1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13 
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/irq.h>
18 #include <linux/irqdesc.h>
19 
20 #include <asm/irq_regs.h>
21 #include <asm/pmu.h>
22 
23 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)24 armpmu_map_cache_event(const unsigned (*cache_map)
25 				      [PERF_COUNT_HW_CACHE_MAX]
26 				      [PERF_COUNT_HW_CACHE_OP_MAX]
27 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
28 		       u64 config)
29 {
30 	unsigned int cache_type, cache_op, cache_result, ret;
31 
32 	cache_type = (config >>  0) & 0xff;
33 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
34 		return -EINVAL;
35 
36 	cache_op = (config >>  8) & 0xff;
37 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
38 		return -EINVAL;
39 
40 	cache_result = (config >> 16) & 0xff;
41 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
42 		return -EINVAL;
43 
44 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
45 
46 	if (ret == CACHE_OP_UNSUPPORTED)
47 		return -ENOENT;
48 
49 	return ret;
50 }
51 
52 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)53 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
54 {
55 	int mapping;
56 
57 	if (config >= PERF_COUNT_HW_MAX)
58 		return -EINVAL;
59 
60 	mapping = (*event_map)[config];
61 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
62 }
63 
64 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)65 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
66 {
67 	return (int)(config & raw_event_mask);
68 }
69 
70 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)71 armpmu_map_event(struct perf_event *event,
72 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
73 		 const unsigned (*cache_map)
74 				[PERF_COUNT_HW_CACHE_MAX]
75 				[PERF_COUNT_HW_CACHE_OP_MAX]
76 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
77 		 u32 raw_event_mask)
78 {
79 	u64 config = event->attr.config;
80 	int type = event->attr.type;
81 
82 	if (type == event->pmu->type)
83 		return armpmu_map_raw_event(raw_event_mask, config);
84 
85 	switch (type) {
86 	case PERF_TYPE_HARDWARE:
87 		return armpmu_map_hw_event(event_map, config);
88 	case PERF_TYPE_HW_CACHE:
89 		return armpmu_map_cache_event(cache_map, config);
90 	case PERF_TYPE_RAW:
91 		return armpmu_map_raw_event(raw_event_mask, config);
92 	}
93 
94 	return -ENOENT;
95 }
96 
armpmu_event_set_period(struct perf_event * event)97 int armpmu_event_set_period(struct perf_event *event)
98 {
99 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
100 	struct hw_perf_event *hwc = &event->hw;
101 	s64 left = local64_read(&hwc->period_left);
102 	s64 period = hwc->sample_period;
103 	int ret = 0;
104 
105 	if (unlikely(left <= -period)) {
106 		left = period;
107 		local64_set(&hwc->period_left, left);
108 		hwc->last_period = period;
109 		ret = 1;
110 	}
111 
112 	if (unlikely(left <= 0)) {
113 		left += period;
114 		local64_set(&hwc->period_left, left);
115 		hwc->last_period = period;
116 		ret = 1;
117 	}
118 
119 	/*
120 	 * Limit the maximum period to prevent the counter value
121 	 * from overtaking the one we are about to program. In
122 	 * effect we are reducing max_period to account for
123 	 * interrupt latency (and we are being very conservative).
124 	 */
125 	if (left > (armpmu->max_period >> 1))
126 		left = armpmu->max_period >> 1;
127 
128 	local64_set(&hwc->prev_count, (u64)-left);
129 
130 	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
131 
132 	perf_event_update_userpage(event);
133 
134 	return ret;
135 }
136 
armpmu_event_update(struct perf_event * event)137 u64 armpmu_event_update(struct perf_event *event)
138 {
139 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
140 	struct hw_perf_event *hwc = &event->hw;
141 	u64 delta, prev_raw_count, new_raw_count;
142 
143 again:
144 	prev_raw_count = local64_read(&hwc->prev_count);
145 	new_raw_count = armpmu->read_counter(event);
146 
147 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
148 			     new_raw_count) != prev_raw_count)
149 		goto again;
150 
151 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
152 
153 	local64_add(delta, &event->count);
154 	local64_sub(delta, &hwc->period_left);
155 
156 	return new_raw_count;
157 }
158 
159 static void
armpmu_read(struct perf_event * event)160 armpmu_read(struct perf_event *event)
161 {
162 	armpmu_event_update(event);
163 }
164 
165 static void
armpmu_stop(struct perf_event * event,int flags)166 armpmu_stop(struct perf_event *event, int flags)
167 {
168 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
169 	struct hw_perf_event *hwc = &event->hw;
170 
171 	/*
172 	 * ARM pmu always has to update the counter, so ignore
173 	 * PERF_EF_UPDATE, see comments in armpmu_start().
