1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44 
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47 
48 static const struct x86_cpu_id svm_cpu_id[] = {
49 	X86_FEATURE_MATCH(X86_FEATURE_SVM),
50 	{}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53 
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56 
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59 
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69 
70 #define NESTED_EXIT_HOST	0	/* Exit handled on host level */
71 #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
73 
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75 
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN		0x0000000000000001ULL
78 #define TSC_RATIO_MAX		0x000000ffffffffffULL
79 
80 static bool erratum_383_found __read_mostly;
81 
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85 	MSR_FS_BASE,
86 #endif
87 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89 
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91 
92 struct kvm_vcpu;
93 
94 struct nested_state {
95 	struct vmcb *hsave;
96 	u64 hsave_msr;
97 	u64 vm_cr_msr;
98 	u64 vmcb;
99 
100 	/* These are the merged vectors */
101 	u32 *msrpm;
102 
103 	/* gpa pointers to the real vectors */
104 	u64 vmcb_msrpm;
105 	u64 vmcb_iopm;
106 
107 	/* A VMEXIT is required but not yet emulated */
108 	bool exit_required;
109 
110 	/* cache for intercepts of the guest */
111 	u32 intercept_cr;
112 	u32 intercept_dr;
113 	u32 intercept_exceptions;
114 	u64 intercept;
115 
116 	/* Nested Paging related state */
117 	u64 nested_cr3;
118 };
119 
120 #define MSRPM_OFFSETS	16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122 
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128 
129 struct vcpu_svm {
130 	struct kvm_vcpu vcpu;
131 	struct vmcb *vmcb;
132 	unsigned long vmcb_pa;
133 	struct svm_cpu_data *svm_data;
134 	uint64_t asid_generation;
135 	uint64_t sysenter_esp;
136 	uint64_t sysenter_eip;
137 
138 	u64 next_rip;
139 
140 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141 	struct {
142 		u16 fs;
143 		u16 gs;
144 		u16 ldt;
145 		u64 gs_base;
146 	} host;
147 
148 	u32 *msrpm;
149 
150 	ulong nmi_iret_rip;
151 
152 	struct nested_state nested;
153 
154 	bool nmi_singlestep;
155 
156 	unsigned int3_injected;
157 	unsigned long int3_rip;
158 	u32 apf_reason;
159 
160 	u64  tsc_ratio;
161 };
162 
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT	0x0100000000ULL
165 
166 #define MSR_INVALID			0xffffffffU
167 
168 static const struct svm_direct_access_msrs {
169 	u32 index;   /* Index of the MSR */
170 	bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172 	{ .index = MSR_STAR,				.always = true  },
173 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
174 #ifdef CONFIG_X86_64
175 	{ .index = MSR_GS_BASE,				.always = true  },
176 	{ .index = MSR_FS_BASE,				.always = true  },
177 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
178 	{ .index = MSR_LSTAR,				.always = true  },
179 	{ .index = MSR_CSTAR,				.always = true  },
180 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
181 #endif
182 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
183 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
184 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
185 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
186 	{ .index = MSR_INVALID,				.always = false },
187 };
188 
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195 
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199 
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203 
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206 
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211 				      bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213 
214 enum {
215 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216 			    pause filter count */
217 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218 	VMCB_ASID,	 /* ASID */
219 	VMCB_INTR,	 /* int_ctl, int_vector */
220 	VMCB_NPT,        /* npt_en, nCR3, gPAT */
221 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
222 	VMCB_DR,         /* DR6, DR7 */
223 	VMCB_DT,         /* GDT, IDT */
224 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225 	VMCB_CR2,        /* CR2 only */
226 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227 	VMCB_DIRTY_MAX,
228 };
229 
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
232 
mark_all_dirty(struct vmcb * vmcb)233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235 	vmcb->control.clean = 0;
236 }
237 
mark_all_clean(struct vmcb * vmcb)238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241 			       & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243 
mark_dirty(struct vmcb * vmcb,int bit)244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246 	vmcb->control.clean &= ~(1 << bit);
247 }
248 
to_svm(struct kvm_vcpu * vcpu)249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251 	return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253 
recalc_intercepts(struct vcpu_svm * svm)254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256 	struct vmcb_control_area *c, *h;
257 	struct nested_state *g;
258 
259 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260 
261 	if (!is_guest_mode(&svm->vcpu))
262 		return;
263 
264 	c = &svm->vmcb->control;
265 	h = &svm->nested.hsave->control;
266 	g = &svm->nested;
267 
268 	c->intercept_cr = h->intercept_cr | g->intercept_cr;
269 	c->intercept_dr = h->intercept_dr | g->intercept_dr;
270 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271 	c->intercept = h->intercept | g->intercept;
272 }
273 
get_host_vmcb(struct vcpu_svm * svm)274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276 	if (is_guest_mode(&svm->vcpu))
277 		return svm->nested.hsave;
278 	else
279 		return svm->vmcb;
280 }
281 
set_cr_intercept(struct vcpu_svm * svm,int bit)282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284 	struct vmcb *vmcb = get_host_vmcb(svm);
285 
286 	vmcb->control.intercept_cr |= (1U << bit);
287 
288 	recalc_intercepts(svm);
289 }
290 
clr_cr_intercept(struct vcpu_svm * svm,int bit)291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293 	struct vmcb *vmcb = get_host_vmcb(svm);
294 
295 	vmcb->control.intercept_cr &= ~(1U << bit);
296 
297 	recalc_intercepts(svm);
298 }
299 
is_cr_intercept(struct vcpu_svm * svm,int bit)300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302 	struct vmcb *vmcb = get_host_vmcb(svm);
303 
304 	return vmcb->control.intercept_cr & (1U << bit);
305 }
306 
set_dr_intercepts(struct vcpu_svm * svm)307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309 	struct vmcb *vmcb = get_host_vmcb(svm);
310 
311 	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312 		| (1 << INTERCEPT_DR1_READ)
313 		| (1 << INTERCEPT_DR2_READ)
314 		| (1 << INTERCEPT_DR3_READ)
315 		| (1 << INTERCEPT_DR4_READ)
316 		| (1 << INTERCEPT_DR5_READ)
317 		| (1 << INTERCEPT_DR6_READ)
318 		| (1 << INTERCEPT_DR7_READ)
319 		| (1 << INTERCEPT_DR0_WRITE)
320 		| (1 << INTERCEPT_DR1_WRITE)
321 		| (1 << INTERCEPT_DR2_WRITE)
322 		| (1 << INTERCEPT_DR3_WRITE)
323 		| (1 << INTERCEPT_DR4_WRITE)
324 		| (1 << INTERCEPT_DR5_WRITE)
325 		| (1 << INTERCEPT_DR6_WRITE)
326 		| (1 << INTERCEPT_DR7_WRITE);
327 
328 	recalc_intercepts(svm);
329 }
330 
clr_dr_intercepts(struct vcpu_svm * svm)331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333 	struct vmcb *vmcb = get_host_vmcb(svm);
334 
335 	vmcb->control.intercept_dr = 0;
336 
337 	recalc_intercepts(svm);
338 }
339 
set_exception_intercept(struct vcpu_svm * svm,int bit)340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342 	struct vmcb *vmcb = get_host_vmcb(svm);
343 
344 	vmcb->control.intercept_exceptions |= (1U << bit);
345 
346 	recalc_intercepts(svm);
347 }
348 
clr_exception_intercept(struct vcpu_svm * svm,int bit)349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351 	struct vmcb *vmcb = get_host_vmcb(svm);
352 
353 	vmcb->control.intercept_exceptions &= ~(1U << bit);
354 
355 	recalc_intercepts(svm);
356 }
357 
set_intercept(struct vcpu_svm * svm,int bit)358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360 	struct vmcb *vmcb = get_host_vmcb(svm);
361 
362 	vmcb->control.intercept |= (1ULL << bit);
363 
364 	recalc_intercepts(svm);
365 }
366 
clr_intercept(struct vcpu_svm * svm,int bit)367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369 	struct vmcb *vmcb = get_host_vmcb(svm);
370 
371 	vmcb->control.intercept &= ~(1ULL << bit);
372 
373 	recalc_intercepts(svm);
374 }
375 
enable_gif(struct vcpu_svm * svm)376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378 	svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380 
disable_gif(struct vcpu_svm * svm)381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383 	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385 
gif_set(struct vcpu_svm * svm)386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388 	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390 
391 static unsigned long iopm_base;
392 
393 struct kvm_ldttss_desc {
394 	u16 limit0;
395 	u16 base0;
396 	unsigned base1:8, type:5, dpl:2, p:1;
397 	unsigned limit1:4, zero0:3, g:1, base2:8;
398 	u32 base3;
399 	u32 zero1;
400 } __attribute__((packed));
401 
402 struct svm_cpu_data {
403 	int cpu;
404 
405 	u64 asid_generation;
406 	u32 max_asid;
407 	u32 next_asid;
408 	struct kvm_ldttss_desc *tss_desc;
409 
410 	struct page *save_area;
411 };
412 
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414 
415 struct svm_init_data {
416 	int cpu;
417 	int r;
418 };
419 
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421 
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425 
svm_msrpm_offset(u32 msr)426 static u32 svm_msrpm_offset(u32 msr)
427 {
428 	u32 offset;
429 	int i;
430 
431 	for (i = 0; i < NUM_MSR_MAPS; i++) {
432 		if (msr < msrpm_ranges[i] ||
433 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434 			continue;
435 
436 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438 
439 		/* Now we have the u8 offset - but need the u32 offset */
440 		return offset / 4;
441 	}
442 
443 	/* MSR not in any range */
444 	return MSR_INVALID;
445 }
446 
447 #define MAX_INST_SIZE 15
448 
clgi(void)449 static inline void clgi(void)
450 {
451 	asm volatile (__ex(SVM_CLGI));
452 }
453 
stgi(void)454 static inline void stgi(void)
455 {
456 	asm volatile (__ex(SVM_STGI));
457 }
458 
invlpga(unsigned long addr,u32 asid)459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461 	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463 
get_npt_level(void)464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467 	return PT64_ROOT_LEVEL;
468 #else
469 	return PT32E_ROOT_LEVEL;
470 #endif
471 }
472 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475 	vcpu->arch.efer = efer;
476 	if (!npt_enabled && !(efer & EFER_LMA))
477 		efer &= ~EFER_LME;
478 
479 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482 
is_external_interrupt(u32 info)483 static int is_external_interrupt(u32 info)
484 {
485 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
490 {
491 	struct vcpu_svm *svm = to_svm(vcpu);
492 	u32 ret = 0;
493 
494 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496 	return ret;
497 }
498 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501 	struct vcpu_svm *svm = to_svm(vcpu);
502 
503 	if (mask == 0)
504 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505 	else
506 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507 
508 }
509 
skip_emulated_instruction(struct kvm_vcpu * vcpu)510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512 	struct vcpu_svm *svm = to_svm(vcpu);
513 
514 	if (svm->vmcb->control.next_rip != 0) {
515 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
516 		svm->next_rip = svm->vmcb->control.next_rip;
517 	}
518 
519 	if (!svm->next_rip) {
520 		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
521 				EMULATE_DONE)
522 			printk(KERN_DEBUG "%s: NOP\n", __func__);
523 		return;
524 	}
525 	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
526 		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
527 		       __func__, kvm_rip_read(vcpu), svm->next_rip);
528 
529 	kvm_rip_write(vcpu, svm->next_rip);
530 	svm_set_interrupt_shadow(vcpu, 0);
531 }
532 
svm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)533 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
534 				bool has_error_code, u32 error_code,
535 				bool reinject)
536 {
537 	struct vcpu_svm *svm = to_svm(vcpu);
538 
539 	/*
540 	 * If we are within a nested VM we'd better #VMEXIT and let the guest
541 	 * handle the exception
542 	 */
543 	if (!reinject &&
544 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
545 		return;
546 
547 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
548 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
549 
550 		/*
551 		 * For guest debugging where we have to reinject #BP if some
552 		 * INT3 is guest-owned:
553 		 * Emulate nRIP by moving RIP forward. Will fail if injection
554 		 * raises a fault that is not intercepted. Still better than
555 		 * failing in all cases.
556 		 */
557 		skip_emulated_instruction(&svm->vcpu);
558 		rip = kvm_rip_read(&svm->vcpu);
559 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
560 		svm->int3_injected = rip - old_rip;
561 	}
562 
563 	svm->vmcb->control.event_inj = nr
564 		| SVM_EVTINJ_VALID
565 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
566 		| SVM_EVTINJ_TYPE_EXEPT;
567 	svm->vmcb->control.event_inj_err = error_code;
568 }
569 
svm_init_erratum_383(void)570 static void svm_init_erratum_383(void)
571 {
572 	u32 low, high;
573 	int err;
574 	u64 val;
575 
576 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
577 		return;
578 
579 	/* Use _safe variants to not break nested virtualization */
580 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
581 	if (err)
582 		return;
583 
584 	val |= (1ULL << 47);
585 
586 	low  = lower_32_bits(val);
587 	high = upper_32_bits(val);
588 
589 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
590 
591 	erratum_383_found = true;
592 }
593 
svm_init_osvw(struct kvm_vcpu * vcpu)594 static void svm_init_osvw(struct kvm_vcpu *vcpu)
595 {
596 	/*
597 	 * Guests should see errata 400 and 415 as fixed (assuming that
598 	 * HLT and IO instructions are intercepted).
599 	 */
600 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
601 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
602 
603 	/*
604 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
605 	 * all osvw.status bits inside that length, including bit 0 (which is
606 	 * reserved for erratum 298), are valid. However, if host processor's
607 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
608 	 * be conservative here and therefore we tell the guest that erratum 298
609 	 * is present (because we really don't know).
610 	 */
611 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
612 		vcpu->arch.osvw.status |= 1;
613 }
614 
has_svm(void)615 static int has_svm(void)
616 {
617 	const char *msg;
618 
619 	if (!cpu_has_svm(&msg)) {
620 		printk(KERN_INFO "has_svm: %s\n", msg);
621 		return 0;
622 	}
623 
624 	return 1;
625 }
626 
svm_hardware_disable(void)627 static void svm_hardware_disable(void)
628 {
629 	/* Make sure we clean up behind us */
630 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
631 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
632 
633 	cpu_svm_disable();
634 
635 	amd_pmu_disable_virt();
636 }
637 
svm_hardware_enable(void)638 static int svm_hardware_enable(void)
639 {
640 
641 	struct svm_cpu_data *sd;
642 	uint64_t efer;
643 	struct desc_ptr gdt_descr;
644 	struct desc_struct *gdt;
645 	int me = raw_smp_processor_id();
646 
647 	rdmsrl(MSR_EFER, efer);
648 	if (efer & EFER_SVME)
649 		return -EBUSY;
650 
651 	if (!has_svm()) {
652 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
653 		return -EINVAL;
654 	}
655 	sd = per_cpu(svm_data, me);
656 	if (!sd) {
657 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
658 		return -EINVAL;
659 	}
660 
661 	sd->asid_generation = 1;
662 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
663 	sd->next_asid = sd->max_asid + 1;
664 
665 	native_store_gdt(&gdt_descr);
666 	gdt = (struct desc_struct *)gdt_descr.address;
667 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
668 
669 	wrmsrl(MSR_EFER, efer | EFER_SVME);
670 
671 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
672 
673 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
674 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
675 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
676 	}
677 
678 
679 	/*
680 	 * Get OSVW bits.
681 	 *
682 	 * Note that it is possible to have a system with mixed processor
683 	 * revisions and therefore different OSVW bits. If bits are not the same
684 	 * on different processors then choose the worst case (i.e. if erratum
685 	 * is present on one processor and not on another then assume that the
686 	 * erratum is present everywhere).
