsc_offset(struct kvm_vcpu * vcpu,s64 adjustment,bool host)2323 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2324 {
2325 u64 offset = vmcs_read64(TSC_OFFSET);
2326
2327 vmcs_write64(TSC_OFFSET, offset + adjustment);
2328 if (is_guest_mode(vcpu)) {
2329 /* Even when running L2, the adjustment needs to apply to L1 */
2330 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2331 } else
2332 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2333 offset + adjustment);
2334 }
2335
vmx_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2336 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2337 {
2338 return target_tsc - native_read_tsc();
2339 }
2340
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)2341 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2342 {
2343 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2344 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2345 }
2346
2347 /*
2348 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2349 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2350 * all guests if the "nested" module option is off, and can also be disabled
2351 * for a single guest by disabling its VMX cpuid bit.
2352 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)2353 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2354 {
2355 return nested && guest_cpuid_has_vmx(vcpu);
2356 }
2357
2358 /*
2359 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2360 * returned for the various VMX controls MSRs when nested VMX is enabled.
2361 * The same values should also be used to verify that vmcs12 control fields are
2362 * valid during nested entry from L1 to L2.
2363 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2364 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2365 * bit in the high half is on if the corresponding bit in the control field
2366 * may be on. See also vmx_control_verify().
2367 */
nested_vmx_setup_ctls_msrs(struct vcpu_vmx * vmx)2368 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2369 {
2370 /*
2371 * Note that as a general rule, the high half of the MSRs (bits in
2372 * the control fields which may be 1) should be initialized by the
2373 * intersection of the underlying hardware's MSR (i.e., features which
2374 * can be supported) and the list of features we want to expose -
2375 * because they are known to be properly supported in our code.
2376 * Also, usually, the low half of the MSRs (bits which must be 1) can
2377 * be set to 0, meaning that L1 may turn off any of these bits. The
2378 * reason is that if one of these bits is necessary, it will appear
2379 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2380 * fields of vmcs01 and vmcs02, will turn these bits off - and
2381 * nested_vmx_exit_handled() will not pass related exits to L1.
2382 * These rules have exceptions below.
2383 */
2384
2385 /* pin-based controls */
2386 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2387 vmx->nested.nested_vmx_pinbased_ctls_low,
2388 vmx->nested.nested_vmx_pinbased_ctls_high);
2389 vmx->nested.nested_vmx_pinbased_ctls_low |=
2390 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2391 vmx->nested.nested_vmx_pinbased_ctls_high &=
2392 PIN_BASED_EXT_INTR_MASK |
2393 PIN_BASED_NMI_EXITING |
2394 PIN_BASED_VIRTUAL_NMIS;
2395 vmx->nested.nested_vmx_pinbased_ctls_high |=
2396 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2397 PIN_BASED_VMX_PREEMPTION_TIMER;
2398 if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2399 vmx->nested.nested_vmx_pinbased_ctls_high |=
2400 PIN_BASED_POSTED_INTR;
2401
2402 /* exit controls */
2403 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2404 vmx->nested.nested_vmx_exit_ctls_low,
2405 vmx->nested.nested_vmx_exit_ctls_high);
2406 vmx->nested.nested_vmx_exit_ctls_low =
2407 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2408
2409 vmx->nested.nested_vmx_exit_ctls_high &=
2410 #ifdef CONFIG_X86_64
2411 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2412 #endif
2413 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2414 vmx->nested.nested_vmx_exit_ctls_high |=
2415 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2416 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2417 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2418
2419 if (vmx_mpx_supported())
2420 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2421
2422 /* We support free control of debug control saving. */
2423 vmx->nested.nested_vmx_true_exit_ctls_low =
2424 vmx->nested.nested_vmx_exit_ctls_low &
2425 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2426
2427 /* entry controls */
2428 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2429 vmx->nested.nested_vmx_entry_ctls_low,
2430 vmx->nested.nested_vmx_entry_ctls_high);
2431 vmx->nested.nested_vmx_entry_ctls_low =
2432 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2433 vmx->nested.nested_vmx_entry_ctls_high &=
2434 #ifdef CONFIG_X86_64
2435 VM_ENTRY_IA32E_MODE |
2436 #endif
2437 VM_ENTRY_LOAD_IA32_PAT;
2438 vmx->nested.nested_vmx_entry_ctls_high |=
2439 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2440 if (vmx_mpx_supported())
2441 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2442
2443 /* We support free control of debug control loading. */
2444 vmx->nested.nested_vmx_true_entry_ctls_low =
2445 vmx->nested.nested_vmx_entry_ctls_low &
2446 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2447
2448 /* cpu-based controls */
2449 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2450 vmx->nested.nested_vmx_procbased_ctls_low,
2451 vmx->nested.nested_vmx_procbased_ctls_high);
2452 vmx->nested.nested_vmx_procbased_ctls_low =
2453 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2454 vmx->nested.nested_vmx_procbased_ctls_high &=
2455 CPU_BASED_VIRTUAL_INTR_PENDING |
2456 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2457 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2458 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2459 CPU_BASED_CR3_STORE_EXITING |
2460 #ifdef CONFIG_X86_64
2461 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2462 #endif
2463 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2464 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2465 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2466 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2467 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2468 /*
2469 * We can allow some features even when not supported by the
2470 * hardware. For example, L1 can specify an MSR bitmap - and we
2471 * can use it to avoid exits to L1 - even when L0 runs L2
2472 * without MSR bitmaps.
2473 */
2474 vmx->nested.nested_vmx_procbased_ctls_high |=
2475 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2476 CPU_BASED_USE_MSR_BITMAPS;
2477
2478 /* We support free control of CR3 access interception. */
2479 vmx->nested.nested_vmx_true_procbased_ctls_low =
2480 vmx->nested.nested_vmx_procbased_ctls_low &
2481 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2482
2483 /* secondary cpu-based controls */
2484 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2485 vmx->nested.nested_vmx_secondary_ctls_low,
2486 vmx->nested.nested_vmx_secondary_ctls_high);
2487 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2488 vmx->nested.nested_vmx_secondary_ctls_high &=
2489 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2490 SECONDARY_EXEC_RDTSCP |
2491 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2492 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2493 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2494 SECONDARY_EXEC_WBINVD_EXITING |
2495 SECONDARY_EXEC_XSAVES;
2496
2497 if (enable_ept) {
2498 /* nested EPT: emulate EPT also to L1 */
2499 vmx->nested.nested_vmx_secondary_ctls_high |=
2500 SECONDARY_EXEC_ENABLE_EPT;
2501 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2502 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2503 VMX_EPT_INVEPT_BIT;
2504 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2505 /*
2506 * For nested guests, we don't do anything specific
2507 * for single context invalidation. Hence, only advertise
2508 * support for global context invalidation.
2509 */
2510 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2511 } else
2512 vmx->nested.nested_vmx_ept_caps = 0;
2513
2514 if (enable_unrestricted_guest)
2515 vmx->nested.nested_vmx_secondary_ctls_high |=
2516 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2517
2518 /* miscellaneous data */
2519 rdmsr(MSR_IA32_VMX_MISC,
2520 vmx->nested.nested_vmx_misc_low,
2521 vmx->nested.nested_vmx_misc_high);
2522 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2523 vmx->nested.nested_vmx_misc_low |=
2524 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2525 VMX_MISC_ACTIVITY_HLT;
2526 vmx->nested.nested_vmx_misc_high = 0;
2527 }
2528
vmx_control_verify(u32 control,u32 low,u32 high)2529 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2530 {
2531 /*
2532 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2533 */
2534 return ((control & high) | low) == control;
2535 }
2536
vmx_control_msr(u32 low,u32 high)2537 static inline u64 vmx_control_msr(u32 low, u32 high)
2538 {
2539 return low | ((u64)high << 32);
2540 }
2541
2542 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2543 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2544 {
2545 struct vcpu_vmx *vmx = to_vmx(vcpu);
2546
2547 switch (msr_index) {
2548 case MSR_IA32_VMX_BASIC:
2549 /*
2550 * This MSR reports some information about VMX support. We
2551 * should return information about the VMX we emulate for the
2552 * guest, and the VMCS structure we give it - not about the
2553 * VMX support of the underlying hardware.
2554 */
2555 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2556 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2557 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2558 break;
2559 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2560 case MSR_IA32_VMX_PINBASED_CTLS:
2561 *pdata = vmx_control_msr(
2562 vmx->nested.nested_vmx_pinbased_ctls_low,
2563 vmx->nested.nested_vmx_pinbased_ctls_high);
2564 break;
2565 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2566 *pdata = vmx_control_msr(
2567 vmx->nested.nested_vmx_true_procbased_ctls_low,
2568 vmx->nested.nested_vmx_procbased_ctls_high);
2569 break;
2570 case MSR_IA32_VMX_PROCBASED_CTLS:
2571 *pdata = vmx_control_msr(
2572 vmx->nested.nested_vmx_procbased_ctls_low,
2573 vmx->nested.nested_vmx_procbased_ctls_high);
2574 break;
2575 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2576 *pdata = vmx_control_msr(
2577 vmx->nested.nested_vmx_true_exit_ctls_low,
2578 vmx->nested.nested_vmx_exit_ctls_high);
2579 break;
2580 case MSR_IA32_VMX_EXIT_CTLS:
2581 *pdata = vmx_control_msr(
2582 vmx->nested.nested_vmx_exit_ctls_low,
2583 vmx->nested.nested_vmx_exit_ctls_high);
2584 break;
2585 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2586 *pdata = vmx_control_msr(
2587 vmx->nested.nested_vmx_true_entry_ctls_low,
2588 vmx->nested.nested_vmx_entry_ctls_high);
2589 break;
2590 case MSR_IA32_VMX_ENTRY_CTLS:
2591 *pdata = vmx_control_msr(
2592 vmx->nested.nested_vmx_entry_ctls_low,
2593 vmx->nested.nested_vmx_entry_ctls_high);
2594 break;
2595 case MSR_IA32_VMX_MISC:
2596 *pdata = vmx_control_msr(
2597 vmx->nested.nested_vmx_misc_low,
2598 vmx->nested.nested_vmx_misc_high);
2599 break;
2600 /*
2601 * These MSRs specify bits which the guest must keep fixed (on or off)
2602 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2603 * We picked the standard core2 setting.
2604 */
2605 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2606 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2607 case MSR_IA32_VMX_CR0_FIXED0:
2608 *pdata = VMXON_CR0_ALWAYSON;
2609 break;
2610 case MSR_IA32_VMX_CR0_FIXED1:
2611 *pdata = -1ULL;
2612 break;
2613 case MSR_IA32_VMX_CR4_FIXED0:
2614 *pdata = VMXON_CR4_ALWAYSON;
2615 break;
2616 case MSR_IA32_VMX_CR4_FIXED1:
2617 *pdata = -1ULL;
2618 break;
2619 case MSR_IA32_VMX_VMCS_ENUM:
2620 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2621 break;
2622 case MSR_IA32_VMX_PROCBASED_CTLS2:
2623 *pdata = vmx_control_msr(
2624 vmx->nested.nested_vmx_secondary_ctls_low,
2625 vmx->nested.nested_vmx_secondary_ctls_high);
2626 break;
2627 case MSR_IA32_VMX_EPT_VPID_CAP:
2628 /* Currently, no nested vpid support */
2629 *pdata = vmx->nested.nested_vmx_ept_caps;
2630 break;
2631 default:
2632 return 1;
2633 }
2634
2635 return 0;
2636 }
2637
2638 /*
2639 * Reads an msr value (of 'msr_index') into 'pdata'.
2640 * Returns 0 on success, non-0 otherwise.
2641 * Assumes vcpu_load() was already called.
2642 */
vmx_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2643 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2644 {
2645 u64 data;
2646 struct shared_msr_entry *msr;
2647
2648 if (!pdata) {
2649 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2650 return -EINVAL;
2651 }
2652
2653 switch (msr_index) {
2654 #ifdef CONFIG_X86_64
2655 case MSR_FS_BASE:
2656 data = vmcs_readl(GUEST_FS_BASE);
2657 break;
2658 case MSR_GS_BASE:
2659 data = vmcs_readl(GUEST_GS_BASE);
2660 break;
2661 case MSR_KERNEL_GS_BASE:
2662 vmx_load_host_state(to_vmx(vcpu));
2663 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2664 break;
2665 #endif
2666 case MSR_EFER:
2667 return kvm_get_msr_common(vcpu, msr_index, pdata);
2668 case MSR_IA32_TSC:
2669 data = guest_read_tsc();
2670 break;
2671 case MSR_IA32_SYSENTER_CS:
2672 data = vmcs_read32(GUEST_SYSENTER_CS);
2673 break;
2674 case MSR_IA32_SYSENTER_EIP:
2675 data = vmcs_readl(GUEST_SYSENTER_EIP);
2676 break;
2677 case MSR_IA32_SYSENTER_ESP:
2678 data = vmcs_readl(GUEST_SYSENTER_ESP);
2679 break;
2680 case MSR_IA32_BNDCFGS:
2681 if (!vmx_mpx_supported())
2682 return 1;
2683 data = vmcs_read64(GUEST_BNDCFGS);
2684 break;
2685 case MSR_IA32_FEATURE_CONTROL:
2686 if (!nested_vmx_allowed(vcpu))
2687 return 1;
2688 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2689 break;
2690 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2691 if (!nested_vmx_allowed(vcpu))
2692 return 1;
2693 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2694 case MSR_IA32_XSS:
2695 if (!vmx_xsaves_supported())
2696 return 1;
2697 data = vcpu->arch.ia32_xss;
2698 break;
2699 case MSR_TSC_AUX:
2700 if (!to_vmx(vcpu)->rdtscp_enabled)
2701 return 1;
2702 /* Otherwise falls through */
2703 default:
2704 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2705 if (msr) {
2706 data = msr->data;
2707 break;
2708 }
2709 return kvm_get_msr_common(vcpu, msr_index, pdata);
2710 }
2711
2712 *pdata = data;
2713 return 0;
2714 }
2715
2716 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2717
2718 /*
2719 * Writes msr value into into the appropriate "register".
2720 * Returns 0 on success, non-0 otherwise.
2721 * Assumes vcpu_load() was already called.
2722 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2723 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2724 {
2725 struct vcpu_vmx *vmx = to_vmx(vcpu);
2726 struct shared_msr_entry *msr;
2727 int ret = 0;
2728 u32 msr_index = msr_info->index;
2729 u64 data = msr_info->data;
2730
2731 switch (msr_index) {
2732 case MSR_EFER:
2733 ret = kvm_set_msr_common(vcpu, msr_info);
2734 break;
2735 #ifdef CONFIG_X86_64
2736 case MSR_FS_BASE:
2737 vmx_segment_cache_clear(vmx);
2738 vmcs_writel(GUEST_FS_BASE, data);
2739 break;
2740 case MSR_GS_BASE:
2741 vmx_segment_cache_clear(vmx);
2742 vmcs_writel(GUEST_GS_BASE, data);
2743 break;
2744 case MSR_KERNEL_GS_BASE:
2745 vmx_load_host_state(vmx);
2746 vmx->msr_guest_kernel_gs_base = data;
2747 break;
2748 #endif
2749 case MSR_IA32_SYSENTER_CS:
2750 vmcs_write32(GUEST_SYSENTER_CS, data);
2751 break;
2752 case MSR_IA32_SYSENTER_EIP:
2753 vmcs_writel(GUEST_SYSENTER_EIP, data);
2754 break;
2755 case MSR_IA32_SYSENTER_ESP:
2756 vmcs_writel(GUEST_SYSENTER_ESP, data);
2757 break;
2758 case MSR_IA32_BNDCFGS:
2759 if (!vmx_mpx_supported())
2760 return 1;
2761 vmcs_write64(GUEST_BNDCFGS, data);
2762 break;
2763 case MSR_IA32_TSC:
2764 kvm_write_tsc(vcpu, msr_info);
2765 break;
2766 case MSR_IA32_CR_PAT:
2767 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2768 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2769 return 1;
2770 vmcs_write64(GUEST_IA32_PAT, data);
2771 vcpu->arch.pat = data;
2772 break;
2773 }
2774 ret = kvm_set_msr_common(vcpu, msr_info);
2775 break;
2776 case MSR_IA32_TSC_ADJUST:
2777 ret = kvm_set_msr_common(vcpu, msr_info);
2778 break;
2779 case MSR_IA32_FEATURE_CONTROL:
2780 if (!nested_vmx_allowed(vcpu) ||
2781 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2782 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2783 return 1;
2784 vmx->nested.msr_ia32_feature_control = data;
2785 if (msr_info->host_initiated && data == 0)
2786 vmx_leave_nested(vcpu);
2787 break;
2788 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2789 return 1; /* they are read-only */
2790 case MSR_IA32_XSS:
2791 if (!vmx_xsaves_supported())
2792 return 1;
2793 /*
2794 * The only supported bit as of Skylake is bit 8, but
2795 * it is not supported on KVM.
2796 */
2797 if (data != 0)
2798 return 1;
2799 vcpu->arch.ia32_xss = data;
2800 if (vcpu->arch.ia32_xss != host_xss)
2801 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2802 vcpu->arch.ia32_xss, host_xss);
2803 else
2804 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2805 break;
2806 case MSR_TSC_AUX:
2807 if (!vmx->rdtscp_enabled)
2808 return 1;
2809 /* Check reserved bit, higher 32 bits should be zero */
2810 if ((data >> 32) != 0)
2811 return 1;
2812 /* Otherwise falls through */
2813 default:
2814 msr = find_msr_entry(vmx, msr_index);
2815 if (msr) {
2816 u64 old_msr_data = msr->data;
2817 msr->data = data;
2818 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2819 preempt_disable();
2820 ret = kvm_set_shared_msr(msr->index, msr->data,
2821 msr->mask);
2822 preempt_enable();
2823 if (ret)
2824 msr->data = old_msr_data;
2825 }
2826 break;
2827 }
2828 ret = kvm_set_msr_common(vcpu, msr_info);
2829 }
2830
2831 return ret;
2832 }
2833
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2834 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2835 {
2836 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2837 switch (reg) {
2838 case VCPU_REGS_RSP:
2839 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2840 break;
2841 case VCPU_REGS_RIP:
2842 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2843 break;
2844 case VCPU_EXREG_PDPTR:
2845 if (enable_ept)
2846 ept_save_pdptrs(vcpu);
2847 break;
2848 default:
2849 break;
2850 }
2851 }
2852
cpu_has_kvm_support(void)2853 static __init int cpu_has_kvm_support(void)
2854 {
2855 return cpu_has_vmx();
2856 }
2857
vmx_disabled_by_bios(void)2858 static __init int vmx_disabled_by_bios(void)
2859 {
2860 u64 msr;
2861
2862 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2863 if (msr & FEATURE_CONTROL_LOCKED) {
2864 /* launched w/ TXT and VMX disabled */
2865 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2866 && tboot_enabled())
2867 return 1;
2868 /* launched w/o TXT and VMX only enabled w/ TXT */
2869 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2870 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2871 && !tboot_enabled()) {
2872 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2873 "activate TXT before enabling KVM\n");
2874 return 1;
2875 }
2876 /* launched w/o TXT and VMX disabled */
2877 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2878 && !tboot_enabled())
2879 return 1;
2880 }
2881
2882 return 0;
2883 }
2884
kvm_cpu_vmxon(u64 addr)2885 static void kvm_cpu_vmxon(u64 addr)
2886 {
2887 asm volatile (ASM_VMX_VMXON_RAX
2888 : : "a"(&addr), "m"(addr)
2889 : "memory", "cc");
2890 }
2891
hardware_enable(void)2892 static int hardware_enable(void)
2893 {
2894 int cpu = raw_smp_processor_id();
2895 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2896 u64 old, test_bits;
2897
2898 if (cr4_read_shadow() & X86_CR4_VMXE)
2899 return -EBUSY;
2900
2901 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2902
2903 /*
2904 * Now we can enable the vmclear operation in kdump
2905 * since the loaded_vmcss_on_cpu list on this cpu
2906 * has been initialized.
2907 *
2908 * Though the cpu is not in VMX operation now, there
2909 * is no problem to enable the vmclear operation
2910 * for the loaded_vmcss_on_cpu list is empty!
2911 */
2912 crash_enable_local_vmclear(cpu);
2913
2914 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2915
2916 test_bits = FEATURE_CONTROL_LOCKED;
2917 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2918 if (tboot_enabled())
2919 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2920
2921 if ((old & test_bits) != test_bits) {
2922 /* enable and lock */
2923 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2924 }
2925 cr4_set_bits(X86_CR4_VMXE);
2926
2927 if (vmm_exclusive) {
2928 kvm_cpu_vmxon(phys_addr);
2929 ept_sync_global();
2930 }
2931
2932 native_store_gdt(this_cpu_ptr(&host_gdt));
2933
2934 return 0;
2935 }
2936
vmclear_local_loaded_vmcss(void)2937 static void vmclear_local_loaded_vmcss(void)
2938 {
2939 int cpu = raw_smp_processor_id();
2940 struct loaded_vmcs *v, *n;
2941
2942 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2943 loaded_vmcss_on_cpu_link)
2944 __loaded_vmcs_clear(v);
2945 }
2946
2947
2948 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2949 * tricks.
2950 */
kvm_cpu_vmxoff(void)2951 static void kvm_cpu_vmxoff(void)
2952 {
2953 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2954 }
2955
hardware_disable(void)2956 static void hardware_disable(void)
2957 {
2958 if (vmm_exclusive) {
2959 vmclear_local_loaded_vmcss();
2960 kvm_cpu_vmxoff();
2961 }
2962 cr4_clear_bits(X86_CR4_VMXE);
2963 }
2964
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2965 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2966 u32 msr, u32 *result)
2967 {
2968 u32 vmx_msr_low, vmx_msr_high;
2969 u32 ctl = ctl_min | ctl_opt;
2970
2971 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2972
2973 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2974 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2975
2976 /* Ensure minimum (required) set of control bits are supported. */
2977 if (ctl_min & ~ctl)
2978 return -EIO;
2979
2980 *result = ctl;
2981 return 0;
2982 }
2983
allow_1_setting(u32 msr,u32 ctl)2984 static __init bool allow_1_setting(u32 msr, u32 ctl)
2985 {
2986 u32 vmx_msr_low, vmx_msr_high;
2987
2988 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2989 return vmx_msr_high & ctl;
2990 }
2991
setup_vmcs_config(struct vmcs_config * vmcs_conf)2992 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2993 {
2994 u32 vmx_msr_low, vmx_msr_high;
2995 u32 min, opt, min2, opt2;
2996 u32 _pin_based_exec_control = 0;
2997 u32 _cpu_based_exec_control = 0;
2998 u32 _cpu_based_2nd_exec_control = 0;
2999 u32 _vmexit_control = 0;
3000 u32 _vmentry_control = 0;
3001
3002 min = CPU_BASED_HLT_EXITING |
3003 #ifdef CONFIG_X86_64
3004 CPU_BASED_CR8_LOAD_EXITING |
3005 CPU_BASED_CR8_STORE_EXITING |
3006 #endif
3007 CPU_BASED_CR3_LOAD_EXITING |
3008 CPU_BASED_CR3_STORE_EXITING |
3009 CPU_BASED_USE_IO_BITMAPS |
3010 CPU_BASED_MOV_DR_EXITING |
3011 CPU_BASED_USE_TSC_OFFSETING |
3012 CPU_BASED_MWAIT_EXITING |
3013 CPU_BASED_MONITOR_EXITING |
3014 CPU_BASED_INVLPG_EXITING |
3015 CPU_BASED_RDPMC_EXITING;
3016
3017 opt = CPU_BASED_TPR_SHADOW |
3018 CPU_BASED_USE_MSR_BITMAPS |
3019 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3020 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3021 &_cpu_based_exec_control) < 0)
3022 return -EIO;
3023 #ifdef CONFIG_X86_64
3024 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3025 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3026 ~CPU_BASED_CR8_STORE_EXITING;
3027 #endif
3028 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3029 min2 = 0;
3030 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3031 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3032 SECONDARY_EXEC_WBINVD_EXITING |
3033 SECONDARY_EXEC_ENABLE_VPID |
3034 SECONDARY_EXEC_ENABLE_EPT |
3035 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3036 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3037 SECONDARY_EXEC_RDTSCP |
3038 SECONDARY_EXEC_ENABLE_INVPCID |
3039 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3040 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3041 SECONDARY_EXEC_SHADOW_VMCS |
3042 SECONDARY_EXEC_XSAVES |
3043 SECONDARY_EXEC_ENABLE_PML;
3044 if (adjust_vmx_controls(min2, opt2,
3045 MSR_IA32_VMX_PROCBASED_CTLS2,
3046 &_cpu_based_2nd_exec_control) < 0)
3047 return -EIO;
3048 }
3049 #ifndef CONFIG_X86_64
3050 if (!(_cpu_based_2nd_exec_control &
3051 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3052 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3053 #endif
3054
3055 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3056 _cpu_based_2nd_exec_control &= ~(
3057 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3058 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3059 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3060
3061 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3062 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3063 enabled */
3064 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3065 CPU_BASED_CR3_STORE_EXITING |
3066 CPU_BASED_INVLPG_EXITING);
3067 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3068 vmx_capability.ept, vmx_capability.vpid);
3069 }
3070
3071 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3072 #ifdef CONFIG_X86_64
3073 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3074 #endif
3075 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3076 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3077 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3078 &_vmexit_control) < 0)
3079 return -EIO;
3080
3081 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3082 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3083 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3084 &_pin_based_exec_control) < 0)
3085 return -EIO;
3086
3087 if (!(_cpu_based_2nd_exec_control &
3088 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3089 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3090 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3091
3092 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3093 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3094 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3095 &_vmentry_control) < 0)
3096 return -EIO;
3097
3098 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3099
3100 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3101 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3102 return -EIO;
3103
3104 #ifdef CONFIG_X86_64
3105 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3106 if (vmx_msr_high & (1u<<16))
3107 return -EIO;
3108 #endif
3109
3110 /* Require Write-Back (WB) memory type for VMCS accesses. */
3111 if (((vmx_msr_high >> 18) & 15) != 6)
3112 return -EIO;
3113
3114 vmcs_conf->size = vmx_msr_high & 0x1fff;
3115 vmcs_conf->order = get_order(vmcs_config.size);
3116 vmcs_conf->revision_id = vmx_msr_low;
3117
3118 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3119 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3120 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3121 vmcs_conf->vmexit_ctrl = _vmexit_control;
3122 vmcs_conf->vmentry_ctrl = _vmentry_control;
3123
3124 cpu_has_load_ia32_efer =
3125 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3126 VM_ENTRY_LOAD_IA32_EFER)
3127 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3128 VM_EXIT_LOAD_IA32_EFER);
3129
3130 cpu_has_load_perf_global_ctrl =
3131 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3132 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3133 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3134 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3135
3136 /*
3137 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3138 * but due to arrata below it can't be used. Workaround is to use
3139 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3140 *
3141 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3142 *
3143 * AAK155 (model 26)
3144 * AAP115 (model 30)
3145 * AAT100 (model 37)
3146 * BC86,AAY89,BD102 (model 44)
3147 * BA97 (model 46)
3148 *
3149 */
3150 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3151 switch (boot_cpu_data.x86_model) {
3152 case 26:
3153 case 30:
3154 case 37:
3155 case 44:
3156 case 46:
3157 cpu_has_load_perf_global_ctrl = false;
3158 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3159 "does not work properly. Using workaround\n");
3160 break;
3161 default:
3162 break;
3163 }
3164 }
3165
3166 if (cpu_has_xsaves)
3167 rdmsrl(MSR_IA32_XSS, host_xss);
3168
3169 return 0;
3170 }
3171
alloc_vmcs_cpu(int cpu)3172 static struct vmcs *alloc_vmcs_cpu(int cpu)
3173 {
3174 int node = cpu_to_node(cpu);
3175 struct page *pages;
3176 struct vmcs *vmcs;
3177
3178 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3179 if (!pages)
3180 return NULL;
3181 vmcs = page_address(pages);
3182 memset(vmcs, 0, vmcs_config.size);
3183 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3184 return vmcs;
3185 }
3186
alloc_vmcs(void)3187 static struct vmcs *alloc_vmcs(void)
3188 {
3189 return alloc_vmcs_cpu(raw_smp_processor_id());
3190 }
3191
free_vmcs(struct vmcs * vmcs)3192 static void free_vmcs(struct vmcs *vmcs)
3193 {
3194 free_pages((unsigned long)vmcs, vmcs_config.order);
3195 }
3196
3197 /*
3198 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3199 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3200 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3201 {
3202 if (!loaded_vmcs->vmcs)
3203 return;
3204 loaded_vmcs_clear(loaded_vmcs);
3205 free_vmcs(loaded_vmcs->vmcs);
3206 loaded_vmcs->vmcs = NULL;
3207 }
3208
free_kvm_area(void)3209 static void free_kvm_area(void)
3210 {
3211 int cpu;
3212
3213 for_each_possible_cpu(cpu) {
3214 free_vmcs(per_cpu(vmxarea, cpu));
3215 per_cpu(vmxarea, cpu) = NULL;
3216 }
3217 }
3218
init_vmcs_shadow_fields(void)3219 static void init_vmcs_shadow_fields(void)
3220 {
3221 int i, j;
3222
3223 /* No checks for read only fields yet */
3224
3225 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3226 switch (shadow_read_write_fields[i]) {
3227 case GUEST_BNDCFGS:
3228 if (!vmx_mpx_supported())
3229 continue;
3230 break;
3231 default:
3232 break;
3233 }
3234
3235 if (j < i)
3236 shadow_read_write_fields[j] =
3237 shadow_read_write_fields[i];
3238 j++;
3239 }
3240 max_shadow_read_write_fields = j;
3241
3242 /* shadowed fields guest access without vmexit */
3243 for (i = 0; i < max_shadow_read_write_fields; i++) {
3244 clear_bit(shadow_read_write_fields[i],
3245 vmx_vmwrite_bitmap);
3246 clear_bit(shadow_read_write_fields[i],
3247 vmx_vmread_bitmap);
3248 }
3249 for (i = 0; i < max_shadow_read_only_fields; i++)
3250 clear_bit(shadow_read_only_fields[i],
3251 vmx_vmread_bitmap);
3252 }
3253
alloc_kvm_area(void)3254 static __init int alloc_kvm_area(void)
3255 {
3256 int cpu;
3257
3258 for_each_possible_cpu(cpu) {
3259 struct vmcs *vmcs;
3260
3261 vmcs = alloc_vmcs_cpu(cpu);
3262 if (!vmcs) {
3263 free_kvm_area();
3264 return -ENOMEM;
3265 }
3266
3267 per_cpu(vmxarea, cpu) = vmcs;
3268 }
3269 return 0;
3270 }
3271
emulation_required(struct kvm_vcpu * vcpu)3272 static bool emulation_required(struct kvm_vcpu *vcpu)
3273 {
3274 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3275 }
3276
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3277 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3278 struct kvm_segment *save)
3279 {
3280 if (!emulate_invalid_guest_state) {
3281 /*
3282 * CS and SS RPL should be equal during guest entry according
3283 * to VMX spec, but in reality it is not always so. Since vcpu
3284 * is in the middle of the transition from real mode to
3285 * protected mode it is safe to assume that RPL 0 is a good
3286 * default value.