174 	 */
175 	if (!(hwc->state & PERF_HES_STOPPED)) {
176 		armpmu->disable(event);
177 		armpmu_event_update(event);
178 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
179 	}
180 }
181 
armpmu_start(struct perf_event * event,int flags)182 static void armpmu_start(struct perf_event *event, int flags)
183 {
184 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
185 	struct hw_perf_event *hwc = &event->hw;
186 
187 	/*
188 	 * ARM pmu always has to reprogram the period, so ignore
189 	 * PERF_EF_RELOAD, see the comment below.
190 	 */
191 	if (flags & PERF_EF_RELOAD)
192 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
193 
194 	hwc->state = 0;
195 	/*
196 	 * Set the period again. Some counters can't be stopped, so when we
197 	 * were stopped we simply disabled the IRQ source and the counter
198 	 * may have been left counting. If we don't do this step then we may
199 	 * get an interrupt too soon or *way* too late if the overflow has
200 	 * happened since disabling.
201 	 */
202 	armpmu_event_set_period(event);
203 	armpmu->enable(event);
204 }
205 
206 static void
armpmu_del(struct perf_event * event,int flags)207 armpmu_del(struct perf_event *event, int flags)
208 {
209 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
210 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
211 	struct hw_perf_event *hwc = &event->hw;
212 	int idx = hwc->idx;
213 
214 	armpmu_stop(event, PERF_EF_UPDATE);
215 	hw_events->events[idx] = NULL;
216 	clear_bit(idx, hw_events->used_mask);
217 	if (armpmu->clear_event_idx)
218 		armpmu->clear_event_idx(hw_events, event);
219 
220 	perf_event_update_userpage(event);
221 }
222 
223 static int
armpmu_add(struct perf_event * event,int flags)224 armpmu_add(struct perf_event *event, int flags)
225 {
226 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
227 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
228 	struct hw_perf_event *hwc = &event->hw;
229 	int idx;
230 	int err = 0;
231 
232 	perf_pmu_disable(event->pmu);
233 
234 	/* If we don't have a space for the counter then finish early. */
235 	idx = armpmu->get_event_idx(hw_events, event);
236 	if (idx < 0) {
237 		err = idx;
238 		goto out;
239 	}
240 
241 	/*
242 	 * If there is an event in the counter we are going to use then make
243 	 * sure it is disabled.
244 	 */
245 	event->hw.idx = idx;
246 	armpmu->disable(event);
247 	hw_events->events[idx] = event;
248 
249 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
250 	if (flags & PERF_EF_START)
251 		armpmu_start(event, PERF_EF_RELOAD);
252 
253 	/* Propagate our changes to the userspace mapping. */
254 	perf_event_update_userpage(event);
255 
256 out:
257 	perf_pmu_enable(event->pmu);
258 	return err;
259 }
260 
261 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)262 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
263 			       struct perf_event *event)
264 {
265 	struct arm_pmu *armpmu;
266 
267 	if (is_software_event(event))
268 		return 1;
269 
270 	/*
271 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
272 	 * core perf code won't check that the pmu->ctx == leader->ctx
273 	 * until after pmu->event_init(event).
274 	 */
275 	if (event->pmu != pmu)
276 		return 0;
277 
278 	if (event->state < PERF_EVENT_STATE_OFF)
279 		return 1;
280 
281 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
282 		return 1;
283 
284 	armpmu = to_arm_pmu(event->pmu);
285 	return armpmu->get_event_idx(hw_events, event) >= 0;
286 }
287 
288 static int
validate_group(struct perf_event * event)289 validate_group(struct perf_event *event)
290 {
291 	struct perf_event *sibling, *leader = event->group_leader;
292 	struct pmu_hw_events fake_pmu;
293 
294 	/*
295 	 * Initialise the fake PMU. We only need to populate the
296 	 * used_mask for the purposes of validation.