687 	 */
688 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
689 		uint64_t len, status = 0;
690 		int err;
691 
692 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
693 		if (!err)
694 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
695 						      &err);
696 
697 		if (err)
698 			osvw_status = osvw_len = 0;
699 		else {
700 			if (len < osvw_len)
701 				osvw_len = len;
702 			osvw_status |= status;
703 			osvw_status &= (1ULL << osvw_len) - 1;
704 		}
705 	} else
706 		osvw_status = osvw_len = 0;
707 
708 	svm_init_erratum_383();
709 
710 	amd_pmu_enable_virt();
711 
712 	return 0;
713 }
714 
svm_cpu_uninit(int cpu)715 static void svm_cpu_uninit(int cpu)
716 {
717 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
718 
719 	if (!sd)
720 		return;
721 
722 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
723 	__free_page(sd->save_area);
724 	kfree(sd);
725 }
726 
svm_cpu_init(int cpu)727 static int svm_cpu_init(int cpu)
728 {
729 	struct svm_cpu_data *sd;
730 	int r;
731 
732 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
733 	if (!sd)
734 		return -ENOMEM;
735 	sd->cpu = cpu;
736 	sd->save_area = alloc_page(GFP_KERNEL);
737 	r = -ENOMEM;
738 	if (!sd->save_area)
739 		goto err_1;
740 
741 	per_cpu(svm_data, cpu) = sd;
742 
743 	return 0;
744 
745 err_1:
746 	kfree(sd);
747 	return r;
748 
749 }
750 
valid_msr_intercept(u32 index)751 static bool valid_msr_intercept(u32 index)
752 {
753 	int i;
754 
755 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
756 		if (direct_access_msrs[i].index == index)
757 			return true;
758 
759 	return false;
760 }
761 
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)762 static void set_msr_interception(u32 *msrpm, unsigned msr,
763 				 int read, int write)
764 {
765 	u8 bit_read, bit_write;
766 	unsigned long tmp;
767 	u32 offset;
768 
769 	/*
770 	 * If this warning triggers extend the direct_access_msrs list at the
771 	 * beginning of the file
772 	 */
773 	WARN_ON(!valid_msr_intercept(msr));
774 
775 	offset    = svm_msrpm_offset(msr);
776 	bit_read  = 2 * (msr & 0x0f);
777 	bit_write = 2 * (msr & 0x0f) + 1;
778 	tmp       = msrpm[offset];
779 
780 	BUG_ON(offset == MSR_INVALID);
781 
782 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
783 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
784 
785 	msrpm[offset] = tmp;
786 }
787 
svm_vcpu_init_msrpm(u32 * msrpm)788 static void svm_vcpu_init_msrpm(u32 *msrpm)
789 {
790 	int i;
791 
792 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
793 
794 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
795 		if (!direct_access_msrs[i].always)
796 			continue;
797 
798 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
799 	}
800 }
801 
add_msr_offset(u32 offset)802 static void add_msr_offset(u32 offset)
803 {
804 	int i;
805 
806 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
807 
808 		/* Offset already in list? */
809 		if (msrpm_offsets[i] == offset)
810 			return;
811 
812 		/* Slot used by another offset? */
813 		if (msrpm_offsets[i] != MSR_INVALID)
814 			continue;
815 
816 		/* Add offset to list */
817 		msrpm_offsets[i] = offset;
818 
819 		return;
820 	}
821 
822 	/*
823 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
824 	 * increase MSRPM_OFFSETS in this case.
825 	 */
826 	BUG();
827 }
828 
init_msrpm_offsets(void)829 static void init_msrpm_offsets(void)
830 {
831 	int i;
832 
833 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
834 
835 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
836 		u32 offset;
837 
838 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
839 		BUG_ON(offset == MSR_INVALID);
840 
841 		add_msr_offset(offset);
842 	}
843 }
844 
svm_enable_lbrv(struct vcpu_svm * svm)845 static void svm_enable_lbrv(struct vcpu_svm *svm)
846 {
847 	u32 *msrpm = svm->msrpm;
848 
849 	svm->vmcb->control.lbr_ctl = 1;
850 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
851 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
852 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
853 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
854 }
855 
svm_disable_lbrv(struct vcpu_svm * svm)856 static void svm_disable_lbrv(struct vcpu_svm *svm)
857 {
858 	u32 *msrpm = svm->msrpm;
859 
860 	svm->vmcb->control.lbr_ctl = 0;
861 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
862 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
863 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
864 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
865 }
866 
svm_hardware_setup(void)867 static __init int svm_hardware_setup(void)
868 {
869 	int cpu;
870 	struct page *iopm_pages;
871 	void *iopm_va;
872 	int r;
873 
874 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
875 
876 	if (!iopm_pages)
877 		return -ENOMEM;
878 
879 	iopm_va = page_address(iopm_pages);
880 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
881 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
882 
883 	init_msrpm_offsets();
884 
885 	if (boot_cpu_has(X86_FEATURE_NX))
886 		kvm_enable_efer_bits(EFER_NX);
887 
888 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
889 		kvm_enable_efer_bits(EFER_FFXSR);
890 
891 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
892 		u64 max;
893 
894 		kvm_has_tsc_control = true;
895 
896 		/*
897 		 * Make sure the user can only configure tsc_khz values that
898 		 * fit into a signed integer.
899 		 * A min value is not calculated needed because it will always
900 		 * be 1 on all machines and a value of 0 is used to disable
901 		 * tsc-scaling for the vcpu.
902 		 */
903 		max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
904 
905 		kvm_max_guest_tsc_khz = max;
906 	}
907 
908 	if (nested) {
909 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
910 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
911 	}
912 
913 	for_each_possible_cpu(cpu) {
914 		r = svm_cpu_init(cpu);
915 		if (r)
916 			goto err;
917 	}
918 
919 	if (!boot_cpu_has(X86_FEATURE_NPT))
920 		npt_enabled = false;
921 
922 	if (npt_enabled && !npt) {
923 		printk(KERN_INFO "kvm: Nested Paging disabled\n");
924 		npt_enabled = false;
925 	}
926 
927 	if (npt_enabled) {
928 		printk(KERN_INFO "kvm: Nested Paging enabled\n");
929 		kvm_enable_tdp();
930 	} else
931 		kvm_disable_tdp();
932 
933 	return 0;
934 
935 err:
936 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
937 	iopm_base = 0;
938 	return r;
939 }
940 
svm_hardware_unsetup(void)941 static __exit void svm_hardware_unsetup(void)
942 {
943 	int cpu;
944 
945 	for_each_possible_cpu(cpu)
946 		svm_cpu_uninit(cpu);
947 
948 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
949 	iopm_base = 0;
950 }
951 
init_seg(struct vmcb_seg * seg)952 static void init_seg(struct vmcb_seg *seg)
953 {
954 	seg->selector = 0;
955 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
956 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
957 	seg->limit = 0xffff;
958 	seg->base = 0;
959 }
960 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)961 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
962 {
963 	seg->selector = 0;
964 	seg->attrib = SVM_SELECTOR_P_MASK | type;
965 	seg->limit = 0xffff;
966 	seg->base = 0;
967 }
968 
__scale_tsc(u64 ratio,u64 tsc)969 static u64 __scale_tsc(u64 ratio, u64 tsc)
970 {
971 	u64 mult, frac, _tsc;
972 
973 	mult  = ratio >> 32;
974 	frac  = ratio & ((1ULL << 32) - 1);
975 
976 	_tsc  = tsc;
977 	_tsc *= mult;
978 	_tsc += (tsc >> 32) * frac;
979 	_tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
980 
981 	return _tsc;
982 }
983 
svm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)984 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
985 {
986 	struct vcpu_svm *svm = to_svm(vcpu);
987 	u64 _tsc = tsc;
988 
989 	if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
990 		_tsc = __scale_tsc(svm->tsc_ratio, tsc);
991 
992 	return _tsc;
993 }
994 
svm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)995 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
996 {
997 	struct vcpu_svm *svm = to_svm(vcpu);
998 	u64 ratio;
999 	u64 khz;
1000 
1001 	/* Guest TSC same frequency as host TSC? */
1002 	if (!scale) {
1003 		svm->tsc_ratio = TSC_RATIO_DEFAULT;
1004 		return;
1005 	}
1006 
1007 	/* TSC scaling supported? */
1008 	if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1009 		if (user_tsc_khz > tsc_khz) {
1010 			vcpu->arch.tsc_catchup = 1;
1011 			vcpu->arch.tsc_always_catchup = 1;
1012 		} else
1013 			WARN(1, "user requested TSC rate below hardware speed\n");
1014 		return;
1015 	}
1016 
1017 	khz = user_tsc_khz;
1018 
1019 	/* TSC scaling required  - calculate ratio */
1020 	ratio = khz << 32;
1021 	do_div(ratio, tsc_khz);
1022 
1023 	if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1024 		WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1025 				user_tsc_khz);
1026 		return;
1027 	}
1028 	svm->tsc_ratio             = ratio;
1029 }
1030 
svm_read_tsc_offset(struct kvm_vcpu * vcpu)1031 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1032 {
1033 	struct vcpu_svm *svm = to_svm(vcpu);
1034 
1035 	return svm->vmcb->control.tsc_offset;
1036 }
1037 
svm_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1038 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1039 {
1040 	struct vcpu_svm *svm = to_svm(vcpu);
1041 	u64 g_tsc_offset = 0;
1042 
1043 	if (is_guest_mode(vcpu)) {
1044 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1045 			       svm->nested.hsave->control.tsc_offset;
1046 		svm->nested.hsave->control.tsc_offset = offset;
1047 	} else
1048 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1049 					   svm->vmcb->control.tsc_offset,
1050 					   offset);
1051 
1052 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1053 
1054 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1055 }
1056 
svm_adjust_tsc_offset(struct kvm_vcpu * vcpu,s64 adjustment,bool host)1057 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1058 {
1059 	struct vcpu_svm *svm = to_svm(vcpu);
1060 
1061 	if (host) {
1062 		if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1063 			WARN_ON(adjustment < 0);
1064 		adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1065 	}
1066 
1067 	svm->vmcb->control.tsc_offset += adjustment;
1068 	if (is_guest_mode(vcpu))
1069 		svm->nested.hsave->control.tsc_offset += adjustment;
1070 	else
1071 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1072 				     svm->vmcb->control.tsc_offset - adjustment,
1073 				     svm->vmcb->control.tsc_offset);
1074 
1075 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1076 }
1077 
svm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1078 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1079 {
1080 	u64 tsc;
1081 
1082 	tsc = svm_scale_tsc(vcpu, native_read_tsc());
1083 
1084 	return target_tsc - tsc;
1085 }
1086 
init_vmcb(struct vcpu_svm * svm)1087 static void init_vmcb(struct vcpu_svm *svm)
1088 {
1089 	struct vmcb_control_area *control = &svm->vmcb->control;
1090 	struct vmcb_save_area *save = &svm->vmcb->save;
1091 
1092 	svm->vcpu.fpu_active = 1;
1093 	svm->vcpu.arch.hflags = 0;
1094 
1095 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1096 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1097 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1098 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1099 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1100 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1101 	set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1102 
1103 	set_dr_intercepts(svm);
1104 
1105 	set_exception_intercept(svm, PF_VECTOR);
1106 	set_exception_intercept(svm, UD_VECTOR);
1107 	set_exception_intercept(svm, MC_VECTOR);
1108 	set_exception_intercept(svm, AC_VECTOR);
1109 	set_exception_intercept(svm, DB_VECTOR);
1110 
1111 	set_intercept(svm, INTERCEPT_INTR);
1112 	set_intercept(svm, INTERCEPT_NMI);
1113 	set_intercept(svm, INTERCEPT_SMI);
1114 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1115 	set_intercept(svm, INTERCEPT_RDPMC);
1116 	set_intercept(svm, INTERCEPT_CPUID);
1117 	set_intercept(svm, INTERCEPT_INVD);
1118 	set_intercept(svm, INTERCEPT_HLT);
1119 	set_intercept(svm, INTERCEPT_INVLPG);
1120 	set_intercept(svm, INTERCEPT_INVLPGA);
1121 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1122 	set_intercept(svm, INTERCEPT_MSR_PROT);
1123 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1124 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1125 	set_intercept(svm, INTERCEPT_VMRUN);
1126 	set_intercept(svm, INTERCEPT_VMMCALL);
1127 	set_intercept(svm, INTERCEPT_VMLOAD);
1128 	set_intercept(svm, INTERCEPT_VMSAVE);
1129 	set_intercept(svm, INTERCEPT_STGI);
1130 	set_intercept(svm, INTERCEPT_CLGI);
1131 	set_intercept(svm, INTERCEPT_SKINIT);
1132 	set_intercept(svm, INTERCEPT_WBINVD);
1133 	set_intercept(svm, INTERCEPT_MONITOR);
1134 	set_intercept(svm, INTERCEPT_MWAIT);
1135 	set_intercept(svm, INTERCEPT_XSETBV);
1136 
1137 	control->iopm_base_pa = iopm_base;
1138 	control->msrpm_base_pa = __pa(svm->msrpm);
1139 	control->int_ctl = V_INTR_MASKING_MASK;
1140 
1141 	init_seg(&save->es);
1142 	init_seg(&save->ss);
1143 	init_seg(&save->ds);
1144 	init_seg(&save->fs);
1145 	init_seg(&save->gs);
1146 
1147 	save->cs.selector = 0xf000;
1148 	save->cs.base = 0xffff0000;
1149 	/* Executable/Readable Code Segment */
1150 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1151 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1152 	save->cs.limit = 0xffff;
1153 
1154 	save->gdtr.limit = 0xffff;
1155 	save->idtr.limit = 0xffff;
1156 
1157 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1158 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1159 
1160 	svm_set_efer(&svm->vcpu, 0);
1161 	save->dr6 = 0xffff0ff0;
1162 	kvm_set_rflags(&svm->vcpu, 2);
1163 	save->rip = 0x0000fff0;
1164 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1165 
1166 	/*
1167 	 * This is the guest-visible cr0 value.
1168 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1169 	 */
1170 	svm->vcpu.arch.cr0 = 0;
1171 	(void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1172 
1173 	save->cr4 = X86_CR4_PAE;
1174 	/* rdx = ?? */
1175 
1176 	if (npt_enabled) {
1177 		/* Setup VMCB for Nested Paging */
1178 		control->nested_ctl = 1;
1179 		clr_intercept(svm, INTERCEPT_INVLPG);
1180 		clr_exception_intercept(svm, PF_VECTOR);
1181 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1182 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1183 		save->g_pat = 0x0007040600070406ULL;
1184 		save->cr3 = 0;
1185 		save->cr4 = 0;
1186 	}
1187 	svm->asid_generation = 0;
1188 
1189 	svm->nested.vmcb = 0;
1190 	svm->vcpu.arch.hflags = 0;
1191 
1192 	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1193 		control->pause_filter_count = 3000;
1194 		set_intercept(svm, INTERCEPT_PAUSE);
1195 	}
1196 
1197 	mark_all_dirty(svm->vmcb);
1198 
1199 	enable_gif(svm);
1200 }
1201 
svm_vcpu_reset(struct kvm_vcpu * vcpu)1202 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1203 {
1204 	struct vcpu_svm *svm = to_svm(vcpu);
1205 	u32 dummy;
1206 	u32 eax = 1;
1207 
1208 	init_vmcb(svm);
1209 
1210 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1211 	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1212 }
1213 
svm_create_vcpu(struct kvm * kvm,unsigned int id)1214 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1215 {
1216 	struct vcpu_svm *svm;
1217 	struct page *page;
1218 	struct page *msrpm_pages;
1219 	struct page *hsave_page;
1220 	struct page *nested_msrpm_pages;
1221 	int err;
1222 
1223 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1224 	if (!svm) {
1225 		err = -ENOMEM;
1226 		goto out;
1227 	}
1228 
1229 	svm->tsc_ratio = TSC_RATIO_DEFAULT;
1230 
1231 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1232 	if (err)
1233 		goto free_svm;
1234 
1235 	err = -ENOMEM;
1236 	page = alloc_page(GFP_KERNEL);
1237 	if (!page)
1238 		goto uninit;
1239 
1240 	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1241 	if (!msrpm_pages)
1242 		goto free_page1;
1243 
1244 	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1245 	if (!nested_msrpm_pages)
1246 		goto free_page2;
1247 
1248 	hsave_page = alloc_page(GFP_KERNEL);
1249 	if (!hsave_page)
1250 		goto free_page3;
1251 
1252 	svm->nested.hsave = page_address(hsave_page);
1253 
1254 	svm->msrpm = page_address(msrpm_pages);
1255 	svm_vcpu_init_msrpm(svm->msrpm);
1256 
1257 	svm->nested.msrpm = page_address(nested_msrpm_pages);
1258 	svm_vcpu_init_msrpm(svm->nested.msrpm);
1259 
1260 	svm->vmcb = page_address(page);
1261 	clear_page(svm->vmcb);
1262 	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1263 	svm->asid_generation = 0;
1264 	init_vmcb(svm);
1265 
1266 	svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1267 				   MSR_IA32_APICBASE_ENABLE;
1268 	if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1269 		svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1270 
1271 	svm_init_osvw(&svm->vcpu);
1272 
1273 	return &svm->vcpu;
1274 
1275 free_page3:
1276 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1277 free_page2:
1278 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1279 free_page1:
1280 	__free_page(page);
1281 uninit:
1282 	kvm_vcpu_uninit(&svm->vcpu);
1283 free_svm:
1284 	kmem_cache_free(kvm_vcpu_cache, svm);
1285 out:
1286 	return ERR_PTR(err);
1287 }
1288 
svm_free_vcpu(struct kvm_vcpu * vcpu)1289 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1290 {
1291 	struct vcpu_svm *svm = to_svm(vcpu);
1292 
1293 	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1294 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1295 	__free_page(virt_to_page(svm->nested.hsave));
1296 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1297 	kvm_vcpu_uninit(vcpu);
1298 	kmem_cache_free(kvm_vcpu_cache, svm);
1299 }
1300 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1301 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303 	struct vcpu_svm *svm = to_svm(vcpu);
1304 	int i;
1305 
1306 	if (unlikely(cpu != vcpu->cpu)) {
1307 		svm->asid_generation = 0;
1308 		mark_all_dirty(svm->vmcb);
1309 	}
1310 
1311 #ifdef CONFIG_X86_64
1312 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1313 #endif
1314 	savesegment(fs, svm->host.fs);
1315 	savesegment(gs, svm->host.gs);
1316 	svm->host.ldt = kvm_read_ldt();
1317 
1318 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1319 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1320 
1321 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1322 	    svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1323 		__this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1324 		wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1325 	}
1326 }
1327 
svm_vcpu_put(struct kvm_vcpu * vcpu)1328 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1329 {
1330 	struct vcpu_svm *svm = to_svm(vcpu);
1331 	int i;
1332 
1333 	++vcpu->stat.host_state_reload;
1334 	kvm_load_ldt(svm->host.ldt);
1335 #ifdef CONFIG_X86_64
1336 	loadsegment(fs, svm->host.fs);
1337 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1338 	load_gs_index(svm->host.gs);
1339 #else
1340 #ifdef CONFIG_X86_32_LAZY_GS
1341 	loadsegment(gs, svm->host.gs);
1342 #endif
1343 #endif
1344 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1345 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1346 }
1347 
svm_get_rflags(struct kvm_vcpu * vcpu)1348 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1349 {
1350 	return to_svm(vcpu)->vmcb->save.rflags;
1351 }
1352 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1353 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1354 {
1355        /*
1356         * Any change of EFLAGS.VM is accompained by a reload of SS
1357         * (caused by either a task switch or an inter-privilege IRET),
1358         * so we do not need to update the CPL here.