3287 */
3288 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3289 save->selector &= ~SEGMENT_RPL_MASK;
3290 save->dpl = save->selector & SEGMENT_RPL_MASK;
3291 save->s = 1;
3292 }
3293 vmx_set_segment(vcpu, save, seg);
3294 }
3295
enter_pmode(struct kvm_vcpu * vcpu)3296 static void enter_pmode(struct kvm_vcpu *vcpu)
3297 {
3298 unsigned long flags;
3299 struct vcpu_vmx *vmx = to_vmx(vcpu);
3300
3301 /*
3302 * Update real mode segment cache. It may be not up-to-date if sement
3303 * register was written while vcpu was in a guest mode.
3304 */
3305 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3306 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3307 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3308 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3309 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3310 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3311
3312 vmx->rmode.vm86_active = 0;
3313
3314 vmx_segment_cache_clear(vmx);
3315
3316 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3317
3318 flags = vmcs_readl(GUEST_RFLAGS);
3319 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3320 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3321 vmcs_writel(GUEST_RFLAGS, flags);
3322
3323 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3324 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3325
3326 update_exception_bitmap(vcpu);
3327
3328 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3329 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3330 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3331 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3332 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3333 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3334 }
3335
fix_rmode_seg(int seg,struct kvm_segment * save)3336 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3337 {
3338 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3339 struct kvm_segment var = *save;
3340
3341 var.dpl = 0x3;
3342 if (seg == VCPU_SREG_CS)
3343 var.type = 0x3;
3344
3345 if (!emulate_invalid_guest_state) {
3346 var.selector = var.base >> 4;
3347 var.base = var.base & 0xffff0;
3348 var.limit = 0xffff;
3349 var.g = 0;
3350 var.db = 0;
3351 var.present = 1;
3352 var.s = 1;
3353 var.l = 0;
3354 var.unusable = 0;
3355 var.type = 0x3;
3356 var.avl = 0;
3357 if (save->base & 0xf)
3358 printk_once(KERN_WARNING "kvm: segment base is not "
3359 "paragraph aligned when entering "
3360 "protected mode (seg=%d)", seg);
3361 }
3362
3363 vmcs_write16(sf->selector, var.selector);
3364 vmcs_write32(sf->base, var.base);
3365 vmcs_write32(sf->limit, var.limit);
3366 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3367 }
3368
enter_rmode(struct kvm_vcpu * vcpu)3369 static void enter_rmode(struct kvm_vcpu *vcpu)
3370 {
3371 unsigned long flags;
3372 struct vcpu_vmx *vmx = to_vmx(vcpu);
3373
3374 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3375 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3376 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3377 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3378 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3379 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3380 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3381
3382 vmx->rmode.vm86_active = 1;
3383
3384 /*
3385 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3386 * vcpu. Warn the user that an update is overdue.
3387 */
3388 if (!vcpu->kvm->arch.tss_addr)
3389 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3390 "called before entering vcpu\n");
3391
3392 vmx_segment_cache_clear(vmx);
3393
3394 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3395 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3396 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3397
3398 flags = vmcs_readl(GUEST_RFLAGS);
3399 vmx->rmode.save_rflags = flags;
3400
3401 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3402
3403 vmcs_writel(GUEST_RFLAGS, flags);
3404 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3405 update_exception_bitmap(vcpu);
3406
3407 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3408 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3409 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3410 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3411 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3412 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3413
3414 kvm_mmu_reset_context(vcpu);
3415 }
3416
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3417 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3418 {
3419 struct vcpu_vmx *vmx = to_vmx(vcpu);
3420 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3421
3422 if (!msr)
3423 return;
3424
3425 /*
3426 * Force kernel_gs_base reloading before EFER changes, as control
3427 * of this msr depends on is_long_mode().
3428 */
3429 vmx_load_host_state(to_vmx(vcpu));
3430 vcpu->arch.efer = efer;
3431 if (efer & EFER_LMA) {
3432 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3433 msr->data = efer;
3434 } else {
3435 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3436
3437 msr->data = efer & ~EFER_LME;
3438 }
3439 setup_msrs(vmx);
3440 }
3441
3442 #ifdef CONFIG_X86_64
3443
enter_lmode(struct kvm_vcpu * vcpu)3444 static void enter_lmode(struct kvm_vcpu *vcpu)
3445 {
3446 u32 guest_tr_ar;
3447
3448 vmx_segment_cache_clear(to_vmx(vcpu));
3449
3450 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3451 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3452 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3453 __func__);
3454 vmcs_write32(GUEST_TR_AR_BYTES,
3455 (guest_tr_ar & ~AR_TYPE_MASK)
3456 | AR_TYPE_BUSY_64_TSS);
3457 }
3458 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3459 }
3460
exit_lmode(struct kvm_vcpu * vcpu)3461 static void exit_lmode(struct kvm_vcpu *vcpu)
3462 {
3463 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3464 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3465 }
3466
3467 #endif
3468
vmx_flush_tlb(struct kvm_vcpu * vcpu)3469 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3470 {
3471 vpid_sync_context(to_vmx(vcpu));
3472 if (enable_ept) {
3473 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3474 return;
3475 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3476 }
3477 }
3478
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)3479 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3480 {
3481 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3482
3483 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3484 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3485 }
3486
vmx_decache_cr3(struct kvm_vcpu * vcpu)3487 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3488 {
3489 if (enable_ept && is_paging(vcpu))
3490 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3491 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3492 }
3493
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)3494 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3495 {
3496 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3497
3498 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3499 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3500 }
3501
ept_load_pdptrs(struct kvm_vcpu * vcpu)3502 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3503 {
3504 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3505
3506 if (!test_bit(VCPU_EXREG_PDPTR,
3507 (unsigned long *)&vcpu->arch.regs_dirty))
3508 return;
3509
3510 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3511 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3512 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3513 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3514 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3515 }
3516 }
3517
ept_save_pdptrs(struct kvm_vcpu * vcpu)3518 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3519 {
3520 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3521
3522 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3523 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3524 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3525 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3526 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3527 }
3528
3529 __set_bit(VCPU_EXREG_PDPTR,
3530 (unsigned long *)&vcpu->arch.regs_avail);
3531 __set_bit(VCPU_EXREG_PDPTR,
3532 (unsigned long *)&vcpu->arch.regs_dirty);
3533 }
3534
3535 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3536
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3537 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3538 unsigned long cr0,
3539 struct kvm_vcpu *vcpu)
3540 {
3541 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3542 vmx_decache_cr3(vcpu);
3543 if (!(cr0 & X86_CR0_PG)) {
3544 /* From paging/starting to nonpaging */
3545 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3546 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3547 (CPU_BASED_CR3_LOAD_EXITING |
3548 CPU_BASED_CR3_STORE_EXITING));
3549 vcpu->arch.cr0 = cr0;
3550 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3551 } else if (!is_paging(vcpu)) {
3552 /* From nonpaging to paging */
3553 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3554 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3555 ~(CPU_BASED_CR3_LOAD_EXITING |
3556 CPU_BASED_CR3_STORE_EXITING));
3557 vcpu->arch.cr0 = cr0;
3558 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3559 }
3560
3561 if (!(cr0 & X86_CR0_WP))
3562 *hw_cr0 &= ~X86_CR0_WP;
3563 }
3564
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3565 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3566 {
3567 struct vcpu_vmx *vmx = to_vmx(vcpu);
3568 unsigned long hw_cr0;
3569
3570 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3571 if (enable_unrestricted_guest)
3572 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3573 else {
3574 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3575
3576 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3577 enter_pmode(vcpu);
3578
3579 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3580 enter_rmode(vcpu);
3581 }
3582
3583 #ifdef CONFIG_X86_64
3584 if (vcpu->arch.efer & EFER_LME) {
3585 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3586 enter_lmode(vcpu);
3587 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3588 exit_lmode(vcpu);
3589 }
3590 #endif
3591
3592 if (enable_ept)
3593 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3594
3595 if (!vcpu->fpu_active)
3596 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3597
3598 vmcs_writel(CR0_READ_SHADOW, cr0);
3599 vmcs_writel(GUEST_CR0, hw_cr0);
3600 vcpu->arch.cr0 = cr0;
3601
3602 /* depends on vcpu->arch.cr0 to be set to a new value */
3603 vmx->emulation_required = emulation_required(vcpu);
3604 }
3605
construct_eptp(unsigned long root_hpa)3606 static u64 construct_eptp(unsigned long root_hpa)
3607 {
3608 u64 eptp;
3609
3610 /* TODO write the value reading from MSR */
3611 eptp = VMX_EPT_DEFAULT_MT |
3612 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3613 if (enable_ept_ad_bits)
3614 eptp |= VMX_EPT_AD_ENABLE_BIT;
3615 eptp |= (root_hpa & PAGE_MASK);
3616
3617 return eptp;
3618 }
3619
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)3620 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3621 {
3622 unsigned long guest_cr3;
3623 u64 eptp;
3624
3625 guest_cr3 = cr3;
3626 if (enable_ept) {
3627 eptp = construct_eptp(cr3);
3628 vmcs_write64(EPT_POINTER, eptp);
3629 if (is_paging(vcpu) || is_guest_mode(vcpu))
3630 guest_cr3 = kvm_read_cr3(vcpu);
3631 else
3632 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3633 ept_load_pdptrs(vcpu);
3634 }
3635
3636 vmx_flush_tlb(vcpu);
3637 vmcs_writel(GUEST_CR3, guest_cr3);
3638 }
3639
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3640 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3641 {
3642 /*
3643 * Pass through host's Machine Check Enable value to hw_cr4, which
3644 * is in force while we are in guest mode. Do not let guests control
3645 * this bit, even if host CR4.MCE == 0.
3646 */
3647 unsigned long hw_cr4 =
3648 (cr4_read_shadow() & X86_CR4_MCE) |
3649 (cr4 & ~X86_CR4_MCE) |
3650 (to_vmx(vcpu)->rmode.vm86_active ?
3651 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3652
3653 if (cr4 & X86_CR4_VMXE) {
3654 /*
3655 * To use VMXON (and later other VMX instructions), a guest
3656 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3657 * So basically the check on whether to allow nested VMX
3658 * is here.
3659 */
3660 if (!nested_vmx_allowed(vcpu))
3661 return 1;
3662 }
3663 if (to_vmx(vcpu)->nested.vmxon &&
3664 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3665 return 1;
3666
3667 vcpu->arch.cr4 = cr4;
3668 if (enable_ept) {
3669 if (!is_paging(vcpu)) {
3670 hw_cr4 &= ~X86_CR4_PAE;
3671 hw_cr4 |= X86_CR4_PSE;
3672 } else if (!(cr4 & X86_CR4_PAE)) {
3673 hw_cr4 &= ~X86_CR4_PAE;
3674 }
3675 }
3676
3677 if (!enable_unrestricted_guest && !is_paging(vcpu))
3678 /*
3679 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3680 * hardware. However KVM always uses paging mode without
3681 * unrestricted guest.
3682 * To emulate this behavior, SMEP/SMAP needs to be manually
3683 * disabled when guest switches to non-paging mode.
3684 */
3685 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3686
3687 vmcs_writel(CR4_READ_SHADOW, cr4);
3688 vmcs_writel(GUEST_CR4, hw_cr4);
3689 return 0;
3690 }
3691
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3692 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3693 struct kvm_segment *var, int seg)
3694 {
3695 struct vcpu_vmx *vmx = to_vmx(vcpu);
3696 u32 ar;
3697
3698 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3699 *var = vmx->rmode.segs[seg];
3700 if (seg == VCPU_SREG_TR
3701 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3702 return;
3703 var->base = vmx_read_guest_seg_base(vmx, seg);
3704 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3705 return;
3706 }
3707 var->base = vmx_read_guest_seg_base(vmx, seg);
3708 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3709 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3710 ar = vmx_read_guest_seg_ar(vmx, seg);
3711 var->unusable = (ar >> 16) & 1;
3712 var->type = ar & 15;
3713 var->s = (ar >> 4) & 1;
3714 var->dpl = (ar >> 5) & 3;
3715 /*
3716 * Some userspaces do not preserve unusable property. Since usable
3717 * segment has to be present according to VMX spec we can use present
3718 * property to amend userspace bug by making unusable segment always
3719 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3720 * segment as unusable.
3721 */
3722 var->present = !var->unusable;
3723 var->avl = (ar >> 12) & 1;
3724 var->l = (ar >> 13) & 1;
3725 var->db = (ar >> 14) & 1;
3726 var->g = (ar >> 15) & 1;
3727 }
3728
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3729 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3730 {
3731 struct kvm_segment s;
3732
3733 if (to_vmx(vcpu)->rmode.vm86_active) {
3734 vmx_get_segment(vcpu, &s, seg);
3735 return s.base;
3736 }
3737 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3738 }
3739
vmx_get_cpl(struct kvm_vcpu * vcpu)3740 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3741 {
3742 struct vcpu_vmx *vmx = to_vmx(vcpu);
3743
3744 if (unlikely(vmx->rmode.vm86_active))
3745 return 0;
3746 else {
3747 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3748 return AR_DPL(ar);
3749 }
3750 }
3751
vmx_segment_access_rights(struct kvm_segment * var)3752 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3753 {
3754 u32 ar;
3755
3756 if (var->unusable || !var->present)
3757 ar = 1 << 16;
3758 else {
3759 ar = var->type & 15;
3760 ar |= (var->s & 1) << 4;
3761 ar |= (var->dpl & 3) << 5;
3762 ar |= (var->present & 1) << 7;
3763 ar |= (var->avl & 1) << 12;
3764 ar |= (var->l & 1) << 13;
3765 ar |= (var->db & 1) << 14;
3766 ar |= (var->g & 1) << 15;
3767 }
3768
3769 return ar;
3770 }
3771
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3772 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3773 struct kvm_segment *var, int seg)
3774 {
3775 struct vcpu_vmx *vmx = to_vmx(vcpu);
3776 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3777
3778 vmx_segment_cache_clear(vmx);
3779
3780 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3781 vmx->rmode.segs[seg] = *var;
3782 if (seg == VCPU_SREG_TR)
3783 vmcs_write16(sf->selector, var->selector);
3784 else if (var->s)
3785 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3786 goto out;
3787 }
3788
3789 vmcs_writel(sf->base, var->base);
3790 vmcs_write32(sf->limit, var->limit);
3791 vmcs_write16(sf->selector, var->selector);
3792
3793 /*
3794 * Fix the "Accessed" bit in AR field of segment registers for older
3795 * qemu binaries.
3796 * IA32 arch specifies that at the time of processor reset the
3797 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3798 * is setting it to 0 in the userland code. This causes invalid guest
3799 * state vmexit when "unrestricted guest" mode is turned on.
3800 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3801 * tree. Newer qemu binaries with that qemu fix would not need this
3802 * kvm hack.
3803 */
3804 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3805 var->type |= 0x1; /* Accessed */
3806
3807 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3808
3809 out:
3810 vmx->emulation_required = emulation_required(vcpu);
3811 }
3812
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3813 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3814 {
3815 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3816
3817 *db = (ar >> 14) & 1;
3818 *l = (ar >> 13) & 1;
3819 }
3820
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3821 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3822 {
3823 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3824 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3825 }
3826
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3827 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3828 {
3829 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3830 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3831 }
3832
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3833 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3834 {
3835 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3836 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3837 }
3838
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3839 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3840 {
3841 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3842 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3843 }
3844
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3845 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3846 {
3847 struct kvm_segment var;
3848 u32 ar;
3849
3850 vmx_get_segment(vcpu, &var, seg);
3851 var.dpl = 0x3;
3852 if (seg == VCPU_SREG_CS)
3853 var.type = 0x3;
3854 ar = vmx_segment_access_rights(&var);
3855
3856 if (var.base != (var.selector << 4))
3857 return false;
3858 if (var.limit != 0xffff)
3859 return false;
3860 if (ar != 0xf3)
3861 return false;
3862
3863 return true;
3864 }
3865
code_segment_valid(struct kvm_vcpu * vcpu)3866 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3867 {
3868 struct kvm_segment cs;
3869 unsigned int cs_rpl;
3870
3871 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3872 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3873
3874 if (cs.unusable)
3875 return false;
3876 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3877 return false;
3878 if (!cs.s)
3879 return false;
3880 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3881 if (cs.dpl > cs_rpl)
3882 return false;
3883 } else {
3884 if (cs.dpl != cs_rpl)
3885 return false;
3886 }
3887 if (!cs.present)
3888 return false;
3889
3890 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3891 return true;
3892 }
3893
stack_segment_valid(struct kvm_vcpu * vcpu)3894 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3895 {
3896 struct kvm_segment ss;
3897 unsigned int ss_rpl;
3898
3899 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3900 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3901
3902 if (ss.unusable)
3903 return true;
3904 if (ss.type != 3 && ss.type != 7)
3905 return false;
3906 if (!ss.s)
3907 return false;
3908 if (ss.dpl != ss_rpl) /* DPL != RPL */
3909 return false;
3910 if (!ss.present)
3911 return false;
3912
3913 return true;
3914 }
3915
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3916 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3917 {
3918 struct kvm_segment var;
3919 unsigned int rpl;
3920
3921 vmx_get_segment(vcpu, &var, seg);
3922 rpl = var.selector & SEGMENT_RPL_MASK;
3923
3924 if (var.unusable)
3925 return true;
3926 if (!var.s)
3927 return false;
3928 if (!var.present)
3929 return false;
3930 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3931 if (var.dpl < rpl) /* DPL < RPL */
3932 return false;
3933 }
3934
3935 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3936 * rights flags
3937 */
3938 return true;
3939 }
3940
tr_valid(struct kvm_vcpu * vcpu)3941 static bool tr_valid(struct kvm_vcpu *vcpu)
3942 {
3943 struct kvm_segment tr;
3944
3945 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3946
3947 if (tr.unusable)
3948 return false;
3949 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3950 return false;
3951 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3952 return false;
3953 if (!tr.present)
3954 return false;
3955
3956 return true;
3957 }
3958
ldtr_valid(struct kvm_vcpu * vcpu)3959 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3960 {
3961 struct kvm_segment ldtr;
3962
3963 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3964
3965 if (ldtr.unusable)
3966 return true;
3967 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3968 return false;
3969 if (ldtr.type != 2)
3970 return false;
3971 if (!ldtr.present)
3972 return false;
3973
3974 return true;
3975 }
3976
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3977 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3978 {
3979 struct kvm_segment cs, ss;
3980
3981 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3982 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3983
3984 return ((cs.selector & SEGMENT_RPL_MASK) ==
3985 (ss.selector & SEGMENT_RPL_MASK));
3986 }
3987
3988 /*
3989 * Check if guest state is valid. Returns true if valid, false if
3990 * not.
3991 * We assume that registers are always usable
3992 */
guest_state_valid(struct kvm_vcpu * vcpu)3993 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3994 {
3995 if (enable_unrestricted_guest)
3996 return true;
3997
3998 /* real mode guest state checks */
3999 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4000 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4001 return false;
4002 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4003 return false;
4004 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4005 return false;
4006 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4007 return false;
4008 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4009 return false;
4010 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4011 return false;
4012 } else {
4013 /* protected mode guest state checks */
4014 if (!cs_ss_rpl_check(vcpu))
4015 return false;
4016 if (!code_segment_valid(vcpu))
4017 return false;
4018 if (!stack_segment_valid(vcpu))
4019 return false;
4020 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4021 return false;
4022 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4023 return false;
4024 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4025 return false;
4026 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4027 return false;
4028 if (!tr_valid(vcpu))
4029 return false;
4030 if (!ldtr_valid(vcpu))
4031 return false;
4032 }
4033 /* TODO:
4034 * - Add checks on RIP
4035 * - Add checks on RFLAGS
4036 */
4037
4038 return true;
4039 }
4040
init_rmode_tss(struct kvm * kvm)4041 static int init_rmode_tss(struct kvm *kvm)
4042 {
4043 gfn_t fn;
4044 u16 data = 0;
4045 int idx, r;
4046
4047 idx = srcu_read_lock(&kvm->srcu);
4048 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4049 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4050 if (r < 0)
4051 goto out;
4052 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4053 r = kvm_write_guest_page(kvm, fn++, &data,
4054 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4055 if (r < 0)
4056 goto out;
4057 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4058 if (r < 0)
4059 goto out;
4060 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4061 if (r < 0)
4062 goto out;
4063 data = ~0;
4064 r = kvm_write_guest_page(kvm, fn, &data,
4065 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4066 sizeof(u8));
4067 out:
4068 srcu_read_unlock(&kvm->srcu, idx);
4069 return r;
4070 }
4071
init_rmode_identity_map(struct kvm * kvm)4072 static int init_rmode_identity_map(struct kvm *kvm)
4073 {
4074 int i, idx, r = 0;
4075 pfn_t identity_map_pfn;
4076 u32 tmp;
4077
4078 if (!enable_ept)
4079 return 0;
4080
4081 /* Protect kvm->arch.ept_identity_pagetable_done. */
4082 mutex_lock(&kvm->slots_lock);
4083
4084 if (likely(kvm->arch.ept_identity_pagetable_done))
4085 goto out2;
4086
4087 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4088
4089 r = alloc_identity_pagetable(kvm);
4090 if (r < 0)
4091 goto out2;
4092
4093 idx = srcu_read_lock(&kvm->srcu);
4094 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4095 if (r < 0)
4096 goto out;
4097 /* Set up identity-mapping pagetable for EPT in real mode */
4098 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4099 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4100 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4101 r = kvm_write_guest_page(kvm, identity_map_pfn,
4102 &tmp, i * sizeof(tmp), sizeof(tmp));
4103 if (r < 0)
4104 goto out;
4105 }
4106 kvm->arch.ept_identity_pagetable_done = true;
4107
4108 out:
4109 srcu_read_unlock(&kvm->srcu, idx);
4110
4111 out2:
4112 mutex_unlock(&kvm->slots_lock);
4113 return r;
4114 }
4115
seg_setup(int seg)4116 static void seg_setup(int seg)
4117 {
4118 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4119 unsigned int ar;
4120
4121 vmcs_write16(sf->selector, 0);
4122 vmcs_writel(sf->base, 0);
4123 vmcs_write32(sf->limit, 0xffff);
4124 ar = 0x93;
4125 if (seg == VCPU_SREG_CS)
4126 ar |= 0x08; /* code segment */
4127
4128 vmcs_write32(sf->ar_bytes, ar);
4129 }
4130
alloc_apic_access_page(struct kvm * kvm)4131 static int alloc_apic_access_page(struct kvm *kvm)
4132 {
4133 struct page *page;
4134 struct kvm_userspace_memory_region kvm_userspace_mem;
4135 int r = 0;
4136
4137 mutex_lock(&kvm->slots_lock);
4138 if (kvm->arch.apic_access_page_done)
4139 goto out;
4140 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4141 kvm_userspace_mem.flags = 0;
4142 kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4143 kvm_userspace_mem.memory_size = PAGE_SIZE;
4144 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4145 if (r)
4146 goto out;
4147
4148 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4149 if (is_error_page(page)) {
4150 r = -EFAULT;
4151 goto out;
4152 }
4153
4154 /*
4155 * Do not pin the page in memory, so that memory hot-unplug
4156 * is able to migrate it.
4157 */
4158 put_page(page);
4159 kvm->arch.apic_access_page_done = true;
4160 out:
4161 mutex_unlock(&kvm->slots_lock);
4162 return r;
4163 }
4164
alloc_identity_pagetable(struct kvm * kvm)4165 static int alloc_identity_pagetable(struct kvm *kvm)
4166 {
4167 /* Called with kvm->slots_lock held. */
4168
4169 struct kvm_userspace_memory_region kvm_userspace_mem;
4170 int r = 0;
4171
4172 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4173
4174 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4175 kvm_userspace_mem.flags = 0;
4176 kvm_userspace_mem.guest_phys_addr =
4177 kvm->arch.ept_identity_map_addr;
4178 kvm_userspace_mem.memory_size = PAGE_SIZE;
4179 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4180
4181 return r;
4182 }
4183
allocate_vpid(struct vcpu_vmx * vmx)4184 static void allocate_vpid(struct vcpu_vmx *vmx)
4185 {
4186 int vpid;
4187
4188 vmx->vpid = 0;
4189 if (!enable_vpid)
4190 return;
4191 spin_lock(&vmx_vpid_lock);
4192 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4193 if (vpid < VMX_NR_VPIDS) {
4194 vmx->vpid = vpid;
4195 __set_bit(vpid, vmx_vpid_bitmap);
4196 }
4197 spin_unlock(&vmx_vpid_lock);
4198 }
4199
free_vpid(struct vcpu_vmx * vmx)4200 static void free_vpid(struct vcpu_vmx *vmx)
4201 {
4202 if (!enable_vpid)
4203 return;
4204 spin_lock(&vmx_vpid_lock);
4205 if (vmx->vpid != 0)
4206 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4207 spin_unlock(&vmx_vpid_lock);
4208 }
4209
4210 #define MSR_TYPE_R 1
4211 #define MSR_TYPE_W 2
__vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4212 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4213 u32 msr, int type)
4214 {
4215 int f = sizeof(unsigned long);
4216
4217 if (!cpu_has_vmx_msr_bitmap())
4218 return;
4219
4220 /*
4221 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4222 * have the write-low and read-high bitmap offsets the wrong way round.
4223 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4224 */
4225 if (msr <= 0x1fff) {
4226 if (type & MSR_TYPE_R)
4227 /* read-low */
4228 __clear_bit(msr, msr_bitmap + 0x000 / f);
4229
4230 if (type & MSR_TYPE_W)
4231 /* write-low */
4232 __clear_bit(msr, msr_bitmap + 0x800 / f);
4233
4234 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4235 msr &= 0x1fff;
4236 if (type & MSR_TYPE_R)
4237 /* read-high */
4238 __clear_bit(msr, msr_bitmap + 0x400 / f);
4239
4240 if (type & MSR_TYPE_W)
4241 /* write-high */
4242 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4243
4244 }
4245 }
4246
__vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4247 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4248 u32 msr, int type)
4249 {
4250 int f = sizeof(unsigned long);
4251
4252 if (!cpu_has_vmx_msr_bitmap())
4253 return;
4254
4255 /*
4256 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4257 * have the write-low and read-high bitmap offsets the wrong way round.
4258 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4259 */
4260 if (msr <= 0x1fff) {
4261 if (type & MSR_TYPE_R)
4262 /* read-low */
4263 __set_bit(msr, msr_bitmap + 0x000 / f);
4264
4265 if (type & MSR_TYPE_W)
4266 /* write-low */
4267 __set_bit(msr, msr_bitmap + 0x800 / f);
4268
4269 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4270 msr &= 0x1fff;
4271 if (type & MSR_TYPE_R)
4272 /* read-high */
4273 __set_bit(msr, msr_bitmap + 0x400 / f);
4274
4275 if (type & MSR_TYPE_W)
4276 /* write-high */
4277 __set_bit(msr, msr_bitmap + 0xc00 / f);
4278
4279 }
4280 }
4281
4282 /*
4283 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4284 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4285 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)4286 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4287 unsigned long *msr_bitmap_nested,
4288 u32 msr, int type)
4289 {
4290 int f = sizeof(unsigned long);
4291
4292 if (!cpu_has_vmx_msr_bitmap()) {
4293 WARN_ON(1);
4294 return;
4295 }
4296
4297 /*
4298 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4299 * have the write-low and read-high bitmap offsets the wrong way round.