297 	 */
298 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
299 
300 	if (!validate_event(event->pmu, &fake_pmu, leader))
301 		return -EINVAL;
302 
303 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
304 		if (!validate_event(event->pmu, &fake_pmu, sibling))
305 			return -EINVAL;
306 	}
307 
308 	if (!validate_event(event->pmu, &fake_pmu, event))
309 		return -EINVAL;
310 
311 	return 0;
312 }
313 
armpmu_dispatch_irq(int irq,void * dev)314 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
315 {
316 	struct arm_pmu *armpmu;
317 	struct platform_device *plat_device;
318 	struct arm_pmu_platdata *plat;
319 	int ret;
320 	u64 start_clock, finish_clock;
321 
322 	/*
323 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
324 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
325 	 * do any necessary shifting, we just need to perform the first
326 	 * dereference.
327 	 */
328 	armpmu = *(void **)dev;
329 	plat_device = armpmu->plat_device;
330 	plat = dev_get_platdata(&plat_device->dev);
331 
332 	start_clock = sched_clock();
333 	if (plat && plat->handle_irq)
334 		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
335 	else
336 		ret = armpmu->handle_irq(irq, armpmu);
337 	finish_clock = sched_clock();
338 
339 	perf_sample_event_took(finish_clock - start_clock);
340 	return ret;
341 }
342 
343 static void
armpmu_release_hardware(struct arm_pmu * armpmu)344 armpmu_release_hardware(struct arm_pmu *armpmu)
345 {
346 	armpmu->free_irq(armpmu);
347 	pm_runtime_put_sync(&armpmu->plat_device->dev);
348 }
349 
350 static int
armpmu_reserve_hardware(struct arm_pmu * armpmu)351 armpmu_reserve_hardware(struct arm_pmu *armpmu)
352 {
353 	int err;
354 	struct platform_device *pmu_device = armpmu->plat_device;
355 
356 	if (!pmu_device)
357 		return -ENODEV;
358 
359 	pm_runtime_get_sync(&pmu_device->dev);
360 	err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
361 	if (err) {
362 		armpmu_release_hardware(armpmu);
363 		return err;
364 	}
365 
366 	return 0;
367 }
368 
369 static void
hw_perf_event_destroy(struct perf_event * event)370 hw_perf_event_destroy(struct perf_event *event)
371 {
372 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
373 	atomic_t *active_events	 = &armpmu->active_events;
374 	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
375 
376 	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
377 		armpmu_release_hardware(armpmu);
378 		mutex_unlock(pmu_reserve_mutex);
379 	}
380 }
381 
382 static int
event_requires_mode_exclusion(struct perf_event_attr * attr)383 event_requires_mode_exclusion(struct perf_event_attr *attr)
384 {
385 	return attr->exclude_idle || attr->exclude_user ||
386 	       attr->exclude_kernel || attr->exclude_hv;
387 }
388 
389 static int
__hw_perf_event_init(struct perf_event * event)390 __hw_perf_event_init(struct perf_event *event)
391 {
392 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
393 	struct hw_perf_event *hwc = &event->hw;
394 	int mapping;
395 
396 	mapping = armpmu->map_event(event);
397 
398 	if (mapping < 0) {
399 		pr_debug("event %x:%llx not supported\n", event->attr.type,
400 			 event->attr.config);
401 		return mapping;
402 	}
403 
404 	/*
405 	 * We don't assign an index until we actually place the event onto
406 	 * hardware. Use -1 to signify that we haven't decided where to put it
407 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
408 	 * clever allocation or constraints checking at this point.
409 	 */
410 	hwc->idx		= -1;
411 	hwc->config_base	= 0;
412 	hwc->config		= 0;
413 	hwc->event_base		= 0;
414 
415 	/*
416 	 * Check whether we need to exclude the counter from certain modes.
417 	 */
418 	if ((!armpmu->set_event_filter ||
419 	     armpmu->set_event_filter(hwc, &event->attr)) &&
420 	     event_requires_mode_exclusion(&event->attr)) {
421 		pr_debug("ARM performance counters do not support "
422 			 "mode exclusion\n");
423 		return -EOPNOTSUPP;
424 	}
425 
426 	/*
427 	 * Store the event encoding into the config_base field.