1359         */
1360 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1361 }
1362 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1363 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1364 {
1365 	switch (reg) {
1366 	case VCPU_EXREG_PDPTR:
1367 		BUG_ON(!npt_enabled);
1368 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1369 		break;
1370 	default:
1371 		BUG();
1372 	}
1373 }
1374 
svm_set_vintr(struct vcpu_svm * svm)1375 static void svm_set_vintr(struct vcpu_svm *svm)
1376 {
1377 	set_intercept(svm, INTERCEPT_VINTR);
1378 }
1379 
svm_clear_vintr(struct vcpu_svm * svm)1380 static void svm_clear_vintr(struct vcpu_svm *svm)
1381 {
1382 	clr_intercept(svm, INTERCEPT_VINTR);
1383 }
1384 
svm_seg(struct kvm_vcpu * vcpu,int seg)1385 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1386 {
1387 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1388 
1389 	switch (seg) {
1390 	case VCPU_SREG_CS: return &save->cs;
1391 	case VCPU_SREG_DS: return &save->ds;
1392 	case VCPU_SREG_ES: return &save->es;
1393 	case VCPU_SREG_FS: return &save->fs;
1394 	case VCPU_SREG_GS: return &save->gs;
1395 	case VCPU_SREG_SS: return &save->ss;
1396 	case VCPU_SREG_TR: return &save->tr;
1397 	case VCPU_SREG_LDTR: return &save->ldtr;
1398 	}
1399 	BUG();
1400 	return NULL;
1401 }
1402 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1403 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1404 {
1405 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1406 
1407 	return s->base;
1408 }
1409 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1410 static void svm_get_segment(struct kvm_vcpu *vcpu,
1411 			    struct kvm_segment *var, int seg)
1412 {
1413 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1414 
1415 	var->base = s->base;
1416 	var->limit = s->limit;
1417 	var->selector = s->selector;
1418 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1419 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1420 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1421 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1422 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1423 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1424 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1425 
1426 	/*
1427 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1428 	 * However, the SVM spec states that the G bit is not observed by the
1429 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1430 	 * So let's synthesize a legal G bit for all segments, this helps
1431 	 * running KVM nested. It also helps cross-vendor migration, because
1432 	 * Intel's vmentry has a check on the 'G' bit.
1433 	 */
1434 	var->g = s->limit > 0xfffff;
1435 
1436 	/*
1437 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1438 	 * for cross vendor migration purposes by "not present"
1439 	 */
1440 	var->unusable = !var->present || (var->type == 0);
1441 
1442 	switch (seg) {
1443 	case VCPU_SREG_TR:
1444 		/*
1445 		 * Work around a bug where the busy flag in the tr selector
1446 		 * isn't exposed
1447 		 */
1448 		var->type |= 0x2;
1449 		break;
1450 	case VCPU_SREG_DS:
1451 	case VCPU_SREG_ES:
1452 	case VCPU_SREG_FS:
1453 	case VCPU_SREG_GS:
1454 		/*
1455 		 * The accessed bit must always be set in the segment
1456 		 * descriptor cache, although it can be cleared in the
1457 		 * descriptor, the cached bit always remains at 1. Since
1458 		 * Intel has a check on this, set it here to support
1459 		 * cross-vendor migration.
1460 		 */
1461 		if (!var->unusable)
1462 			var->type |= 0x1;
1463 		break;
1464 	case VCPU_SREG_SS:
1465 		/*
1466 		 * On AMD CPUs sometimes the DB bit in the segment
1467 		 * descriptor is left as 1, although the whole segment has
1468 		 * been made unusable. Clear it here to pass an Intel VMX
1469 		 * entry check when cross vendor migrating.
1470 		 */
1471 		if (var->unusable)
1472 			var->db = 0;
1473 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1474 		break;
1475 	}
1476 }
1477 
svm_get_cpl(struct kvm_vcpu * vcpu)1478 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1479 {
1480 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1481 
1482 	return save->cpl;
1483 }
1484 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1485 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1486 {
1487 	struct vcpu_svm *svm = to_svm(vcpu);
1488 
1489 	dt->size = svm->vmcb->save.idtr.limit;
1490 	dt->address = svm->vmcb->save.idtr.base;
1491 }
1492 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1493 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1494 {
1495 	struct vcpu_svm *svm = to_svm(vcpu);
1496 
1497 	svm->vmcb->save.idtr.limit = dt->size;
1498 	svm->vmcb->save.idtr.base = dt->address ;
1499 	mark_dirty(svm->vmcb, VMCB_DT);
1500 }
1501 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1502 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504 	struct vcpu_svm *svm = to_svm(vcpu);
1505 
1506 	dt->size = svm->vmcb->save.gdtr.limit;
1507 	dt->address = svm->vmcb->save.gdtr.base;
1508 }
1509 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1510 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1511 {
1512 	struct vcpu_svm *svm = to_svm(vcpu);
1513 
1514 	svm->vmcb->save.gdtr.limit = dt->size;
1515 	svm->vmcb->save.gdtr.base = dt->address ;
1516 	mark_dirty(svm->vmcb, VMCB_DT);
1517 }
1518 
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)1519 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1520 {
1521 }
1522 
svm_decache_cr3(struct kvm_vcpu * vcpu)1523 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1524 {
1525 }
1526 
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)1527 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1528 {
1529 }
1530 
update_cr0_intercept(struct vcpu_svm * svm)1531 static void update_cr0_intercept(struct vcpu_svm *svm)
1532 {
1533 	ulong gcr0 = svm->vcpu.arch.cr0;
1534 	u64 *hcr0 = &svm->vmcb->save.cr0;
1535 
1536 	if (!svm->vcpu.fpu_active)
1537 		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
1538 	else
1539 		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1540 			| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1541 
1542 	mark_dirty(svm->vmcb, VMCB_CR);
1543 
1544 	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1545 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1546 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1547 	} else {
1548 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1549 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1550 	}
1551 }
1552 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1553 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1554 {
1555 	struct vcpu_svm *svm = to_svm(vcpu);
1556 
1557 #ifdef CONFIG_X86_64
1558 	if (vcpu->arch.efer & EFER_LME) {
1559 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1560 			vcpu->arch.efer |= EFER_LMA;
1561 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1562 		}
1563 
1564 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1565 			vcpu->arch.efer &= ~EFER_LMA;
1566 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1567 		}
1568 	}
1569 #endif
1570 	vcpu->arch.cr0 = cr0;
1571 
1572 	if (!npt_enabled)
1573 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1574 
1575 	if (!vcpu->fpu_active)
1576 		cr0 |= X86_CR0_TS;
1577 	/*
1578 	 * re-enable caching here because the QEMU bios
1579 	 * does not do it - this results in some delay at
1580 	 * reboot
1581 	 */
1582 	cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1583 	svm->vmcb->save.cr0 = cr0;
1584 	mark_dirty(svm->vmcb, VMCB_CR);
1585 	update_cr0_intercept(svm);
1586 }
1587 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1588 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1589 {
1590 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1591 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1592 
1593 	if (cr4 & X86_CR4_VMXE)
1594 		return 1;
1595 
1596 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1597 		svm_flush_tlb(vcpu);
1598 
1599 	vcpu->arch.cr4 = cr4;
1600 	if (!npt_enabled)
1601 		cr4 |= X86_CR4_PAE;
1602 	cr4 |= host_cr4_mce;
1603 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1604 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1605 	return 0;
1606 }
1607 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1608 static void svm_set_segment(struct kvm_vcpu *vcpu,
1609 			    struct kvm_segment *var, int seg)
1610 {
1611 	struct vcpu_svm *svm = to_svm(vcpu);
1612 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1613 
1614 	s->base = var->base;
1615 	s->limit = var->limit;
1616 	s->selector = var->selector;
1617 	if (var->unusable)
1618 		s->attrib = 0;
1619 	else {
1620 		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1621 		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1622 		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1623 		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1624 		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1625 		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1626 		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1627 		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1628 	}
1629 
1630 	/*
1631 	 * This is always accurate, except if SYSRET returned to a segment
1632 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1633 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1634 	 * would entail passing the CPL to userspace and back.
1635 	 */
1636 	if (seg == VCPU_SREG_SS)
1637 		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1638 
1639 	mark_dirty(svm->vmcb, VMCB_SEG);
1640 }
1641 
update_bp_intercept(struct kvm_vcpu * vcpu)1642 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1643 {
1644 	struct vcpu_svm *svm = to_svm(vcpu);
1645 
1646 	clr_exception_intercept(svm, BP_VECTOR);
1647 
1648 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1649 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1650 			set_exception_intercept(svm, BP_VECTOR);
1651 	} else
1652 		vcpu->guest_debug = 0;
1653 }
1654 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1655 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1656 {
1657 	if (sd->next_asid > sd->max_asid) {
1658 		++sd->asid_generation;
1659 		sd->next_asid = 1;
1660 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1661 	}
1662 
1663 	svm->asid_generation = sd->asid_generation;
1664 	svm->vmcb->control.asid = sd->next_asid++;
1665 
1666 	mark_dirty(svm->vmcb, VMCB_ASID);
1667 }
1668 
svm_get_dr6(struct kvm_vcpu * vcpu)1669 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1670 {
1671 	return to_svm(vcpu)->vmcb->save.dr6;
1672 }
1673 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)1674 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1675 {
1676 	struct vcpu_svm *svm = to_svm(vcpu);
1677 
1678 	svm->vmcb->save.dr6 = value;
1679 	mark_dirty(svm->vmcb, VMCB_DR);
1680 }
1681 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1682 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1683 {
1684 	struct vcpu_svm *svm = to_svm(vcpu);
1685 
1686 	get_debugreg(vcpu->arch.db[0], 0);
1687 	get_debugreg(vcpu->arch.db[1], 1);
1688 	get_debugreg(vcpu->arch.db[2], 2);
1689 	get_debugreg(vcpu->arch.db[3], 3);
1690 	vcpu->arch.dr6 = svm_get_dr6(vcpu);
1691 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1692 
1693 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1694 	set_dr_intercepts(svm);
1695 }
1696 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1697 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1698 {
1699 	struct vcpu_svm *svm = to_svm(vcpu);
1700 
1701 	svm->vmcb->save.dr7 = value;
1702 	mark_dirty(svm->vmcb, VMCB_DR);
1703 }
1704 
pf_interception(struct vcpu_svm * svm)1705 static int pf_interception(struct vcpu_svm *svm)
1706 {
1707 	u64 fault_address = svm->vmcb->control.exit_info_2;
1708 	u32 error_code;
1709 	int r = 1;
1710 
1711 	switch (svm->apf_reason) {
1712 	default:
1713 		error_code = svm->vmcb->control.exit_info_1;
1714 
1715 		trace_kvm_page_fault(fault_address, error_code);
1716 		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1717 			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1718 		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1719 			svm->vmcb->control.insn_bytes,
1720 			svm->vmcb->control.insn_len);
1721 		break;
1722 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
1723 		svm->apf_reason = 0;
1724 		local_irq_disable();
1725 		kvm_async_pf_task_wait(fault_address);
1726 		local_irq_enable();
1727 		break;
1728 	case KVM_PV_REASON_PAGE_READY:
1729 		svm->apf_reason = 0;
1730 		local_irq_disable();
1731 		kvm_async_pf_task_wake(fault_address);
1732 		local_irq_enable();
1733 		break;
1734 	}
1735 	return r;
1736 }
1737 
db_interception(struct vcpu_svm * svm)1738 static int db_interception(struct vcpu_svm *svm)
1739 {
1740 	struct kvm_run *kvm_run = svm->vcpu.run;
1741 
1742 	if (!(svm->vcpu.guest_debug &
1743 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1744 		!svm->nmi_singlestep) {
1745 		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1746 		return 1;
1747 	}
1748 
1749 	if (svm->nmi_singlestep) {
1750 		svm->nmi_singlestep = false;
1751 		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1752 			svm->vmcb->save.rflags &=
1753 				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1754 	}
1755 
1756 	if (svm->vcpu.guest_debug &
1757 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1758 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1759 		kvm_run->debug.arch.pc =
1760 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1761 		kvm_run->debug.arch.exception = DB_VECTOR;
1762 		return 0;
1763 	}
1764 
1765 	return 1;
1766 }
1767 
bp_interception(struct vcpu_svm * svm)1768 static int bp_interception(struct vcpu_svm *svm)
1769 {
1770 	struct kvm_run *kvm_run = svm->vcpu.run;
1771 
1772 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1773 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1774 	kvm_run->debug.arch.exception = BP_VECTOR;
1775 	return 0;
1776 }
1777 
ud_interception(struct vcpu_svm * svm)1778 static int ud_interception(struct vcpu_svm *svm)
1779 {
1780 	int er;
1781 
1782 	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1783 	if (er != EMULATE_DONE)
1784 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1785 	return 1;
1786 }
1787 
ac_interception(struct vcpu_svm * svm)1788 static int ac_interception(struct vcpu_svm *svm)
1789 {
1790 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1791 	return 1;
1792 }
1793 
svm_fpu_activate(struct kvm_vcpu * vcpu)1794 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1795 {
1796 	struct vcpu_svm *svm = to_svm(vcpu);
1797 
1798 	clr_exception_intercept(svm, NM_VECTOR);
1799 
1800 	svm->vcpu.fpu_active = 1;
1801 	update_cr0_intercept(svm);
1802 }
1803 
nm_interception(struct vcpu_svm * svm)1804 static int nm_interception(struct vcpu_svm *svm)
1805 {
1806 	svm_fpu_activate(&svm->vcpu);
1807 	return 1;
1808 }
1809 
is_erratum_383(void)1810 static bool is_erratum_383(void)
1811 {
1812 	int err, i;
1813 	u64 value;
1814 
1815 	if (!erratum_383_found)
1816 		return false;
1817 
1818 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1819 	if (err)
1820 		return false;
1821 
1822 	/* Bit 62 may or may not be set for this mce */
1823 	value &= ~(1ULL << 62);
1824 
1825 	if (value != 0xb600000000010015ULL)
1826 		return false;
1827 
1828 	/* Clear MCi_STATUS registers */
1829 	for (i = 0; i < 6; ++i)
1830 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1831 
1832 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1833 	if (!err) {
1834 		u32 low, high;
1835 
1836 		value &= ~(1ULL << 2);
1837 		low    = lower_32_bits(value);
1838 		high   = upper_32_bits(value);
1839 
1840 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1841 	}
1842 
1843 	/* Flush tlb to evict multi-match entries */
1844 	__flush_tlb_all();
1845 
1846 	return true;
1847 }
1848 
svm_handle_mce(struct vcpu_svm * svm)1849 static void svm_handle_mce(struct vcpu_svm *svm)
1850 {
1851 	if (is_erratum_383()) {
1852 		/*
1853 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1854 		 * guest.