4300 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4301 */
4302 if (msr <= 0x1fff) {
4303 if (type & MSR_TYPE_R &&
4304 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4305 /* read-low */
4306 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4307
4308 if (type & MSR_TYPE_W &&
4309 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4310 /* write-low */
4311 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4312
4313 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4314 msr &= 0x1fff;
4315 if (type & MSR_TYPE_R &&
4316 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4317 /* read-high */
4318 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4319
4320 if (type & MSR_TYPE_W &&
4321 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4322 /* write-high */
4323 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4324
4325 }
4326 }
4327
vmx_disable_intercept_for_msr(u32 msr,bool longmode_only)4328 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4329 {
4330 if (!longmode_only)
4331 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4332 msr, MSR_TYPE_R | MSR_TYPE_W);
4333 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4334 msr, MSR_TYPE_R | MSR_TYPE_W);
4335 }
4336
vmx_enable_intercept_msr_read_x2apic(u32 msr)4337 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4338 {
4339 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4340 msr, MSR_TYPE_R);
4341 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4342 msr, MSR_TYPE_R);
4343 }
4344
vmx_disable_intercept_msr_read_x2apic(u32 msr)4345 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4346 {
4347 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4348 msr, MSR_TYPE_R);
4349 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4350 msr, MSR_TYPE_R);
4351 }
4352
vmx_disable_intercept_msr_write_x2apic(u32 msr)4353 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4354 {
4355 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4356 msr, MSR_TYPE_W);
4357 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4358 msr, MSR_TYPE_W);
4359 }
4360
vmx_vm_has_apicv(struct kvm * kvm)4361 static int vmx_vm_has_apicv(struct kvm *kvm)
4362 {
4363 return enable_apicv && irqchip_in_kernel(kvm);
4364 }
4365
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4366 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4367 {
4368 struct vcpu_vmx *vmx = to_vmx(vcpu);
4369 int max_irr;
4370 void *vapic_page;
4371 u16 status;
4372
4373 if (vmx->nested.pi_desc &&
4374 vmx->nested.pi_pending) {
4375 vmx->nested.pi_pending = false;
4376 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4377 return 0;
4378
4379 max_irr = find_last_bit(
4380 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4381
4382 if (max_irr == 256)
4383 return 0;
4384
4385 vapic_page = kmap(vmx->nested.virtual_apic_page);
4386 if (!vapic_page) {
4387 WARN_ON(1);
4388 return -ENOMEM;
4389 }
4390 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4391 kunmap(vmx->nested.virtual_apic_page);
4392
4393 status = vmcs_read16(GUEST_INTR_STATUS);
4394 if ((u8)max_irr > ((u8)status & 0xff)) {
4395 status &= ~0xff;
4396 status |= (u8)max_irr;
4397 vmcs_write16(GUEST_INTR_STATUS, status);
4398 }
4399 }
4400 return 0;
4401 }
4402
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu)4403 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4404 {
4405 #ifdef CONFIG_SMP
4406 if (vcpu->mode == IN_GUEST_MODE) {
4407 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4408 POSTED_INTR_VECTOR);
4409 return true;
4410 }
4411 #endif
4412 return false;
4413 }
4414
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4415 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4416 int vector)
4417 {
4418 struct vcpu_vmx *vmx = to_vmx(vcpu);
4419
4420 if (is_guest_mode(vcpu) &&
4421 vector == vmx->nested.posted_intr_nv) {
4422 /* the PIR and ON have been set by L1. */
4423 kvm_vcpu_trigger_posted_interrupt(vcpu);
4424 /*
4425 * If a posted intr is not recognized by hardware,
4426 * we will accomplish it in the next vmentry.
4427 */
4428 vmx->nested.pi_pending = true;
4429 kvm_make_request(KVM_REQ_EVENT, vcpu);
4430 return 0;
4431 }
4432 return -1;
4433 }
4434 /*
4435 * Send interrupt to vcpu via posted interrupt way.
4436 * 1. If target vcpu is running(non-root mode), send posted interrupt
4437 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4438 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4439 * interrupt from PIR in next vmentry.
4440 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4441 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4442 {
4443 struct vcpu_vmx *vmx = to_vmx(vcpu);
4444 int r;
4445
4446 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4447 if (!r)
4448 return;
4449
4450 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4451 return;
4452
4453 r = pi_test_and_set_on(&vmx->pi_desc);
4454 kvm_make_request(KVM_REQ_EVENT, vcpu);
4455 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4456 kvm_vcpu_kick(vcpu);
4457 }
4458
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)4459 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4460 {
4461 struct vcpu_vmx *vmx = to_vmx(vcpu);
4462
4463 if (!pi_test_and_clear_on(&vmx->pi_desc))
4464 return;
4465
4466 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4467 }
4468
vmx_sync_pir_to_irr_dummy(struct kvm_vcpu * vcpu)4469 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4470 {
4471 return;
4472 }
4473
4474 /*
4475 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4476 * will not change in the lifetime of the guest.
4477 * Note that host-state that does change is set elsewhere. E.g., host-state
4478 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4479 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4480 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4481 {
4482 u32 low32, high32;
4483 unsigned long tmpl;
4484 struct desc_ptr dt;
4485 unsigned long cr4;
4486
4487 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4488 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4489
4490 /* Save the most likely value for this task's CR4 in the VMCS. */
4491 cr4 = cr4_read_shadow();
4492 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4493 vmx->host_state.vmcs_host_cr4 = cr4;
4494
4495 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4496 #ifdef CONFIG_X86_64
4497 /*
4498 * Load null selectors, so we can avoid reloading them in
4499 * __vmx_load_host_state(), in case userspace uses the null selectors
4500 * too (the expected case).
4501 */
4502 vmcs_write16(HOST_DS_SELECTOR, 0);
4503 vmcs_write16(HOST_ES_SELECTOR, 0);
4504 #else
4505 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4506 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4507 #endif
4508 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4509 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4510
4511 native_store_idt(&dt);
4512 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4513 vmx->host_idt_base = dt.address;
4514
4515 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4516
4517 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4518 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4519 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4520 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4521
4522 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4523 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4524 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4525 }
4526 }
4527
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4528 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4529 {
4530 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4531 if (enable_ept)
4532 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4533 if (is_guest_mode(&vmx->vcpu))
4534 vmx->vcpu.arch.cr4_guest_owned_bits &=
4535 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4536 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4537 }
4538
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4539 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4540 {
4541 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4542
4543 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4544 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4545 return pin_based_exec_ctrl;
4546 }
4547
vmx_exec_control(struct vcpu_vmx * vmx)4548 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4549 {
4550 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4551
4552 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4553 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4554
4555 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4556 exec_control &= ~CPU_BASED_TPR_SHADOW;
4557 #ifdef CONFIG_X86_64
4558 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4559 CPU_BASED_CR8_LOAD_EXITING;
4560 #endif
4561 }
4562 if (!enable_ept)
4563 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4564 CPU_BASED_CR3_LOAD_EXITING |
4565 CPU_BASED_INVLPG_EXITING;
4566 return exec_control;
4567 }
4568
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4569 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4570 {
4571 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4572 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4573 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4574 if (vmx->vpid == 0)
4575 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4576 if (!enable_ept) {
4577 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4578 enable_unrestricted_guest = 0;
4579 /* Enable INVPCID for non-ept guests may cause performance regression. */
4580 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4581 }
4582 if (!enable_unrestricted_guest)
4583 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4584 if (!ple_gap)
4585 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4586 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4587 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4588 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4589 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4590 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4591 (handle_vmptrld).
4592 We can NOT enable shadow_vmcs here because we don't have yet
4593 a current VMCS12
4594 */
4595 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4596 /* PML is enabled/disabled in creating/destorying vcpu */
4597 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4598
4599 return exec_control;
4600 }
4601
ept_set_mmio_spte_mask(void)4602 static void ept_set_mmio_spte_mask(void)
4603 {
4604 /*
4605 * EPT Misconfigurations can be generated if the value of bits 2:0
4606 * of an EPT paging-structure entry is 110b (write/execute).
4607 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4608 * spte.
4609 */
4610 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4611 }
4612
4613 #define VMX_XSS_EXIT_BITMAP 0
4614 /*
4615 * Sets up the vmcs for emulated real mode.
4616 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)4617 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4618 {
4619 #ifdef CONFIG_X86_64
4620 unsigned long a;
4621 #endif
4622 int i;
4623
4624 /* I/O */
4625 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4626 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4627
4628 if (enable_shadow_vmcs) {
4629 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4630 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4631 }
4632 if (cpu_has_vmx_msr_bitmap())
4633 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4634
4635 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4636
4637 /* Control */
4638 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4639
4640 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4641
4642 if (cpu_has_secondary_exec_ctrls()) {
4643 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4644 vmx_secondary_exec_control(vmx));
4645 }
4646
4647 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4648 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4649 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4650 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4651 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4652
4653 vmcs_write16(GUEST_INTR_STATUS, 0);
4654
4655 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4656 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4657 }
4658
4659 if (ple_gap) {
4660 vmcs_write32(PLE_GAP, ple_gap);
4661 vmx->ple_window = ple_window;
4662 vmx->ple_window_dirty = true;
4663 }
4664
4665 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4666 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4667 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4668
4669 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4670 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4671 vmx_set_constant_host_state(vmx);
4672 #ifdef CONFIG_X86_64
4673 rdmsrl(MSR_FS_BASE, a);
4674 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4675 rdmsrl(MSR_GS_BASE, a);
4676 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4677 #else
4678 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4679 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4680 #endif
4681
4682 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4683 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4684 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4685 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4686 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4687
4688 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4689 u32 msr_low, msr_high;
4690 u64 host_pat;
4691 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4692 host_pat = msr_low | ((u64) msr_high << 32);
4693 /* Write the default value follow host pat */
4694 vmcs_write64(GUEST_IA32_PAT, host_pat);
4695 /* Keep arch.pat sync with GUEST_IA32_PAT */
4696 vmx->vcpu.arch.pat = host_pat;
4697 }
4698
4699 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4700 u32 index = vmx_msr_index[i];
4701 u32 data_low, data_high;
4702 int j = vmx->nmsrs;
4703
4704 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4705 continue;
4706 if (wrmsr_safe(index, data_low, data_high) < 0)
4707 continue;
4708 vmx->guest_msrs[j].index = i;
4709 vmx->guest_msrs[j].data = 0;
4710 vmx->guest_msrs[j].mask = -1ull;
4711 ++vmx->nmsrs;
4712 }
4713
4714
4715 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4716
4717 /* 22.2.1, 20.8.1 */
4718 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4719
4720 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4721 set_cr4_guest_host_mask(vmx);
4722
4723 if (vmx_xsaves_supported())
4724 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4725
4726 return 0;
4727 }
4728
vmx_vcpu_reset(struct kvm_vcpu * vcpu)4729 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4730 {
4731 struct vcpu_vmx *vmx = to_vmx(vcpu);
4732 struct msr_data apic_base_msr;
4733
4734 vmx->rmode.vm86_active = 0;
4735
4736 vmx->soft_vnmi_blocked = 0;
4737
4738 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4739 kvm_set_cr8(&vmx->vcpu, 0);
4740 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4741 if (kvm_vcpu_is_reset_bsp(&vmx->vcpu))
4742 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4743 apic_base_msr.host_initiated = true;
4744 kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4745
4746 vmx_segment_cache_clear(vmx);
4747
4748 seg_setup(VCPU_SREG_CS);
4749 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4750 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4751
4752 seg_setup(VCPU_SREG_DS);
4753 seg_setup(VCPU_SREG_ES);
4754 seg_setup(VCPU_SREG_FS);
4755 seg_setup(VCPU_SREG_GS);
4756 seg_setup(VCPU_SREG_SS);
4757
4758 vmcs_write16(GUEST_TR_SELECTOR, 0);
4759 vmcs_writel(GUEST_TR_BASE, 0);
4760 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4761 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4762
4763 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4764 vmcs_writel(GUEST_LDTR_BASE, 0);
4765 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4766 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4767
4768 vmcs_write32(GUEST_SYSENTER_CS, 0);
4769 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4770 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4771
4772 vmcs_writel(GUEST_RFLAGS, 0x02);
4773 kvm_rip_write(vcpu, 0xfff0);
4774
4775 vmcs_writel(GUEST_GDTR_BASE, 0);
4776 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4777
4778 vmcs_writel(GUEST_IDTR_BASE, 0);
4779 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4780
4781 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4782 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4783 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4784
4785 /* Special registers */
4786 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4787
4788 setup_msrs(vmx);
4789
4790 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4791
4792 if (cpu_has_vmx_tpr_shadow()) {
4793 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4794 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4795 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4796 __pa(vmx->vcpu.arch.apic->regs));
4797 vmcs_write32(TPR_THRESHOLD, 0);
4798 }
4799
4800 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4801
4802 if (vmx_vm_has_apicv(vcpu->kvm))
4803 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4804
4805 if (vmx->vpid != 0)
4806 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4807
4808 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4809 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4810 vmx_set_cr4(&vmx->vcpu, 0);
4811 vmx_set_efer(&vmx->vcpu, 0);
4812 vmx_fpu_activate(&vmx->vcpu);
4813 update_exception_bitmap(&vmx->vcpu);
4814
4815 vpid_sync_context(vmx);
4816 }
4817
4818 /*
4819 * In nested virtualization, check if L1 asked to exit on external interrupts.
4820 * For most existing hypervisors, this will always return true.
4821 */
nested_exit_on_intr(struct kvm_vcpu * vcpu)4822 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4823 {
4824 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4825 PIN_BASED_EXT_INTR_MASK;
4826 }
4827
4828 /*
4829 * In nested virtualization, check if L1 has set
4830 * VM_EXIT_ACK_INTR_ON_EXIT
4831 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)4832 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4833 {
4834 return get_vmcs12(vcpu)->vm_exit_controls &
4835 VM_EXIT_ACK_INTR_ON_EXIT;
4836 }
4837
nested_exit_on_nmi(struct kvm_vcpu * vcpu)4838 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4839 {
4840 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4841 PIN_BASED_NMI_EXITING;
4842 }
4843
enable_irq_window(struct kvm_vcpu * vcpu)4844 static void enable_irq_window(struct kvm_vcpu *vcpu)
4845 {
4846 u32 cpu_based_vm_exec_control;
4847
4848 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4849 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4850 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4851 }
4852
enable_nmi_window(struct kvm_vcpu * vcpu)4853 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4854 {
4855 u32 cpu_based_vm_exec_control;
4856
4857 if (!cpu_has_virtual_nmis() ||
4858 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4859 enable_irq_window(vcpu);
4860 return;
4861 }
4862
4863 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4864 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4865 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4866 }
4867
vmx_inject_irq(struct kvm_vcpu * vcpu)4868 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4869 {
4870 struct vcpu_vmx *vmx = to_vmx(vcpu);
4871 uint32_t intr;
4872 int irq = vcpu->arch.interrupt.nr;
4873
4874 trace_kvm_inj_virq(irq);
4875
4876 ++vcpu->stat.irq_injections;
4877 if (vmx->rmode.vm86_active) {
4878 int inc_eip = 0;
4879 if (vcpu->arch.interrupt.soft)
4880 inc_eip = vcpu->arch.event_exit_inst_len;
4881 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4882 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4883 return;
4884 }
4885 intr = irq | INTR_INFO_VALID_MASK;
4886 if (vcpu->arch.interrupt.soft) {
4887 intr |= INTR_TYPE_SOFT_INTR;
4888 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4889 vmx->vcpu.arch.event_exit_inst_len);
4890 } else
4891 intr |= INTR_TYPE_EXT_INTR;
4892 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4893 }
4894
vmx_inject_nmi(struct kvm_vcpu * vcpu)4895 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4896 {
4897 struct vcpu_vmx *vmx = to_vmx(vcpu);
4898
4899 if (is_guest_mode(vcpu))
4900 return;
4901
4902 if (!cpu_has_virtual_nmis()) {
4903 /*
4904 * Tracking the NMI-blocked state in software is built upon
4905 * finding the next open IRQ window. This, in turn, depends on
4906 * well-behaving guests: They have to keep IRQs disabled at
4907 * least as long as the NMI handler runs. Otherwise we may
4908 * cause NMI nesting, maybe breaking the guest. But as this is
4909 * highly unlikely, we can live with the residual risk.
4910 */
4911 vmx->soft_vnmi_blocked = 1;
4912 vmx->vnmi_blocked_time = 0;
4913 }
4914
4915 ++vcpu->stat.nmi_injections;
4916 vmx->nmi_known_unmasked = false;
4917 if (vmx->rmode.vm86_active) {
4918 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4919 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4920 return;
4921 }
4922 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4923 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4924 }
4925
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4926 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4927 {
4928 if (!cpu_has_virtual_nmis())
4929 return to_vmx(vcpu)->soft_vnmi_blocked;
4930 if (to_vmx(vcpu)->nmi_known_unmasked)
4931 return false;
4932 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4933 }
4934
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4935 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4936 {
4937 struct vcpu_vmx *vmx = to_vmx(vcpu);
4938
4939 if (!cpu_has_virtual_nmis()) {
4940 if (vmx->soft_vnmi_blocked != masked) {
4941 vmx->soft_vnmi_blocked = masked;
4942 vmx->vnmi_blocked_time = 0;
4943 }
4944 } else {
4945 vmx->nmi_known_unmasked = !masked;
4946 if (masked)
4947 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4948 GUEST_INTR_STATE_NMI);
4949 else
4950 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4951 GUEST_INTR_STATE_NMI);
4952 }
4953 }
4954
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4955 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4956 {
4957 if (to_vmx(vcpu)->nested.nested_run_pending)
4958 return 0;
4959
4960 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4961 return 0;
4962
4963 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4964 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4965 | GUEST_INTR_STATE_NMI));
4966 }
4967
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4968 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4969 {
4970 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4971 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4972 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4973 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4974 }
4975
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4976 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4977 {
4978 int ret;
4979 struct kvm_userspace_memory_region tss_mem = {
4980 .slot = TSS_PRIVATE_MEMSLOT,
4981 .guest_phys_addr = addr,
4982 .memory_size = PAGE_SIZE * 3,
4983 .flags = 0,
4984 };
4985
4986 ret = kvm_set_memory_region(kvm, &tss_mem);
4987 if (ret)
4988 return ret;
4989 kvm->arch.tss_addr = addr;
4990 return init_rmode_tss(kvm);
4991 }
4992
rmode_exception(struct kvm_vcpu * vcpu,int vec)4993 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4994 {
4995 switch (vec) {
4996 case BP_VECTOR:
4997 /*
4998 * Update instruction length as we may reinject the exception
4999 * from user space while in guest debugging mode.
5000 */
5001 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5002 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5003 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5004 return false;
5005 /* fall through */
5006 case DB_VECTOR:
5007 if (vcpu->guest_debug &
5008 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5009 return false;
5010 /* fall through */
5011 case DE_VECTOR:
5012 case OF_VECTOR:
5013 case BR_VECTOR:
5014 case UD_VECTOR:
5015 case DF_VECTOR:
5016 case SS_VECTOR:
5017 case GP_VECTOR:
5018 case MF_VECTOR:
5019 return true;
5020 break;
5021 }
5022 return false;
5023 }
5024
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5025 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5026 int vec, u32 err_code)
5027 {
5028 /*
5029 * Instruction with address size override prefix opcode 0x67
5030 * Cause the #SS fault with 0 error code in VM86 mode.
5031 */
5032 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5033 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5034 if (vcpu->arch.halt_request) {
5035 vcpu->arch.halt_request = 0;
5036 return kvm_vcpu_halt(vcpu);
5037 }
5038 return 1;
5039 }
5040 return 0;
5041 }
5042
5043 /*
5044 * Forward all other exceptions that are valid in real mode.
5045 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5046 * the required debugging infrastructure rework.
5047 */
5048 kvm_queue_exception(vcpu, vec);
5049 return 1;
5050 }
5051
5052 /*
5053 * Trigger machine check on the host. We assume all the MSRs are already set up
5054 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5055 * We pass a fake environment to the machine check handler because we want
5056 * the guest to be always treated like user space, no matter what context
5057 * it used internally.
5058 */
kvm_machine_check(void)5059 static void kvm_machine_check(void)
5060 {
5061 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5062 struct pt_regs regs = {
5063 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5064 .flags = X86_EFLAGS_IF,
5065 };
5066
5067 do_machine_check(®s, 0);
5068 #endif
5069 }
5070
handle_machine_check(struct kvm_vcpu * vcpu)5071 static int handle_machine_check(struct kvm_vcpu *vcpu)
5072 {
5073 /* already handled by vcpu_run */
5074 return 1;
5075 }
5076
handle_exception(struct kvm_vcpu * vcpu)5077 static int handle_exception(struct kvm_vcpu *vcpu)
5078 {
5079 struct vcpu_vmx *vmx = to_vmx(vcpu);
5080 struct kvm_run *kvm_run = vcpu->run;
5081 u32 intr_info, ex_no, error_code;
5082 unsigned long cr2, rip, dr6;
5083 u32 vect_info;
5084 enum emulation_result er;
5085
5086 vect_info = vmx->idt_vectoring_info;
5087 intr_info = vmx->exit_intr_info;
5088
5089 if (is_machine_check(intr_info))
5090 return handle_machine_check(vcpu);
5091
5092 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5093 return 1; /* already handled by vmx_vcpu_run() */
5094
5095 if (is_no_device(intr_info)) {
5096 vmx_fpu_activate(vcpu);
5097 return 1;
5098 }
5099
5100 if (is_invalid_opcode(intr_info)) {
5101 if (is_guest_mode(vcpu)) {
5102 kvm_queue_exception(vcpu, UD_VECTOR);
5103 return 1;
5104 }
5105 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5106 if (er != EMULATE_DONE)
5107 kvm_queue_exception(vcpu, UD_VECTOR);
5108 return 1;
5109 }
5110
5111 error_code = 0;
5112 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5113 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5114
5115 /*
5116 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5117 * MMIO, it is better to report an internal error.
5118 * See the comments in vmx_handle_exit.
5119 */
5120 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5121 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5122 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5123 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5124 vcpu->run->internal.ndata = 3;
5125 vcpu->run->internal.data[0] = vect_info;
5126 vcpu->run->internal.data[1] = intr_info;
5127 vcpu->run->internal.data[2] = error_code;
5128 return 0;
5129 }
5130
5131 if (is_page_fault(intr_info)) {
5132 /* EPT won't cause page fault directly */
5133 BUG_ON(enable_ept);
5134 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5135 trace_kvm_page_fault(cr2, error_code);
5136
5137 if (kvm_event_needs_reinjection(vcpu))
5138 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5139 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5140 }
5141
5142 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5143
5144 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5145 return handle_rmode_exception(vcpu, ex_no, error_code);
5146
5147 switch (ex_no) {
5148 case AC_VECTOR:
5149 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5150 return 1;
5151 case DB_VECTOR:
5152 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5153 if (!(vcpu->guest_debug &
5154 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5155 vcpu->arch.dr6 &= ~15;
5156 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5157 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5158 skip_emulated_instruction(vcpu);
5159
5160 kvm_queue_exception(vcpu, DB_VECTOR);
5161 return 1;
5162 }
5163 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5164 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5165 /* fall through */
5166 case BP_VECTOR:
5167 /*
5168 * Update instruction length as we may reinject #BP from
5169 * user space while in guest debugging mode. Reading it for
5170 * #DB as well causes no harm, it is not used in that case.
5171 */
5172 vmx->vcpu.arch.event_exit_inst_len =
5173 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5174 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5175 rip = kvm_rip_read(vcpu);
5176 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5177 kvm_run->debug.arch.exception = ex_no;
5178 break;
5179 default:
5180 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5181 kvm_run->ex.exception = ex_no;
5182 kvm_run->ex.error_code = error_code;
5183 break;
5184 }
5185 return 0;
5186 }
5187
handle_external_interrupt(struct kvm_vcpu * vcpu)5188 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5189 {
5190 ++vcpu->stat.irq_exits;
5191 return 1;
5192 }
5193
handle_triple_fault(struct kvm_vcpu * vcpu)5194 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5195 {
5196 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5197 return 0;
5198 }
5199
handle_io(struct kvm_vcpu * vcpu)5200 static int handle_io(struct kvm_vcpu *vcpu)
5201 {
5202 unsigned long exit_qualification;
5203 int size, in, string;
5204 unsigned port;
5205
5206 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5207 string = (exit_qualification & 16) != 0;
5208 in = (exit_qualification & 8) != 0;
5209
5210 ++vcpu->stat.io_exits;
5211
5212 if (string || in)
5213 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5214
5215 port = exit_qualification >> 16;
5216 size = (exit_qualification & 7) + 1;
5217 skip_emulated_instruction(vcpu);
5218
5219 return kvm_fast_pio_out(vcpu, size, port);
5220 }
5221
5222 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5223 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5224 {
5225 /*
5226 * Patch in the VMCALL instruction:
5227 */
5228 hypercall[0] = 0x0f;
5229 hypercall[1] = 0x01;
5230 hypercall[2] = 0xc1;
5231 }
5232
nested_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5233 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5234 {
5235 unsigned long always_on = VMXON_CR0_ALWAYSON;
5236 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5237
5238 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5239 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5240 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5241 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5242 return (val & always_on) == always_on;
5243 }
5244
5245 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5246 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5247 {
5248 if (is_guest_mode(vcpu)) {
5249 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5250 unsigned long orig_val = val;
5251
5252 /*
5253 * We get here when L2 changed cr0 in a way that did not change
5254 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5255 * but did change L0 shadowed bits. So we first calculate the
5256 * effective cr0 value that L1 would like to write into the
5257 * hardware. It consists of the L2-owned bits from the new
5258 * value combined with the L1-owned bits from L1's guest_cr0.
5259 */
5260 val = (val & ~vmcs12->cr0_guest_host_mask) |
5261 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5262
5263 if (!nested_cr0_valid(vcpu, val))
5264 return 1;
5265
5266 if (kvm_set_cr0(vcpu, val))
5267 return 1;
5268 vmcs_writel(CR0_READ_SHADOW, orig_val);
5269 return 0;
5270 } else {
5271 if (to_vmx(vcpu)->nested.vmxon &&
5272 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5273 return 1;
5274 return kvm_set_cr0(vcpu, val);
5275 }
5276 }
5277
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5278 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5279 {
5280 if (is_guest_mode(vcpu)) {
5281 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5282 unsigned long orig_val = val;
5283
5284 /* analogously to handle_set_cr0 */
5285 val = (val & ~vmcs12->cr4_guest_host_mask) |
5286 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5287 if (kvm_set_cr4(vcpu, val))
5288 return 1;
5289 vmcs_writel(CR4_READ_SHADOW, orig_val);
5290 return 0;
5291 } else
5292 return kvm_set_cr4(vcpu, val);
5293 }
5294
5295 /* called to set cr0 as approriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)5296 static void handle_clts(struct kvm_vcpu *vcpu)
5297 {
5298 if (is_guest_mode(vcpu)) {
5299 /*
5300 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5301 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5302 * just pretend it's off (also in arch.cr0 for fpu_activate).
5303 */
5304 vmcs_writel(CR0_READ_SHADOW,
5305 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5306 vcpu->arch.cr0 &= ~X86_CR0_TS;
5307 } else
5308 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5309 }
5310
handle_cr(struct kvm_vcpu * vcpu)5311 static int handle_cr(struct kvm_vcpu *vcpu)
5312 {
5313 unsigned long exit_qualification, val;
5314 int cr;
5315 int reg;
5316 int err;
5317
5318 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5319 cr = exit_qualification & 15;
5320 reg = (exit_qualification >> 8) & 15;
5321 switch ((exit_qualification >> 4) & 3) {
5322 case 0: /* mov to cr */
5323 val = kvm_register_readl(vcpu, reg);
5324 trace_kvm_cr_write(cr, val);
5325 switch (cr) {
5326 case 0:
5327 err = handle_set_cr0(vcpu, val);
5328 kvm_complete_insn_gp(vcpu, err);
5329 return 1;
5330 case 3:
5331 err = kvm_set_cr3(vcpu, val);
5332 kvm_complete_insn_gp(vcpu, err);
5333 return 1;
5334 case 4:
5335 err = handle_set_cr4(vcpu, val);
5336 kvm_complete_insn_gp(vcpu, err);
5337 return 1;
5338 case 8: {
5339 u8 cr8_prev = kvm_get_cr8(vcpu);
5340 u8 cr8 = (u8)val;
5341 err = kvm_set_cr8(vcpu, cr8);
5342 kvm_complete_insn_gp(vcpu, err);
5343 if (irqchip_in_kernel(vcpu->kvm))
5344 return 1;
5345 if (cr8_prev <= cr8)
5346 return 1;
5347 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5348 return 0;
5349 }
5350 }
5351 break;
5352 case 2: /* clts */
5353 handle_clts(vcpu);
5354 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5355 skip_emulated_instruction(vcpu);
5356 vmx_fpu_activate(vcpu);
5357 return 1;
5358 case 1: /*mov from cr*/
5359 switch (cr) {
5360 case 3:
5361 val = kvm_read_cr3(vcpu);
5362 kvm_register_write(vcpu, reg, val);
5363 trace_kvm_cr_read(cr, val);
5364 skip_emulated_instruction(vcpu);
5365 return 1;
5366 case 8:
5367 val = kvm_get_cr8(vcpu);
5368 kvm_register_write(vcpu, reg, val);
5369 trace_kvm_cr_read(cr, val);
5370 skip_emulated_instruction(vcpu);
5371 return 1;
5372 }
5373 break;
5374 case 3: /* lmsw */
5375 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5376 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5377 kvm_lmsw(vcpu, val);
5378
5379 skip_emulated_instruction(vcpu);
5380 return 1;
5381 default:
5382 break;
5383 }
5384 vcpu->run->exit_reason = 0;
5385 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5386 (int)(exit_qualification >> 4) & 3, cr);
5387 return 0;
5388 }
5389
handle_dr(struct kvm_vcpu * vcpu)5390 static int handle_dr(struct kvm_vcpu *vcpu)
5391 {
5392 unsigned long exit_qualification;
5393 int dr, dr7, reg;
5394
5395 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5396 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5397
5398 /* First, if DR does not exist, trigger UD */
5399 if (!kvm_require_dr(vcpu, dr))
5400 return 1;
5401
5402 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5403 if (!kvm_require_cpl(vcpu, 0))
5404 return 1;
5405 dr7 = vmcs_readl(GUEST_DR7);
5406 if (dr7 & DR7_GD) {
5407 /*
5408 * As the vm-exit takes precedence over the debug trap, we
5409 * need to emulate the latter, either for the host or the
5410 * guest debugging itself.