428 	 */
429 	hwc->config_base	    |= (unsigned long)mapping;
430 
431 	if (!is_sampling_event(event)) {
432 		/*
433 		 * For non-sampling runs, limit the sample_period to half
434 		 * of the counter width. That way, the new counter value
435 		 * is far less likely to overtake the previous one unless
436 		 * you have some serious IRQ latency issues.
437 		 */
438 		hwc->sample_period  = armpmu->max_period >> 1;
439 		hwc->last_period    = hwc->sample_period;
440 		local64_set(&hwc->period_left, hwc->sample_period);
441 	}
442 
443 	if (event->group_leader != event) {
444 		if (validate_group(event) != 0)
445 			return -EINVAL;
446 	}
447 
448 	return 0;
449 }
450 
armpmu_event_init(struct perf_event * event)451 static int armpmu_event_init(struct perf_event *event)
452 {
453 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
454 	int err = 0;
455 	atomic_t *active_events = &armpmu->active_events;
456 
457 	/* does not support taken branch sampling */
458 	if (has_branch_stack(event))
459 		return -EOPNOTSUPP;
460 
461 	if (armpmu->map_event(event) == -ENOENT)
462 		return -ENOENT;
463 
464 	event->destroy = hw_perf_event_destroy;
465 
466 	if (!atomic_inc_not_zero(active_events)) {
467 		mutex_lock(&armpmu->reserve_mutex);
468 		if (atomic_read(active_events) == 0)
469 			err = armpmu_reserve_hardware(armpmu);
470 
471 		if (!err)
472 			atomic_inc(active_events);
473 		mutex_unlock(&armpmu->reserve_mutex);
474 	}
475 
476 	if (err)
477 		return err;
478 
479 	err = __hw_perf_event_init(event);
480 	if (err)
481 		hw_perf_event_destroy(event);
482 
483 	return err;
484 }
485 
armpmu_enable(struct pmu * pmu)486 static void armpmu_enable(struct pmu *pmu)
487 {
488 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
489 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
490 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
491 
492 	if (enabled)
493 		armpmu->start(armpmu);
494 }
495 
armpmu_disable(struct pmu * pmu)496 static void armpmu_disable(struct pmu *pmu)
497 {
498 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
499 	armpmu->stop(armpmu);
500 }
501 
502 #ifdef CONFIG_PM
armpmu_runtime_resume(struct device * dev)503 static int armpmu_runtime_resume(struct device *dev)
504 {
505 	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
506 
507 	if (plat && plat->runtime_resume)
508 		return plat->runtime_resume(dev);
509 
510 	return 0;
511 }
512 
armpmu_runtime_suspend(struct device * dev)513 static int armpmu_runtime_suspend(struct device *dev)
514 {
515 	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
516 
517 	if (plat && plat->runtime_suspend)
518 		return plat->runtime_suspend(dev);
519 
520 	return 0;
521 }
522 #endif
523 
524 const struct dev_pm_ops armpmu_dev_pm_ops = {
525 	SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
526 };
527 
armpmu_init(struct arm_pmu * armpmu)528 static void armpmu_init(struct arm_pmu *armpmu)
529 {
530 	atomic_set(&armpmu->active_events, 0);
531 	mutex_init(&armpmu->reserve_mutex);
532 
533 	armpmu->pmu = (struct pmu) {
534 		.pmu_enable	= armpmu_enable,
535 		.pmu_disable	= armpmu_disable,
536 		.event_init	= armpmu_event_init,
537 		.add		= armpmu_add,
538 		.del		= armpmu_del,
539 		.start		= armpmu_start,
540 		.stop		= armpmu_stop,
541 		.read		= armpmu_read,
542 	};
543 }
544 
armpmu_register(struct arm_pmu * armpmu,int type)545 int armpmu_register(struct arm_pmu *armpmu, int type)
546 {
547 	armpmu_init(armpmu);
548 	pm_runtime_enable(&armpmu->plat_device->dev);
549 	pr_info("enabled with %s PMU driver, %d counters available\n",
550 			armpmu->name, armpmu->num_events);
551 	return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
552 }
553 
554