1855 		 */
1856 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1857 
1858 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1859 
1860 		return;
1861 	}
1862 
1863 	/*
1864 	 * On an #MC intercept the MCE handler is not called automatically in
1865 	 * the host. So do it by hand here.
1866 	 */
1867 	asm volatile (
1868 		"int $0x12\n");
1869 	/* not sure if we ever come back to this point */
1870 
1871 	return;
1872 }
1873 
mc_interception(struct vcpu_svm * svm)1874 static int mc_interception(struct vcpu_svm *svm)
1875 {
1876 	return 1;
1877 }
1878 
shutdown_interception(struct vcpu_svm * svm)1879 static int shutdown_interception(struct vcpu_svm *svm)
1880 {
1881 	struct kvm_run *kvm_run = svm->vcpu.run;
1882 
1883 	/*
1884 	 * VMCB is undefined after a SHUTDOWN intercept
1885 	 * so reinitialize it.
1886 	 */
1887 	clear_page(svm->vmcb);
1888 	init_vmcb(svm);
1889 
1890 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1891 	return 0;
1892 }
1893 
io_interception(struct vcpu_svm * svm)1894 static int io_interception(struct vcpu_svm *svm)
1895 {
1896 	struct kvm_vcpu *vcpu = &svm->vcpu;
1897 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1898 	int size, in, string;
1899 	unsigned port;
1900 
1901 	++svm->vcpu.stat.io_exits;
1902 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1903 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1904 	if (string || in)
1905 		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1906 
1907 	port = io_info >> 16;
1908 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1909 	svm->next_rip = svm->vmcb->control.exit_info_2;
1910 	skip_emulated_instruction(&svm->vcpu);
1911 
1912 	return kvm_fast_pio_out(vcpu, size, port);
1913 }
1914 
nmi_interception(struct vcpu_svm * svm)1915 static int nmi_interception(struct vcpu_svm *svm)
1916 {
1917 	return 1;
1918 }
1919 
intr_interception(struct vcpu_svm * svm)1920 static int intr_interception(struct vcpu_svm *svm)
1921 {
1922 	++svm->vcpu.stat.irq_exits;
1923 	return 1;
1924 }
1925 
nop_on_interception(struct vcpu_svm * svm)1926 static int nop_on_interception(struct vcpu_svm *svm)
1927 {
1928 	return 1;
1929 }
1930 
halt_interception(struct vcpu_svm * svm)1931 static int halt_interception(struct vcpu_svm *svm)
1932 {
1933 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1934 	return kvm_emulate_halt(&svm->vcpu);
1935 }
1936 
vmmcall_interception(struct vcpu_svm * svm)1937 static int vmmcall_interception(struct vcpu_svm *svm)
1938 {
1939 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1940 	kvm_emulate_hypercall(&svm->vcpu);
1941 	return 1;
1942 }
1943 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)1944 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1945 {
1946 	struct vcpu_svm *svm = to_svm(vcpu);
1947 
1948 	return svm->nested.nested_cr3;
1949 }
1950 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)1951 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1952 {
1953 	struct vcpu_svm *svm = to_svm(vcpu);
1954 	u64 cr3 = svm->nested.nested_cr3;
1955 	u64 pdpte;
1956 	int ret;
1957 
1958 	ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1959 				  offset_in_page(cr3) + index * 8, 8);
1960 	if (ret)
1961 		return 0;
1962 	return pdpte;
1963 }
1964 
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)1965 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1966 				   unsigned long root)
1967 {
1968 	struct vcpu_svm *svm = to_svm(vcpu);
1969 
1970 	svm->vmcb->control.nested_cr3 = root;
1971 	mark_dirty(svm->vmcb, VMCB_NPT);
1972 	svm_flush_tlb(vcpu);
1973 }
1974 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)1975 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1976 				       struct x86_exception *fault)
1977 {
1978 	struct vcpu_svm *svm = to_svm(vcpu);
1979 
1980 	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1981 		/*
1982 		 * TODO: track the cause of the nested page fault, and
1983 		 * correctly fill in the high bits of exit_info_1.
1984 		 */
1985 		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1986 		svm->vmcb->control.exit_code_hi = 0;
1987 		svm->vmcb->control.exit_info_1 = (1ULL << 32);
1988 		svm->vmcb->control.exit_info_2 = fault->address;
1989 	}
1990 
1991 	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1992 	svm->vmcb->control.exit_info_1 |= fault->error_code;
1993 
1994 	/*
1995 	 * The present bit is always zero for page structure faults on real
1996 	 * hardware.
1997 	 */
1998 	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1999 		svm->vmcb->control.exit_info_1 &= ~1;
2000 
2001 	nested_svm_vmexit(svm);
2002 }
2003 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)2004 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2005 {
2006 	WARN_ON(mmu_is_nested(vcpu));
2007 	kvm_init_shadow_mmu(vcpu);
2008 	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2009 	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2010 	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2011 	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2012 	vcpu->arch.mmu.shadow_root_level = get_npt_level();
2013 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2014 }
2015 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)2016 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2017 {
2018 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2019 }
2020 
nested_svm_check_permissions(struct vcpu_svm * svm)2021 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2022 {
2023 	if (!(svm->vcpu.arch.efer & EFER_SVME)
2024 	    || !is_paging(&svm->vcpu)) {
2025 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2026 		return 1;
2027 	}
2028 
2029 	if (svm->vmcb->save.cpl) {
2030 		kvm_inject_gp(&svm->vcpu, 0);
2031 		return 1;
2032 	}
2033 
2034        return 0;
2035 }
2036 
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)2037 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2038 				      bool has_error_code, u32 error_code)
2039 {
2040 	int vmexit;
2041 
2042 	if (!is_guest_mode(&svm->vcpu))
2043 		return 0;
2044 
2045 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2046 	svm->vmcb->control.exit_code_hi = 0;
2047 	svm->vmcb->control.exit_info_1 = error_code;
2048 	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2049 
2050 	vmexit = nested_svm_intercept(svm);
2051 	if (vmexit == NESTED_EXIT_DONE)
2052 		svm->nested.exit_required = true;
2053 
2054 	return vmexit;
2055 }
2056 
2057 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)2058 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2059 {
2060 	if (!is_guest_mode(&svm->vcpu))
2061 		return true;
2062 
2063 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2064 		return true;
2065 
2066 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2067 		return false;
2068 
2069 	/*
2070 	 * if vmexit was already requested (by intercepted exception
2071 	 * for instance) do not overwrite it with "external interrupt"
2072 	 * vmexit.
2073 	 */
2074 	if (svm->nested.exit_required)
2075 		return false;
2076 
2077 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2078 	svm->vmcb->control.exit_info_1 = 0;
2079 	svm->vmcb->control.exit_info_2 = 0;
2080 
2081 	if (svm->nested.intercept & 1ULL) {
2082 		/*
2083 		 * The #vmexit can't be emulated here directly because this
2084 		 * code path runs with irqs and preemption disabled. A
2085 		 * #vmexit emulation might sleep. Only signal request for
2086 		 * the #vmexit here.
2087 		 */
2088 		svm->nested.exit_required = true;
2089 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2090 		return false;
2091 	}
2092 
2093 	return true;
2094 }
2095 
2096 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)2097 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2098 {
2099 	if (!is_guest_mode(&svm->vcpu))
2100 		return true;
2101 
2102 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2103 		return true;
2104 
2105 	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2106 	svm->nested.exit_required = true;
2107 
2108 	return false;
2109 }
2110 
nested_svm_map(struct vcpu_svm * svm,u64 gpa,struct page ** _page)2111 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2112 {
2113 	struct page *page;
2114 
2115 	might_sleep();
2116 
2117 	page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2118 	if (is_error_page(page))
2119 		goto error;
2120 
2121 	*_page = page;
2122 
2123 	return kmap(page);
2124 
2125 error:
2126 	kvm_inject_gp(&svm->vcpu, 0);
2127 
2128 	return NULL;
2129 }
2130 
nested_svm_unmap(struct page * page)2131 static void nested_svm_unmap(struct page *page)
2132 {
2133 	kunmap(page);
2134 	kvm_release_page_dirty(page);
2135 }
2136 
nested_svm_intercept_ioio(struct vcpu_svm * svm)2137 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2138 {
2139 	unsigned port, size, iopm_len;
2140 	u16 val, mask;
2141 	u8 start_bit;
2142 	u64 gpa;
2143 
2144 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2145 		return NESTED_EXIT_HOST;
2146 
2147 	port = svm->vmcb->control.exit_info_1 >> 16;
2148 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2149 		SVM_IOIO_SIZE_SHIFT;
2150 	gpa  = svm->nested.vmcb_iopm + (port / 8);
2151 	start_bit = port % 8;
2152 	iopm_len = (start_bit + size > 8) ? 2 : 1;
2153 	mask = (0xf >> (4 - size)) << start_bit;
2154 	val = 0;
2155 
2156 	if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
2157 		return NESTED_EXIT_DONE;
2158 
2159 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2160 }
2161 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)2162 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2163 {
2164 	u32 offset, msr, value;
2165 	int write, mask;
2166 
2167 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2168 		return NESTED_EXIT_HOST;
2169 
2170 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2171 	offset = svm_msrpm_offset(msr);
2172 	write  = svm->vmcb->control.exit_info_1 & 1;
2173 	mask   = 1 << ((2 * (msr & 0xf)) + write);
2174 
2175 	if (offset == MSR_INVALID)
2176 		return NESTED_EXIT_DONE;
2177 
2178 	/* Offset is in 32 bit units but need in 8 bit units */
2179 	offset *= 4;
2180 
2181 	if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2182 		return NESTED_EXIT_DONE;
2183 
2184 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2185 }
2186 
nested_svm_exit_special(struct vcpu_svm * svm)2187 static int nested_svm_exit_special(struct vcpu_svm *svm)
2188 {
2189 	u32 exit_code = svm->vmcb->control.exit_code;
2190 
2191 	switch (exit_code) {
2192 	case SVM_EXIT_INTR:
2193 	case SVM_EXIT_NMI:
2194 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2195 		return NESTED_EXIT_HOST;
2196 	case SVM_EXIT_NPF:
2197 		/* For now we are always handling NPFs when using them */
2198 		if (npt_enabled)
2199 			return NESTED_EXIT_HOST;
2200 		break;
2201 	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2202 		/* When we're shadowing, trap PFs, but not async PF */
2203 		if (!npt_enabled && svm->apf_reason == 0)
2204 			return NESTED_EXIT_HOST;
2205 		break;
2206 	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2207 		nm_interception(svm);
2208 		break;
2209 	default:
2210 		break;
2211 	}
2212 
2213 	return NESTED_EXIT_CONTINUE;
2214 }
2215 
2216 /*
2217  * If this function returns true, this #vmexit was already handled
2218  */
nested_svm_intercept(struct vcpu_svm * svm)2219 static int nested_svm_intercept(struct vcpu_svm *svm)
2220 {
2221 	u32 exit_code = svm->vmcb->control.exit_code;
2222 	int vmexit = NESTED_EXIT_HOST;
2223 
2224 	switch (exit_code) {
2225 	case SVM_EXIT_MSR:
2226 		vmexit = nested_svm_exit_handled_msr(svm);
2227 		break;
2228 	case SVM_EXIT_IOIO:
2229 		vmexit = nested_svm_intercept_ioio(svm);
2230 		break;
2231 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2232 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2233 		if (svm->nested.intercept_cr & bit)
2234 			vmexit = NESTED_EXIT_DONE;
2235 		break;
2236 	}
2237 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2238 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2239 		if (svm->nested.intercept_dr & bit)
2240 			vmexit = NESTED_EXIT_DONE;
2241 		break;
2242 	}
2243 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2244 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2245 		if (svm->nested.intercept_exceptions & excp_bits)
2246 			vmexit = NESTED_EXIT_DONE;
2247 		/* async page fault always cause vmexit */
2248 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2249 			 svm->apf_reason != 0)
2250 			vmexit = NESTED_EXIT_DONE;
2251 		break;
2252 	}
2253 	case SVM_EXIT_ERR: {
2254 		vmexit = NESTED_EXIT_DONE;
2255 		break;
2256 	}
2257 	default: {
2258 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2259 		if (svm->nested.intercept & exit_bits)
2260 			vmexit = NESTED_EXIT_DONE;
2261 	}
2262 	}
2263 
2264 	return vmexit;
2265 }
2266 
nested_svm_exit_handled(struct vcpu_svm * svm)2267 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2268 {
2269 	int vmexit;
2270 
2271 	vmexit = nested_svm_intercept(svm);
2272 
2273 	if (vmexit == NESTED_EXIT_DONE)
2274 		nested_svm_vmexit(svm);
2275 
2276 	return vmexit;
2277 }
2278 
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)2279 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2280 {
2281 	struct vmcb_control_area *dst  = &dst_vmcb->control;
2282 	struct vmcb_control_area *from = &from_vmcb->control;
2283 
2284 	dst->intercept_cr         = from->intercept_cr;
2285 	dst->intercept_dr         = from->intercept_dr;
2286 	dst->intercept_exceptions = from->intercept_exceptions;
2287 	dst->intercept            = from->intercept;
2288 	dst->iopm_base_pa         = from->iopm_base_pa;
2289 	dst->msrpm_base_pa        = from->msrpm_base_pa;
2290 	dst->tsc_offset           = from->tsc_offset;
2291 	dst->asid                 = from->asid;
2292 	dst->tlb_ctl              = from->tlb_ctl;
2293 	dst->int_ctl              = from->int_ctl;
2294 	dst->int_vector           = from->int_vector;
2295 	dst->int_state            = from->int_state;
2296 	dst->exit_code            = from->exit_code;
2297 	dst->exit_code_hi         = from->exit_code_hi;
2298 	dst->exit_info_1          = from->exit_info_1;
2299 	dst->exit_info_2          = from->exit_info_2;
2300 	dst->exit_int_info        = from->exit_int_info;
2301 	dst->exit_int_info_err    = from->exit_int_info_err;
2302 	dst->nested_ctl           = from->nested_ctl;
2303 	dst->event_inj            = from->event_inj;
2304 	dst->event_inj_err        = from->event_inj_err;
2305 	dst->nested_cr3           = from->nested_cr3;
2306 	dst->lbr_ctl              = from->lbr_ctl;
2307 }
2308 
nested_svm_vmexit(struct vcpu_svm * svm)2309 static int nested_svm_vmexit(struct vcpu_svm *svm)
2310 {
2311 	struct vmcb *nested_vmcb;
2312 	struct vmcb *hsave = svm->nested.hsave;
2313 	struct vmcb *vmcb = svm->vmcb;
2314 	struct page *page;
2315 
2316 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2317 				       vmcb->control.exit_info_1,
2318 				       vmcb->control.exit_info_2,
2319 				       vmcb->control.exit_int_info,
2320 				       vmcb->control.exit_int_info_err,
2321 				       KVM_ISA_SVM);
2322 
2323 	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2324 	if (!nested_vmcb)
2325 		return 1;
2326 
2327 	/* Exit Guest-Mode */
2328 	leave_guest_mode(&svm->vcpu);
2329 	svm->nested.vmcb = 0;
2330 
2331 	/* Give the current vmcb to the guest */
2332 	disable_gif(svm);
2333 
2334 	nested_vmcb->save.es     = vmcb->save.es;
2335 	nested_vmcb->save.cs     = vmcb->save.cs;
2336 	nested_vmcb->save.ss     = vmcb->save.ss;
2337 	nested_vmcb->save.ds     = vmcb->save.ds;
2338 	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2339 	nested_vmcb->save.idtr   = vmcb->save.idtr;
2340 	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2341 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2342 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2343 	nested_vmcb->save.cr2    = vmcb->save.cr2;
2344 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2345 	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2346 	nested_vmcb->save.rip    = vmcb->save.rip;
2347 	nested_vmcb->save.rsp    = vmcb->save.rsp;
2348 	nested_vmcb->save.rax    = vmcb->save.rax;
2349 	nested_vmcb->save.dr7    = vmcb->save.dr7;
2350 	nested_vmcb->save.dr6    = vmcb->save.dr6;
2351 	nested_vmcb->save.cpl    = vmcb->save.cpl;
2352 
2353 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2354 	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2355 	nested_vmcb->control.int_state         = vmcb->control.int_state;
2356 	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2357 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2358 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2359 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2360 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2361 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2362 	nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2363 
2364 	/*
2365 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2366 	 * to make sure that we do not lose injected events. So check event_inj
2367 	 * here and copy it to exit_int_info if it is valid.
2368 	 * Exit_int_info and event_inj can't be both valid because the case
2369 	 * below only happens on a VMRUN instruction intercept which has
2370 	 * no valid exit_int_info set.