5411 */
5412 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5413 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5414 vcpu->run->debug.arch.dr7 = dr7;
5415 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5416 vcpu->run->debug.arch.exception = DB_VECTOR;
5417 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5418 return 0;
5419 } else {
5420 vcpu->arch.dr6 &= ~15;
5421 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5422 kvm_queue_exception(vcpu, DB_VECTOR);
5423 return 1;
5424 }
5425 }
5426
5427 if (vcpu->guest_debug == 0) {
5428 u32 cpu_based_vm_exec_control;
5429
5430 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5431 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5432 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5433
5434 /*
5435 * No more DR vmexits; force a reload of the debug registers
5436 * and reenter on this instruction. The next vmexit will
5437 * retrieve the full state of the debug registers.
5438 */
5439 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5440 return 1;
5441 }
5442
5443 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5444 if (exit_qualification & TYPE_MOV_FROM_DR) {
5445 unsigned long val;
5446
5447 if (kvm_get_dr(vcpu, dr, &val))
5448 return 1;
5449 kvm_register_write(vcpu, reg, val);
5450 } else
5451 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5452 return 1;
5453
5454 skip_emulated_instruction(vcpu);
5455 return 1;
5456 }
5457
vmx_get_dr6(struct kvm_vcpu * vcpu)5458 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5459 {
5460 return vcpu->arch.dr6;
5461 }
5462
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5463 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5464 {
5465 }
5466
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5467 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5468 {
5469 u32 cpu_based_vm_exec_control;
5470
5471 get_debugreg(vcpu->arch.db[0], 0);
5472 get_debugreg(vcpu->arch.db[1], 1);
5473 get_debugreg(vcpu->arch.db[2], 2);
5474 get_debugreg(vcpu->arch.db[3], 3);
5475 get_debugreg(vcpu->arch.dr6, 6);
5476 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5477
5478 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5479
5480 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5481 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5482 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5483 }
5484
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5485 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5486 {
5487 vmcs_writel(GUEST_DR7, val);
5488 }
5489
handle_cpuid(struct kvm_vcpu * vcpu)5490 static int handle_cpuid(struct kvm_vcpu *vcpu)
5491 {
5492 kvm_emulate_cpuid(vcpu);
5493 return 1;
5494 }
5495
handle_rdmsr(struct kvm_vcpu * vcpu)5496 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5497 {
5498 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5499 u64 data;
5500
5501 if (vmx_get_msr(vcpu, ecx, &data)) {
5502 trace_kvm_msr_read_ex(ecx);
5503 kvm_inject_gp(vcpu, 0);
5504 return 1;
5505 }
5506
5507 trace_kvm_msr_read(ecx, data);
5508
5509 /* FIXME: handling of bits 32:63 of rax, rdx */
5510 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5511 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5512 skip_emulated_instruction(vcpu);
5513 return 1;
5514 }
5515
handle_wrmsr(struct kvm_vcpu * vcpu)5516 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5517 {
5518 struct msr_data msr;
5519 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5520 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5521 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5522
5523 msr.data = data;
5524 msr.index = ecx;
5525 msr.host_initiated = false;
5526 if (kvm_set_msr(vcpu, &msr) != 0) {
5527 trace_kvm_msr_write_ex(ecx, data);
5528 kvm_inject_gp(vcpu, 0);
5529 return 1;
5530 }
5531
5532 trace_kvm_msr_write(ecx, data);
5533 skip_emulated_instruction(vcpu);
5534 return 1;
5535 }
5536
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5537 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5538 {
5539 kvm_make_request(KVM_REQ_EVENT, vcpu);
5540 return 1;
5541 }
5542
handle_interrupt_window(struct kvm_vcpu * vcpu)5543 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5544 {
5545 u32 cpu_based_vm_exec_control;
5546
5547 /* clear pending irq */
5548 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5549 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5550 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5551
5552 kvm_make_request(KVM_REQ_EVENT, vcpu);
5553
5554 ++vcpu->stat.irq_window_exits;
5555
5556 /*
5557 * If the user space waits to inject interrupts, exit as soon as
5558 * possible
5559 */
5560 if (!irqchip_in_kernel(vcpu->kvm) &&
5561 vcpu->run->request_interrupt_window &&
5562 !kvm_cpu_has_interrupt(vcpu)) {
5563 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5564 return 0;
5565 }
5566 return 1;
5567 }
5568
handle_halt(struct kvm_vcpu * vcpu)5569 static int handle_halt(struct kvm_vcpu *vcpu)
5570 {
5571 return kvm_emulate_halt(vcpu);
5572 }
5573
handle_vmcall(struct kvm_vcpu * vcpu)5574 static int handle_vmcall(struct kvm_vcpu *vcpu)
5575 {
5576 kvm_emulate_hypercall(vcpu);
5577 return 1;
5578 }
5579
handle_invd(struct kvm_vcpu * vcpu)5580 static int handle_invd(struct kvm_vcpu *vcpu)
5581 {
5582 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5583 }
5584
handle_invlpg(struct kvm_vcpu * vcpu)5585 static int handle_invlpg(struct kvm_vcpu *vcpu)
5586 {
5587 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5588
5589 kvm_mmu_invlpg(vcpu, exit_qualification);
5590 skip_emulated_instruction(vcpu);
5591 return 1;
5592 }
5593
handle_rdpmc(struct kvm_vcpu * vcpu)5594 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5595 {
5596 int err;
5597
5598 err = kvm_rdpmc(vcpu);
5599 kvm_complete_insn_gp(vcpu, err);
5600
5601 return 1;
5602 }
5603
handle_wbinvd(struct kvm_vcpu * vcpu)5604 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5605 {
5606 kvm_emulate_wbinvd(vcpu);
5607 return 1;
5608 }
5609
handle_xsetbv(struct kvm_vcpu * vcpu)5610 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5611 {
5612 u64 new_bv = kvm_read_edx_eax(vcpu);
5613 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5614
5615 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5616 skip_emulated_instruction(vcpu);
5617 return 1;
5618 }
5619
handle_xsaves(struct kvm_vcpu * vcpu)5620 static int handle_xsaves(struct kvm_vcpu *vcpu)
5621 {
5622 skip_emulated_instruction(vcpu);
5623 WARN(1, "this should never happen\n");
5624 return 1;
5625 }
5626
handle_xrstors(struct kvm_vcpu * vcpu)5627 static int handle_xrstors(struct kvm_vcpu *vcpu)
5628 {
5629 skip_emulated_instruction(vcpu);
5630 WARN(1, "this should never happen\n");
5631 return 1;
5632 }
5633
handle_apic_access(struct kvm_vcpu * vcpu)5634 static int handle_apic_access(struct kvm_vcpu *vcpu)
5635 {
5636 if (likely(fasteoi)) {
5637 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5638 int access_type, offset;
5639
5640 access_type = exit_qualification & APIC_ACCESS_TYPE;
5641 offset = exit_qualification & APIC_ACCESS_OFFSET;
5642 /*
5643 * Sane guest uses MOV to write EOI, with written value
5644 * not cared. So make a short-circuit here by avoiding
5645 * heavy instruction emulation.
5646 */
5647 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5648 (offset == APIC_EOI)) {
5649 kvm_lapic_set_eoi(vcpu);
5650 skip_emulated_instruction(vcpu);
5651 return 1;
5652 }
5653 }
5654 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5655 }
5656
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5657 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5658 {
5659 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5660 int vector = exit_qualification & 0xff;
5661
5662 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5663 kvm_apic_set_eoi_accelerated(vcpu, vector);
5664 return 1;
5665 }
5666
handle_apic_write(struct kvm_vcpu * vcpu)5667 static int handle_apic_write(struct kvm_vcpu *vcpu)
5668 {
5669 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5670 u32 offset = exit_qualification & 0xfff;
5671
5672 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5673 kvm_apic_write_nodecode(vcpu, offset);
5674 return 1;
5675 }
5676
handle_task_switch(struct kvm_vcpu * vcpu)5677 static int handle_task_switch(struct kvm_vcpu *vcpu)
5678 {
5679 struct vcpu_vmx *vmx = to_vmx(vcpu);
5680 unsigned long exit_qualification;
5681 bool has_error_code = false;
5682 u32 error_code = 0;
5683 u16 tss_selector;
5684 int reason, type, idt_v, idt_index;
5685
5686 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5687 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5688 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5689
5690 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5691
5692 reason = (u32)exit_qualification >> 30;
5693 if (reason == TASK_SWITCH_GATE && idt_v) {
5694 switch (type) {
5695 case INTR_TYPE_NMI_INTR:
5696 vcpu->arch.nmi_injected = false;
5697 vmx_set_nmi_mask(vcpu, true);
5698 break;
5699 case INTR_TYPE_EXT_INTR:
5700 case INTR_TYPE_SOFT_INTR:
5701 kvm_clear_interrupt_queue(vcpu);
5702 break;
5703 case INTR_TYPE_HARD_EXCEPTION:
5704 if (vmx->idt_vectoring_info &
5705 VECTORING_INFO_DELIVER_CODE_MASK) {
5706 has_error_code = true;
5707 error_code =
5708 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5709 }
5710 /* fall through */
5711 case INTR_TYPE_SOFT_EXCEPTION:
5712 kvm_clear_exception_queue(vcpu);
5713 break;
5714 default:
5715 break;
5716 }
5717 }
5718 tss_selector = exit_qualification;
5719
5720 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5721 type != INTR_TYPE_EXT_INTR &&
5722 type != INTR_TYPE_NMI_INTR))
5723 skip_emulated_instruction(vcpu);
5724
5725 if (kvm_task_switch(vcpu, tss_selector,
5726 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5727 has_error_code, error_code) == EMULATE_FAIL) {
5728 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5729 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5730 vcpu->run->internal.ndata = 0;
5731 return 0;
5732 }
5733
5734 /* clear all local breakpoint enable flags */
5735 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5736
5737 /*
5738 * TODO: What about debug traps on tss switch?
5739 * Are we supposed to inject them and update dr6?
5740 */
5741
5742 return 1;
5743 }
5744
handle_ept_violation(struct kvm_vcpu * vcpu)5745 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5746 {
5747 unsigned long exit_qualification;
5748 gpa_t gpa;
5749 u32 error_code;
5750 int gla_validity;
5751
5752 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5753
5754 gla_validity = (exit_qualification >> 7) & 0x3;
5755 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5756 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5757 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5758 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5759 vmcs_readl(GUEST_LINEAR_ADDRESS));
5760 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5761 (long unsigned int)exit_qualification);
5762 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5763 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5764 return 0;
5765 }
5766
5767 /*
5768 * EPT violation happened while executing iret from NMI,
5769 * "blocked by NMI" bit has to be set before next VM entry.
5770 * There are errata that may cause this bit to not be set:
5771 * AAK134, BY25.
5772 */
5773 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5774 cpu_has_virtual_nmis() &&
5775 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5776 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5777
5778 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5779 trace_kvm_page_fault(gpa, exit_qualification);
5780
5781 /* It is a write fault? */
5782 error_code = exit_qualification & PFERR_WRITE_MASK;
5783 /* It is a fetch fault? */
5784 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5785 /* ept page table is present? */
5786 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5787
5788 vcpu->arch.exit_qualification = exit_qualification;
5789
5790 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5791 }
5792
ept_rsvd_mask(u64 spte,int level)5793 static u64 ept_rsvd_mask(u64 spte, int level)
5794 {
5795 int i;
5796 u64 mask = 0;
5797
5798 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5799 mask |= (1ULL << i);
5800
5801 if (level == 4)
5802 /* bits 7:3 reserved */
5803 mask |= 0xf8;
5804 else if (spte & (1ULL << 7))
5805 /*
5806 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5807 * level == 1 if the hypervisor is using the ignored bit 7.
5808 */
5809 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5810 else if (level > 1)
5811 /* bits 6:3 reserved */
5812 mask |= 0x78;
5813
5814 return mask;
5815 }
5816
ept_misconfig_inspect_spte(struct kvm_vcpu * vcpu,u64 spte,int level)5817 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5818 int level)
5819 {
5820 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5821
5822 /* 010b (write-only) */
5823 WARN_ON((spte & 0x7) == 0x2);
5824
5825 /* 110b (write/execute) */
5826 WARN_ON((spte & 0x7) == 0x6);
5827
5828 /* 100b (execute-only) and value not supported by logical processor */
5829 if (!cpu_has_vmx_ept_execute_only())
5830 WARN_ON((spte & 0x7) == 0x4);
5831
5832 /* not 000b */
5833 if ((spte & 0x7)) {
5834 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5835
5836 if (rsvd_bits != 0) {
5837 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5838 __func__, rsvd_bits);
5839 WARN_ON(1);
5840 }
5841
5842 /* bits 5:3 are _not_ reserved for large page or leaf page */
5843 if ((rsvd_bits & 0x38) == 0) {
5844 u64 ept_mem_type = (spte & 0x38) >> 3;
5845
5846 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5847 ept_mem_type == 7) {
5848 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5849 __func__, ept_mem_type);
5850 WARN_ON(1);
5851 }
5852 }
5853 }
5854 }
5855
handle_ept_misconfig(struct kvm_vcpu * vcpu)5856 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5857 {
5858 u64 sptes[4];
5859 int nr_sptes, i, ret;
5860 gpa_t gpa;
5861
5862 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5863 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5864 skip_emulated_instruction(vcpu);
5865 return 1;
5866 }
5867
5868 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5869 if (likely(ret == RET_MMIO_PF_EMULATE))
5870 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5871 EMULATE_DONE;
5872
5873 if (unlikely(ret == RET_MMIO_PF_INVALID))
5874 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5875
5876 if (unlikely(ret == RET_MMIO_PF_RETRY))
5877 return 1;
5878
5879 /* It is the real ept misconfig */
5880 printk(KERN_ERR "EPT: Misconfiguration.\n");
5881 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5882
5883 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5884
5885 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5886 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5887
5888 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5889 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5890
5891 return 0;
5892 }
5893
handle_nmi_window(struct kvm_vcpu * vcpu)5894 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5895 {
5896 u32 cpu_based_vm_exec_control;
5897
5898 /* clear pending NMI */
5899 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5900 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5901 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5902 ++vcpu->stat.nmi_window_exits;
5903 kvm_make_request(KVM_REQ_EVENT, vcpu);
5904
5905 return 1;
5906 }
5907
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5908 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5909 {
5910 struct vcpu_vmx *vmx = to_vmx(vcpu);
5911 enum emulation_result err = EMULATE_DONE;
5912 int ret = 1;
5913 u32 cpu_exec_ctrl;
5914 bool intr_window_requested;
5915 unsigned count = 130;
5916
5917 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5918 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5919
5920 while (vmx->emulation_required && count-- != 0) {
5921 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5922 return handle_interrupt_window(&vmx->vcpu);
5923
5924 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5925 return 1;
5926
5927 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5928
5929 if (err == EMULATE_USER_EXIT) {
5930 ++vcpu->stat.mmio_exits;
5931 ret = 0;
5932 goto out;
5933 }
5934
5935 if (err != EMULATE_DONE) {
5936 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5937 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5938 vcpu->run->internal.ndata = 0;
5939 return 0;
5940 }
5941
5942 if (vcpu->arch.halt_request) {
5943 vcpu->arch.halt_request = 0;
5944 ret = kvm_vcpu_halt(vcpu);
5945 goto out;
5946 }
5947
5948 if (signal_pending(current))
5949 goto out;
5950 if (need_resched())
5951 schedule();
5952 }
5953
5954 out:
5955 return ret;
5956 }
5957
__grow_ple_window(int val)5958 static int __grow_ple_window(int val)
5959 {
5960 if (ple_window_grow < 1)
5961 return ple_window;
5962
5963 val = min(val, ple_window_actual_max);
5964
5965 if (ple_window_grow < ple_window)
5966 val *= ple_window_grow;
5967 else
5968 val += ple_window_grow;
5969
5970 return val;
5971 }
5972
__shrink_ple_window(int val,int modifier,int minimum)5973 static int __shrink_ple_window(int val, int modifier, int minimum)
5974 {
5975 if (modifier < 1)
5976 return ple_window;
5977
5978 if (modifier < ple_window)
5979 val /= modifier;
5980 else
5981 val -= modifier;
5982
5983 return max(val, minimum);
5984 }
5985
grow_ple_window(struct kvm_vcpu * vcpu)5986 static void grow_ple_window(struct kvm_vcpu *vcpu)
5987 {
5988 struct vcpu_vmx *vmx = to_vmx(vcpu);
5989 int old = vmx->ple_window;
5990
5991 vmx->ple_window = __grow_ple_window(old);
5992
5993 if (vmx->ple_window != old)
5994 vmx->ple_window_dirty = true;
5995
5996 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5997 }
5998
shrink_ple_window(struct kvm_vcpu * vcpu)5999 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6000 {
6001 struct vcpu_vmx *vmx = to_vmx(vcpu);
6002 int old = vmx->ple_window;
6003
6004 vmx->ple_window = __shrink_ple_window(old,
6005 ple_window_shrink, ple_window);
6006
6007 if (vmx->ple_window != old)
6008 vmx->ple_window_dirty = true;
6009
6010 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6011 }
6012
6013 /*
6014 * ple_window_actual_max is computed to be one grow_ple_window() below
6015 * ple_window_max. (See __grow_ple_window for the reason.)
6016 * This prevents overflows, because ple_window_max is int.
6017 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6018 * this process.
6019 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6020 */
update_ple_window_actual_max(void)6021 static void update_ple_window_actual_max(void)
6022 {
6023 ple_window_actual_max =
6024 __shrink_ple_window(max(ple_window_max, ple_window),
6025 ple_window_grow, INT_MIN);
6026 }
6027
hardware_setup(void)6028 static __init int hardware_setup(void)
6029 {
6030 int r = -ENOMEM, i, msr;
6031
6032 rdmsrl_safe(MSR_EFER, &host_efer);
6033
6034 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6035 kvm_define_shared_msr(i, vmx_msr_index[i]);
6036
6037 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6038 if (!vmx_io_bitmap_a)
6039 return r;
6040
6041 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6042 if (!vmx_io_bitmap_b)
6043 goto out;
6044
6045 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6046 if (!vmx_msr_bitmap_legacy)
6047 goto out1;
6048
6049 vmx_msr_bitmap_legacy_x2apic =
6050 (unsigned long *)__get_free_page(GFP_KERNEL);
6051 if (!vmx_msr_bitmap_legacy_x2apic)
6052 goto out2;
6053
6054 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6055 if (!vmx_msr_bitmap_longmode)
6056 goto out3;
6057
6058 vmx_msr_bitmap_longmode_x2apic =
6059 (unsigned long *)__get_free_page(GFP_KERNEL);
6060 if (!vmx_msr_bitmap_longmode_x2apic)
6061 goto out4;
6062
6063 if (nested) {
6064 vmx_msr_bitmap_nested =
6065 (unsigned long *)__get_free_page(GFP_KERNEL);
6066 if (!vmx_msr_bitmap_nested)
6067 goto out5;
6068 }
6069
6070 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6071 if (!vmx_vmread_bitmap)
6072 goto out6;
6073
6074 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6075 if (!vmx_vmwrite_bitmap)
6076 goto out7;
6077
6078 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6079 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6080
6081 /*
6082 * Allow direct access to the PC debug port (it is often used for I/O
6083 * delays, but the vmexits simply slow things down).
6084 */
6085 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6086 clear_bit(0x80, vmx_io_bitmap_a);
6087
6088 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6089
6090 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6091 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6092 if (nested)
6093 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6094
6095 if (setup_vmcs_config(&vmcs_config) < 0) {
6096 r = -EIO;
6097 goto out8;
6098 }
6099
6100 if (boot_cpu_has(X86_FEATURE_NX))
6101 kvm_enable_efer_bits(EFER_NX);
6102
6103 if (!cpu_has_vmx_vpid())
6104 enable_vpid = 0;
6105 if (!cpu_has_vmx_shadow_vmcs())
6106 enable_shadow_vmcs = 0;
6107 if (enable_shadow_vmcs)
6108 init_vmcs_shadow_fields();
6109
6110 if (!cpu_has_vmx_ept() ||
6111 !cpu_has_vmx_ept_4levels()) {
6112 enable_ept = 0;
6113 enable_unrestricted_guest = 0;
6114 enable_ept_ad_bits = 0;
6115 }
6116
6117 if (!cpu_has_vmx_ept_ad_bits())
6118 enable_ept_ad_bits = 0;
6119
6120 if (!cpu_has_vmx_unrestricted_guest())
6121 enable_unrestricted_guest = 0;
6122
6123 if (!cpu_has_vmx_flexpriority())
6124 flexpriority_enabled = 0;
6125
6126 /*
6127 * set_apic_access_page_addr() is used to reload apic access
6128 * page upon invalidation. No need to do anything if not
6129 * using the APIC_ACCESS_ADDR VMCS field.
6130 */
6131 if (!flexpriority_enabled)
6132 kvm_x86_ops->set_apic_access_page_addr = NULL;
6133
6134 if (!cpu_has_vmx_tpr_shadow())
6135 kvm_x86_ops->update_cr8_intercept = NULL;
6136
6137 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6138 kvm_disable_largepages();
6139
6140 if (!cpu_has_vmx_ple())
6141 ple_gap = 0;
6142
6143 if (!cpu_has_vmx_apicv())
6144 enable_apicv = 0;
6145
6146 if (enable_apicv)
6147 kvm_x86_ops->update_cr8_intercept = NULL;
6148 else {
6149 kvm_x86_ops->hwapic_irr_update = NULL;
6150 kvm_x86_ops->hwapic_isr_update = NULL;
6151 kvm_x86_ops->deliver_posted_interrupt = NULL;
6152 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6153 }
6154
6155 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6156 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6157 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6158 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6159 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6160 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6161 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6162
6163 memcpy(vmx_msr_bitmap_legacy_x2apic,
6164 vmx_msr_bitmap_legacy, PAGE_SIZE);
6165 memcpy(vmx_msr_bitmap_longmode_x2apic,
6166 vmx_msr_bitmap_longmode, PAGE_SIZE);
6167
6168 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6169
6170 if (enable_apicv) {
6171 for (msr = 0x800; msr <= 0x8ff; msr++)
6172 vmx_disable_intercept_msr_read_x2apic(msr);
6173
6174 /* According SDM, in x2apic mode, the whole id reg is used.
6175 * But in KVM, it only use the highest eight bits. Need to
6176 * intercept it */
6177 vmx_enable_intercept_msr_read_x2apic(0x802);
6178 /* TMCCT */
6179 vmx_enable_intercept_msr_read_x2apic(0x839);
6180 /* TPR */
6181 vmx_disable_intercept_msr_write_x2apic(0x808);
6182 /* EOI */
6183 vmx_disable_intercept_msr_write_x2apic(0x80b);
6184 /* SELF-IPI */
6185 vmx_disable_intercept_msr_write_x2apic(0x83f);
6186 }
6187
6188 if (enable_ept) {
6189 kvm_mmu_set_mask_ptes(0ull,
6190 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6191 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6192 0ull, VMX_EPT_EXECUTABLE_MASK);
6193 ept_set_mmio_spte_mask();
6194 kvm_enable_tdp();
6195 } else
6196 kvm_disable_tdp();
6197
6198 update_ple_window_actual_max();
6199
6200 /*
6201 * Only enable PML when hardware supports PML feature, and both EPT
6202 * and EPT A/D bit features are enabled -- PML depends on them to work.
6203 */
6204 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6205 enable_pml = 0;
6206
6207 if (!enable_pml) {
6208 kvm_x86_ops->slot_enable_log_dirty = NULL;
6209 kvm_x86_ops->slot_disable_log_dirty = NULL;
6210 kvm_x86_ops->flush_log_dirty = NULL;
6211 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6212 }
6213
6214 return alloc_kvm_area();
6215
6216 out8:
6217 free_page((unsigned long)vmx_vmwrite_bitmap);
6218 out7:
6219 free_page((unsigned long)vmx_vmread_bitmap);
6220 out6:
6221 if (nested)
6222 free_page((unsigned long)vmx_msr_bitmap_nested);
6223 out5:
6224 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6225 out4:
6226 free_page((unsigned long)vmx_msr_bitmap_longmode);
6227 out3:
6228 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6229 out2:
6230 free_page((unsigned long)vmx_msr_bitmap_legacy);
6231 out1:
6232 free_page((unsigned long)vmx_io_bitmap_b);
6233 out:
6234 free_page((unsigned long)vmx_io_bitmap_a);
6235
6236 return r;
6237 }
6238
hardware_unsetup(void)6239 static __exit void hardware_unsetup(void)
6240 {
6241 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6242 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6243 free_page((unsigned long)vmx_msr_bitmap_legacy);
6244 free_page((unsigned long)vmx_msr_bitmap_longmode);
6245 free_page((unsigned long)vmx_io_bitmap_b);
6246 free_page((unsigned long)vmx_io_bitmap_a);
6247 free_page((unsigned long)vmx_vmwrite_bitmap);
6248 free_page((unsigned long)vmx_vmread_bitmap);
6249 if (nested)
6250 free_page((unsigned long)vmx_msr_bitmap_nested);
6251
6252 free_kvm_area();
6253 }
6254
6255 /*
6256 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6257 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6258 */
handle_pause(struct kvm_vcpu * vcpu)6259 static int handle_pause(struct kvm_vcpu *vcpu)
6260 {
6261 if (ple_gap)
6262 grow_ple_window(vcpu);
6263
6264 skip_emulated_instruction(vcpu);
6265 kvm_vcpu_on_spin(vcpu);
6266
6267 return 1;
6268 }
6269
handle_nop(struct kvm_vcpu * vcpu)6270 static int handle_nop(struct kvm_vcpu *vcpu)
6271 {
6272 skip_emulated_instruction(vcpu);
6273 return 1;
6274 }
6275
handle_mwait(struct kvm_vcpu * vcpu)6276 static int handle_mwait(struct kvm_vcpu *vcpu)
6277 {
6278 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6279 return handle_nop(vcpu);
6280 }
6281
handle_monitor(struct kvm_vcpu * vcpu)6282 static int handle_monitor(struct kvm_vcpu *vcpu)
6283 {
6284 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6285 return handle_nop(vcpu);
6286 }
6287
6288 /*
6289 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6290 * We could reuse a single VMCS for all the L2 guests, but we also want the
6291 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6292 * allows keeping them loaded on the processor, and in the future will allow
6293 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6294 * every entry if they never change.
6295 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6296 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6297 *
6298 * The following functions allocate and free a vmcs02 in this pool.
6299 */
6300
6301 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
nested_get_current_vmcs02(struct vcpu_vmx * vmx)6302 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6303 {
6304 struct vmcs02_list *item;
6305 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6306 if (item->vmptr == vmx->nested.current_vmptr) {
6307 list_move(&item->list, &vmx->nested.vmcs02_pool);
6308 return &item->vmcs02;
6309 }
6310
6311 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6312 /* Recycle the least recently used VMCS. */
6313 item = list_entry(vmx->nested.vmcs02_pool.prev,
6314 struct vmcs02_list, list);
6315 item->vmptr = vmx->nested.current_vmptr;
6316 list_move(&item->list, &vmx->nested.vmcs02_pool);
6317 return &item->vmcs02;
6318 }
6319
6320 /* Create a new VMCS */
6321 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6322 if (!item)
6323 return NULL;
6324 item->vmcs02.vmcs = alloc_vmcs();
6325 if (!item->vmcs02.vmcs) {
6326 kfree(item);
6327 return NULL;
6328 }
6329 loaded_vmcs_init(&item->vmcs02);
6330 item->vmptr = vmx->nested.current_vmptr;
6331 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6332 vmx->nested.vmcs02_num++;
6333 return &item->vmcs02;
6334 }
6335
6336 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
nested_free_vmcs02(struct vcpu_vmx * vmx,gpa_t vmptr)6337 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6338 {
6339 struct vmcs02_list *item;
6340 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6341 if (item->vmptr == vmptr) {
6342 free_loaded_vmcs(&item->vmcs02);
6343 list_del(&item->list);
6344 kfree(item);
6345 vmx->nested.vmcs02_num--;
6346 return;
6347 }
6348 }
6349
6350 /*
6351 * Free all VMCSs saved for this vcpu, except the one pointed by
6352 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6353 * must be &vmx->vmcs01.
