1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46
47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
48
49 STATIC int
50 xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53 STATIC int
54 xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
57 #if defined(DEBUG)
58 STATIC void
59 xlog_recover_check_summary(
60 struct xlog *);
61 #else
62 #define xlog_recover_check_summary(log)
63 #endif
64
65 /*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69 struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74 };
75
76 /*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
80 /*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86 static inline int
xlog_buf_bbcount_valid(struct xlog * log,int bbcount)87 xlog_buf_bbcount_valid(
88 struct xlog *log,
89 int bbcount)
90 {
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92 }
93
94 /*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
99 STATIC xfs_buf_t *
xlog_get_bp(struct xlog * log,int nbblks)100 xlog_get_bp(
101 struct xlog *log,
102 int nbblks)
103 {
104 struct xfs_buf *bp;
105
106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 return NULL;
111 }
112
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
116 * requested size to accommodate the basic blocks required
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
127 * there's space to accommodate this possibility.
128 */
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
132
133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
137 }
138
139 STATIC void
xlog_put_bp(xfs_buf_t * bp)140 xlog_put_bp(
141 xfs_buf_t *bp)
142 {
143 xfs_buf_free(bp);
144 }
145
146 /*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
150 STATIC xfs_caddr_t
xlog_align(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)151 xlog_align(
152 struct xlog *log,
153 xfs_daddr_t blk_no,
154 int nbblks,
155 struct xfs_buf *bp)
156 {
157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
158
159 ASSERT(offset + nbblks <= bp->b_length);
160 return bp->b_addr + BBTOB(offset);
161 }
162
163
164 /*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
167 STATIC int
xlog_bread_noalign(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)168 xlog_bread_noalign(
169 struct xlog *log,
170 xfs_daddr_t blk_no,
171 int nbblks,
172 struct xfs_buf *bp)
173 {
174 int error;
175
176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
180 return -EFSCORRUPTED;
181 }
182
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
185
186 ASSERT(nbblks > 0);
187 ASSERT(nbblks <= bp->b_length);
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
191 bp->b_io_length = nbblks;
192 bp->b_error = 0;
193
194 error = xfs_buf_submit_wait(bp);
195 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
196 xfs_buf_ioerror_alert(bp, __func__);
197 return error;
198 }
199
200 STATIC int
xlog_bread(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,xfs_caddr_t * offset)201 xlog_bread(
202 struct xlog *log,
203 xfs_daddr_t blk_no,
204 int nbblks,
205 struct xfs_buf *bp,
206 xfs_caddr_t *offset)
207 {
208 int error;
209
210 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 if (error)
212 return error;
213
214 *offset = xlog_align(log, blk_no, nbblks, bp);
215 return 0;
216 }
217
218 /*
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
221 */
222 STATIC int
xlog_bread_offset(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,xfs_caddr_t offset)223 xlog_bread_offset(
224 struct xlog *log,
225 xfs_daddr_t blk_no, /* block to read from */
226 int nbblks, /* blocks to read */
227 struct xfs_buf *bp,
228 xfs_caddr_t offset)
229 {
230 xfs_caddr_t orig_offset = bp->b_addr;
231 int orig_len = BBTOB(bp->b_length);
232 int error, error2;
233
234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
235 if (error)
236 return error;
237
238 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239
240 /* must reset buffer pointer even on error */
241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
242 if (error)
243 return error;
244 return error2;
245 }
246
247 /*
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
251 */
252 STATIC int
xlog_bwrite(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)253 xlog_bwrite(
254 struct xlog *log,
255 xfs_daddr_t blk_no,
256 int nbblks,
257 struct xfs_buf *bp)
258 {
259 int error;
260
261 if (!xlog_buf_bbcount_valid(log, nbblks)) {
262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
263 nbblks);