2371 	 */
2372 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2373 		struct vmcb_control_area *nc = &nested_vmcb->control;
2374 
2375 		nc->exit_int_info     = vmcb->control.event_inj;
2376 		nc->exit_int_info_err = vmcb->control.event_inj_err;
2377 	}
2378 
2379 	nested_vmcb->control.tlb_ctl           = 0;
2380 	nested_vmcb->control.event_inj         = 0;
2381 	nested_vmcb->control.event_inj_err     = 0;
2382 
2383 	/* We always set V_INTR_MASKING and remember the old value in hflags */
2384 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2385 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2386 
2387 	/* Restore the original control entries */
2388 	copy_vmcb_control_area(vmcb, hsave);
2389 
2390 	kvm_clear_exception_queue(&svm->vcpu);
2391 	kvm_clear_interrupt_queue(&svm->vcpu);
2392 
2393 	svm->nested.nested_cr3 = 0;
2394 
2395 	/* Restore selected save entries */
2396 	svm->vmcb->save.es = hsave->save.es;
2397 	svm->vmcb->save.cs = hsave->save.cs;
2398 	svm->vmcb->save.ss = hsave->save.ss;
2399 	svm->vmcb->save.ds = hsave->save.ds;
2400 	svm->vmcb->save.gdtr = hsave->save.gdtr;
2401 	svm->vmcb->save.idtr = hsave->save.idtr;
2402 	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2403 	svm_set_efer(&svm->vcpu, hsave->save.efer);
2404 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2405 	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2406 	if (npt_enabled) {
2407 		svm->vmcb->save.cr3 = hsave->save.cr3;
2408 		svm->vcpu.arch.cr3 = hsave->save.cr3;
2409 	} else {
2410 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2411 	}
2412 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2413 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2414 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2415 	svm->vmcb->save.dr7 = 0;
2416 	svm->vmcb->save.cpl = 0;
2417 	svm->vmcb->control.exit_int_info = 0;
2418 
2419 	mark_all_dirty(svm->vmcb);
2420 
2421 	nested_svm_unmap(page);
2422 
2423 	nested_svm_uninit_mmu_context(&svm->vcpu);
2424 	kvm_mmu_reset_context(&svm->vcpu);
2425 	kvm_mmu_load(&svm->vcpu);
2426 
2427 	return 0;
2428 }
2429 
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)2430 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2431 {
2432 	/*
2433 	 * This function merges the msr permission bitmaps of kvm and the
2434 	 * nested vmcb. It is optimized in that it only merges the parts where
2435 	 * the kvm msr permission bitmap may contain zero bits
2436 	 */
2437 	int i;
2438 
2439 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2440 		return true;
2441 
2442 	for (i = 0; i < MSRPM_OFFSETS; i++) {
2443 		u32 value, p;
2444 		u64 offset;
2445 
2446 		if (msrpm_offsets[i] == 0xffffffff)
2447 			break;
2448 
2449 		p      = msrpm_offsets[i];
2450 		offset = svm->nested.vmcb_msrpm + (p * 4);
2451 
2452 		if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2453 			return false;
2454 
2455 		svm->nested.msrpm[p] = svm->msrpm[p] | value;
2456 	}
2457 
2458 	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2459 
2460 	return true;
2461 }
2462 
nested_vmcb_checks(struct vmcb * vmcb)2463 static bool nested_vmcb_checks(struct vmcb *vmcb)
2464 {
2465 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2466 		return false;
2467 
2468 	if (vmcb->control.asid == 0)
2469 		return false;
2470 
2471 	if (vmcb->control.nested_ctl && !npt_enabled)
2472 		return false;
2473 
2474 	return true;
2475 }
2476 
nested_svm_vmrun(struct vcpu_svm * svm)2477 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2478 {
2479 	struct vmcb *nested_vmcb;
2480 	struct vmcb *hsave = svm->nested.hsave;
2481 	struct vmcb *vmcb = svm->vmcb;
2482 	struct page *page;
2483 	u64 vmcb_gpa;
2484 
2485 	vmcb_gpa = svm->vmcb->save.rax;
2486 
2487 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2488 	if (!nested_vmcb)
2489 		return false;
2490 
2491 	if (!nested_vmcb_checks(nested_vmcb)) {
2492 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2493 		nested_vmcb->control.exit_code_hi = 0;
2494 		nested_vmcb->control.exit_info_1  = 0;
2495 		nested_vmcb->control.exit_info_2  = 0;
2496 
2497 		nested_svm_unmap(page);
2498 
2499 		return false;
2500 	}
2501 
2502 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2503 			       nested_vmcb->save.rip,
2504 			       nested_vmcb->control.int_ctl,
2505 			       nested_vmcb->control.event_inj,
2506 			       nested_vmcb->control.nested_ctl);
2507 
2508 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2509 				    nested_vmcb->control.intercept_cr >> 16,
2510 				    nested_vmcb->control.intercept_exceptions,
2511 				    nested_vmcb->control.intercept);
2512 
2513 	/* Clear internal status */
2514 	kvm_clear_exception_queue(&svm->vcpu);
2515 	kvm_clear_interrupt_queue(&svm->vcpu);
2516 
2517 	/*
2518 	 * Save the old vmcb, so we don't need to pick what we save, but can
2519 	 * restore everything when a VMEXIT occurs
2520 	 */
2521 	hsave->save.es     = vmcb->save.es;
2522 	hsave->save.cs     = vmcb->save.cs;
2523 	hsave->save.ss     = vmcb->save.ss;
2524 	hsave->save.ds     = vmcb->save.ds;
2525 	hsave->save.gdtr   = vmcb->save.gdtr;
2526 	hsave->save.idtr   = vmcb->save.idtr;
2527 	hsave->save.efer   = svm->vcpu.arch.efer;
2528 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2529 	hsave->save.cr4    = svm->vcpu.arch.cr4;
2530 	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2531 	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2532 	hsave->save.rsp    = vmcb->save.rsp;
2533 	hsave->save.rax    = vmcb->save.rax;
2534 	if (npt_enabled)
2535 		hsave->save.cr3    = vmcb->save.cr3;
2536 	else
2537 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2538 
2539 	copy_vmcb_control_area(hsave, vmcb);
2540 
2541 	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2542 		svm->vcpu.arch.hflags |= HF_HIF_MASK;
2543 	else
2544 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2545 
2546 	if (nested_vmcb->control.nested_ctl) {
2547 		kvm_mmu_unload(&svm->vcpu);
2548 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2549 		nested_svm_init_mmu_context(&svm->vcpu);
2550 	}
2551 
2552 	/* Load the nested guest state */
2553 	svm->vmcb->save.es = nested_vmcb->save.es;
2554 	svm->vmcb->save.cs = nested_vmcb->save.cs;
2555 	svm->vmcb->save.ss = nested_vmcb->save.ss;
2556 	svm->vmcb->save.ds = nested_vmcb->save.ds;
2557 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2558 	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2559 	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2560 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2561 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2562 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2563 	if (npt_enabled) {
2564 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2565 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2566 	} else
2567 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2568 
2569 	/* Guest paging mode is active - reset mmu */
2570 	kvm_mmu_reset_context(&svm->vcpu);
2571 
2572 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2573 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2574 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2575 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2576 
2577 	/* In case we don't even reach vcpu_run, the fields are not updated */
2578 	svm->vmcb->save.rax = nested_vmcb->save.rax;
2579 	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2580 	svm->vmcb->save.rip = nested_vmcb->save.rip;
2581 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2582 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2583 	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2584 
2585 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2586 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2587 
2588 	/* cache intercepts */
2589 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2590 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2591 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2592 	svm->nested.intercept            = nested_vmcb->control.intercept;
2593 
2594 	svm_flush_tlb(&svm->vcpu);
2595 	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2596 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2597 		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2598 	else
2599 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2600 
2601 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2602 		/* We only want the cr8 intercept bits of the guest */
2603 		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2604 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2605 	}
2606 
2607 	/* We don't want to see VMMCALLs from a nested guest */
2608 	clr_intercept(svm, INTERCEPT_VMMCALL);
2609 
2610 	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2611 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2612 	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2613 	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2614 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2615 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2616 
2617 	nested_svm_unmap(page);
2618 
2619 	/* Enter Guest-Mode */
2620 	enter_guest_mode(&svm->vcpu);
2621 
2622 	/*
2623 	 * Merge guest and host intercepts - must be called  with vcpu in
2624 	 * guest-mode to take affect here
2625 	 */
2626 	recalc_intercepts(svm);
2627 
2628 	svm->nested.vmcb = vmcb_gpa;
2629 
2630 	enable_gif(svm);
2631 
2632 	mark_all_dirty(svm->vmcb);
2633 
2634 	return true;
2635 }
2636 
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)2637 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2638 {
2639 	to_vmcb->save.fs = from_vmcb->save.fs;
2640 	to_vmcb->save.gs = from_vmcb->save.gs;
2641 	to_vmcb->save.tr = from_vmcb->save.tr;
2642 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2643 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2644 	to_vmcb->save.star = from_vmcb->save.star;
2645 	to_vmcb->save.lstar = from_vmcb->save.lstar;
2646 	to_vmcb->save.cstar = from_vmcb->save.cstar;
2647 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2648 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2649 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2650 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2651 }
2652 
vmload_interception(struct vcpu_svm * svm)2653 static int vmload_interception(struct vcpu_svm *svm)
2654 {
2655 	struct vmcb *nested_vmcb;
2656 	struct page *page;
2657 
2658 	if (nested_svm_check_permissions(svm))
2659 		return 1;
2660 
2661 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2662 	if (!nested_vmcb)
2663 		return 1;
2664 
2665 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2666 	skip_emulated_instruction(&svm->vcpu);
2667 
2668 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2669 	nested_svm_unmap(page);
2670 
2671 	return 1;
2672 }
2673 
vmsave_interception(struct vcpu_svm * svm)2674 static int vmsave_interception(struct vcpu_svm *svm)
2675 {
2676 	struct vmcb *nested_vmcb;
2677 	struct page *page;
2678 
2679 	if (nested_svm_check_permissions(svm))
2680 		return 1;
2681 
2682 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2683 	if (!nested_vmcb)
2684 		return 1;
2685 
2686 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2687 	skip_emulated_instruction(&svm->vcpu);
2688 
2689 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2690 	nested_svm_unmap(page);
2691 
2692 	return 1;
2693 }
2694 
vmrun_interception(struct vcpu_svm * svm)2695 static int vmrun_interception(struct vcpu_svm *svm)
2696 {
2697 	if (nested_svm_check_permissions(svm))
2698 		return 1;
2699 
2700 	/* Save rip after vmrun instruction */
2701 	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2702 
2703 	if (!nested_svm_vmrun(svm))
2704 		return 1;
2705 
2706 	if (!nested_svm_vmrun_msrpm(svm))
2707 		goto failed;
2708 
2709 	return 1;
2710 
2711 failed:
2712 
2713 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2714 	svm->vmcb->control.exit_code_hi = 0;
2715 	svm->vmcb->control.exit_info_1  = 0;
2716 	svm->vmcb->control.exit_info_2  = 0;
2717 
2718 	nested_svm_vmexit(svm);
2719 
2720 	return 1;
2721 }
2722 
stgi_interception(struct vcpu_svm * svm)2723 static int stgi_interception(struct vcpu_svm *svm)
2724 {
2725 	if (nested_svm_check_permissions(svm))
2726 		return 1;
2727 
2728 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2729 	skip_emulated_instruction(&svm->vcpu);
2730 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2731 
2732 	enable_gif(svm);
2733 
2734 	return 1;
2735 }
2736 
clgi_interception(struct vcpu_svm * svm)2737 static int clgi_interception(struct vcpu_svm *svm)
2738 {
2739 	if (nested_svm_check_permissions(svm))
2740 		return 1;
2741 
2742 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2743 	skip_emulated_instruction(&svm->vcpu);
2744 
2745 	disable_gif(svm);
2746 
2747 	/* After a CLGI no interrupts should come */
2748 	svm_clear_vintr(svm);
2749 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2750 
2751 	mark_dirty(svm->vmcb, VMCB_INTR);
2752 
2753 	return 1;
2754 }
2755 
invlpga_interception(struct vcpu_svm * svm)2756 static int invlpga_interception(struct vcpu_svm *svm)
2757 {
2758 	struct kvm_vcpu *vcpu = &svm->vcpu;
2759 
2760 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2761 			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2762 
2763 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2764 	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2765 
2766 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2767 	skip_emulated_instruction(&svm->vcpu);
2768 	return 1;
2769 }
2770 
skinit_interception(struct vcpu_svm * svm)2771 static int skinit_interception(struct vcpu_svm *svm)
2772 {
2773 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2774 
2775 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2776 	return 1;
2777 }
2778 
wbinvd_interception(struct vcpu_svm * svm)2779 static int wbinvd_interception(struct vcpu_svm *svm)
2780 {
2781 	kvm_emulate_wbinvd(&svm->vcpu);
2782 	return 1;
2783 }
2784 
xsetbv_interception(struct vcpu_svm * svm)2785 static int xsetbv_interception(struct vcpu_svm *svm)
2786 {
2787 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2788 	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2789 
2790 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2791 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2792 		skip_emulated_instruction(&svm->vcpu);
2793 	}
2794 
2795 	return 1;
2796 }
2797 
task_switch_interception(struct vcpu_svm * svm)2798 static int task_switch_interception(struct vcpu_svm *svm)
2799 {
2800 	u16 tss_selector;
2801 	int reason;
2802 	int int_type = svm->vmcb->control.exit_int_info &
2803 		SVM_EXITINTINFO_TYPE_MASK;
2804 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2805 	uint32_t type =
2806 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2807 	uint32_t idt_v =
2808 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2809 	bool has_error_code = false;
2810 	u32 error_code = 0;
2811 
2812 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2813 
2814 	if (svm->vmcb->control.exit_info_2 &
2815 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2816 		reason = TASK_SWITCH_IRET;
2817 	else if (svm->vmcb->control.exit_info_2 &
2818 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2819 		reason = TASK_SWITCH_JMP;
2820 	else if (idt_v)
2821 		reason = TASK_SWITCH_GATE;
2822 	else
2823 		reason = TASK_SWITCH_CALL;
2824 
2825 	if (reason == TASK_SWITCH_GATE) {
2826 		switch (type) {
2827 		case SVM_EXITINTINFO_TYPE_NMI:
2828 			svm->vcpu.arch.nmi_injected = false;
2829 			break;
2830 		case SVM_EXITINTINFO_TYPE_EXEPT:
2831 			if (svm->vmcb->control.exit_info_2 &
2832 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2833 				has_error_code = true;
2834 				error_code =
2835 					(u32)svm->vmcb->control.exit_info_2;
2836 			}
2837 			kvm_clear_exception_queue(&svm->vcpu);
2838 			break;
2839 		case SVM_EXITINTINFO_TYPE_INTR:
2840 			kvm_clear_interrupt_queue(&svm->vcpu);
2841 			break;
2842 		default:
2843 			break;
2844 		}
2845 	}
2846 
2847 	if (reason != TASK_SWITCH_GATE ||
2848 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2849 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2850 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2851 		skip_emulated_instruction(&svm->vcpu);
2852 
2853 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2854 		int_vec = -1;
2855 
2856 	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2857 				has_error_code, error_code) == EMULATE_FAIL) {
2858 		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2859 		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2860 		svm->vcpu.run->internal.ndata = 0;
2861 		return 0;
2862 	}
2863 	return 1;
2864 }
2865 
cpuid_interception(struct vcpu_svm * svm)2866 static int cpuid_interception(struct vcpu_svm *svm)
2867 {
2868 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2869 	kvm_emulate_cpuid(&svm->vcpu);
2870 	return 1;
2871 }
2872 
iret_interception(struct vcpu_svm * svm)2873 static int iret_interception(struct vcpu_svm *svm)
2874 {
2875 	++svm->vcpu.stat.nmi_window_exits;
2876 	clr_intercept(svm, INTERCEPT_IRET);
2877 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2878 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2879 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2880 	return 1;
2881 }
2882 
invlpg_interception(struct vcpu_svm * svm)2883 static int invlpg_interception(struct vcpu_svm *svm)
2884 {
2885 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2886 		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2887 
2888 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2889 	skip_emulated_instruction(&svm->vcpu);
2890 	return 1;
2891 }
2892 
emulate_on_interception(struct vcpu_svm * svm)2893 static int emulate_on_interception(struct vcpu_svm *svm)
2894 {
2895 	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2896 }
2897 
rdpmc_interception(struct vcpu_svm * svm)2898 static int rdpmc_interception(struct vcpu_svm *svm)
2899 {
2900 	int err;
2901 
2902 	if (!static_cpu_has(X86_FEATURE_NRIPS))
2903 		return emulate_on_interception(svm);
2904 
2905 	err = kvm_rdpmc(&svm->vcpu);
2906 	kvm_complete_insn_gp(&svm->vcpu, err);
2907 
2908 	return 1;
2909 }
2910 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2911 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2912 					    unsigned long val)
2913 {
2914 	unsigned long cr0 = svm->vcpu.arch.cr0;
2915 	bool ret = false;
2916 	u64 intercept;
2917 
2918 	intercept = svm->nested.intercept;
2919 
2920 	if (!is_guest_mode(&svm->vcpu) ||
2921 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2922 		return false;
2923 
2924 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2925 	val &= ~SVM_CR0_SELECTIVE_MASK;
2926 
2927 	if (cr0 ^ val) {
2928 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2929 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2930 	}
2931 
2932 	return ret;
2933 }
2934 
2935 #define CR_VALID (1ULL << 63)
2936 
cr_interception(struct vcpu_svm * svm)2937 static int cr_interception(struct vcpu_svm *svm)
2938 {
2939 	int reg, cr;
2940 	unsigned long val;
2941 	int err;
2942 
2943 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2944 		return emulate_on_interception(svm);
2945 
2946 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2947 		return emulate_on_interception(svm);
2948 
2949 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2950 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2951 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2952 	else
2953 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2954 
2955 	err = 0;
2956 	if (cr >= 16) { /* mov to cr */
2957 		cr -= 16;
2958 		val = kvm_register_read(&svm->vcpu, reg);
2959 		switch (cr) {
2960 		case 0:
2961 			if (!check_selective_cr0_intercepted(svm, val))
2962 				err = kvm_set_cr0(&svm->vcpu, val);
2963 			else
2964 				return 1;
2965 
2966 			break;
2967 		case 3:
2968 			err = kvm_set_cr3(&svm->vcpu, val);
2969 			break;
2970 		case 4:
2971 			err = kvm_set_cr4(&svm->vcpu, val);
2972 			break;
2973 		case 8:
2974 			err = kvm_set_cr8(&svm->vcpu, val);
2975 			break;
2976 		default:
2977 			WARN(1, "unhandled write to CR%d", cr);
2978 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2979 			return 1;
2980 		}
2981 	} else { /* mov from cr */
2982 		switch (cr) {
2983 		case 0:
2984 			val = kvm_read_cr0(&svm->vcpu);
2985 			break;
2986 		case 2:
2987 			val = svm->vcpu.arch.cr2;
2988 			break;
2989 		case 3:
2990 			val = kvm_read_cr3(&svm->vcpu);
2991 			break;
2992 		case 4:
2993 			val = kvm_read_cr4(&svm->vcpu);
2994 			break;
2995 		case 8:
2996 			val = kvm_get_cr8(&svm->vcpu);
2997 			break;
2998 		default:
2999 			WARN(1, "unhandled read from CR%d", cr);
3000 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3001 			return 1;
3002 		}
3003 		kvm_register_write(&svm->vcpu, reg, val);
3004 	}
3005 	kvm_complete_insn_gp(&svm->vcpu, err);
3006 
3007 	return 1;
3008 }
3009 
dr_interception(struct vcpu_svm * svm)3010 static int dr_interception(struct vcpu_svm *svm)
3011 {
3012 	int reg, dr;
3013 	unsigned long val;
3014 
3015 	if (svm->vcpu.guest_debug == 0) {
3016 		/*
3017 		 * No more DR vmexits; force a reload of the debug registers
3018 		 * and reenter on this instruction.  The next vmexit will
3019 		 * retrieve the full state of the debug registers.