6354 */
nested_free_all_saved_vmcss(struct vcpu_vmx * vmx)6355 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6356 {
6357 struct vmcs02_list *item, *n;
6358
6359 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6360 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6361 /*
6362 * Something will leak if the above WARN triggers. Better than
6363 * a use-after-free.
6364 */
6365 if (vmx->loaded_vmcs == &item->vmcs02)
6366 continue;
6367
6368 free_loaded_vmcs(&item->vmcs02);
6369 list_del(&item->list);
6370 kfree(item);
6371 vmx->nested.vmcs02_num--;
6372 }
6373 }
6374
6375 /*
6376 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6377 * set the success or error code of an emulated VMX instruction, as specified
6378 * by Vol 2B, VMX Instruction Reference, "Conventions".
6379 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)6380 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6381 {
6382 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6383 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6384 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6385 }
6386
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)6387 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6388 {
6389 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6390 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6391 X86_EFLAGS_SF | X86_EFLAGS_OF))
6392 | X86_EFLAGS_CF);
6393 }
6394
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)6395 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6396 u32 vm_instruction_error)
6397 {
6398 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6399 /*
6400 * failValid writes the error number to the current VMCS, which
6401 * can't be done there isn't a current VMCS.
6402 */
6403 nested_vmx_failInvalid(vcpu);
6404 return;
6405 }
6406 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6407 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6408 X86_EFLAGS_SF | X86_EFLAGS_OF))
6409 | X86_EFLAGS_ZF);
6410 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6411 /*
6412 * We don't need to force a shadow sync because
6413 * VM_INSTRUCTION_ERROR is not shadowed
6414 */
6415 }
6416
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)6417 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6418 {
6419 /* TODO: not to reset guest simply here. */
6420 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6421 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6422 }
6423
vmx_preemption_timer_fn(struct hrtimer * timer)6424 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6425 {
6426 struct vcpu_vmx *vmx =
6427 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6428
6429 vmx->nested.preemption_timer_expired = true;
6430 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6431 kvm_vcpu_kick(&vmx->vcpu);
6432
6433 return HRTIMER_NORESTART;
6434 }
6435
6436 /*
6437 * Decode the memory-address operand of a vmx instruction, as recorded on an
6438 * exit caused by such an instruction (run by a guest hypervisor).
6439 * On success, returns 0. When the operand is invalid, returns 1 and throws
6440 * #UD or #GP.
6441 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,gva_t * ret)6442 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6443 unsigned long exit_qualification,
6444 u32 vmx_instruction_info, gva_t *ret)
6445 {
6446 /*
6447 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6448 * Execution", on an exit, vmx_instruction_info holds most of the
6449 * addressing components of the operand. Only the displacement part
6450 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6451 * For how an actual address is calculated from all these components,
6452 * refer to Vol. 1, "Operand Addressing".
6453 */
6454 int scaling = vmx_instruction_info & 3;
6455 int addr_size = (vmx_instruction_info >> 7) & 7;
6456 bool is_reg = vmx_instruction_info & (1u << 10);
6457 int seg_reg = (vmx_instruction_info >> 15) & 7;
6458 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6459 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6460 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6461 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6462
6463 if (is_reg) {
6464 kvm_queue_exception(vcpu, UD_VECTOR);
6465 return 1;
6466 }
6467
6468 /* Addr = segment_base + offset */
6469 /* offset = base + [index * scale] + displacement */
6470 *ret = vmx_get_segment_base(vcpu, seg_reg);
6471 if (base_is_valid)
6472 *ret += kvm_register_read(vcpu, base_reg);
6473 if (index_is_valid)
6474 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6475 *ret += exit_qualification; /* holds the displacement */
6476
6477 if (addr_size == 1) /* 32 bit */
6478 *ret &= 0xffffffff;
6479
6480 /*
6481 * TODO: throw #GP (and return 1) in various cases that the VM*
6482 * instructions require it - e.g., offset beyond segment limit,
6483 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6484 * address, and so on. Currently these are not checked.
6485 */
6486 return 0;
6487 }
6488
6489 /*
6490 * This function performs the various checks including
6491 * - if it's 4KB aligned
6492 * - No bits beyond the physical address width are set
6493 * - Returns 0 on success or else 1
6494 * (Intel SDM Section 30.3)
6495 */
nested_vmx_check_vmptr(struct kvm_vcpu * vcpu,int exit_reason,gpa_t * vmpointer)6496 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6497 gpa_t *vmpointer)
6498 {
6499 gva_t gva;
6500 gpa_t vmptr;
6501 struct x86_exception e;
6502 struct page *page;
6503 struct vcpu_vmx *vmx = to_vmx(vcpu);
6504 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6505
6506 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6507 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6508 return 1;
6509
6510 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6511 sizeof(vmptr), &e)) {
6512 kvm_inject_page_fault(vcpu, &e);
6513 return 1;
6514 }
6515
6516 switch (exit_reason) {
6517 case EXIT_REASON_VMON:
6518 /*
6519 * SDM 3: 24.11.5
6520 * The first 4 bytes of VMXON region contain the supported
6521 * VMCS revision identifier
6522 *
6523 * Note - IA32_VMX_BASIC[48] will never be 1
6524 * for the nested case;
6525 * which replaces physical address width with 32
6526 *
6527 */
6528 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6529 nested_vmx_failInvalid(vcpu);
6530 skip_emulated_instruction(vcpu);
6531 return 1;
6532 }
6533
6534 page = nested_get_page(vcpu, vmptr);
6535 if (page == NULL ||
6536 *(u32 *)kmap(page) != VMCS12_REVISION) {
6537 nested_vmx_failInvalid(vcpu);
6538 kunmap(page);
6539 skip_emulated_instruction(vcpu);
6540 return 1;
6541 }
6542 kunmap(page);
6543 vmx->nested.vmxon_ptr = vmptr;
6544 break;
6545 case EXIT_REASON_VMCLEAR:
6546 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6547 nested_vmx_failValid(vcpu,
6548 VMXERR_VMCLEAR_INVALID_ADDRESS);
6549 skip_emulated_instruction(vcpu);
6550 return 1;
6551 }
6552
6553 if (vmptr == vmx->nested.vmxon_ptr) {
6554 nested_vmx_failValid(vcpu,
6555 VMXERR_VMCLEAR_VMXON_POINTER);
6556 skip_emulated_instruction(vcpu);
6557 return 1;
6558 }
6559 break;
6560 case EXIT_REASON_VMPTRLD:
6561 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6562 nested_vmx_failValid(vcpu,
6563 VMXERR_VMPTRLD_INVALID_ADDRESS);
6564 skip_emulated_instruction(vcpu);
6565 return 1;
6566 }
6567
6568 if (vmptr == vmx->nested.vmxon_ptr) {
6569 nested_vmx_failValid(vcpu,
6570 VMXERR_VMCLEAR_VMXON_POINTER);
6571 skip_emulated_instruction(vcpu);
6572 return 1;
6573 }
6574 break;
6575 default:
6576 return 1; /* shouldn't happen */
6577 }
6578
6579 if (vmpointer)
6580 *vmpointer = vmptr;
6581 return 0;
6582 }
6583
6584 /*
6585 * Emulate the VMXON instruction.
6586 * Currently, we just remember that VMX is active, and do not save or even
6587 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6588 * do not currently need to store anything in that guest-allocated memory
6589 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6590 * argument is different from the VMXON pointer (which the spec says they do).
6591 */
handle_vmon(struct kvm_vcpu * vcpu)6592 static int handle_vmon(struct kvm_vcpu *vcpu)
6593 {
6594 struct kvm_segment cs;
6595 struct vcpu_vmx *vmx = to_vmx(vcpu);
6596 struct vmcs *shadow_vmcs;
6597 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6598 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6599
6600 /* The Intel VMX Instruction Reference lists a bunch of bits that
6601 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6602 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6603 * Otherwise, we should fail with #UD. We test these now:
6604 */
6605 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6606 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6607 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6608 kvm_queue_exception(vcpu, UD_VECTOR);
6609 return 1;
6610 }
6611
6612 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6613 if (is_long_mode(vcpu) && !cs.l) {
6614 kvm_queue_exception(vcpu, UD_VECTOR);
6615 return 1;
6616 }
6617
6618 if (vmx_get_cpl(vcpu)) {
6619 kvm_inject_gp(vcpu, 0);
6620 return 1;
6621 }
6622
6623 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6624 return 1;
6625
6626 if (vmx->nested.vmxon) {
6627 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6628 skip_emulated_instruction(vcpu);
6629 return 1;
6630 }
6631
6632 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6633 != VMXON_NEEDED_FEATURES) {
6634 kvm_inject_gp(vcpu, 0);
6635 return 1;
6636 }
6637
6638 if (enable_shadow_vmcs) {
6639 shadow_vmcs = alloc_vmcs();
6640 if (!shadow_vmcs)
6641 return -ENOMEM;
6642 /* mark vmcs as shadow */
6643 shadow_vmcs->revision_id |= (1u << 31);
6644 /* init shadow vmcs */
6645 vmcs_clear(shadow_vmcs);
6646 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6647 }
6648
6649 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6650 vmx->nested.vmcs02_num = 0;
6651
6652 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6653 HRTIMER_MODE_REL);
6654 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6655
6656 vmx->nested.vmxon = true;
6657
6658 skip_emulated_instruction(vcpu);
6659 nested_vmx_succeed(vcpu);
6660 return 1;
6661 }
6662
6663 /*
6664 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6665 * for running VMX instructions (except VMXON, whose prerequisites are
6666 * slightly different). It also specifies what exception to inject otherwise.
6667 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)6668 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6669 {
6670 struct kvm_segment cs;
6671 struct vcpu_vmx *vmx = to_vmx(vcpu);
6672
6673 if (!vmx->nested.vmxon) {
6674 kvm_queue_exception(vcpu, UD_VECTOR);
6675 return 0;
6676 }
6677
6678 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6679 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6680 (is_long_mode(vcpu) && !cs.l)) {
6681 kvm_queue_exception(vcpu, UD_VECTOR);
6682 return 0;
6683 }
6684
6685 if (vmx_get_cpl(vcpu)) {
6686 kvm_inject_gp(vcpu, 0);
6687 return 0;
6688 }
6689
6690 return 1;
6691 }
6692
nested_release_vmcs12(struct vcpu_vmx * vmx)6693 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6694 {
6695 u32 exec_control;
6696 if (vmx->nested.current_vmptr == -1ull)
6697 return;
6698
6699 /* current_vmptr and current_vmcs12 are always set/reset together */
6700 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6701 return;
6702
6703 if (enable_shadow_vmcs) {
6704 /* copy to memory all shadowed fields in case
6705 they were modified */
6706 copy_shadow_to_vmcs12(vmx);
6707 vmx->nested.sync_shadow_vmcs = false;
6708 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6709 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6710 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6711 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6712 }
6713 vmx->nested.posted_intr_nv = -1;
6714 kunmap(vmx->nested.current_vmcs12_page);
6715 nested_release_page(vmx->nested.current_vmcs12_page);
6716 vmx->nested.current_vmptr = -1ull;
6717 vmx->nested.current_vmcs12 = NULL;
6718 }
6719
6720 /*
6721 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6722 * just stops using VMX.
6723 */
free_nested(struct vcpu_vmx * vmx)6724 static void free_nested(struct vcpu_vmx *vmx)
6725 {
6726 if (!vmx->nested.vmxon)
6727 return;
6728
6729 vmx->nested.vmxon = false;
6730 nested_release_vmcs12(vmx);
6731 if (enable_shadow_vmcs)
6732 free_vmcs(vmx->nested.current_shadow_vmcs);
6733 /* Unpin physical memory we referred to in current vmcs02 */
6734 if (vmx->nested.apic_access_page) {
6735 nested_release_page(vmx->nested.apic_access_page);
6736 vmx->nested.apic_access_page = NULL;
6737 }
6738 if (vmx->nested.virtual_apic_page) {
6739 nested_release_page(vmx->nested.virtual_apic_page);
6740 vmx->nested.virtual_apic_page = NULL;
6741 }
6742 if (vmx->nested.pi_desc_page) {
6743 kunmap(vmx->nested.pi_desc_page);
6744 nested_release_page(vmx->nested.pi_desc_page);
6745 vmx->nested.pi_desc_page = NULL;
6746 vmx->nested.pi_desc = NULL;
6747 }
6748
6749 nested_free_all_saved_vmcss(vmx);
6750 }
6751
6752 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)6753 static int handle_vmoff(struct kvm_vcpu *vcpu)
6754 {
6755 if (!nested_vmx_check_permission(vcpu))
6756 return 1;
6757 free_nested(to_vmx(vcpu));
6758 skip_emulated_instruction(vcpu);
6759 nested_vmx_succeed(vcpu);
6760 return 1;
6761 }
6762
6763 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)6764 static int handle_vmclear(struct kvm_vcpu *vcpu)
6765 {
6766 struct vcpu_vmx *vmx = to_vmx(vcpu);
6767 gpa_t vmptr;
6768 struct vmcs12 *vmcs12;
6769 struct page *page;
6770
6771 if (!nested_vmx_check_permission(vcpu))
6772 return 1;
6773
6774 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6775 return 1;
6776
6777 if (vmptr == vmx->nested.current_vmptr)
6778 nested_release_vmcs12(vmx);
6779
6780 page = nested_get_page(vcpu, vmptr);
6781 if (page == NULL) {
6782 /*
6783 * For accurate processor emulation, VMCLEAR beyond available
6784 * physical memory should do nothing at all. However, it is
6785 * possible that a nested vmx bug, not a guest hypervisor bug,
6786 * resulted in this case, so let's shut down before doing any
6787 * more damage:
6788 */
6789 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6790 return 1;
6791 }
6792 vmcs12 = kmap(page);
6793 vmcs12->launch_state = 0;
6794 kunmap(page);
6795 nested_release_page(page);
6796
6797 nested_free_vmcs02(vmx, vmptr);
6798
6799 skip_emulated_instruction(vcpu);
6800 nested_vmx_succeed(vcpu);
6801 return 1;
6802 }
6803
6804 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6805
6806 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)6807 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6808 {
6809 return nested_vmx_run(vcpu, true);
6810 }
6811
6812 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)6813 static int handle_vmresume(struct kvm_vcpu *vcpu)
6814 {
6815
6816 return nested_vmx_run(vcpu, false);
6817 }
6818
6819 enum vmcs_field_type {
6820 VMCS_FIELD_TYPE_U16 = 0,
6821 VMCS_FIELD_TYPE_U64 = 1,
6822 VMCS_FIELD_TYPE_U32 = 2,
6823 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6824 };
6825
vmcs_field_type(unsigned long field)6826 static inline int vmcs_field_type(unsigned long field)
6827 {
6828 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
6829 return VMCS_FIELD_TYPE_U32;
6830 return (field >> 13) & 0x3 ;
6831 }
6832
vmcs_field_readonly(unsigned long field)6833 static inline int vmcs_field_readonly(unsigned long field)
6834 {
6835 return (((field >> 10) & 0x3) == 1);
6836 }
6837
6838 /*
6839 * Read a vmcs12 field. Since these can have varying lengths and we return
6840 * one type, we chose the biggest type (u64) and zero-extend the return value
6841 * to that size. Note that the caller, handle_vmread, might need to use only
6842 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6843 * 64-bit fields are to be returned).
6844 */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)6845 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6846 unsigned long field, u64 *ret)
6847 {
6848 short offset = vmcs_field_to_offset(field);
6849 char *p;
6850
6851 if (offset < 0)
6852 return offset;
6853
6854 p = ((char *)(get_vmcs12(vcpu))) + offset;
6855
6856 switch (vmcs_field_type(field)) {
6857 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6858 *ret = *((natural_width *)p);
6859 return 0;
6860 case VMCS_FIELD_TYPE_U16:
6861 *ret = *((u16 *)p);
6862 return 0;
6863 case VMCS_FIELD_TYPE_U32:
6864 *ret = *((u32 *)p);
6865 return 0;
6866 case VMCS_FIELD_TYPE_U64:
6867 *ret = *((u64 *)p);
6868 return 0;
6869 default:
6870 WARN_ON(1);
6871 return -ENOENT;
6872 }
6873 }
6874
6875
vmcs12_write_any(struct kvm_vcpu * vcpu,unsigned long field,u64 field_value)6876 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6877 unsigned long field, u64 field_value){
6878 short offset = vmcs_field_to_offset(field);
6879 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6880 if (offset < 0)
6881 return offset;
6882
6883 switch (vmcs_field_type(field)) {
6884 case VMCS_FIELD_TYPE_U16:
6885 *(u16 *)p = field_value;
6886 return 0;
6887 case VMCS_FIELD_TYPE_U32:
6888 *(u32 *)p = field_value;
6889 return 0;
6890 case VMCS_FIELD_TYPE_U64:
6891 *(u64 *)p = field_value;
6892 return 0;
6893 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6894 *(natural_width *)p = field_value;
6895 return 0;
6896 default:
6897 WARN_ON(1);
6898 return -ENOENT;
6899 }
6900
6901 }
6902
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)6903 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6904 {
6905 int i;
6906 unsigned long field;
6907 u64 field_value;
6908 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6909 const unsigned long *fields = shadow_read_write_fields;
6910 const int num_fields = max_shadow_read_write_fields;
6911
6912 preempt_disable();
6913
6914 vmcs_load(shadow_vmcs);
6915
6916 for (i = 0; i < num_fields; i++) {
6917 field = fields[i];
6918 switch (vmcs_field_type(field)) {
6919 case VMCS_FIELD_TYPE_U16:
6920 field_value = vmcs_read16(field);
6921 break;
6922 case VMCS_FIELD_TYPE_U32:
6923 field_value = vmcs_read32(field);
6924 break;
6925 case VMCS_FIELD_TYPE_U64:
6926 field_value = vmcs_read64(field);
6927 break;
6928 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6929 field_value = vmcs_readl(field);
6930 break;
6931 default:
6932 WARN_ON(1);
6933 continue;
6934 }
6935 vmcs12_write_any(&vmx->vcpu, field, field_value);
6936 }
6937
6938 vmcs_clear(shadow_vmcs);
6939 vmcs_load(vmx->loaded_vmcs->vmcs);
6940
6941 preempt_enable();
6942 }
6943
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)6944 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6945 {
6946 const unsigned long *fields[] = {
6947 shadow_read_write_fields,
6948 shadow_read_only_fields
6949 };
6950 const int max_fields[] = {
6951 max_shadow_read_write_fields,
6952 max_shadow_read_only_fields
6953 };
6954 int i, q;
6955 unsigned long field;
6956 u64 field_value = 0;
6957 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6958
6959 vmcs_load(shadow_vmcs);
6960
6961 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6962 for (i = 0; i < max_fields[q]; i++) {
6963 field = fields[q][i];
6964 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6965
6966 switch (vmcs_field_type(field)) {
6967 case VMCS_FIELD_TYPE_U16:
6968 vmcs_write16(field, (u16)field_value);
6969 break;
6970 case VMCS_FIELD_TYPE_U32:
6971 vmcs_write32(field, (u32)field_value);
6972 break;
6973 case VMCS_FIELD_TYPE_U64:
6974 vmcs_write64(field, (u64)field_value);
6975 break;
6976 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6977 vmcs_writel(field, (long)field_value);
6978 break;
6979 default:
6980 WARN_ON(1);
6981 break;
6982 }
6983 }
6984 }
6985
6986 vmcs_clear(shadow_vmcs);
6987 vmcs_load(vmx->loaded_vmcs->vmcs);
6988 }
6989
6990 /*
6991 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6992 * used before) all generate the same failure when it is missing.
6993 */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)6994 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6995 {
6996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6997 if (vmx->nested.current_vmptr == -1ull) {
6998 nested_vmx_failInvalid(vcpu);
6999 skip_emulated_instruction(vcpu);
7000 return 0;
7001 }
7002 return 1;
7003 }
7004
handle_vmread(struct kvm_vcpu * vcpu)7005 static int handle_vmread(struct kvm_vcpu *vcpu)
7006 {
7007 unsigned long field;
7008 u64 field_value;
7009 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7010 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7011 gva_t gva = 0;
7012
7013 if (!nested_vmx_check_permission(vcpu) ||
7014 !nested_vmx_check_vmcs12(vcpu))
7015 return 1;
7016
7017 /* Decode instruction info and find the field to read */
7018 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7019 /* Read the field, zero-extended to a u64 field_value */
7020 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7021 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7022 skip_emulated_instruction(vcpu);
7023 return 1;
7024 }
7025 /*
7026 * Now copy part of this value to register or memory, as requested.
7027 * Note that the number of bits actually copied is 32 or 64 depending
7028 * on the guest's mode (32 or 64 bit), not on the given field's length.
7029 */
7030 if (vmx_instruction_info & (1u << 10)) {
7031 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7032 field_value);
7033 } else {
7034 if (get_vmx_mem_address(vcpu, exit_qualification,
7035 vmx_instruction_info, &gva))
7036 return 1;
7037 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7038 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7039 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7040 }
7041
7042 nested_vmx_succeed(vcpu);
7043 skip_emulated_instruction(vcpu);
7044 return 1;
7045 }
7046
7047
handle_vmwrite(struct kvm_vcpu * vcpu)7048 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7049 {
7050 unsigned long field;
7051 gva_t gva;
7052 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7053 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7054 /* The value to write might be 32 or 64 bits, depending on L1's long
7055 * mode, and eventually we need to write that into a field of several
7056 * possible lengths. The code below first zero-extends the value to 64
7057 * bit (field_value), and then copies only the approriate number of
7058 * bits into the vmcs12 field.
7059 */
7060 u64 field_value = 0;
7061 struct x86_exception e;
7062
7063 if (!nested_vmx_check_permission(vcpu) ||
7064 !nested_vmx_check_vmcs12(vcpu))
7065 return 1;
7066
7067 if (vmx_instruction_info & (1u << 10))
7068 field_value = kvm_register_readl(vcpu,
7069 (((vmx_instruction_info) >> 3) & 0xf));
7070 else {
7071 if (get_vmx_mem_address(vcpu, exit_qualification,
7072 vmx_instruction_info, &gva))
7073 return 1;
7074 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7075 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7076 kvm_inject_page_fault(vcpu, &e);
7077 return 1;
7078 }
7079 }
7080
7081
7082 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7083 if (vmcs_field_readonly(field)) {
7084 nested_vmx_failValid(vcpu,
7085 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7086 skip_emulated_instruction(vcpu);
7087 return 1;
7088 }
7089
7090 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7091 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7092 skip_emulated_instruction(vcpu);
7093 return 1;
7094 }
7095
7096 nested_vmx_succeed(vcpu);
7097 skip_emulated_instruction(vcpu);
7098 return 1;
7099 }
7100
7101 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)7102 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7103 {
7104 struct vcpu_vmx *vmx = to_vmx(vcpu);
7105 gpa_t vmptr;
7106 u32 exec_control;
7107
7108 if (!nested_vmx_check_permission(vcpu))
7109 return 1;
7110
7111 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7112 return 1;
7113
7114 if (vmx->nested.current_vmptr != vmptr) {
7115 struct vmcs12 *new_vmcs12;
7116 struct page *page;
7117 page = nested_get_page(vcpu, vmptr);
7118 if (page == NULL) {
7119 nested_vmx_failInvalid(vcpu);
7120 skip_emulated_instruction(vcpu);
7121 return 1;
7122 }
7123 new_vmcs12 = kmap(page);
7124 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7125 kunmap(page);
7126 nested_release_page_clean(page);
7127 nested_vmx_failValid(vcpu,
7128 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7129 skip_emulated_instruction(vcpu);
7130 return 1;
7131 }
7132
7133 nested_release_vmcs12(vmx);
7134 vmx->nested.current_vmptr = vmptr;
7135 vmx->nested.current_vmcs12 = new_vmcs12;
7136 vmx->nested.current_vmcs12_page = page;
7137 if (enable_shadow_vmcs) {
7138 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7139 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7140 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7141 vmcs_write64(VMCS_LINK_POINTER,
7142 __pa(vmx->nested.current_shadow_vmcs));
7143 vmx->nested.sync_shadow_vmcs = true;
7144 }
7145 }
7146
7147 nested_vmx_succeed(vcpu);
7148 skip_emulated_instruction(vcpu);
7149 return 1;
7150 }
7151
7152 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)7153 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7154 {
7155 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7156 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7157 gva_t vmcs_gva;
7158 struct x86_exception e;
7159
7160 if (!nested_vmx_check_permission(vcpu))
7161 return 1;
7162
7163 if (get_vmx_mem_address(vcpu, exit_qualification,
7164 vmx_instruction_info, &vmcs_gva))
7165 return 1;
7166 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7167 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7168 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7169 sizeof(u64), &e)) {
7170 kvm_inject_page_fault(vcpu, &e);
7171 return 1;
7172 }
7173 nested_vmx_succeed(vcpu);
7174 skip_emulated_instruction(vcpu);
7175 return 1;
7176 }
7177
7178 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)7179 static int handle_invept(struct kvm_vcpu *vcpu)
7180 {
7181 struct vcpu_vmx *vmx = to_vmx(vcpu);
7182 u32 vmx_instruction_info, types;
7183 unsigned long type;
7184 gva_t gva;
7185 struct x86_exception e;
7186 struct {
7187 u64 eptp, gpa;
7188 } operand;
7189
7190 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7191 SECONDARY_EXEC_ENABLE_EPT) ||
7192 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7193 kvm_queue_exception(vcpu, UD_VECTOR);
7194 return 1;
7195 }
7196
7197 if (!nested_vmx_check_permission(vcpu))
7198 return 1;
7199
7200 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7201 kvm_queue_exception(vcpu, UD_VECTOR);
7202 return 1;
7203 }
7204
7205 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7206 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7207
7208 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7209
7210 if (!(types & (1UL << type))) {
7211 nested_vmx_failValid(vcpu,
7212 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7213 skip_emulated_instruction(vcpu);
7214 return 1;
7215 }
7216
7217 /* According to the Intel VMX instruction reference, the memory
7218 * operand is read even if it isn't needed (e.g., for type==global)
7219 */
7220 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7221 vmx_instruction_info, &gva))
7222 return 1;
7223 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7224 sizeof(operand), &e)) {
7225 kvm_inject_page_fault(vcpu, &e);
7226 return 1;
7227 }
7228
7229 switch (type) {
7230 case VMX_EPT_EXTENT_GLOBAL:
7231 kvm_mmu_sync_roots(vcpu);
7232 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7233 nested_vmx_succeed(vcpu);
7234 break;
7235 default:
7236 /* Trap single context invalidation invept calls */
7237 BUG_ON(1);
7238 break;
7239 }
7240
7241 skip_emulated_instruction(vcpu);
7242 return 1;
7243 }
7244
handle_invvpid(struct kvm_vcpu * vcpu)7245 static int handle_invvpid(struct kvm_vcpu *vcpu)
7246 {
7247 kvm_queue_exception(vcpu, UD_VECTOR);
7248 return 1;
7249 }
7250
handle_pml_full(struct kvm_vcpu * vcpu)7251 static int handle_pml_full(struct kvm_vcpu *vcpu)
7252 {
7253 unsigned long exit_qualification;
7254
7255 trace_kvm_pml_full(vcpu->vcpu_id);
7256
7257 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7258
7259 /*
7260 * PML buffer FULL happened while executing iret from NMI,
7261 * "blocked by NMI" bit has to be set before next VM entry.
7262 */
7263 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7264 cpu_has_virtual_nmis() &&
7265 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7266 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7267 GUEST_INTR_STATE_NMI);
7268
7269 /*
7270 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7271 * here.., and there's no userspace involvement needed for PML.
7272 */
7273 return 1;
7274 }
7275
7276 /*
7277 * The exit handlers return 1 if the exit was handled fully and guest execution
7278 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7279 * to be done to userspace and return 0.