3020 		 */
3021 		clr_dr_intercepts(svm);
3022 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3023 		return 1;
3024 	}
3025 
3026 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3027 		return emulate_on_interception(svm);
3028 
3029 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3030 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3031 
3032 	if (dr >= 16) { /* mov to DRn */
3033 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
3034 			return 1;
3035 		val = kvm_register_read(&svm->vcpu, reg);
3036 		kvm_set_dr(&svm->vcpu, dr - 16, val);
3037 	} else {
3038 		if (!kvm_require_dr(&svm->vcpu, dr))
3039 			return 1;
3040 		kvm_get_dr(&svm->vcpu, dr, &val);
3041 		kvm_register_write(&svm->vcpu, reg, val);
3042 	}
3043 
3044 	skip_emulated_instruction(&svm->vcpu);
3045 
3046 	return 1;
3047 }
3048 
cr8_write_interception(struct vcpu_svm * svm)3049 static int cr8_write_interception(struct vcpu_svm *svm)
3050 {
3051 	struct kvm_run *kvm_run = svm->vcpu.run;
3052 	int r;
3053 
3054 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3055 	/* instruction emulation calls kvm_set_cr8() */
3056 	r = cr_interception(svm);
3057 	if (irqchip_in_kernel(svm->vcpu.kvm))
3058 		return r;
3059 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3060 		return r;
3061 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3062 	return 0;
3063 }
3064 
svm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)3065 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3066 {
3067 	struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3068 	return vmcb->control.tsc_offset +
3069 		svm_scale_tsc(vcpu, host_tsc);
3070 }
3071 
svm_get_msr(struct kvm_vcpu * vcpu,unsigned ecx,u64 * data)3072 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3073 {
3074 	struct vcpu_svm *svm = to_svm(vcpu);
3075 
3076 	switch (ecx) {
3077 	case MSR_IA32_TSC: {
3078 		*data = svm->vmcb->control.tsc_offset +
3079 			svm_scale_tsc(vcpu, native_read_tsc());
3080 
3081 		break;
3082 	}
3083 	case MSR_STAR:
3084 		*data = svm->vmcb->save.star;
3085 		break;
3086 #ifdef CONFIG_X86_64
3087 	case MSR_LSTAR:
3088 		*data = svm->vmcb->save.lstar;
3089 		break;
3090 	case MSR_CSTAR:
3091 		*data = svm->vmcb->save.cstar;
3092 		break;
3093 	case MSR_KERNEL_GS_BASE:
3094 		*data = svm->vmcb->save.kernel_gs_base;
3095 		break;
3096 	case MSR_SYSCALL_MASK:
3097 		*data = svm->vmcb->save.sfmask;
3098 		break;
3099 #endif
3100 	case MSR_IA32_SYSENTER_CS:
3101 		*data = svm->vmcb->save.sysenter_cs;
3102 		break;
3103 	case MSR_IA32_SYSENTER_EIP:
3104 		*data = svm->sysenter_eip;
3105 		break;
3106 	case MSR_IA32_SYSENTER_ESP:
3107 		*data = svm->sysenter_esp;
3108 		break;
3109 	/*
3110 	 * Nobody will change the following 5 values in the VMCB so we can
3111 	 * safely return them on rdmsr. They will always be 0 until LBRV is
3112 	 * implemented.
3113 	 */
3114 	case MSR_IA32_DEBUGCTLMSR:
3115 		*data = svm->vmcb->save.dbgctl;
3116 		break;
3117 	case MSR_IA32_LASTBRANCHFROMIP:
3118 		*data = svm->vmcb->save.br_from;
3119 		break;
3120 	case MSR_IA32_LASTBRANCHTOIP:
3121 		*data = svm->vmcb->save.br_to;
3122 		break;
3123 	case MSR_IA32_LASTINTFROMIP:
3124 		*data = svm->vmcb->save.last_excp_from;
3125 		break;
3126 	case MSR_IA32_LASTINTTOIP:
3127 		*data = svm->vmcb->save.last_excp_to;
3128 		break;
3129 	case MSR_VM_HSAVE_PA:
3130 		*data = svm->nested.hsave_msr;
3131 		break;
3132 	case MSR_VM_CR:
3133 		*data = svm->nested.vm_cr_msr;
3134 		break;
3135 	case MSR_IA32_UCODE_REV:
3136 		*data = 0x01000065;
3137 		break;
3138 	default:
3139 		return kvm_get_msr_common(vcpu, ecx, data);
3140 	}
3141 	return 0;
3142 }
3143 
rdmsr_interception(struct vcpu_svm * svm)3144 static int rdmsr_interception(struct vcpu_svm *svm)
3145 {
3146 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3147 	u64 data;
3148 
3149 	if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3150 		trace_kvm_msr_read_ex(ecx);
3151 		kvm_inject_gp(&svm->vcpu, 0);
3152 	} else {
3153 		trace_kvm_msr_read(ecx, data);
3154 
3155 		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, data & 0xffffffff);
3156 		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, data >> 32);
3157 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3158 		skip_emulated_instruction(&svm->vcpu);
3159 	}
3160 	return 1;
3161 }
3162 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)3163 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3164 {
3165 	struct vcpu_svm *svm = to_svm(vcpu);
3166 	int svm_dis, chg_mask;
3167 
3168 	if (data & ~SVM_VM_CR_VALID_MASK)
3169 		return 1;
3170 
3171 	chg_mask = SVM_VM_CR_VALID_MASK;
3172 
3173 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3174 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3175 
3176 	svm->nested.vm_cr_msr &= ~chg_mask;
3177 	svm->nested.vm_cr_msr |= (data & chg_mask);
3178 
3179 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3180 
3181 	/* check for svm_disable while efer.svme is set */
3182 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3183 		return 1;
3184 
3185 	return 0;
3186 }
3187 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)3188 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3189 {
3190 	struct vcpu_svm *svm = to_svm(vcpu);
3191 
3192 	u32 ecx = msr->index;
3193 	u64 data = msr->data;
3194 	switch (ecx) {
3195 	case MSR_IA32_TSC:
3196 		kvm_write_tsc(vcpu, msr);
3197 		break;
3198 	case MSR_STAR:
3199 		svm->vmcb->save.star = data;
3200 		break;
3201 #ifdef CONFIG_X86_64
3202 	case MSR_LSTAR:
3203 		svm->vmcb->save.lstar = data;
3204 		break;
3205 	case MSR_CSTAR:
3206 		svm->vmcb->save.cstar = data;
3207 		break;
3208 	case MSR_KERNEL_GS_BASE:
3209 		svm->vmcb->save.kernel_gs_base = data;
3210 		break;
3211 	case MSR_SYSCALL_MASK:
3212 		svm->vmcb->save.sfmask = data;
3213 		break;
3214 #endif
3215 	case MSR_IA32_SYSENTER_CS:
3216 		svm->vmcb->save.sysenter_cs = data;
3217 		break;
3218 	case MSR_IA32_SYSENTER_EIP:
3219 		svm->sysenter_eip = data;
3220 		svm->vmcb->save.sysenter_eip = data;
3221 		break;
3222 	case MSR_IA32_SYSENTER_ESP:
3223 		svm->sysenter_esp = data;
3224 		svm->vmcb->save.sysenter_esp = data;
3225 		break;
3226 	case MSR_IA32_DEBUGCTLMSR:
3227 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3228 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3229 				    __func__, data);
3230 			break;
3231 		}
3232 		if (data & DEBUGCTL_RESERVED_BITS)
3233 			return 1;
3234 
3235 		svm->vmcb->save.dbgctl = data;
3236 		mark_dirty(svm->vmcb, VMCB_LBR);
3237 		if (data & (1ULL<<0))
3238 			svm_enable_lbrv(svm);
3239 		else
3240 			svm_disable_lbrv(svm);
3241 		break;
3242 	case MSR_VM_HSAVE_PA:
3243 		svm->nested.hsave_msr = data;
3244 		break;
3245 	case MSR_VM_CR:
3246 		return svm_set_vm_cr(vcpu, data);
3247 	case MSR_VM_IGNNE:
3248 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3249 		break;
3250 	default:
3251 		return kvm_set_msr_common(vcpu, msr);
3252 	}
3253 	return 0;
3254 }
3255 
wrmsr_interception(struct vcpu_svm * svm)3256 static int wrmsr_interception(struct vcpu_svm *svm)
3257 {
3258 	struct msr_data msr;
3259 	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3260 	u64 data = kvm_read_edx_eax(&svm->vcpu);
3261 
3262 	msr.data = data;
3263 	msr.index = ecx;
3264 	msr.host_initiated = false;
3265 
3266 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3267 	if (kvm_set_msr(&svm->vcpu, &msr)) {
3268 		trace_kvm_msr_write_ex(ecx, data);
3269 		kvm_inject_gp(&svm->vcpu, 0);
3270 	} else {
3271 		trace_kvm_msr_write(ecx, data);
3272 		skip_emulated_instruction(&svm->vcpu);
3273 	}
3274 	return 1;
3275 }
3276 
msr_interception(struct vcpu_svm * svm)3277 static int msr_interception(struct vcpu_svm *svm)
3278 {
3279 	if (svm->vmcb->control.exit_info_1)
3280 		return wrmsr_interception(svm);
3281 	else
3282 		return rdmsr_interception(svm);
3283 }
3284 
interrupt_window_interception(struct vcpu_svm * svm)3285 static int interrupt_window_interception(struct vcpu_svm *svm)
3286 {
3287 	struct kvm_run *kvm_run = svm->vcpu.run;
3288 
3289 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3290 	svm_clear_vintr(svm);
3291 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3292 	mark_dirty(svm->vmcb, VMCB_INTR);
3293 	++svm->vcpu.stat.irq_window_exits;
3294 	/*
3295 	 * If the user space waits to inject interrupts, exit as soon as
3296 	 * possible
3297 	 */
3298 	if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3299 	    kvm_run->request_interrupt_window &&
3300 	    !kvm_cpu_has_interrupt(&svm->vcpu)) {
3301 		kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3302 		return 0;
3303 	}
3304 
3305 	return 1;
3306 }
3307 
pause_interception(struct vcpu_svm * svm)3308 static int pause_interception(struct vcpu_svm *svm)
3309 {
3310 	kvm_vcpu_on_spin(&(svm->vcpu));
3311 	return 1;
3312 }
3313 
nop_interception(struct vcpu_svm * svm)3314 static int nop_interception(struct vcpu_svm *svm)
3315 {
3316 	skip_emulated_instruction(&(svm->vcpu));
3317 	return 1;
3318 }
3319 
monitor_interception(struct vcpu_svm * svm)3320 static int monitor_interception(struct vcpu_svm *svm)
3321 {
3322 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3323 	return nop_interception(svm);
3324 }
3325 
mwait_interception(struct vcpu_svm * svm)3326 static int mwait_interception(struct vcpu_svm *svm)
3327 {
3328 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3329 	return nop_interception(svm);
3330 }
3331 
3332 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3333 	[SVM_EXIT_READ_CR0]			= cr_interception,
3334 	[SVM_EXIT_READ_CR3]			= cr_interception,
3335 	[SVM_EXIT_READ_CR4]			= cr_interception,
3336 	[SVM_EXIT_READ_CR8]			= cr_interception,
3337 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3338 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3339 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3340 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3341 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3342 	[SVM_EXIT_READ_DR0]			= dr_interception,
3343 	[SVM_EXIT_READ_DR1]			= dr_interception,
3344 	[SVM_EXIT_READ_DR2]			= dr_interception,
3345 	[SVM_EXIT_READ_DR3]			= dr_interception,
3346 	[SVM_EXIT_READ_DR4]			= dr_interception,
3347 	[SVM_EXIT_READ_DR5]			= dr_interception,
3348 	[SVM_EXIT_READ_DR6]			= dr_interception,
3349 	[SVM_EXIT_READ_DR7]			= dr_interception,
3350 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3351 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3352 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3353 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3354 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3355 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3356 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3357 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3358 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3359 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3360 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3361 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3362 	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
3363 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3364 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3365 	[SVM_EXIT_INTR]				= intr_interception,
3366 	[SVM_EXIT_NMI]				= nmi_interception,
3367 	[SVM_EXIT_SMI]				= nop_on_interception,
3368 	[SVM_EXIT_INIT]				= nop_on_interception,
3369 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3370 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3371 	[SVM_EXIT_CPUID]			= cpuid_interception,
3372 	[SVM_EXIT_IRET]                         = iret_interception,
3373 	[SVM_EXIT_INVD]                         = emulate_on_interception,
3374 	[SVM_EXIT_PAUSE]			= pause_interception,
3375 	[SVM_EXIT_HLT]				= halt_interception,
3376 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3377 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3378 	[SVM_EXIT_IOIO]				= io_interception,
3379 	[SVM_EXIT_MSR]				= msr_interception,
3380 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3381 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3382 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3383 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3384 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3385 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3386 	[SVM_EXIT_STGI]				= stgi_interception,
3387 	[SVM_EXIT_CLGI]				= clgi_interception,
3388 	[SVM_EXIT_SKINIT]			= skinit_interception,
3389 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3390 	[SVM_EXIT_MONITOR]			= monitor_interception,
3391 	[SVM_EXIT_MWAIT]			= mwait_interception,
3392 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3393 	[SVM_EXIT_NPF]				= pf_interception,
3394 };
3395 
dump_vmcb(struct kvm_vcpu * vcpu)3396 static void dump_vmcb(struct kvm_vcpu *vcpu)
3397 {
3398 	struct vcpu_svm *svm = to_svm(vcpu);
3399 	struct vmcb_control_area *control = &svm->vmcb->control;
3400 	struct vmcb_save_area *save = &svm->vmcb->save;
3401 
3402 	pr_err("VMCB Control Area:\n");
3403 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3404 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3405 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3406 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3407 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3408 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3409 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3410 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3411 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3412 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3413 	pr_err("%-20s%d\n", "asid:", control->asid);
3414 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3415 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3416 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3417 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3418 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3419 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3420 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3421 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3422 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3423 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3424 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3425 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3426 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3427 	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3428 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3429 	pr_err("VMCB State Save Area:\n");
3430 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3431 	       "es:",
3432 	       save->es.selector, save->es.attrib,
3433 	       save->es.limit, save->es.base);
3434 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3435 	       "cs:",
3436 	       save->cs.selector, save->cs.attrib,
3437 	       save->cs.limit, save->cs.base);
3438 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3439 	       "ss:",
3440 	       save->ss.selector, save->ss.attrib,
3441 	       save->ss.limit, save->ss.base);
3442 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3443 	       "ds:",
3444 	       save->ds.selector, save->ds.attrib,
3445 	       save->ds.limit, save->ds.base);
3446 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3447 	       "fs:",
3448 	       save->fs.selector, save->fs.attrib,
3449 	       save->fs.limit, save->fs.base);
3450 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3451 	       "gs:",
3452 	       save->gs.selector, save->gs.attrib,
3453 	       save->gs.limit, save->gs.base);
3454 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3455 	       "gdtr:",
3456 	       save->gdtr.selector, save->gdtr.attrib,
3457 	       save->gdtr.limit, save->gdtr.base);
3458 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3459 	       "ldtr:",
3460 	       save->ldtr.selector, save->ldtr.attrib,
3461 	       save->ldtr.limit, save->ldtr.base);
3462 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3463 	       "idtr:",
3464 	       save->idtr.selector, save->idtr.attrib,
3465 	       save->idtr.limit, save->idtr.base);
3466 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3467 	       "tr:",
3468 	       save->tr.selector, save->tr.attrib,
3469 	       save->tr.limit, save->tr.base);
3470 	pr_err("cpl:            %d                efer:         %016llx\n",
3471 		save->cpl, save->efer);
3472 	pr_err("%-15s %016llx %-13s %016llx\n",
3473 	       "cr0:", save->cr0, "cr2:", save->cr2);
3474 	pr_err("%-15s %016llx %-13s %016llx\n",
3475 	       "cr3:", save->cr3, "cr4:", save->cr4);
3476 	pr_err("%-15s %016llx %-13s %016llx\n",
3477 	       "dr6:", save->dr6, "dr7:", save->dr7);
3478 	pr_err("%-15s %016llx %-13s %016llx\n",
3479 	       "rip:", save->rip, "rflags:", save->rflags);
3480 	pr_err("%-15s %016llx %-13s %016llx\n",
3481 	       "rsp:", save->rsp, "rax:", save->rax);
3482 	pr_err("%-15s %016llx %-13s %016llx\n",
3483 	       "star:", save->star, "lstar:", save->lstar);
3484 	pr_err("%-15s %016llx %-13s %016llx\n",
3485 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3486 	pr_err("%-15s %016llx %-13s %016llx\n",
3487 	       "kernel_gs_base:", save->kernel_gs_base,
3488 	       "sysenter_cs:", save->sysenter_cs);
3489 	pr_err("%-15s %016llx %-13s %016llx\n",
3490 	       "sysenter_esp:", save->sysenter_esp,
3491 	       "sysenter_eip:", save->sysenter_eip);
3492 	pr_err("%-15s %016llx %-13s %016llx\n",
3493 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3494 	pr_err("%-15s %016llx %-13s %016llx\n",
3495 	       "br_from:", save->br_from, "br_to:", save->br_to);
3496 	pr_err("%-15s %016llx %-13s %016llx\n",
3497 	       "excp_from:", save->last_excp_from,
3498 	       "excp_to:", save->last_excp_to);
3499 }
3500 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)3501 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3502 {
3503 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3504 
3505 	*info1 = control->exit_info_1;
3506 	*info2 = control->exit_info_2;
3507 }
3508 
handle_exit(struct kvm_vcpu * vcpu)3509 static int handle_exit(struct kvm_vcpu *vcpu)
3510 {
3511 	struct vcpu_svm *svm = to_svm(vcpu);
3512 	struct kvm_run *kvm_run = vcpu->run;
3513 	u32 exit_code = svm->vmcb->control.exit_code;
3514 
3515 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3516 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3517 	if (npt_enabled)
3518 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3519 
3520 	if (unlikely(svm->nested.exit_required)) {
3521 		nested_svm_vmexit(svm);
3522 		svm->nested.exit_required = false;
3523 
3524 		return 1;
3525 	}
3526 
3527 	if (is_guest_mode(vcpu)) {
3528 		int vmexit;
3529 
3530 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3531 					svm->vmcb->control.exit_info_1,
3532 					svm->vmcb->control.exit_info_2,
3533 					svm->vmcb->control.exit_int_info,
3534 					svm->vmcb->control.exit_int_info_err,
3535 					KVM_ISA_SVM);
3536 
3537 		vmexit = nested_svm_exit_special(svm);
3538 
3539 		if (vmexit == NESTED_EXIT_CONTINUE)
3540 			vmexit = nested_svm_exit_handled(svm);
3541 
3542 		if (vmexit == NESTED_EXIT_DONE)
3543 			return 1;
3544 	}
3545 
3546 	svm_complete_interrupts(svm);
3547 
3548 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3549 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3550 		kvm_run->fail_entry.hardware_entry_failure_reason
3551 			= svm->vmcb->control.exit_code;
3552 		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3553 		dump_vmcb(vcpu);
3554 		return 0;
3555 	}
3556 
3557 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3558 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3559 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3560 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3561 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3562 		       "exit_code 0x%x\n",
3563 		       __func__, svm->vmcb->control.exit_int_info,
3564 		       exit_code);
3565 
3566 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3567 	    || !svm_exit_handlers[exit_code]) {
3568 		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3569 		kvm_queue_exception(vcpu, UD_VECTOR);
3570 		return 1;
3571 	}
3572 
3573 	return svm_exit_handlers[exit_code](svm);
3574 }
3575 
reload_tss(struct kvm_vcpu * vcpu)3576 static void reload_tss(struct kvm_vcpu *vcpu)
3577 {
3578 	int cpu = raw_smp_processor_id();
3579 
3580 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3581 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3582 	load_TR_desc();
3583 }
3584 
pre_svm_run(struct vcpu_svm * svm)3585 static void pre_svm_run(struct vcpu_svm *svm)
3586 {
3587 	int cpu = raw_smp_processor_id();
3588 
3589 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3590 
3591 	/* FIXME: handle wraparound of asid_generation */
3592 	if (svm->asid_generation != sd->asid_generation)
3593 		new_asid(svm, sd);
3594 }
3595 
svm_inject_nmi(struct kvm_vcpu * vcpu)3596 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3597 {
3598 	struct vcpu_svm *svm = to_svm(vcpu);
3599 
3600 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3601 	vcpu->arch.hflags |= HF_NMI_MASK;
3602 	set_intercept(svm, INTERCEPT_IRET);
3603 	++vcpu->stat.nmi_injections;
3604 }
3605 
svm_inject_irq(struct vcpu_svm * svm,int irq)3606 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3607 {
3608 	struct vmcb_control_area *control;
3609 
3610 	control = &svm->vmcb->control;
3611 	control->int_vector = irq;
3612 	control->int_ctl &= ~V_INTR_PRIO_MASK;
3613 	control->int_ctl |= V_IRQ_MASK |
3614 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3615 	mark_dirty(svm->vmcb, VMCB_INTR);
3616 }
3617 
svm_set_irq(struct kvm_vcpu * vcpu)3618 static void svm_set_irq(struct kvm_vcpu *vcpu)
3619 {
3620 	struct vcpu_svm *svm = to_svm(vcpu);
3621 
3622 	BUG_ON(!(gif_set(svm)));
3623 
3624 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3625 	++vcpu->stat.irq_injections;
3626 
3627 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3628 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3629 }
3630 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3631 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3632 {
3633 	struct vcpu_svm *svm = to_svm(vcpu);
3634 
3635 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3636 		return;
3637 
3638 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3639 
3640 	if (irr == -1)
3641 		return;
3642 
3643 	if (tpr >= irr)
3644 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3645 }
3646 
svm_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)3647 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3648 {
3649 	return;
3650 }
3651 
svm_vm_has_apicv(struct kvm * kvm)3652 static int svm_vm_has_apicv(struct kvm *kvm)
3653 {
3654 	return 0;
3655 }
3656 
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)3657 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3658 {
3659 	return;
3660 }
3661 
svm_sync_pir_to_irr(struct kvm_vcpu * vcpu)3662 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3663 {
3664 	return;
3665 }
3666 
svm_nmi_allowed(struct kvm_vcpu * vcpu)3667 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3668 {
3669 	struct vcpu_svm *svm = to_svm(vcpu);
3670 	struct vmcb *vmcb = svm->vmcb;
3671 	int ret;
3672 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3673 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3674 	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3675 
3676 	return ret;
3677 }
3678 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3679 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3680 {
3681 	struct vcpu_svm *svm = to_svm(vcpu);
3682 
3683 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3684 }
3685 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3686 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3687 {
3688 	struct vcpu_svm *svm = to_svm(vcpu);
3689 
3690 	if (masked) {
3691 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3692 		set_intercept(svm, INTERCEPT_IRET);
3693 	} else {
3694 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3695 		clr_intercept(svm, INTERCEPT_IRET);
3696 	}
3697 }
3698 
svm_interrupt_allowed(struct kvm_vcpu * vcpu)3699 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3700 {
3701 	struct vcpu_svm *svm = to_svm(vcpu);
3702 	struct vmcb *vmcb = svm->vmcb;
3703 	int ret;
3704 
3705 	if (!gif_set(svm) ||
3706 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3707 		return 0;
3708 
3709 	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3710 
3711 	if (is_guest_mode(vcpu))
3712 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3713 
3714 	return ret;
3715 }
3716 
enable_irq_window(struct kvm_vcpu * vcpu)3717 static void enable_irq_window(struct kvm_vcpu *vcpu)
3718 {
3719 	struct vcpu_svm *svm = to_svm(vcpu);
3720 
3721 	/*
3722 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3723 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3724 	 * get that intercept, this function will be called again though and
3725 	 * we'll get the vintr intercept.
3726 	 */
3727 	if (gif_set(svm) && nested_svm_intr(svm)) {
3728 		svm_set_vintr(svm);
3729 		svm_inject_irq(svm, 0x0);
3730 	}
3731 }
3732 
enable_nmi_window(struct kvm_vcpu * vcpu)3733 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3734 {
3735 	struct vcpu_svm *svm = to_svm(vcpu);
3736 
3737 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3738 	    == HF_NMI_MASK)
3739 		return; /* IRET will cause a vm exit */
3740 
3741 	/*
3742 	 * Something prevents NMI from been injected. Single step over possible
3743 	 * problem (IRET or exception injection or interrupt shadow)
3744 	 */
3745 	svm->nmi_singlestep = true;
3746 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3747 }
3748 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3749 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3750 {
3751 	return 0;
3752 }
3753 
svm_flush_tlb(struct kvm_vcpu * vcpu)3754 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3755 {
3756 	struct vcpu_svm *svm = to_svm(vcpu);
3757 
3758 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3759 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3760 	else
3761 		svm->asid_generation--;
3762 }
3763 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3764 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3765 {
3766 }
3767 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3768 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3769 {
3770 	struct vcpu_svm *svm = to_svm(vcpu);
3771 
3772 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3773 		return;
3774 
3775 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3776 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3777 		kvm_set_cr8(vcpu, cr8);
3778 	}
3779 }
3780 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3781 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3782 {
3783 	struct vcpu_svm *svm = to_svm(vcpu);
3784 	u64 cr8;
3785 
3786 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3787 		return;
3788 
3789 	cr8 = kvm_get_cr8(vcpu);
3790 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3791 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3792 }
3793 
svm_complete_interrupts(struct vcpu_svm * svm)3794 static void svm_complete_interrupts(struct vcpu_svm *svm)
3795 {
3796 	u8 vector;
3797 	int type;
3798 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3799 	unsigned int3_injected = svm->int3_injected;
3800 
3801 	svm->int3_injected = 0;
3802 
3803 	/*
3804 	 * If we've made progress since setting HF_IRET_MASK, we've
3805 	 * executed an IRET and can allow NMI injection.
3806 	 */
3807 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3808 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3809 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3810 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3811 	}
3812 
3813 	svm->vcpu.arch.nmi_injected = false;
3814 	kvm_clear_exception_queue(&svm->vcpu);
3815 	kvm_clear_interrupt_queue(&svm->vcpu);
3816 
3817 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3818 		return;
3819 
3820 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3821 
3822 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3823 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3824 
3825 	switch (type) {
3826 	case SVM_EXITINTINFO_TYPE_NMI:
3827 		svm->vcpu.arch.nmi_injected = true;
3828 		break;
3829 	case SVM_EXITINTINFO_TYPE_EXEPT:
3830 		/*
3831 		 * In case of software exceptions, do not reinject the vector,
3832 		 * but re-execute the instruction instead. Rewind RIP first
3833 		 * if we emulated INT3 before.
3834 		 */
3835 		if (kvm_exception_is_soft(vector)) {
3836 			if (vector == BP_VECTOR && int3_injected &&
3837 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3838 				kvm_rip_write(&svm->vcpu,
3839 					      kvm_rip_read(&svm->vcpu) -
3840 					      int3_injected);
3841 			break;
3842 		}
3843 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3844 			u32 err = svm->vmcb->control.exit_int_info_err;
3845 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3846 
3847 		} else
3848 			kvm_requeue_exception(&svm->vcpu, vector);
3849 		break;
3850 	case SVM_EXITINTINFO_TYPE_INTR:
3851 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3852 		break;
3853 	default:
3854 		break;
3855 	}
3856 }
3857 
svm_cancel_injection(struct kvm_vcpu * vcpu)3858 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3859 {
3860 	struct vcpu_svm *svm = to_svm(vcpu);
3861 	struct vmcb_control_area *control = &svm->vmcb->control;
3862 
3863 	control->exit_int_info = control->event_inj;
3864 	control->exit_int_info_err = control->event_inj_err;
3865 	control->event_inj = 0;
3866 	svm_complete_interrupts(svm);
3867 }
3868 
svm_vcpu_run(struct kvm_vcpu * vcpu)3869 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3870 {
3871 	struct vcpu_svm *svm = to_svm(vcpu);
3872 
3873 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3874 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3875 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3876 
3877 	/*
3878 	 * A vmexit emulation is required before the vcpu can be executed
3879 	 * again.