7280 */
7281 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7282 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7283 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7284 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7285 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7286 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7287 [EXIT_REASON_CR_ACCESS] = handle_cr,
7288 [EXIT_REASON_DR_ACCESS] = handle_dr,
7289 [EXIT_REASON_CPUID] = handle_cpuid,
7290 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7291 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7292 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7293 [EXIT_REASON_HLT] = handle_halt,
7294 [EXIT_REASON_INVD] = handle_invd,
7295 [EXIT_REASON_INVLPG] = handle_invlpg,
7296 [EXIT_REASON_RDPMC] = handle_rdpmc,
7297 [EXIT_REASON_VMCALL] = handle_vmcall,
7298 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7299 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7300 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7301 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7302 [EXIT_REASON_VMREAD] = handle_vmread,
7303 [EXIT_REASON_VMRESUME] = handle_vmresume,
7304 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7305 [EXIT_REASON_VMOFF] = handle_vmoff,
7306 [EXIT_REASON_VMON] = handle_vmon,
7307 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7308 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7309 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7310 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7311 [EXIT_REASON_WBINVD] = handle_wbinvd,
7312 [EXIT_REASON_XSETBV] = handle_xsetbv,
7313 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7314 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7315 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7316 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7317 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7318 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7319 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7320 [EXIT_REASON_INVEPT] = handle_invept,
7321 [EXIT_REASON_INVVPID] = handle_invvpid,
7322 [EXIT_REASON_XSAVES] = handle_xsaves,
7323 [EXIT_REASON_XRSTORS] = handle_xrstors,
7324 [EXIT_REASON_PML_FULL] = handle_pml_full,
7325 };
7326
7327 static const int kvm_vmx_max_exit_handlers =
7328 ARRAY_SIZE(kvm_vmx_exit_handlers);
7329
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7330 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7331 struct vmcs12 *vmcs12)
7332 {
7333 unsigned long exit_qualification;
7334 gpa_t bitmap, last_bitmap;
7335 unsigned int port;
7336 int size;
7337 u8 b;
7338
7339 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7340 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7341
7342 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7343
7344 port = exit_qualification >> 16;
7345 size = (exit_qualification & 7) + 1;
7346
7347 last_bitmap = (gpa_t)-1;
7348 b = -1;
7349
7350 while (size > 0) {
7351 if (port < 0x8000)
7352 bitmap = vmcs12->io_bitmap_a;
7353 else if (port < 0x10000)
7354 bitmap = vmcs12->io_bitmap_b;
7355 else
7356 return true;
7357 bitmap += (port & 0x7fff) / 8;
7358
7359 if (last_bitmap != bitmap)
7360 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7361 return true;
7362 if (b & (1 << (port & 7)))
7363 return true;
7364
7365 port++;
7366 size--;
7367 last_bitmap = bitmap;
7368 }
7369
7370 return false;
7371 }
7372
7373 /*
7374 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7375 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7376 * disinterest in the current event (read or write a specific MSR) by using an
7377 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7378 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)7379 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7380 struct vmcs12 *vmcs12, u32 exit_reason)
7381 {
7382 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7383 gpa_t bitmap;
7384
7385 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7386 return true;
7387
7388 /*
7389 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7390 * for the four combinations of read/write and low/high MSR numbers.
7391 * First we need to figure out which of the four to use:
7392 */
7393 bitmap = vmcs12->msr_bitmap;
7394 if (exit_reason == EXIT_REASON_MSR_WRITE)
7395 bitmap += 2048;
7396 if (msr_index >= 0xc0000000) {
7397 msr_index -= 0xc0000000;
7398 bitmap += 1024;
7399 }
7400
7401 /* Then read the msr_index'th bit from this bitmap: */
7402 if (msr_index < 1024*8) {
7403 unsigned char b;
7404 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7405 return true;
7406 return 1 & (b >> (msr_index & 7));
7407 } else
7408 return true; /* let L1 handle the wrong parameter */
7409 }
7410
7411 /*
7412 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7413 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7414 * intercept (via guest_host_mask etc.) the current event.
7415 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7416 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7417 struct vmcs12 *vmcs12)
7418 {
7419 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7420 int cr = exit_qualification & 15;
7421 int reg = (exit_qualification >> 8) & 15;
7422 unsigned long val = kvm_register_readl(vcpu, reg);
7423
7424 switch ((exit_qualification >> 4) & 3) {
7425 case 0: /* mov to cr */
7426 switch (cr) {
7427 case 0:
7428 if (vmcs12->cr0_guest_host_mask &
7429 (val ^ vmcs12->cr0_read_shadow))
7430 return true;
7431 break;
7432 case 3:
7433 if ((vmcs12->cr3_target_count >= 1 &&
7434 vmcs12->cr3_target_value0 == val) ||
7435 (vmcs12->cr3_target_count >= 2 &&
7436 vmcs12->cr3_target_value1 == val) ||
7437 (vmcs12->cr3_target_count >= 3 &&
7438 vmcs12->cr3_target_value2 == val) ||
7439 (vmcs12->cr3_target_count >= 4 &&
7440 vmcs12->cr3_target_value3 == val))
7441 return false;
7442 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7443 return true;
7444 break;
7445 case 4:
7446 if (vmcs12->cr4_guest_host_mask &
7447 (vmcs12->cr4_read_shadow ^ val))
7448 return true;
7449 break;
7450 case 8:
7451 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7452 return true;
7453 break;
7454 }
7455 break;
7456 case 2: /* clts */
7457 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7458 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7459 return true;
7460 break;
7461 case 1: /* mov from cr */
7462 switch (cr) {
7463 case 3:
7464 if (vmcs12->cpu_based_vm_exec_control &
7465 CPU_BASED_CR3_STORE_EXITING)
7466 return true;
7467 break;
7468 case 8:
7469 if (vmcs12->cpu_based_vm_exec_control &
7470 CPU_BASED_CR8_STORE_EXITING)
7471 return true;
7472 break;
7473 }
7474 break;
7475 case 3: /* lmsw */
7476 /*
7477 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7478 * cr0. Other attempted changes are ignored, with no exit.
7479 */
7480 if (vmcs12->cr0_guest_host_mask & 0xe &
7481 (val ^ vmcs12->cr0_read_shadow))
7482 return true;
7483 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7484 !(vmcs12->cr0_read_shadow & 0x1) &&
7485 (val & 0x1))
7486 return true;
7487 break;
7488 }
7489 return false;
7490 }
7491
7492 /*
7493 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7494 * should handle it ourselves in L0 (and then continue L2). Only call this
7495 * when in is_guest_mode (L2).
7496 */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)7497 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7498 {
7499 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7500 struct vcpu_vmx *vmx = to_vmx(vcpu);
7501 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7502 u32 exit_reason = vmx->exit_reason;
7503
7504 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7505 vmcs_readl(EXIT_QUALIFICATION),
7506 vmx->idt_vectoring_info,
7507 intr_info,
7508 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7509 KVM_ISA_VMX);
7510
7511 if (vmx->nested.nested_run_pending)
7512 return false;
7513
7514 if (unlikely(vmx->fail)) {
7515 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7516 vmcs_read32(VM_INSTRUCTION_ERROR));
7517 return true;
7518 }
7519
7520 switch (exit_reason) {
7521 case EXIT_REASON_EXCEPTION_NMI:
7522 if (!is_exception(intr_info))
7523 return false;
7524 else if (is_page_fault(intr_info))
7525 return enable_ept;
7526 else if (is_no_device(intr_info) &&
7527 !(vmcs12->guest_cr0 & X86_CR0_TS))
7528 return false;
7529 return vmcs12->exception_bitmap &
7530 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7531 case EXIT_REASON_EXTERNAL_INTERRUPT:
7532 return false;
7533 case EXIT_REASON_TRIPLE_FAULT:
7534 return true;
7535 case EXIT_REASON_PENDING_INTERRUPT:
7536 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7537 case EXIT_REASON_NMI_WINDOW:
7538 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7539 case EXIT_REASON_TASK_SWITCH:
7540 return true;
7541 case EXIT_REASON_CPUID:
7542 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7543 return false;
7544 return true;
7545 case EXIT_REASON_HLT:
7546 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7547 case EXIT_REASON_INVD:
7548 return true;
7549 case EXIT_REASON_INVLPG:
7550 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7551 case EXIT_REASON_RDPMC:
7552 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7553 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7554 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7555 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7556 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7557 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7558 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7559 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7560 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7561 /*
7562 * VMX instructions trap unconditionally. This allows L1 to
7563 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7564 */
7565 return true;
7566 case EXIT_REASON_CR_ACCESS:
7567 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7568 case EXIT_REASON_DR_ACCESS:
7569 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7570 case EXIT_REASON_IO_INSTRUCTION:
7571 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7572 case EXIT_REASON_MSR_READ:
7573 case EXIT_REASON_MSR_WRITE:
7574 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7575 case EXIT_REASON_INVALID_STATE:
7576 return true;
7577 case EXIT_REASON_MWAIT_INSTRUCTION:
7578 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7579 case EXIT_REASON_MONITOR_INSTRUCTION:
7580 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7581 case EXIT_REASON_PAUSE_INSTRUCTION:
7582 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7583 nested_cpu_has2(vmcs12,
7584 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7585 case EXIT_REASON_MCE_DURING_VMENTRY:
7586 return false;
7587 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7588 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7589 case EXIT_REASON_APIC_ACCESS:
7590 return nested_cpu_has2(vmcs12,
7591 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7592 case EXIT_REASON_APIC_WRITE:
7593 case EXIT_REASON_EOI_INDUCED:
7594 /* apic_write and eoi_induced should exit unconditionally. */
7595 return true;
7596 case EXIT_REASON_EPT_VIOLATION:
7597 /*
7598 * L0 always deals with the EPT violation. If nested EPT is
7599 * used, and the nested mmu code discovers that the address is
7600 * missing in the guest EPT table (EPT12), the EPT violation
7601 * will be injected with nested_ept_inject_page_fault()
7602 */
7603 return false;
7604 case EXIT_REASON_EPT_MISCONFIG:
7605 /*
7606 * L2 never uses directly L1's EPT, but rather L0's own EPT
7607 * table (shadow on EPT) or a merged EPT table that L0 built
7608 * (EPT on EPT). So any problems with the structure of the
7609 * table is L0's fault.
7610 */
7611 return false;
7612 case EXIT_REASON_WBINVD:
7613 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7614 case EXIT_REASON_XSETBV:
7615 return true;
7616 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7617 /*
7618 * This should never happen, since it is not possible to
7619 * set XSS to a non-zero value---neither in L1 nor in L2.
7620 * If if it were, XSS would have to be checked against
7621 * the XSS exit bitmap in vmcs12.
7622 */
7623 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7624 default:
7625 return true;
7626 }
7627 }
7628
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)7629 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7630 {
7631 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7632 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7633 }
7634
vmx_enable_pml(struct vcpu_vmx * vmx)7635 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7636 {
7637 struct page *pml_pg;
7638 u32 exec_control;
7639
7640 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7641 if (!pml_pg)
7642 return -ENOMEM;
7643
7644 vmx->pml_pg = pml_pg;
7645
7646 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7647 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7648
7649 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7650 exec_control |= SECONDARY_EXEC_ENABLE_PML;
7651 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7652
7653 return 0;
7654 }
7655
vmx_disable_pml(struct vcpu_vmx * vmx)7656 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7657 {
7658 u32 exec_control;
7659
7660 ASSERT(vmx->pml_pg);
7661 __free_page(vmx->pml_pg);
7662 vmx->pml_pg = NULL;
7663
7664 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7665 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7666 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7667 }
7668
vmx_flush_pml_buffer(struct vcpu_vmx * vmx)7669 static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx)
7670 {
7671 struct kvm *kvm = vmx->vcpu.kvm;
7672 u64 *pml_buf;
7673 u16 pml_idx;
7674
7675 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7676
7677 /* Do nothing if PML buffer is empty */
7678 if (pml_idx == (PML_ENTITY_NUM - 1))
7679 return;
7680
7681 /* PML index always points to next available PML buffer entity */
7682 if (pml_idx >= PML_ENTITY_NUM)
7683 pml_idx = 0;
7684 else
7685 pml_idx++;
7686
7687 pml_buf = page_address(vmx->pml_pg);
7688 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7689 u64 gpa;
7690
7691 gpa = pml_buf[pml_idx];
7692 WARN_ON(gpa & (PAGE_SIZE - 1));
7693 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
7694 }
7695
7696 /* reset PML index */
7697 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7698 }
7699
7700 /*
7701 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7702 * Called before reporting dirty_bitmap to userspace.
7703 */
kvm_flush_pml_buffers(struct kvm * kvm)7704 static void kvm_flush_pml_buffers(struct kvm *kvm)
7705 {
7706 int i;
7707 struct kvm_vcpu *vcpu;
7708 /*
7709 * We only need to kick vcpu out of guest mode here, as PML buffer
7710 * is flushed at beginning of all VMEXITs, and it's obvious that only
7711 * vcpus running in guest are possible to have unflushed GPAs in PML
7712 * buffer.
7713 */
7714 kvm_for_each_vcpu(i, vcpu, kvm)
7715 kvm_vcpu_kick(vcpu);
7716 }
7717
7718 /*
7719 * The guest has exited. See if we can fix it or if we need userspace
7720 * assistance.
7721 */
vmx_handle_exit(struct kvm_vcpu * vcpu)7722 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7723 {
7724 struct vcpu_vmx *vmx = to_vmx(vcpu);
7725 u32 exit_reason = vmx->exit_reason;
7726 u32 vectoring_info = vmx->idt_vectoring_info;
7727
7728 /*
7729 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7730 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7731 * querying dirty_bitmap, we only need to kick all vcpus out of guest
7732 * mode as if vcpus is in root mode, the PML buffer must has been
7733 * flushed already.
7734 */
7735 if (enable_pml)
7736 vmx_flush_pml_buffer(vmx);
7737
7738 /* If guest state is invalid, start emulating */
7739 if (vmx->emulation_required)
7740 return handle_invalid_guest_state(vcpu);
7741
7742 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7743 nested_vmx_vmexit(vcpu, exit_reason,
7744 vmcs_read32(VM_EXIT_INTR_INFO),
7745 vmcs_readl(EXIT_QUALIFICATION));
7746 return 1;
7747 }
7748
7749 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7750 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7751 vcpu->run->fail_entry.hardware_entry_failure_reason
7752 = exit_reason;
7753 return 0;
7754 }
7755
7756 if (unlikely(vmx->fail)) {
7757 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7758 vcpu->run->fail_entry.hardware_entry_failure_reason
7759 = vmcs_read32(VM_INSTRUCTION_ERROR);
7760 return 0;
7761 }
7762
7763 /*
7764 * Note:
7765 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7766 * delivery event since it indicates guest is accessing MMIO.
7767 * The vm-exit can be triggered again after return to guest that
7768 * will cause infinite loop.
7769 */
7770 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7771 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7772 exit_reason != EXIT_REASON_EPT_VIOLATION &&
7773 exit_reason != EXIT_REASON_TASK_SWITCH)) {
7774 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7775 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7776 vcpu->run->internal.ndata = 2;
7777 vcpu->run->internal.data[0] = vectoring_info;
7778 vcpu->run->internal.data[1] = exit_reason;
7779 return 0;
7780 }
7781
7782 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7783 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7784 get_vmcs12(vcpu))))) {
7785 if (vmx_interrupt_allowed(vcpu)) {
7786 vmx->soft_vnmi_blocked = 0;
7787 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7788 vcpu->arch.nmi_pending) {
7789 /*
7790 * This CPU don't support us in finding the end of an
7791 * NMI-blocked window if the guest runs with IRQs
7792 * disabled. So we pull the trigger after 1 s of
7793 * futile waiting, but inform the user about this.
7794 */
7795 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7796 "state on VCPU %d after 1 s timeout\n",
7797 __func__, vcpu->vcpu_id);
7798 vmx->soft_vnmi_blocked = 0;
7799 }
7800 }
7801
7802 if (exit_reason < kvm_vmx_max_exit_handlers
7803 && kvm_vmx_exit_handlers[exit_reason])
7804 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7805 else {
7806 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7807 kvm_queue_exception(vcpu, UD_VECTOR);
7808 return 1;
7809 }
7810 }
7811
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)7812 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7813 {
7814 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7815
7816 if (is_guest_mode(vcpu) &&
7817 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7818 return;
7819
7820 if (irr == -1 || tpr < irr) {
7821 vmcs_write32(TPR_THRESHOLD, 0);
7822 return;
7823 }
7824
7825 vmcs_write32(TPR_THRESHOLD, irr);
7826 }
7827
vmx_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)7828 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7829 {
7830 u32 sec_exec_control;
7831
7832 /*
7833 * There is not point to enable virtualize x2apic without enable
7834 * apicv
7835 */
7836 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7837 !vmx_vm_has_apicv(vcpu->kvm))
7838 return;
7839
7840 if (!vm_need_tpr_shadow(vcpu->kvm))
7841 return;
7842
7843 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7844
7845 if (set) {
7846 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7847 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7848 } else {
7849 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7850 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7851 }
7852 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7853
7854 vmx_set_msr_bitmap(vcpu);
7855 }
7856
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)7857 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7858 {
7859 struct vcpu_vmx *vmx = to_vmx(vcpu);
7860
7861 /*
7862 * Currently we do not handle the nested case where L2 has an
7863 * APIC access page of its own; that page is still pinned.
7864 * Hence, we skip the case where the VCPU is in guest mode _and_
7865 * L1 prepared an APIC access page for L2.
7866 *
7867 * For the case where L1 and L2 share the same APIC access page
7868 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7869 * in the vmcs12), this function will only update either the vmcs01
7870 * or the vmcs02. If the former, the vmcs02 will be updated by
7871 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
7872 * the next L2->L1 exit.
7873 */
7874 if (!is_guest_mode(vcpu) ||
7875 !nested_cpu_has2(vmx->nested.current_vmcs12,
7876 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7877 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7878 }
7879
vmx_hwapic_isr_update(struct kvm * kvm,int isr)7880 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7881 {
7882 u16 status;
7883 u8 old;
7884
7885 if (isr == -1)
7886 isr = 0;
7887
7888 status = vmcs_read16(GUEST_INTR_STATUS);
7889 old = status >> 8;
7890 if (isr != old) {
7891 status &= 0xff;
7892 status |= isr << 8;
7893 vmcs_write16(GUEST_INTR_STATUS, status);
7894 }
7895 }
7896
vmx_set_rvi(int vector)7897 static void vmx_set_rvi(int vector)
7898 {
7899 u16 status;
7900 u8 old;
7901
7902 if (vector == -1)
7903 vector = 0;
7904
7905 status = vmcs_read16(GUEST_INTR_STATUS);
7906 old = (u8)status & 0xff;
7907 if ((u8)vector != old) {
7908 status &= ~0xff;
7909 status |= (u8)vector;
7910 vmcs_write16(GUEST_INTR_STATUS, status);
7911 }
7912 }
7913
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)7914 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7915 {
7916 if (!is_guest_mode(vcpu)) {
7917 vmx_set_rvi(max_irr);
7918 return;
7919 }
7920
7921 if (max_irr == -1)
7922 return;
7923
7924 /*
7925 * In guest mode. If a vmexit is needed, vmx_check_nested_events
7926 * handles it.
7927 */
7928 if (nested_exit_on_intr(vcpu))
7929 return;
7930
7931 /*
7932 * Else, fall back to pre-APICv interrupt injection since L2
7933 * is run without virtual interrupt delivery.
7934 */
7935 if (!kvm_event_needs_reinjection(vcpu) &&
7936 vmx_interrupt_allowed(vcpu)) {
7937 kvm_queue_interrupt(vcpu, max_irr, false);
7938 vmx_inject_irq(vcpu);
7939 }
7940 }
7941
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)7942 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7943 {
7944 if (!vmx_vm_has_apicv(vcpu->kvm))
7945 return;
7946
7947 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7948 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7949 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7950 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7951 }
7952
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)7953 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7954 {
7955 u32 exit_intr_info;
7956
7957 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7958 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7959 return;
7960
7961 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7962 exit_intr_info = vmx->exit_intr_info;
7963
7964 /* Handle machine checks before interrupts are enabled */
7965 if (is_machine_check(exit_intr_info))
7966 kvm_machine_check();
7967
7968 /* We need to handle NMIs before interrupts are enabled */
7969 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7970 (exit_intr_info & INTR_INFO_VALID_MASK)) {
7971 kvm_before_handle_nmi(&vmx->vcpu);
7972 asm("int $2");
7973 kvm_after_handle_nmi(&vmx->vcpu);
7974 }
7975 }
7976
vmx_handle_external_intr(struct kvm_vcpu * vcpu)7977 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7978 {
7979 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7980
7981 /*
7982 * If external interrupt exists, IF bit is set in rflags/eflags on the
7983 * interrupt stack frame, and interrupt will be enabled on a return
7984 * from interrupt handler.
7985 */
7986 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7987 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7988 unsigned int vector;
7989 unsigned long entry;
7990 gate_desc *desc;
7991 struct vcpu_vmx *vmx = to_vmx(vcpu);
7992 #ifdef CONFIG_X86_64
7993 unsigned long tmp;
7994 #endif
7995
7996 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7997 desc = (gate_desc *)vmx->host_idt_base + vector;
7998 entry = gate_offset(*desc);
7999 asm volatile(
8000 #ifdef CONFIG_X86_64
8001 "mov %%" _ASM_SP ", %[sp]\n\t"
8002 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8003 "push $%c[ss]\n\t"
8004 "push %[sp]\n\t"
8005 #endif
8006 "pushf\n\t"
8007 "orl $0x200, (%%" _ASM_SP ")\n\t"
8008 __ASM_SIZE(push) " $%c[cs]\n\t"
8009 "call *%[entry]\n\t"
8010 :
8011 #ifdef CONFIG_X86_64
8012 [sp]"=&r"(tmp)
8013 #endif
8014 :
8015 [entry]"r"(entry),
8016 [ss]"i"(__KERNEL_DS),
8017 [cs]"i"(__KERNEL_CS)
8018 );
8019 } else
8020 local_irq_enable();
8021 }
8022
vmx_mpx_supported(void)8023 static bool vmx_mpx_supported(void)
8024 {
8025 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8026 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8027 }
8028
vmx_xsaves_supported(void)8029 static bool vmx_xsaves_supported(void)
8030 {
8031 return vmcs_config.cpu_based_2nd_exec_ctrl &
8032 SECONDARY_EXEC_XSAVES;
8033 }
8034
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)8035 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8036 {
8037 u32 exit_intr_info;
8038 bool unblock_nmi;
8039 u8 vector;
8040 bool idtv_info_valid;
8041
8042 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8043
8044 if (cpu_has_virtual_nmis()) {
8045 if (vmx->nmi_known_unmasked)
8046 return;
8047 /*
8048 * Can't use vmx->exit_intr_info since we're not sure what
8049 * the exit reason is.
8050 */
8051 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8052 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8053 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8054 /*
8055 * SDM 3: 27.7.1.2 (September 2008)
8056 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8057 * a guest IRET fault.
8058 * SDM 3: 23.2.2 (September 2008)
8059 * Bit 12 is undefined in any of the following cases:
8060 * If the VM exit sets the valid bit in the IDT-vectoring
8061 * information field.
8062 * If the VM exit is due to a double fault.
8063 */
8064 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8065 vector != DF_VECTOR && !idtv_info_valid)
8066 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8067 GUEST_INTR_STATE_NMI);
8068 else
8069 vmx->nmi_known_unmasked =
8070 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8071 & GUEST_INTR_STATE_NMI);
8072 } else if (unlikely(vmx->soft_vnmi_blocked))
8073 vmx->vnmi_blocked_time +=
8074 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8075 }
8076
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)8077 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8078 u32 idt_vectoring_info,
8079 int instr_len_field,
8080 int error_code_field)
8081 {
8082 u8 vector;
8083 int type;
8084 bool idtv_info_valid;
8085
8086 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8087
8088 vcpu->arch.nmi_injected = false;
8089 kvm_clear_exception_queue(vcpu);
8090 kvm_clear_interrupt_queue(vcpu);
8091
8092 if (!idtv_info_valid)
8093 return;
8094
8095 kvm_make_request(KVM_REQ_EVENT, vcpu);
8096
8097 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8098 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8099
8100 switch (type) {
8101 case INTR_TYPE_NMI_INTR:
8102 vcpu->arch.nmi_injected = true;
8103 /*
8104 * SDM 3: 27.7.1.2 (September 2008)
8105 * Clear bit "block by NMI" before VM entry if a NMI
8106 * delivery faulted.
8107 */
8108 vmx_set_nmi_mask(vcpu, false);
8109 break;
8110 case INTR_TYPE_SOFT_EXCEPTION:
8111 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8112 /* fall through */
8113 case INTR_TYPE_HARD_EXCEPTION:
8114 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8115 u32 err = vmcs_read32(error_code_field);
8116 kvm_requeue_exception_e(vcpu, vector, err);
8117 } else
8118 kvm_requeue_exception(vcpu, vector);
8119 break;
8120 case INTR_TYPE_SOFT_INTR:
8121 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8122 /* fall through */
8123 case INTR_TYPE_EXT_INTR:
8124 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8125 break;
8126 default:
8127 break;
8128 }
8129 }
8130
vmx_complete_interrupts(struct vcpu_vmx * vmx)8131 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8132 {
8133 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8134 VM_EXIT_INSTRUCTION_LEN,
8135 IDT_VECTORING_ERROR_CODE);
8136 }
8137
vmx_cancel_injection(struct kvm_vcpu * vcpu)8138 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8139 {
8140 __vmx_complete_interrupts(vcpu,
8141 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8142 VM_ENTRY_INSTRUCTION_LEN,
8143 VM_ENTRY_EXCEPTION_ERROR_CODE);
8144
8145 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8146 }
8147
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)8148 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8149 {
8150 int i, nr_msrs;
8151 struct perf_guest_switch_msr *msrs;
8152
8153 msrs = perf_guest_get_msrs(&nr_msrs);
8154
8155 if (!msrs)
8156 return;
8157
8158 for (i = 0; i < nr_msrs; i++)
8159 if (msrs[i].host == msrs[i].guest)
8160 clear_atomic_switch_msr(vmx, msrs[i].msr);
8161 else
8162 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8163 msrs[i].host);
8164 }
8165
vmx_vcpu_run(struct kvm_vcpu * vcpu)8166 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8167 {
8168 struct vcpu_vmx *vmx = to_vmx(vcpu);
8169 unsigned long debugctlmsr, cr4;
8170
8171 /* Record the guest's net vcpu time for enforced NMI injections. */
8172 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8173 vmx->entry_time = ktime_get();
8174
8175 /* Don't enter VMX if guest state is invalid, let the exit handler
8176 start emulation until we arrive back to a valid state */
8177 if (vmx->emulation_required)
8178 return;
8179
8180 if (vmx->ple_window_dirty) {
8181 vmx->ple_window_dirty = false;
8182 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8183 }
8184
8185 if (vmx->nested.sync_shadow_vmcs) {
8186 copy_vmcs12_to_shadow(vmx);
8187 vmx->nested.sync_shadow_vmcs = false;
8188 }
8189
8190 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8191 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8192 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8193 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8194
8195 cr4 = cr4_read_shadow();
8196 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8197 vmcs_writel(HOST_CR4, cr4);
8198 vmx->host_state.vmcs_host_cr4 = cr4;
8199 }
8200
8201 /* When single-stepping over STI and MOV SS, we must clear the
8202 * corresponding interruptibility bits in the guest state. Otherwise
8203 * vmentry fails as it then expects bit 14 (BS) in pending debug
8204 * exceptions being set, but that's not correct for the guest debugging
8205 * case. */
8206 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8207 vmx_set_interrupt_shadow(vcpu, 0);
8208
8209 atomic_switch_perf_msrs(vmx);
8210 debugctlmsr = get_debugctlmsr();
8211
8212 vmx->__launched = vmx->loaded_vmcs->launched;
8213 asm(
8214 /* Store host registers */
8215 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8216 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8217 "push %%" _ASM_CX " \n\t"
8218 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8219 "je 1f \n\t"
8220 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8221 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8222 "1: \n\t"
8223 /* Reload cr2 if changed */
8224 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8225 "mov %%cr2, %%" _ASM_DX " \n\t"
8226 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8227 "je 2f \n\t"
8228 "mov %%" _ASM_AX", %%cr2 \n\t"
8229 "2: \n\t"
8230 /* Check if vmlaunch of vmresume is needed */
8231 "cmpl $0, %c[launched](%0) \n\t"
8232 /* Load guest registers. Don't clobber flags. */
8233 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8234 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8235 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8236 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8237 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8238 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8239 #ifdef CONFIG_X86_64
8240 "mov %c[r8](%0), %%r8 \n\t"
8241 "mov %c[r9](%0), %%r9 \n\t"
8242 "mov %c[r10](%0), %%r10 \n\t"
8243 "mov %c[r11](%0), %%r11 \n\t"
8244 "mov %c[r12](%0), %%r12 \n\t"
8245 "mov %c[r13](%0), %%r13 \n\t"
8246 "mov %c[r14](%0), %%r14 \n\t"
8247 "mov %c[r15](%0), %%r15 \n\t"
8248 #endif
8249 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8250
8251 /* Enter guest mode */
8252 "jne 1f \n\t"
8253 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8254 "jmp 2f \n\t"
8255 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8256 "2: "
8257 /* Save guest registers, load host registers, keep flags */
8258 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8259 "pop %0 \n\t"
8260 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8261 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8262 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8263 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8264 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8265 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8266 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8267 #ifdef CONFIG_X86_64
8268 "mov %%r8, %c[r8](%0) \n\t"
8269 "mov %%r9, %c[r9](%0) \n\t"
8270 "mov %%r10, %c[r10](%0) \n\t"
8271 "mov %%r11, %c[r11](%0) \n\t"
8272 "mov %%r12, %c[r12](%0) \n\t"
8273 "mov %%r13, %c[r13](%0) \n\t"
8274 "mov %%r14, %c[r14](%0) \n\t"
8275 "mov %%r15, %c[r15](%0) \n\t"
8276 #endif
8277 "mov %%cr2, %%" _ASM_AX " \n\t"
8278 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8279
8280 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8281 "setbe %c[fail](%0) \n\t"
8282 ".pushsection .rodata \n\t"
8283 ".global vmx_return \n\t"
8284 "vmx_return: " _ASM_PTR " 2b \n\t"
8285 ".popsection"
8286 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8287 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8288 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8289 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8290 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8291 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8292 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8293 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8294 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8295 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8296 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8297 #ifdef CONFIG_X86_64
8298 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8299 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8300 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8301 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8302 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8303 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8304 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8305 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8306 #endif
8307 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8308 [wordsize]"i"(sizeof(ulong))
8309 : "cc", "memory"
8310 #ifdef CONFIG_X86_64
8311 , "rax", "rbx", "rdi", "rsi"
8312 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8313 #else
8314 , "eax", "ebx", "edi", "esi"
8315 #endif
8316 );
8317
8318 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8319 if (debugctlmsr)
8320 update_debugctlmsr(debugctlmsr);
8321
8322 #ifndef CONFIG_X86_64
8323 /*
8324 * The sysexit path does not restore ds/es, so we must set them to
8325 * a reasonable value ourselves.