3880 	 */
3881 	if (unlikely(svm->nested.exit_required))
3882 		return;
3883 
3884 	pre_svm_run(svm);
3885 
3886 	sync_lapic_to_cr8(vcpu);
3887 
3888 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3889 
3890 	clgi();
3891 
3892 	local_irq_enable();
3893 
3894 	asm volatile (
3895 		"push %%" _ASM_BP "; \n\t"
3896 		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3897 		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3898 		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3899 		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3900 		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3901 		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3902 #ifdef CONFIG_X86_64
3903 		"mov %c[r8](%[svm]),  %%r8  \n\t"
3904 		"mov %c[r9](%[svm]),  %%r9  \n\t"
3905 		"mov %c[r10](%[svm]), %%r10 \n\t"
3906 		"mov %c[r11](%[svm]), %%r11 \n\t"
3907 		"mov %c[r12](%[svm]), %%r12 \n\t"
3908 		"mov %c[r13](%[svm]), %%r13 \n\t"
3909 		"mov %c[r14](%[svm]), %%r14 \n\t"
3910 		"mov %c[r15](%[svm]), %%r15 \n\t"
3911 #endif
3912 
3913 		/* Enter guest mode */
3914 		"push %%" _ASM_AX " \n\t"
3915 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3916 		__ex(SVM_VMLOAD) "\n\t"
3917 		__ex(SVM_VMRUN) "\n\t"
3918 		__ex(SVM_VMSAVE) "\n\t"
3919 		"pop %%" _ASM_AX " \n\t"
3920 
3921 		/* Save guest registers, load host registers */
3922 		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3923 		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3924 		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3925 		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3926 		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3927 		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3928 #ifdef CONFIG_X86_64
3929 		"mov %%r8,  %c[r8](%[svm]) \n\t"
3930 		"mov %%r9,  %c[r9](%[svm]) \n\t"
3931 		"mov %%r10, %c[r10](%[svm]) \n\t"
3932 		"mov %%r11, %c[r11](%[svm]) \n\t"
3933 		"mov %%r12, %c[r12](%[svm]) \n\t"
3934 		"mov %%r13, %c[r13](%[svm]) \n\t"
3935 		"mov %%r14, %c[r14](%[svm]) \n\t"
3936 		"mov %%r15, %c[r15](%[svm]) \n\t"
3937 #endif
3938 		"pop %%" _ASM_BP
3939 		:
3940 		: [svm]"a"(svm),
3941 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3942 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3943 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3944 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3945 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3946 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3947 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3948 #ifdef CONFIG_X86_64
3949 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3950 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3951 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3952 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3953 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3954 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3955 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3956 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3957 #endif
3958 		: "cc", "memory"
3959 #ifdef CONFIG_X86_64
3960 		, "rbx", "rcx", "rdx", "rsi", "rdi"
3961 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3962 #else
3963 		, "ebx", "ecx", "edx", "esi", "edi"
3964 #endif
3965 		);
3966 
3967 #ifdef CONFIG_X86_64
3968 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3969 #else
3970 	loadsegment(fs, svm->host.fs);
3971 #ifndef CONFIG_X86_32_LAZY_GS
3972 	loadsegment(gs, svm->host.gs);
3973 #endif
3974 #endif
3975 
3976 	reload_tss(vcpu);
3977 
3978 	local_irq_disable();
3979 
3980 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3981 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3982 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3983 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3984 
3985 	trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3986 
3987 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3988 		kvm_before_handle_nmi(&svm->vcpu);
3989 
3990 	stgi();
3991 
3992 	/* Any pending NMI will happen here */
3993 
3994 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3995 		kvm_after_handle_nmi(&svm->vcpu);
3996 
3997 	sync_cr8_to_lapic(vcpu);
3998 
3999 	svm->next_rip = 0;
4000 
4001 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4002 
4003 	/* if exit due to PF check for async PF */
4004 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4005 		svm->apf_reason = kvm_read_and_reset_pf_reason();
4006 
4007 	if (npt_enabled) {
4008 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4009 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4010 	}
4011 
4012 	/*
4013 	 * We need to handle MC intercepts here before the vcpu has a chance to
4014 	 * change the physical cpu
4015 	 */
4016 	if (unlikely(svm->vmcb->control.exit_code ==
4017 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4018 		svm_handle_mce(svm);
4019 
4020 	mark_all_clean(svm->vmcb);
4021 }
4022 
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)4023 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4024 {
4025 	struct vcpu_svm *svm = to_svm(vcpu);
4026 
4027 	svm->vmcb->save.cr3 = root;
4028 	mark_dirty(svm->vmcb, VMCB_CR);
4029 	svm_flush_tlb(vcpu);
4030 }
4031 
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)4032 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4033 {
4034 	struct vcpu_svm *svm = to_svm(vcpu);
4035 
4036 	svm->vmcb->control.nested_cr3 = root;
4037 	mark_dirty(svm->vmcb, VMCB_NPT);
4038 
4039 	/* Also sync guest cr3 here in case we live migrate */
4040 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4041 	mark_dirty(svm->vmcb, VMCB_CR);
4042 
4043 	svm_flush_tlb(vcpu);
4044 }
4045 
is_disabled(void)4046 static int is_disabled(void)
4047 {
4048 	u64 vm_cr;
4049 
4050 	rdmsrl(MSR_VM_CR, vm_cr);
4051 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4052 		return 1;
4053 
4054 	return 0;
4055 }
4056 
4057 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4058 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4059 {
4060 	/*
4061 	 * Patch in the VMMCALL instruction:
4062 	 */
4063 	hypercall[0] = 0x0f;
4064 	hypercall[1] = 0x01;
4065 	hypercall[2] = 0xd9;
4066 }
4067 
svm_check_processor_compat(void * rtn)4068 static void svm_check_processor_compat(void *rtn)
4069 {
4070 	*(int *)rtn = 0;
4071 }
4072 
svm_cpu_has_accelerated_tpr(void)4073 static bool svm_cpu_has_accelerated_tpr(void)
4074 {
4075 	return false;
4076 }
4077 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)4078 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4079 {
4080 	return 0;
4081 }
4082 
svm_cpuid_update(struct kvm_vcpu * vcpu)4083 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4084 {
4085 }
4086 
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)4087 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4088 {
4089 	switch (func) {
4090 	case 0x80000001:
4091 		if (nested)
4092 			entry->ecx |= (1 << 2); /* Set SVM bit */
4093 		break;
4094 	case 0x8000000A:
4095 		entry->eax = 1; /* SVM revision 1 */
4096 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4097 				   ASID emulation to nested SVM */
4098 		entry->ecx = 0; /* Reserved */
4099 		entry->edx = 0; /* Per default do not support any
4100 				   additional features */
4101 
4102 		/* Support next_rip if host supports it */
4103 		if (boot_cpu_has(X86_FEATURE_NRIPS))
4104 			entry->edx |= SVM_FEATURE_NRIP;
4105 
4106 		/* Support NPT for the guest if enabled */
4107 		if (npt_enabled)
4108 			entry->edx |= SVM_FEATURE_NPT;
4109 
4110 		break;
4111 	}
4112 }
4113 
svm_get_lpage_level(void)4114 static int svm_get_lpage_level(void)
4115 {
4116 	return PT_PDPE_LEVEL;
4117 }
4118 
svm_rdtscp_supported(void)4119 static bool svm_rdtscp_supported(void)
4120 {
4121 	return false;
4122 }
4123 
svm_invpcid_supported(void)4124 static bool svm_invpcid_supported(void)
4125 {
4126 	return false;
4127 }
4128 
svm_mpx_supported(void)4129 static bool svm_mpx_supported(void)
4130 {
4131 	return false;
4132 }
4133 
svm_xsaves_supported(void)4134 static bool svm_xsaves_supported(void)
4135 {
4136 	return false;
4137 }
4138 
svm_has_wbinvd_exit(void)4139 static bool svm_has_wbinvd_exit(void)
4140 {
4141 	return true;
4142 }
4143 
svm_fpu_deactivate(struct kvm_vcpu * vcpu)4144 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4145 {
4146 	struct vcpu_svm *svm = to_svm(vcpu);
4147 
4148 	set_exception_intercept(svm, NM_VECTOR);
4149 	update_cr0_intercept(svm);
4150 }
4151 
4152 #define PRE_EX(exit)  { .exit_code = (exit), \
4153 			.stage = X86_ICPT_PRE_EXCEPT, }
4154 #define POST_EX(exit) { .exit_code = (exit), \
4155 			.stage = X86_ICPT_POST_EXCEPT, }
4156 #define POST_MEM(exit) { .exit_code = (exit), \
4157 			.stage = X86_ICPT_POST_MEMACCESS, }
4158 
4159 static const struct __x86_intercept {
4160 	u32 exit_code;
4161 	enum x86_intercept_stage stage;
4162 } x86_intercept_map[] = {
4163 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4164 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4165 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4166 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4167 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4168 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4169 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4170 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4171 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4172 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4173 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4174 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4175 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4176 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4177 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4178 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4179 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4180 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4181 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4182 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4183 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4184 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4185 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4186 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4187 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4188 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4189 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4190 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4191 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4192 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4193 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4194 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4195 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4196 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4197 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4198 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4199 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4200 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4201 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4202 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4203 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4204 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4205 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4206 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4207 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4208 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4209 };
4210 
4211 #undef PRE_EX
4212 #undef POST_EX
4213 #undef POST_MEM
4214 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)4215 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4216 			       struct x86_instruction_info *info,
4217 			       enum x86_intercept_stage stage)
4218 {
4219 	struct vcpu_svm *svm = to_svm(vcpu);
4220 	int vmexit, ret = X86EMUL_CONTINUE;
4221 	struct __x86_intercept icpt_info;
4222 	struct vmcb *vmcb = svm->vmcb;
4223 
4224 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4225 		goto out;
4226 
4227 	icpt_info = x86_intercept_map[info->intercept];
4228 
4229 	if (stage != icpt_info.stage)
4230 		goto out;
4231 
4232 	switch (icpt_info.exit_code) {
4233 	case SVM_EXIT_READ_CR0:
4234 		if (info->intercept == x86_intercept_cr_read)
4235 			icpt_info.exit_code += info->modrm_reg;
4236 		break;
4237 	case SVM_EXIT_WRITE_CR0: {
4238 		unsigned long cr0, val;
4239 		u64 intercept;
4240 
4241 		if (info->intercept == x86_intercept_cr_write)
4242 			icpt_info.exit_code += info->modrm_reg;
4243 
4244 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4245 		    info->intercept == x86_intercept_clts)
4246 			break;
4247 
4248 		intercept = svm->nested.intercept;
4249 
4250 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4251 			break;
4252 
4253 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4254 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4255 
4256 		if (info->intercept == x86_intercept_lmsw) {
4257 			cr0 &= 0xfUL;
4258 			val &= 0xfUL;
4259 			/* lmsw can't clear PE - catch this here */
4260 			if (cr0 & X86_CR0_PE)
4261 				val |= X86_CR0_PE;
4262 		}
4263 
4264 		if (cr0 ^ val)
4265 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4266 
4267 		break;
4268 	}
4269 	case SVM_EXIT_READ_DR0:
4270 	case SVM_EXIT_WRITE_DR0:
4271 		icpt_info.exit_code += info->modrm_reg;
4272 		break;
4273 	case SVM_EXIT_MSR:
4274 		if (info->intercept == x86_intercept_wrmsr)
4275 			vmcb->control.exit_info_1 = 1;
4276 		else
4277 			vmcb->control.exit_info_1 = 0;
4278 		break;
4279 	case SVM_EXIT_PAUSE:
4280 		/*
4281 		 * We get this for NOP only, but pause
4282 		 * is rep not, check this here
4283 		 */
4284 		if (info->rep_prefix != REPE_PREFIX)
4285 			goto out;
4286 	case SVM_EXIT_IOIO: {
4287 		u64 exit_info;
4288 		u32 bytes;
4289 
4290 		if (info->intercept == x86_intercept_in ||
4291 		    info->intercept == x86_intercept_ins) {
4292 			exit_info = ((info->src_val & 0xffff) << 16) |
4293 				SVM_IOIO_TYPE_MASK;
4294 			bytes = info->dst_bytes;
4295 		} else {
4296 			exit_info = (info->dst_val & 0xffff) << 16;
4297 			bytes = info->src_bytes;
4298 		}
4299 
4300 		if (info->intercept == x86_intercept_outs ||
4301 		    info->intercept == x86_intercept_ins)
4302 			exit_info |= SVM_IOIO_STR_MASK;
4303 
4304 		if (info->rep_prefix)
4305 			exit_info |= SVM_IOIO_REP_MASK;
4306 
4307 		bytes = min(bytes, 4u);
4308 
4309 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4310 
4311 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4312 
4313 		vmcb->control.exit_info_1 = exit_info;
4314 		vmcb->control.exit_info_2 = info->next_rip;
4315 
4316 		break;
4317 	}
4318 	default:
4319 		break;
4320 	}
4321 
4322 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4323 	if (static_cpu_has(X86_FEATURE_NRIPS))
4324 		vmcb->control.next_rip  = info->next_rip;
4325 	vmcb->control.exit_code = icpt_info.exit_code;
4326 	vmexit = nested_svm_exit_handled(svm);
4327 
4328 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4329 					   : X86EMUL_CONTINUE;
4330 
4331 out:
4332 	return ret;
4333 }
4334 
svm_handle_external_intr(struct kvm_vcpu * vcpu)4335 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4336 {
4337 	local_irq_enable();
4338 }
4339 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)4340 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4341 {
4342 }
4343 
4344 static struct kvm_x86_ops svm_x86_ops = {
4345 	.cpu_has_kvm_support = has_svm,
4346 	.disabled_by_bios = is_disabled,
4347 	.hardware_setup = svm_hardware_setup,
4348 	.hardware_unsetup = svm_hardware_unsetup,
4349 	.check_processor_compatibility = svm_check_processor_compat,
4350 	.hardware_enable = svm_hardware_enable,
4351 	.hardware_disable = svm_hardware_disable,
4352 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4353 
4354 	.vcpu_create = svm_create_vcpu,
4355 	.vcpu_free = svm_free_vcpu,
4356 	.vcpu_reset = svm_vcpu_reset,
4357 
4358 	.prepare_guest_switch = svm_prepare_guest_switch,
4359 	.vcpu_load = svm_vcpu_load,
4360 	.vcpu_put = svm_vcpu_put,
4361 
4362 	.update_db_bp_intercept = update_bp_intercept,
4363 	.get_msr = svm_get_msr,
4364 	.set_msr = svm_set_msr,
4365 	.get_segment_base = svm_get_segment_base,
4366 	.get_segment = svm_get_segment,
4367 	.set_segment = svm_set_segment,
4368 	.get_cpl = svm_get_cpl,
4369 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4370 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4371 	.decache_cr3 = svm_decache_cr3,
4372 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4373 	.set_cr0 = svm_set_cr0,
4374 	.set_cr3 = svm_set_cr3,
4375 	.set_cr4 = svm_set_cr4,
4376 	.set_efer = svm_set_efer,
4377 	.get_idt = svm_get_idt,
4378 	.set_idt = svm_set_idt,
4379 	.get_gdt = svm_get_gdt,
4380 	.set_gdt = svm_set_gdt,
4381 	.get_dr6 = svm_get_dr6,
4382 	.set_dr6 = svm_set_dr6,
4383 	.set_dr7 = svm_set_dr7,
4384 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4385 	.cache_reg = svm_cache_reg,
4386 	.get_rflags = svm_get_rflags,
4387 	.set_rflags = svm_set_rflags,
4388 	.fpu_activate = svm_fpu_activate,
4389 	.fpu_deactivate = svm_fpu_deactivate,
4390 
4391 	.tlb_flush = svm_flush_tlb,
4392 
4393 	.run = svm_vcpu_run,
4394 	.handle_exit = handle_exit,
4395 	.skip_emulated_instruction = skip_emulated_instruction,
4396 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4397 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4398 	.patch_hypercall = svm_patch_hypercall,
4399 	.set_irq = svm_set_irq,
4400 	.set_nmi = svm_inject_nmi,
4401 	.queue_exception = svm_queue_exception,
4402 	.cancel_injection = svm_cancel_injection,
4403 	.interrupt_allowed = svm_interrupt_allowed,
4404 	.nmi_allowed = svm_nmi_allowed,
4405 	.get_nmi_mask = svm_get_nmi_mask,
4406 	.set_nmi_mask = svm_set_nmi_mask,
4407 	.enable_nmi_window = enable_nmi_window,
4408 	.enable_irq_window = enable_irq_window,
4409 	.update_cr8_intercept = update_cr8_intercept,
4410 	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4411 	.vm_has_apicv = svm_vm_has_apicv,
4412 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4413 	.sync_pir_to_irr = svm_sync_pir_to_irr,
4414 
4415 	.set_tss_addr = svm_set_tss_addr,
4416 	.get_tdp_level = get_npt_level,
4417 	.get_mt_mask = svm_get_mt_mask,
4418 
4419 	.get_exit_info = svm_get_exit_info,
4420 
4421 	.get_lpage_level = svm_get_lpage_level,
4422 
4423 	.cpuid_update = svm_cpuid_update,
4424 
4425 	.rdtscp_supported = svm_rdtscp_supported,
4426 	.invpcid_supported = svm_invpcid_supported,
4427 	.mpx_supported = svm_mpx_supported,
4428 	.xsaves_supported = svm_xsaves_supported,
4429 
4430 	.set_supported_cpuid = svm_set_supported_cpuid,
4431 
4432 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4433 
4434 	.set_tsc_khz = svm_set_tsc_khz,
4435 	.read_tsc_offset = svm_read_tsc_offset,
4436 	.write_tsc_offset = svm_write_tsc_offset,
4437 	.adjust_tsc_offset = svm_adjust_tsc_offset,
4438 	.compute_tsc_offset = svm_compute_tsc_offset,
4439 	.read_l1_tsc = svm_read_l1_tsc,
4440 
4441 	.set_tdp_cr3 = set_tdp_cr3,
4442 
4443 	.check_intercept = svm_check_intercept,
4444 	.handle_external_intr = svm_handle_external_intr,
4445 
4446 	.sched_in = svm_sched_in,
4447 };
4448 
svm_init(void)4449 static int __init svm_init(void)
4450 {
4451 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4452 			__alignof__(struct vcpu_svm), THIS_MODULE);
4453 }
4454 
svm_exit(void)4455 static void __exit svm_exit(void)
4456 {
4457 	kvm_exit();
4458 }
4459 
4460 module_init(svm_init)
4461 module_exit(svm_exit)
4462