8326 *
8327 * We can't defer this to vmx_load_host_state() since that function
8328 * may be executed in interrupt context, which saves and restore segments
8329 * around it, nullifying its effect.
8330 */
8331 loadsegment(ds, __USER_DS);
8332 loadsegment(es, __USER_DS);
8333 #endif
8334
8335 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8336 | (1 << VCPU_EXREG_RFLAGS)
8337 | (1 << VCPU_EXREG_PDPTR)
8338 | (1 << VCPU_EXREG_SEGMENTS)
8339 | (1 << VCPU_EXREG_CR3));
8340 vcpu->arch.regs_dirty = 0;
8341
8342 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8343
8344 vmx->loaded_vmcs->launched = 1;
8345
8346 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8347 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8348
8349 /*
8350 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8351 * we did not inject a still-pending event to L1 now because of
8352 * nested_run_pending, we need to re-enable this bit.
8353 */
8354 if (vmx->nested.nested_run_pending)
8355 kvm_make_request(KVM_REQ_EVENT, vcpu);
8356
8357 vmx->nested.nested_run_pending = 0;
8358
8359 vmx_complete_atomic_exit(vmx);
8360 vmx_recover_nmi_blocking(vmx);
8361 vmx_complete_interrupts(vmx);
8362 }
8363
vmx_load_vmcs01(struct kvm_vcpu * vcpu)8364 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8365 {
8366 struct vcpu_vmx *vmx = to_vmx(vcpu);
8367 int cpu;
8368
8369 if (vmx->loaded_vmcs == &vmx->vmcs01)
8370 return;
8371
8372 cpu = get_cpu();
8373 vmx->loaded_vmcs = &vmx->vmcs01;
8374 vmx_vcpu_put(vcpu);
8375 vmx_vcpu_load(vcpu, cpu);
8376 vcpu->cpu = cpu;
8377 put_cpu();
8378 }
8379
vmx_free_vcpu(struct kvm_vcpu * vcpu)8380 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8381 {
8382 struct vcpu_vmx *vmx = to_vmx(vcpu);
8383
8384 if (enable_pml)
8385 vmx_disable_pml(vmx);
8386 free_vpid(vmx);
8387 leave_guest_mode(vcpu);
8388 vmx_load_vmcs01(vcpu);
8389 free_nested(vmx);
8390 free_loaded_vmcs(vmx->loaded_vmcs);
8391 kfree(vmx->guest_msrs);
8392 kvm_vcpu_uninit(vcpu);
8393 kmem_cache_free(kvm_vcpu_cache, vmx);
8394 }
8395
vmx_create_vcpu(struct kvm * kvm,unsigned int id)8396 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8397 {
8398 int err;
8399 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8400 int cpu;
8401
8402 if (!vmx)
8403 return ERR_PTR(-ENOMEM);
8404
8405 allocate_vpid(vmx);
8406
8407 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8408 if (err)
8409 goto free_vcpu;
8410
8411 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8412 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8413 > PAGE_SIZE);
8414
8415 err = -ENOMEM;
8416 if (!vmx->guest_msrs) {
8417 goto uninit_vcpu;
8418 }
8419
8420 vmx->loaded_vmcs = &vmx->vmcs01;
8421 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8422 if (!vmx->loaded_vmcs->vmcs)
8423 goto free_msrs;
8424 if (!vmm_exclusive)
8425 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8426 loaded_vmcs_init(vmx->loaded_vmcs);
8427 if (!vmm_exclusive)
8428 kvm_cpu_vmxoff();
8429
8430 cpu = get_cpu();
8431 vmx_vcpu_load(&vmx->vcpu, cpu);
8432 vmx->vcpu.cpu = cpu;
8433 err = vmx_vcpu_setup(vmx);
8434 vmx_vcpu_put(&vmx->vcpu);
8435 put_cpu();
8436 if (err)
8437 goto free_vmcs;
8438 if (vm_need_virtualize_apic_accesses(kvm)) {
8439 err = alloc_apic_access_page(kvm);
8440 if (err)
8441 goto free_vmcs;
8442 }
8443
8444 if (enable_ept) {
8445 if (!kvm->arch.ept_identity_map_addr)
8446 kvm->arch.ept_identity_map_addr =
8447 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8448 err = init_rmode_identity_map(kvm);
8449 if (err)
8450 goto free_vmcs;
8451 }
8452
8453 if (nested)
8454 nested_vmx_setup_ctls_msrs(vmx);
8455
8456 vmx->nested.posted_intr_nv = -1;
8457 vmx->nested.current_vmptr = -1ull;
8458 vmx->nested.current_vmcs12 = NULL;
8459
8460 /*
8461 * If PML is turned on, failure on enabling PML just results in failure
8462 * of creating the vcpu, therefore we can simplify PML logic (by
8463 * avoiding dealing with cases, such as enabling PML partially on vcpus
8464 * for the guest, etc.
8465 */
8466 if (enable_pml) {
8467 err = vmx_enable_pml(vmx);
8468 if (err)
8469 goto free_vmcs;
8470 }
8471
8472 return &vmx->vcpu;
8473
8474 free_vmcs:
8475 free_loaded_vmcs(vmx->loaded_vmcs);
8476 free_msrs:
8477 kfree(vmx->guest_msrs);
8478 uninit_vcpu:
8479 kvm_vcpu_uninit(&vmx->vcpu);
8480 free_vcpu:
8481 free_vpid(vmx);
8482 kmem_cache_free(kvm_vcpu_cache, vmx);
8483 return ERR_PTR(err);
8484 }
8485
vmx_check_processor_compat(void * rtn)8486 static void __init vmx_check_processor_compat(void *rtn)
8487 {
8488 struct vmcs_config vmcs_conf;
8489
8490 *(int *)rtn = 0;
8491 if (setup_vmcs_config(&vmcs_conf) < 0)
8492 *(int *)rtn = -EIO;
8493 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8494 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8495 smp_processor_id());
8496 *(int *)rtn = -EIO;
8497 }
8498 }
8499
get_ept_level(void)8500 static int get_ept_level(void)
8501 {
8502 return VMX_EPT_DEFAULT_GAW + 1;
8503 }
8504
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)8505 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8506 {
8507 u64 ret;
8508
8509 /* For VT-d and EPT combination
8510 * 1. MMIO: always map as UC
8511 * 2. EPT with VT-d:
8512 * a. VT-d without snooping control feature: can't guarantee the
8513 * result, try to trust guest.
8514 * b. VT-d with snooping control feature: snooping control feature of
8515 * VT-d engine can guarantee the cache correctness. Just set it
8516 * to WB to keep consistent with host. So the same as item 3.
8517 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8518 * consistent with host MTRR
8519 */
8520 if (is_mmio)
8521 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8522 else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8523 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8524 VMX_EPT_MT_EPTE_SHIFT;
8525 else
8526 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8527 | VMX_EPT_IPAT_BIT;
8528
8529 return ret;
8530 }
8531
vmx_get_lpage_level(void)8532 static int vmx_get_lpage_level(void)
8533 {
8534 if (enable_ept && !cpu_has_vmx_ept_1g_page())
8535 return PT_DIRECTORY_LEVEL;
8536 else
8537 /* For shadow and EPT supported 1GB page */
8538 return PT_PDPE_LEVEL;
8539 }
8540
vmx_cpuid_update(struct kvm_vcpu * vcpu)8541 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8542 {
8543 struct kvm_cpuid_entry2 *best;
8544 struct vcpu_vmx *vmx = to_vmx(vcpu);
8545 u32 exec_control;
8546
8547 vmx->rdtscp_enabled = false;
8548 if (vmx_rdtscp_supported()) {
8549 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8550 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8551 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8552 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8553 vmx->rdtscp_enabled = true;
8554 else {
8555 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8556 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8557 exec_control);
8558 }
8559 }
8560 if (nested && !vmx->rdtscp_enabled)
8561 vmx->nested.nested_vmx_secondary_ctls_high &=
8562 ~SECONDARY_EXEC_RDTSCP;
8563 }
8564
8565 /* Exposing INVPCID only when PCID is exposed */
8566 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8567 if (vmx_invpcid_supported() &&
8568 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8569 guest_cpuid_has_pcid(vcpu)) {
8570 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8571 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8572 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8573 exec_control);
8574 } else {
8575 if (cpu_has_secondary_exec_ctrls()) {
8576 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8577 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8578 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8579 exec_control);
8580 }
8581 if (best)
8582 best->ebx &= ~bit(X86_FEATURE_INVPCID);
8583 }
8584 }
8585
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)8586 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8587 {
8588 if (func == 1 && nested)
8589 entry->ecx |= bit(X86_FEATURE_VMX);
8590 }
8591
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)8592 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8593 struct x86_exception *fault)
8594 {
8595 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8596 u32 exit_reason;
8597
8598 if (fault->error_code & PFERR_RSVD_MASK)
8599 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8600 else
8601 exit_reason = EXIT_REASON_EPT_VIOLATION;
8602 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8603 vmcs12->guest_physical_address = fault->address;
8604 }
8605
8606 /* Callbacks for nested_ept_init_mmu_context: */
8607
nested_ept_get_cr3(struct kvm_vcpu * vcpu)8608 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8609 {
8610 /* return the page table to be shadowed - in our case, EPT12 */
8611 return get_vmcs12(vcpu)->ept_pointer;
8612 }
8613
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)8614 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8615 {
8616 WARN_ON(mmu_is_nested(vcpu));
8617 kvm_init_shadow_ept_mmu(vcpu,
8618 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8619 VMX_EPT_EXECUTE_ONLY_BIT);
8620 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
8621 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
8622 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8623
8624 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
8625 }
8626
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)8627 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8628 {
8629 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8630 }
8631
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)8632 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8633 u16 error_code)
8634 {
8635 bool inequality, bit;
8636
8637 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8638 inequality =
8639 (error_code & vmcs12->page_fault_error_code_mask) !=
8640 vmcs12->page_fault_error_code_match;
8641 return inequality ^ bit;
8642 }
8643
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)8644 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8645 struct x86_exception *fault)
8646 {
8647 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8648
8649 WARN_ON(!is_guest_mode(vcpu));
8650
8651 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8652 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8653 vmcs_read32(VM_EXIT_INTR_INFO),
8654 vmcs_readl(EXIT_QUALIFICATION));
8655 else
8656 kvm_inject_page_fault(vcpu, fault);
8657 }
8658
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8659 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8660 struct vmcs12 *vmcs12)
8661 {
8662 struct vcpu_vmx *vmx = to_vmx(vcpu);
8663 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8664
8665 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8666 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8667 vmcs12->apic_access_addr >> maxphyaddr)
8668 return false;
8669
8670 /*
8671 * Translate L1 physical address to host physical
8672 * address for vmcs02. Keep the page pinned, so this
8673 * physical address remains valid. We keep a reference
8674 * to it so we can release it later.
8675 */
8676 if (vmx->nested.apic_access_page) /* shouldn't happen */
8677 nested_release_page(vmx->nested.apic_access_page);
8678 vmx->nested.apic_access_page =
8679 nested_get_page(vcpu, vmcs12->apic_access_addr);
8680 }
8681
8682 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8683 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8684 vmcs12->virtual_apic_page_addr >> maxphyaddr)
8685 return false;
8686
8687 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8688 nested_release_page(vmx->nested.virtual_apic_page);
8689 vmx->nested.virtual_apic_page =
8690 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8691
8692 /*
8693 * Failing the vm entry is _not_ what the processor does
8694 * but it's basically the only possibility we have.
8695 * We could still enter the guest if CR8 load exits are
8696 * enabled, CR8 store exits are enabled, and virtualize APIC
8697 * access is disabled; in this case the processor would never
8698 * use the TPR shadow and we could simply clear the bit from
8699 * the execution control. But such a configuration is useless,
8700 * so let's keep the code simple.
8701 */
8702 if (!vmx->nested.virtual_apic_page)
8703 return false;
8704 }
8705
8706 if (nested_cpu_has_posted_intr(vmcs12)) {
8707 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8708 vmcs12->posted_intr_desc_addr >> maxphyaddr)
8709 return false;
8710
8711 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8712 kunmap(vmx->nested.pi_desc_page);
8713 nested_release_page(vmx->nested.pi_desc_page);
8714 }
8715 vmx->nested.pi_desc_page =
8716 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8717 if (!vmx->nested.pi_desc_page)
8718 return false;
8719
8720 vmx->nested.pi_desc =
8721 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8722 if (!vmx->nested.pi_desc) {
8723 nested_release_page_clean(vmx->nested.pi_desc_page);
8724 return false;
8725 }
8726 vmx->nested.pi_desc =
8727 (struct pi_desc *)((void *)vmx->nested.pi_desc +
8728 (unsigned long)(vmcs12->posted_intr_desc_addr &
8729 (PAGE_SIZE - 1)));
8730 }
8731
8732 return true;
8733 }
8734
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)8735 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8736 {
8737 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8738 struct vcpu_vmx *vmx = to_vmx(vcpu);
8739
8740 if (vcpu->arch.virtual_tsc_khz == 0)
8741 return;
8742
8743 /* Make sure short timeouts reliably trigger an immediate vmexit.
8744 * hrtimer_start does not guarantee this. */
8745 if (preemption_timeout <= 1) {
8746 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8747 return;
8748 }
8749
8750 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8751 preemption_timeout *= 1000000;
8752 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8753 hrtimer_start(&vmx->nested.preemption_timer,
8754 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8755 }
8756
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8757 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8758 struct vmcs12 *vmcs12)
8759 {
8760 int maxphyaddr;
8761 u64 addr;
8762
8763 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8764 return 0;
8765
8766 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8767 WARN_ON(1);
8768 return -EINVAL;
8769 }
8770 maxphyaddr = cpuid_maxphyaddr(vcpu);
8771
8772 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8773 ((addr + PAGE_SIZE) >> maxphyaddr))
8774 return -EINVAL;
8775
8776 return 0;
8777 }
8778
8779 /*
8780 * Merge L0's and L1's MSR bitmap, return false to indicate that
8781 * we do not use the hardware.
8782 */
nested_vmx_merge_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8783 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8784 struct vmcs12 *vmcs12)
8785 {
8786 int msr;
8787 struct page *page;
8788 unsigned long *msr_bitmap;
8789
8790 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8791 return false;
8792
8793 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8794 if (!page) {
8795 WARN_ON(1);
8796 return false;
8797 }
8798 msr_bitmap = (unsigned long *)kmap(page);
8799 if (!msr_bitmap) {
8800 nested_release_page_clean(page);
8801 WARN_ON(1);
8802 return false;
8803 }
8804
8805 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8806 if (nested_cpu_has_apic_reg_virt(vmcs12))
8807 for (msr = 0x800; msr <= 0x8ff; msr++)
8808 nested_vmx_disable_intercept_for_msr(
8809 msr_bitmap,
8810 vmx_msr_bitmap_nested,
8811 msr, MSR_TYPE_R);
8812 /* TPR is allowed */
8813 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8814 vmx_msr_bitmap_nested,
8815 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8816 MSR_TYPE_R | MSR_TYPE_W);
8817 if (nested_cpu_has_vid(vmcs12)) {
8818 /* EOI and self-IPI are allowed */
8819 nested_vmx_disable_intercept_for_msr(
8820 msr_bitmap,
8821 vmx_msr_bitmap_nested,
8822 APIC_BASE_MSR + (APIC_EOI >> 4),
8823 MSR_TYPE_W);
8824 nested_vmx_disable_intercept_for_msr(
8825 msr_bitmap,
8826 vmx_msr_bitmap_nested,
8827 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8828 MSR_TYPE_W);
8829 }
8830 } else {
8831 /*
8832 * Enable reading intercept of all the x2apic
8833 * MSRs. We should not rely on vmcs12 to do any
8834 * optimizations here, it may have been modified
8835 * by L1.
8836 */
8837 for (msr = 0x800; msr <= 0x8ff; msr++)
8838 __vmx_enable_intercept_for_msr(
8839 vmx_msr_bitmap_nested,
8840 msr,
8841 MSR_TYPE_R);
8842
8843 __vmx_enable_intercept_for_msr(
8844 vmx_msr_bitmap_nested,
8845 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8846 MSR_TYPE_W);
8847 __vmx_enable_intercept_for_msr(
8848 vmx_msr_bitmap_nested,
8849 APIC_BASE_MSR + (APIC_EOI >> 4),
8850 MSR_TYPE_W);
8851 __vmx_enable_intercept_for_msr(
8852 vmx_msr_bitmap_nested,
8853 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8854 MSR_TYPE_W);
8855 }
8856 kunmap(page);
8857 nested_release_page_clean(page);
8858
8859 return true;
8860 }
8861
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8862 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8863 struct vmcs12 *vmcs12)
8864 {
8865 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8866 !nested_cpu_has_apic_reg_virt(vmcs12) &&
8867 !nested_cpu_has_vid(vmcs12) &&
8868 !nested_cpu_has_posted_intr(vmcs12))
8869 return 0;
8870
8871 /*
8872 * If virtualize x2apic mode is enabled,
8873 * virtualize apic access must be disabled.
8874 */
8875 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8876 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8877 return -EINVAL;
8878
8879 /*
8880 * If virtual interrupt delivery is enabled,
8881 * we must exit on external interrupts.
8882 */
8883 if (nested_cpu_has_vid(vmcs12) &&
8884 !nested_exit_on_intr(vcpu))
8885 return -EINVAL;
8886
8887 /*
8888 * bits 15:8 should be zero in posted_intr_nv,
8889 * the descriptor address has been already checked
8890 * in nested_get_vmcs12_pages.
8891 */
8892 if (nested_cpu_has_posted_intr(vmcs12) &&
8893 (!nested_cpu_has_vid(vmcs12) ||
8894 !nested_exit_intr_ack_set(vcpu) ||
8895 vmcs12->posted_intr_nv & 0xff00))
8896 return -EINVAL;
8897
8898 /* tpr shadow is needed by all apicv features. */
8899 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8900 return -EINVAL;
8901
8902 return 0;
8903 }
8904
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)8905 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
8906 unsigned long count_field,
8907 unsigned long addr_field)
8908 {
8909 int maxphyaddr;
8910 u64 count, addr;
8911
8912 if (vmcs12_read_any(vcpu, count_field, &count) ||
8913 vmcs12_read_any(vcpu, addr_field, &addr)) {
8914 WARN_ON(1);
8915 return -EINVAL;
8916 }
8917 if (count == 0)
8918 return 0;
8919 maxphyaddr = cpuid_maxphyaddr(vcpu);
8920 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
8921 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
8922 pr_warn_ratelimited(
8923 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
8924 addr_field, maxphyaddr, count, addr);
8925 return -EINVAL;
8926 }
8927 return 0;
8928 }
8929
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)8930 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
8931 struct vmcs12 *vmcs12)
8932 {
8933 if (vmcs12->vm_exit_msr_load_count == 0 &&
8934 vmcs12->vm_exit_msr_store_count == 0 &&
8935 vmcs12->vm_entry_msr_load_count == 0)
8936 return 0; /* Fast path */
8937 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
8938 VM_EXIT_MSR_LOAD_ADDR) ||
8939 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
8940 VM_EXIT_MSR_STORE_ADDR) ||
8941 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
8942 VM_ENTRY_MSR_LOAD_ADDR))
8943 return -EINVAL;
8944 return 0;
8945 }
8946
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)8947 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
8948 struct vmx_msr_entry *e)
8949 {
8950 /* x2APIC MSR accesses are not allowed */
8951 if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8)
8952 return -EINVAL;
8953 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
8954 e->index == MSR_IA32_UCODE_REV)
8955 return -EINVAL;
8956 if (e->reserved != 0)
8957 return -EINVAL;
8958 return 0;
8959 }
8960
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)8961 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
8962 struct vmx_msr_entry *e)
8963 {
8964 if (e->index == MSR_FS_BASE ||
8965 e->index == MSR_GS_BASE ||
8966 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
8967 nested_vmx_msr_check_common(vcpu, e))
8968 return -EINVAL;
8969 return 0;
8970 }
8971
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)8972 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
8973 struct vmx_msr_entry *e)
8974 {
8975 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
8976 nested_vmx_msr_check_common(vcpu, e))
8977 return -EINVAL;
8978 return 0;
8979 }
8980
8981 /*
8982 * Load guest's/host's msr at nested entry/exit.
8983 * return 0 for success, entry index for failure.
8984 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)8985 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8986 {
8987 u32 i;
8988 struct vmx_msr_entry e;
8989 struct msr_data msr;
8990
8991 msr.host_initiated = false;
8992 for (i = 0; i < count; i++) {
8993 if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
8994 &e, sizeof(e))) {
8995 pr_warn_ratelimited(
8996 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8997 __func__, i, gpa + i * sizeof(e));
8998 goto fail;
8999 }
9000 if (nested_vmx_load_msr_check(vcpu, &e)) {
9001 pr_warn_ratelimited(
9002 "%s check failed (%u, 0x%x, 0x%x)\n",
9003 __func__, i, e.index, e.reserved);
9004 goto fail;
9005 }
9006 msr.index = e.index;
9007 msr.data = e.value;
9008 if (kvm_set_msr(vcpu, &msr)) {
9009 pr_warn_ratelimited(
9010 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9011 __func__, i, e.index, e.value);
9012 goto fail;
9013 }
9014 }
9015 return 0;
9016 fail:
9017 return i + 1;
9018 }
9019
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9020 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9021 {
9022 u32 i;
9023 struct vmx_msr_entry e;
9024
9025 for (i = 0; i < count; i++) {
9026 if (kvm_read_guest(vcpu->kvm,
9027 gpa + i * sizeof(e),
9028 &e, 2 * sizeof(u32))) {
9029 pr_warn_ratelimited(
9030 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9031 __func__, i, gpa + i * sizeof(e));
9032 return -EINVAL;
9033 }
9034 if (nested_vmx_store_msr_check(vcpu, &e)) {
9035 pr_warn_ratelimited(
9036 "%s check failed (%u, 0x%x, 0x%x)\n",
9037 __func__, i, e.index, e.reserved);
9038 return -EINVAL;
9039 }
9040 if (kvm_get_msr(vcpu, e.index, &e.value)) {
9041 pr_warn_ratelimited(
9042 "%s cannot read MSR (%u, 0x%x)\n",
9043 __func__, i, e.index);
9044 return -EINVAL;
9045 }
9046 if (kvm_write_guest(vcpu->kvm,
9047 gpa + i * sizeof(e) +
9048 offsetof(struct vmx_msr_entry, value),
9049 &e.value, sizeof(e.value))) {
9050 pr_warn_ratelimited(
9051 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9052 __func__, i, e.index, e.value);
9053 return -EINVAL;
9054 }
9055 }
9056 return 0;
9057 }
9058
9059 /*
9060 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9061 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9062 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9063 * guest in a way that will both be appropriate to L1's requests, and our
9064 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9065 * function also has additional necessary side-effects, like setting various
9066 * vcpu->arch fields.
9067 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9068 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9069 {
9070 struct vcpu_vmx *vmx = to_vmx(vcpu);
9071 u32 exec_control;
9072
9073 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9074 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9075 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9076 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9077 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9078 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9079 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9080 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9081 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9082 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9083 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9084 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9085 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9086 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9087 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9088 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9089 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9090 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9091 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9092 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9093 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9094 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9095 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9096 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9097 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9098 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9099 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9100 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9101 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9102 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9103 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9104 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9105 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9106 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9107 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9108 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9109
9110 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9111 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9112 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9113 } else {
9114 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9115 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9116 }
9117 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9118 vmcs12->vm_entry_intr_info_field);
9119 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9120 vmcs12->vm_entry_exception_error_code);
9121 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9122 vmcs12->vm_entry_instruction_len);
9123 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9124 vmcs12->guest_interruptibility_info);
9125 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9126 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9127 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9128 vmcs12->guest_pending_dbg_exceptions);
9129 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9130 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9131
9132 if (nested_cpu_has_xsaves(vmcs12))
9133 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9134 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9135
9136 exec_control = vmcs12->pin_based_vm_exec_control;
9137 exec_control |= vmcs_config.pin_based_exec_ctrl;
9138 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9139
9140 if (nested_cpu_has_posted_intr(vmcs12)) {
9141 /*
9142 * Note that we use L0's vector here and in
9143 * vmx_deliver_nested_posted_interrupt.
9144 */
9145 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9146 vmx->nested.pi_pending = false;
9147 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9148 vmcs_write64(POSTED_INTR_DESC_ADDR,
9149 page_to_phys(vmx->nested.pi_desc_page) +
9150 (unsigned long)(vmcs12->posted_intr_desc_addr &
9151 (PAGE_SIZE - 1)));
9152 } else
9153 exec_control &= ~PIN_BASED_POSTED_INTR;
9154
9155 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9156
9157 vmx->nested.preemption_timer_expired = false;
9158 if (nested_cpu_has_preemption_timer(vmcs12))
9159 vmx_start_preemption_timer(vcpu);
9160
9161 /*
9162 * Whether page-faults are trapped is determined by a combination of
9163 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9164 * If enable_ept, L0 doesn't care about page faults and we should
9165 * set all of these to L1's desires. However, if !enable_ept, L0 does
9166 * care about (at least some) page faults, and because it is not easy
9167 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9168 * to exit on each and every L2 page fault. This is done by setting
9169 * MASK=MATCH=0 and (see below) EB.PF=1.
9170 * Note that below we don't need special code to set EB.PF beyond the
9171 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9172 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9173 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9174 *
9175 * A problem with this approach (when !enable_ept) is that L1 may be
9176 * injected with more page faults than it asked for. This could have
9177 * caused problems, but in practice existing hypervisors don't care.
9178 * To fix this, we will need to emulate the PFEC checking (on the L1
9179 * page tables), using walk_addr(), when injecting PFs to L1.
9180 */
9181 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9182 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9183 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9184 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9185
9186 if (cpu_has_secondary_exec_ctrls()) {
9187 exec_control = vmx_secondary_exec_control(vmx);
9188 if (!vmx->rdtscp_enabled)
9189 exec_control &= ~SECONDARY_EXEC_RDTSCP;
9190 /* Take the following fields only from vmcs12 */
9191 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9192 SECONDARY_EXEC_RDTSCP |
9193 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9194 SECONDARY_EXEC_APIC_REGISTER_VIRT);
9195 if (nested_cpu_has(vmcs12,
9196 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9197 exec_control |= vmcs12->secondary_vm_exec_control;
9198
9199 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9200 /*
9201 * If translation failed, no matter: This feature asks
9202 * to exit when accessing the given address, and if it
9203 * can never be accessed, this feature won't do
9204 * anything anyway.
9205 */
9206 if (!vmx->nested.apic_access_page)
9207 exec_control &=
9208 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9209 else
9210 vmcs_write64(APIC_ACCESS_ADDR,
9211 page_to_phys(vmx->nested.apic_access_page));
9212 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9213 (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9214 exec_control |=
9215 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9216 kvm_vcpu_reload_apic_access_page(vcpu);
9217 }
9218
9219 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9220 vmcs_write64(EOI_EXIT_BITMAP0,
9221 vmcs12->eoi_exit_bitmap0);
9222 vmcs_write64(EOI_EXIT_BITMAP1,
9223 vmcs12->eoi_exit_bitmap1);
9224 vmcs_write64(EOI_EXIT_BITMAP2,
9225 vmcs12->eoi_exit_bitmap2);
9226 vmcs_write64(EOI_EXIT_BITMAP3,
9227 vmcs12->eoi_exit_bitmap3);
9228 vmcs_write16(GUEST_INTR_STATUS,
9229 vmcs12->guest_intr_status);
9230 }
9231
9232 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9233 }
9234
9235
9236 /*
9237 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9238 * Some constant fields are set here by vmx_set_constant_host_state().
9239 * Other fields are different per CPU, and will be set later when
9240 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9241 */
9242 vmx_set_constant_host_state(vmx);
9243
9244 /*
9245 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9246 * entry, but only if the current (host) sp changed from the value
9247 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9248 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9249 * here we just force the write to happen on entry.
9250 */
9251 vmx->host_rsp = 0;
9252
9253 exec_control = vmx_exec_control(vmx); /* L0's desires */
9254 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9255 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9256 exec_control &= ~CPU_BASED_TPR_SHADOW;
9257 exec_control |= vmcs12->cpu_based_vm_exec_control;
9258
9259 if (exec_control & CPU_BASED_TPR_SHADOW) {
9260 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9261 page_to_phys(vmx->nested.virtual_apic_page));
9262 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9263 }
9264
9265 if (cpu_has_vmx_msr_bitmap() &&
9266 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9267 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9268 /* MSR_BITMAP will be set by following vmx_set_efer. */
9269 } else
9270 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9271
9272 /*
9273 * Merging of IO bitmap not currently supported.
9274 * Rather, exit every time.
9275 */
9276 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9277 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9278
9279 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9280
9281 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9282 * bitwise-or of what L1 wants to trap for L2, and what we want to
9283 * trap. Note that CR0.TS also needs updating - we do this later.
9284 */
9285 update_exception_bitmap(vcpu);
9286 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9287 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9288
9289 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9290 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9291 * bits are further modified by vmx_set_efer() below.
9292 */
9293 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9294
9295 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9296 * emulated by vmx_set_efer(), below.
9297 */
9298 vm_entry_controls_init(vmx,
9299 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9300 ~VM_ENTRY_IA32E_MODE) |
9301 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9302
9303 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9304 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9305 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9306 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9307 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9308
9309
9310 set_cr4_guest_host_mask(vmx);
9311
9312 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9313 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9314
9315 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9316 vmcs_write64(TSC_OFFSET,
9317 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9318 else
9319 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9320
9321 if (enable_vpid) {
9322 /*
9323 * Trivially support vpid by letting L2s share their parent
9324 * L1's vpid. TODO: move to a more elaborate solution, giving
9325 * each L2 its own vpid and exposing the vpid feature to L1.
9326 */
9327 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9328 vmx_flush_tlb(vcpu);
9329 }
9330
9331 if (nested_cpu_has_ept(vmcs12)) {
9332 kvm_mmu_unload(vcpu);
9333 nested_ept_init_mmu_context(vcpu);
9334 }
9335
9336 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9337 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9338 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9339 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9340 else
9341 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9342 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9343 vmx_set_efer(vcpu, vcpu->arch.efer);
9344
9345 /*
9346 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9347 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9348 * The CR0_READ_SHADOW is what L2 should have expected to read given
9349 * the specifications by L1; It's not enough to take
9350 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9351 * have more bits than L1 expected.
9352 */
9353 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9354 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9355
9356 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9357 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9358
9359 /* shadow page tables on either EPT or shadow page tables */
9360 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9361 kvm_mmu_reset_context(vcpu);
9362
9363 if (!enable_ept)
9364 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9365
9366 /*
9367 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9368 */
9369 if (enable_ept) {
9370 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9371 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9372 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9373 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9374 }
9375
9376 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9377 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9378 }
9379
9380 /*
9381 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9382 * for running an L2 nested guest.
9383 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)9384 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9385 {
9386 struct vmcs12 *vmcs12;
9387 struct vcpu_vmx *vmx = to_vmx(vcpu);
9388 int cpu;
9389 struct loaded_vmcs *vmcs02;
9390 bool ia32e;
9391 u32 msr_entry_idx;
9392
9393 if (!nested_vmx_check_permission(vcpu) ||
9394 !nested_vmx_check_vmcs12(vcpu))
9395 return 1;
9396
9397 skip_emulated_instruction(vcpu);
9398 vmcs12 = get_vmcs12(vcpu);
9399
9400 if (enable_shadow_vmcs)
9401 copy_shadow_to_vmcs12(vmx);
9402
9403 /*
9404 * The nested entry process starts with enforcing various prerequisites
9405 * on vmcs12 as required by the Intel SDM, and act appropriately when
9406 * they fail: As the SDM explains, some conditions should cause the
9407 * instruction to fail, while others will cause the instruction to seem
9408 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9409 * To speed up the normal (success) code path, we should avoid checking
9410 * for misconfigurations which will anyway be caught by the processor
9411 * when using the merged vmcs02.
9412 */
9413 if (vmcs12->launch_state == launch) {
9414 nested_vmx_failValid(vcpu,
9415 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9416 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9417 return 1;
9418 }
9419
9420 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9421 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9422 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9423 return 1;
9424 }
9425
9426 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9427 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9428 return 1;
9429 }
9430
9431 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9432 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9433 return 1;
9434 }
9435
9436 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9437 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9438 return 1;
9439 }
9440
9441 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9442 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9443 return 1;
9444 }
9445
9446 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9447 vmx->nested.nested_vmx_true_procbased_ctls_low,
9448 vmx->nested.nested_vmx_procbased_ctls_high) ||
9449 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9450 vmx->nested.nested_vmx_secondary_ctls_low,
9451 vmx->nested.nested_vmx_secondary_ctls_high) ||
9452 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9453 vmx->nested.nested_vmx_pinbased_ctls_low,
9454 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9455 !vmx_control_verify(vmcs12->vm_exit_controls,
9456 vmx->nested.nested_vmx_true_exit_ctls_low,
9457 vmx->nested.nested_vmx_exit_ctls_high) ||
9458 !vmx_control_verify(vmcs12->vm_entry_controls,
9459 vmx->nested.nested_vmx_true_entry_ctls_low,
9460 vmx->nested.nested_vmx_entry_ctls_high))
9461 {
9462 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9463 return 1;
9464 }
9465
9466 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9467 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9468 nested_vmx_failValid(vcpu,
9469 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9470 return 1;
9471 }
9472
9473 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9474 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9475 nested_vmx_entry_failure(vcpu, vmcs12,
9476 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9477 return 1;
9478 }
9479 if (vmcs12->vmcs_link_pointer != -1ull) {
9480 nested_vmx_entry_failure(vcpu, vmcs12,
9481 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9482 return 1;
9483 }
9484
9485 /*
9486 * If the load IA32_EFER VM-entry control is 1, the following checks
9487 * are performed on the field for the IA32_EFER MSR:
9488 * - Bits reserved in the IA32_EFER MSR must be 0.
9489 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9490 * the IA-32e mode guest VM-exit control. It must also be identical
9491 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9492 * CR0.PG) is 1.
9493 */
9494 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9495 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9496 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9497 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9498 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9499 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9500 nested_vmx_entry_failure(vcpu, vmcs12,
9501 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9502 return 1;
9503 }
9504 }
9505
9506 /*
9507 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9508 * IA32_EFER MSR must be 0 in the field for that register. In addition,
9509 * the values of the LMA and LME bits in the field must each be that of
9510 * the host address-space size VM-exit control.
9511 */
9512 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9513 ia32e = (vmcs12->vm_exit_controls &
9514 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9515 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9516 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9517 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9518 nested_vmx_entry_failure(vcpu, vmcs12,
9519 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9520 return 1;
9521 }
9522 }
9523
9524 /*
9525 * We're finally done with prerequisite checking, and can start with
9526 * the nested entry.
9527 */
9528
9529 vmcs02 = nested_get_current_vmcs02(vmx);
9530 if (!vmcs02)
9531 return -ENOMEM;
9532
9533 enter_guest_mode(vcpu);
9534
9535 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9536
9537 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9538 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9539
9540 cpu = get_cpu();
9541 vmx->loaded_vmcs = vmcs02;
9542 vmx_vcpu_put(vcpu);
9543 vmx_vcpu_load(vcpu, cpu);
9544 vcpu->cpu = cpu;
9545 put_cpu();
9546
9547 vmx_segment_cache_clear(vmx);
9548
9549 prepare_vmcs02(vcpu, vmcs12);
9550
9551 msr_entry_idx = nested_vmx_load_msr(vcpu,
9552 vmcs12->vm_entry_msr_load_addr,
9553 vmcs12->vm_entry_msr_load_count);
9554 if (msr_entry_idx) {
9555 leave_guest_mode(vcpu);
9556 vmx_load_vmcs01(vcpu);
9557 nested_vmx_entry_failure(vcpu, vmcs12,
9558 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9559 return 1;
9560 }
9561
9562 vmcs12->launch_state = 1;
9563
9564 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9565 return kvm_vcpu_halt(vcpu);
9566
9567 vmx->nested.nested_run_pending = 1;
9568
9569 /*
9570 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9571 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9572 * returned as far as L1 is concerned. It will only return (and set
9573 * the success flag) when L2 exits (see nested_vmx_vmexit()).
9574 */
9575 return 1;
9576 }
9577
9578 /*
9579 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9580 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9581 * This function returns the new value we should put in vmcs12.guest_cr0.
9582 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9583 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9584 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9585 * didn't trap the bit, because if L1 did, so would L0).
9586 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9587 * been modified by L2, and L1 knows it. So just leave the old value of
9588 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9589 * isn't relevant, because if L0 traps this bit it can set it to anything.
9590 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9591 * changed these bits, and therefore they need to be updated, but L0
9592 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9593 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9594 */
9595 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9596 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9597 {
9598 return
9599 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9600 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9601 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9602 vcpu->arch.cr0_guest_owned_bits));
9603 }
9604
9605 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9606 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9607 {
9608 return
9609 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9610 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9611 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9612 vcpu->arch.cr4_guest_owned_bits));
9613 }
9614
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9615 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9616 struct vmcs12 *vmcs12)
9617 {
9618 u32 idt_vectoring;
9619 unsigned int nr;
9620
9621 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9622 nr = vcpu->arch.exception.nr;
9623 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9624
9625 if (kvm_exception_is_soft(nr)) {
9626 vmcs12->vm_exit_instruction_len =
9627 vcpu->arch.event_exit_inst_len;
9628 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9629 } else
9630 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9631
9632 if (vcpu->arch.exception.has_error_code) {
9633 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9634 vmcs12->idt_vectoring_error_code =
9635 vcpu->arch.exception.error_code;
9636 }
9637
9638 vmcs12->idt_vectoring_info_field = idt_vectoring;
9639 } else if (vcpu->arch.nmi_injected) {
9640 vmcs12->idt_vectoring_info_field =
9641 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9642 } else if (vcpu->arch.interrupt.pending) {
9643 nr = vcpu->arch.interrupt.nr;
9644 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9645
9646 if (vcpu->arch.interrupt.soft) {
9647 idt_vectoring |= INTR_TYPE_SOFT_INTR;
9648 vmcs12->vm_entry_instruction_len =
9649 vcpu->arch.event_exit_inst_len;
9650 } else
9651 idt_vectoring |= INTR_TYPE_EXT_INTR;
9652
9653 vmcs12->idt_vectoring_info_field = idt_vectoring;
9654 }
9655 }
9656
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)9657 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9658 {
9659 struct vcpu_vmx *vmx = to_vmx(vcpu);
9660
9661 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9662 vmx->nested.preemption_timer_expired) {
9663 if (vmx->nested.nested_run_pending)
9664 return -EBUSY;
9665 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9666 return 0;
9667 }
9668
9669 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9670 if (vmx->nested.nested_run_pending ||
9671 vcpu->arch.interrupt.pending)
9672 return -EBUSY;
9673 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9674 NMI_VECTOR | INTR_TYPE_NMI_INTR |
9675 INTR_INFO_VALID_MASK, 0);
9676 /*
9677 * The NMI-triggered VM exit counts as injection:
9678 * clear this one and block further NMIs.
9679 */
9680 vcpu->arch.nmi_pending = 0;
9681 vmx_set_nmi_mask(vcpu, true);
9682 return 0;
9683 }
9684
9685 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9686 nested_exit_on_intr(vcpu)) {
9687 if (vmx->nested.nested_run_pending)
9688 return -EBUSY;
9689 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9690 return 0;
9691 }
9692
9693 return vmx_complete_nested_posted_interrupt(vcpu);
9694 }
9695
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)9696 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9697 {
9698 ktime_t remaining =
9699 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9700 u64 value;
9701
9702 if (ktime_to_ns(remaining) <= 0)
9703 return 0;
9704
9705 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9706 do_div(value, 1000000);
9707 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9708 }
9709
9710 /*
9711 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9712 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9713 * and this function updates it to reflect the changes to the guest state while
9714 * L2 was running (and perhaps made some exits which were handled directly by L0
9715 * without going back to L1), and to reflect the exit reason.
9716 * Note that we do not have to copy here all VMCS fields, just those that
9717 * could have changed by the L2 guest or the exit - i.e., the guest-state and
9718 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9719 * which already writes to vmcs12 directly.
9720 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)9721 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9722 u32 exit_reason, u32 exit_intr_info,
9723 unsigned long exit_qualification)
9724 {
9725 /* update guest state fields: */
9726 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9727 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9728
9729 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9730 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9731 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9732
9733 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9734 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9735 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9736 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9737 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9738 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9739 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9740 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9741 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9742 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9743 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9744 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9745 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9746 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9747 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9748 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9749 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9750 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9751 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9752 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9753 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9754 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9755 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9756 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9757 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9758 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9759 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9760 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9761 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9762 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9763 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9764 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9765 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9766 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9767 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9768 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9769
9770 vmcs12->guest_interruptibility_info =
9771 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9772 vmcs12->guest_pending_dbg_exceptions =
9773 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9774 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9775 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9776 else
9777 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9778
9779 if (nested_cpu_has_preemption_timer(vmcs12)) {
9780 if (vmcs12->vm_exit_controls &
9781 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9782 vmcs12->vmx_preemption_timer_value =
9783 vmx_get_preemption_timer_value(vcpu);
9784 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9785 }
9786
9787 /*
9788 * In some cases (usually, nested EPT), L2 is allowed to change its
9789 * own CR3 without exiting. If it has changed it, we must keep it.
9790 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9791 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9792 *
9793 * Additionally, restore L2's PDPTR to vmcs12.
9794 */
9795 if (enable_ept) {
9796 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9797 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9798 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9799 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9800 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9801 }
9802
9803 if (nested_cpu_has_vid(vmcs12))
9804 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9805
9806 vmcs12->vm_entry_controls =
9807 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9808 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9809
9810 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9811 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9812 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9813 }
9814
9815 /* TODO: These cannot have changed unless we have MSR bitmaps and
9816 * the relevant bit asks not to trap the change */
9817 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9818 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9819 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9820 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9821 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9822 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9823 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9824 if (vmx_mpx_supported())
9825 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9826 if (nested_cpu_has_xsaves(vmcs12))
9827 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9828
9829 /* update exit information fields: */
9830
9831 vmcs12->vm_exit_reason = exit_reason;
9832 vmcs12->exit_qualification = exit_qualification;
9833
9834 vmcs12->vm_exit_intr_info = exit_intr_info;
9835 if ((vmcs12->vm_exit_intr_info &
9836 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9837 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9838 vmcs12->vm_exit_intr_error_code =
9839 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9840 vmcs12->idt_vectoring_info_field = 0;
9841 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9842 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9843
9844 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9845 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9846 * instead of reading the real value. */
9847 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9848
9849 /*
9850 * Transfer the event that L0 or L1 may wanted to inject into
9851 * L2 to IDT_VECTORING_INFO_FIELD.
9852 */
9853 vmcs12_save_pending_event(vcpu, vmcs12);
9854 }
9855
9856 /*
9857 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9858 * preserved above and would only end up incorrectly in L1.
9859 */
9860 vcpu->arch.nmi_injected = false;
9861 kvm_clear_exception_queue(vcpu);
9862 kvm_clear_interrupt_queue(vcpu);
9863 }
9864
9865 /*
9866 * A part of what we need to when the nested L2 guest exits and we want to
9867 * run its L1 parent, is to reset L1's guest state to the host state specified
9868 * in vmcs12.
9869 * This function is to be called not only on normal nested exit, but also on
9870 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9871 * Failures During or After Loading Guest State").
9872 * This function should be called when the active VMCS is L1's (vmcs01).
9873 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9874 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9875 struct vmcs12 *vmcs12)
9876 {
9877 struct kvm_segment seg;
9878
9879 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9880 vcpu->arch.efer = vmcs12->host_ia32_efer;
9881 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9882 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9883 else
9884 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9885 vmx_set_efer(vcpu, vcpu->arch.efer);
9886
9887 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9888 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
9889 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
9890 /*
9891 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9892 * actually changed, because it depends on the current state of
9893 * fpu_active (which may have changed).
9894 * Note that vmx_set_cr0 refers to efer set above.
9895 */
9896 vmx_set_cr0(vcpu, vmcs12->host_cr0);
9897 /*
9898 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9899 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9900 * but we also need to update cr0_guest_host_mask and exception_bitmap.
9901 */
9902 update_exception_bitmap(vcpu);
9903 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9904 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9905
9906 /*
9907 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9908 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9909 */
9910 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9911 kvm_set_cr4(vcpu, vmcs12->host_cr4);
9912
9913 nested_ept_uninit_mmu_context(vcpu);
9914
9915 kvm_set_cr3(vcpu, vmcs12->host_cr3);
9916 kvm_mmu_reset_context(vcpu);
9917
9918 if (!enable_ept)
9919 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9920
9921 if (enable_vpid) {
9922 /*
9923 * Trivially support vpid by letting L2s share their parent
9924 * L1's vpid. TODO: move to a more elaborate solution, giving
9925 * each L2 its own vpid and exposing the vpid feature to L1.
9926 */
9927 vmx_flush_tlb(vcpu);
9928 }
9929
9930
9931 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9932 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9933 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9934 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9935 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9936
9937 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
9938 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9939 vmcs_write64(GUEST_BNDCFGS, 0);
9940
9941 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9942 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9943 vcpu->arch.pat = vmcs12->host_ia32_pat;
9944 }
9945 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9946 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9947 vmcs12->host_ia32_perf_global_ctrl);
9948
9949 /* Set L1 segment info according to Intel SDM
9950 27.5.2 Loading Host Segment and Descriptor-Table Registers */
9951 seg = (struct kvm_segment) {
9952 .base = 0,
9953 .limit = 0xFFFFFFFF,
9954 .selector = vmcs12->host_cs_selector,
9955 .type = 11,
9956 .present = 1,
9957 .s = 1,
9958 .g = 1
9959 };
9960 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9961 seg.l = 1;
9962 else
9963 seg.db = 1;
9964 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9965 seg = (struct kvm_segment) {
9966 .base = 0,
9967 .limit = 0xFFFFFFFF,
9968 .type = 3,
9969 .present = 1,
9970 .s = 1,
9971 .db = 1,
9972 .g = 1
9973 };
9974 seg.selector = vmcs12->host_ds_selector;
9975 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9976 seg.selector = vmcs12->host_es_selector;
9977 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9978 seg.selector = vmcs12->host_ss_selector;
9979 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9980 seg.selector = vmcs12->host_fs_selector;
9981 seg.base = vmcs12->host_fs_base;
9982 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9983 seg.selector = vmcs12->host_gs_selector;
9984 seg.base = vmcs12->host_gs_base;
9985 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9986 seg = (struct kvm_segment) {
9987 .base = vmcs12->host_tr_base,
9988 .limit = 0x67,
9989 .selector = vmcs12->host_tr_selector,
9990 .type = 11,
9991 .present = 1
9992 };
9993 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9994
9995 kvm_set_dr(vcpu, 7, 0x400);
9996 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9997
9998 if (cpu_has_vmx_msr_bitmap())
9999 vmx_set_msr_bitmap(vcpu);
10000
10001 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10002 vmcs12->vm_exit_msr_load_count))
10003 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10004 }
10005
10006 /*
10007 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10008 * and modify vmcs12 to make it see what it would expect to see there if
10009 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10010 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10011 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10012 u32 exit_intr_info,
10013 unsigned long exit_qualification)
10014 {
10015 struct vcpu_vmx *vmx = to_vmx(vcpu);
10016 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10017
10018 /* trying to cancel vmlaunch/vmresume is a bug */
10019 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10020
10021 leave_guest_mode(vcpu);
10022 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10023 exit_qualification);
10024
10025 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10026 vmcs12->vm_exit_msr_store_count))
10027 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10028
10029 vmx_load_vmcs01(vcpu);
10030
10031 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10032 && nested_exit_intr_ack_set(vcpu)) {
10033 int irq = kvm_cpu_get_interrupt(vcpu);
10034 WARN_ON(irq < 0);
10035 vmcs12->vm_exit_intr_info = irq |
10036 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10037 }
10038
10039 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10040 vmcs12->exit_qualification,
10041 vmcs12->idt_vectoring_info_field,
10042 vmcs12->vm_exit_intr_info,
10043 vmcs12->vm_exit_intr_error_code,
10044 KVM_ISA_VMX);
10045
10046 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10047 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10048 vmx_segment_cache_clear(vmx);
10049
10050 /* if no vmcs02 cache requested, remove the one we used */
10051 if (VMCS02_POOL_SIZE == 0)
10052 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10053
10054 load_vmcs12_host_state(vcpu, vmcs12);
10055
10056 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10057 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10058
10059 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10060 vmx->host_rsp = 0;
10061
10062 /* Unpin physical memory we referred to in vmcs02 */
10063 if (vmx->nested.apic_access_page) {
10064 nested_release_page(vmx->nested.apic_access_page);
10065 vmx->nested.apic_access_page = NULL;
10066 }
10067 if (vmx->nested.virtual_apic_page) {
10068 nested_release_page(vmx->nested.virtual_apic_page);
10069 vmx->nested.virtual_apic_page = NULL;
10070 }
10071 if (vmx->nested.pi_desc_page) {
10072 kunmap(vmx->nested.pi_desc_page);
10073 nested_release_page(vmx->nested.pi_desc_page);
10074 vmx->nested.pi_desc_page = NULL;
10075 vmx->nested.pi_desc = NULL;
10076 }
10077
10078 /*
10079 * We are now running in L2, mmu_notifier will force to reload the
10080 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10081 */
10082 kvm_vcpu_reload_apic_access_page(vcpu);
10083
10084 /*
10085 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10086 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10087 * success or failure flag accordingly.
10088 */
10089 if (unlikely(vmx->fail)) {
10090 vmx->fail = 0;
10091 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10092 } else
10093 nested_vmx_succeed(vcpu);
10094 if (enable_shadow_vmcs)
10095 vmx->nested.sync_shadow_vmcs = true;
10096
10097 /* in case we halted in L2 */
10098 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10099 }
10100
10101 /*
10102 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10103 */
vmx_leave_nested(struct kvm_vcpu * vcpu)10104 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10105 {
10106 if (is_guest_mode(vcpu))
10107 nested_vmx_vmexit(vcpu, -1, 0, 0);
10108 free_nested(to_vmx(vcpu));
10109 }
10110
10111 /*
10112 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10113 * 23.7 "VM-entry failures during or after loading guest state" (this also
10114 * lists the acceptable exit-reason and exit-qualification parameters).
10115 * It should only be called before L2 actually succeeded to run, and when
10116 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10117 */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)10118 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10119 struct vmcs12 *vmcs12,
10120 u32 reason, unsigned long qualification)
10121 {
10122 load_vmcs12_host_state(vcpu, vmcs12);
10123 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10124 vmcs12->exit_qualification = qualification;
10125 nested_vmx_succeed(vcpu);
10126 if (enable_shadow_vmcs)
10127 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10128 }
10129
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)10130 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10131 struct x86_instruction_info *info,
10132 enum x86_intercept_stage stage)
10133 {
10134 return X86EMUL_CONTINUE;
10135 }
10136
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)10137 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10138 {
10139 if (ple_gap)
10140 shrink_ple_window(vcpu);
10141 }
10142
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10143 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10144 struct kvm_memory_slot *slot)
10145 {
10146 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10147 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10148 }
10149
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10150 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10151 struct kvm_memory_slot *slot)
10152 {
10153 kvm_mmu_slot_set_dirty(kvm, slot);
10154 }
10155
vmx_flush_log_dirty(struct kvm * kvm)10156 static void vmx_flush_log_dirty(struct kvm *kvm)
10157 {
10158 kvm_flush_pml_buffers(kvm);
10159 }
10160
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)10161 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10162 struct kvm_memory_slot *memslot,
10163 gfn_t offset, unsigned long mask)
10164 {
10165 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10166 }
10167
10168 static struct kvm_x86_ops vmx_x86_ops = {
10169 .cpu_has_kvm_support = cpu_has_kvm_support,
10170 .disabled_by_bios = vmx_disabled_by_bios,
10171 .hardware_setup = hardware_setup,
10172 .hardware_unsetup = hardware_unsetup,
10173 .check_processor_compatibility = vmx_check_processor_compat,
10174 .hardware_enable = hardware_enable,
10175 .hardware_disable = hardware_disable,
10176 .cpu_has_accelerated_tpr = report_flexpriority,
10177
10178 .vcpu_create = vmx_create_vcpu,
10179 .vcpu_free = vmx_free_vcpu,
10180 .vcpu_reset = vmx_vcpu_reset,
10181
10182 .prepare_guest_switch = vmx_save_host_state,
10183 .vcpu_load = vmx_vcpu_load,
10184 .vcpu_put = vmx_vcpu_put,
10185
10186 .update_db_bp_intercept = update_exception_bitmap,
10187 .get_msr = vmx_get_msr,
10188 .set_msr = vmx_set_msr,
10189 .get_segment_base = vmx_get_segment_base,
10190 .get_segment = vmx_get_segment,
10191 .set_segment = vmx_set_segment,
10192 .get_cpl = vmx_get_cpl,
10193 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10194 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10195 .decache_cr3 = vmx_decache_cr3,
10196 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10197 .set_cr0 = vmx_set_cr0,
10198 .set_cr3 = vmx_set_cr3,
10199 .set_cr4 = vmx_set_cr4,
10200 .set_efer = vmx_set_efer,
10201 .get_idt = vmx_get_idt,
10202 .set_idt = vmx_set_idt,
10203 .get_gdt = vmx_get_gdt,
10204 .set_gdt = vmx_set_gdt,
10205 .get_dr6 = vmx_get_dr6,
10206 .set_dr6 = vmx_set_dr6,
10207 .set_dr7 = vmx_set_dr7,
10208 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10209 .cache_reg = vmx_cache_reg,
10210 .get_rflags = vmx_get_rflags,
10211 .set_rflags = vmx_set_rflags,
10212 .fpu_activate = vmx_fpu_activate,
10213 .fpu_deactivate = vmx_fpu_deactivate,
10214
10215 .tlb_flush = vmx_flush_tlb,
10216
10217 .run = vmx_vcpu_run,
10218 .handle_exit = vmx_handle_exit,
10219 .skip_emulated_instruction = skip_emulated_instruction,
10220 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10221 .get_interrupt_shadow = vmx_get_interrupt_shadow,
10222 .patch_hypercall = vmx_patch_hypercall,
10223 .set_irq = vmx_inject_irq,
10224 .set_nmi = vmx_inject_nmi,
10225 .queue_exception = vmx_queue_exception,
10226 .cancel_injection = vmx_cancel_injection,
10227 .interrupt_allowed = vmx_interrupt_allowed,
10228 .nmi_allowed = vmx_nmi_allowed,
10229 .get_nmi_mask = vmx_get_nmi_mask,
10230 .set_nmi_mask = vmx_set_nmi_mask,
10231 .enable_nmi_window = enable_nmi_window,
10232 .enable_irq_window = enable_irq_window,
10233 .update_cr8_intercept = update_cr8_intercept,
10234 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10235 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10236 .vm_has_apicv = vmx_vm_has_apicv,
10237 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10238 .hwapic_irr_update = vmx_hwapic_irr_update,
10239 .hwapic_isr_update = vmx_hwapic_isr_update,
10240 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10241 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10242
10243 .set_tss_addr = vmx_set_tss_addr,
10244 .get_tdp_level = get_ept_level,
10245 .get_mt_mask = vmx_get_mt_mask,
10246
10247 .get_exit_info = vmx_get_exit_info,
10248
10249 .get_lpage_level = vmx_get_lpage_level,
10250
10251 .cpuid_update = vmx_cpuid_update,
10252
10253 .rdtscp_supported = vmx_rdtscp_supported,
10254 .invpcid_supported = vmx_invpcid_supported,
10255
10256 .set_supported_cpuid = vmx_set_supported_cpuid,
10257
10258 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10259
10260 .set_tsc_khz = vmx_set_tsc_khz,
10261 .read_tsc_offset = vmx_read_tsc_offset,
10262 .write_tsc_offset = vmx_write_tsc_offset,
10263 .adjust_tsc_offset = vmx_adjust_tsc_offset,
10264 .compute_tsc_offset = vmx_compute_tsc_offset,
10265 .read_l1_tsc = vmx_read_l1_tsc,
10266
10267 .set_tdp_cr3 = vmx_set_cr3,
10268
10269 .check_intercept = vmx_check_intercept,
10270 .handle_external_intr = vmx_handle_external_intr,
10271 .mpx_supported = vmx_mpx_supported,
10272 .xsaves_supported = vmx_xsaves_supported,
10273
10274 .check_nested_events = vmx_check_nested_events,
10275
10276 .sched_in = vmx_sched_in,
10277
10278 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10279 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10280 .flush_log_dirty = vmx_flush_log_dirty,
10281 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10282 };
10283
vmx_init(void)10284 static int __init vmx_init(void)
10285 {
10286 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10287 __alignof__(struct vcpu_vmx), THIS_MODULE);
10288 if (r)
10289 return r;
10290
10291 #ifdef CONFIG_KEXEC
10292 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10293 crash_vmclear_local_loaded_vmcss);
10294 #endif
10295
10296 return 0;
10297 }
10298
vmx_exit(void)10299 static void __exit vmx_exit(void)
10300 {
10301 #ifdef CONFIG_KEXEC
10302 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10303 synchronize_rcu();
10304 #endif
10305
10306 kvm_exit();
10307 }
10308
10309 module_init(vmx_init)
10310 module_exit(vmx_exit)
10311