264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
265 return -EFSCORRUPTED;
266 }
267
268 blk_no = round_down(blk_no, log->l_sectBBsize);
269 nbblks = round_up(nbblks, log->l_sectBBsize);
270
271 ASSERT(nbblks > 0);
272 ASSERT(nbblks <= bp->b_length);
273
274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 XFS_BUF_ZEROFLAGS(bp);
276 xfs_buf_hold(bp);
277 xfs_buf_lock(bp);
278 bp->b_io_length = nbblks;
279 bp->b_error = 0;
280
281 error = xfs_bwrite(bp);
282 if (error)
283 xfs_buf_ioerror_alert(bp, __func__);
284 xfs_buf_relse(bp);
285 return error;
286 }
287
288 #ifdef DEBUG
289 /*
290 * dump debug superblock and log record information
291 */
292 STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)293 xlog_header_check_dump(
294 xfs_mount_t *mp,
295 xlog_rec_header_t *head)
296 {
297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
299 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
301 }
302 #else
303 #define xlog_header_check_dump(mp, head)
304 #endif
305
306 /*
307 * check log record header for recovery
308 */
309 STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)310 xlog_header_check_recover(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313 {
314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
315
316 /*
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
320 */
321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
322 xfs_warn(mp,
323 "dirty log written in incompatible format - can't recover");
324 xlog_header_check_dump(mp, head);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH, mp);
327 return -EFSCORRUPTED;
328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
329 xfs_warn(mp,
330 "dirty log entry has mismatched uuid - can't recover");
331 xlog_header_check_dump(mp, head);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH, mp);
334 return -EFSCORRUPTED;
335 }
336 return 0;
337 }
338
339 /*
340 * read the head block of the log and check the header
341 */
342 STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)343 xlog_header_check_mount(
344 xfs_mount_t *mp,
345 xlog_rec_header_t *head)
346 {
347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
348
349 if (uuid_is_nil(&head->h_fs_uuid)) {
350 /*
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
354 */
355 xfs_warn(mp, "nil uuid in log - IRIX style log");
356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
357 xfs_warn(mp, "log has mismatched uuid - can't recover");
358 xlog_header_check_dump(mp, head);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH, mp);
361 return -EFSCORRUPTED;
362 }
363 return 0;
364 }
365
366 STATIC void
xlog_recover_iodone(struct xfs_buf * bp)367 xlog_recover_iodone(
368 struct xfs_buf *bp)
369 {
370 if (bp->b_error) {
371 /*
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
374 */
375 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
376 xfs_buf_ioerror_alert(bp, __func__);
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
379 }
380 }
381 bp->b_iodone = NULL;
382 xfs_buf_ioend(bp);
383 }
384
385 /*
386 * This routine finds (to an approximation) the first block in the physical
387 * log which contains the given cycle. It uses a binary search algorithm.
388 * Note that the algorithm can not be perfect because the disk will not
389 * necessarily be perfect.
390 */
391 STATIC int
xlog_find_cycle_start(struct xlog * log,struct xfs_buf * bp,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)392 xlog_find_cycle_start(
393 struct xlog *log,
394 struct xfs_buf *bp,
395 xfs_daddr_t first_blk,
396 xfs_daddr_t *last_blk,
397 uint cycle)
398 {
399 xfs_caddr_t offset;
400 xfs_daddr_t mid_blk;
401 xfs_daddr_t end_blk;
402 uint mid_cycle;
403 int error;
404
405 end_blk = *last_blk;
406 mid_blk = BLK_AVG(first_blk, end_blk);
407 while (mid_blk != first_blk && mid_blk != end_blk) {
408 error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 if (error)
410 return error;
411 mid_cycle = xlog_get_cycle(offset);
412 if (mid_cycle == cycle)
413 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
414 else
415 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
416 mid_blk = BLK_AVG(first_blk, end_blk);
417 }
418 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
419 (mid_blk == end_blk && mid_blk-1 == first_blk));
420
421 *last_blk = end_blk;
422
423 return 0;
424 }
425
426 /*
427 * Check that a range of blocks does not contain stop_on_cycle_no.
428 * Fill in *new_blk with the block offset where such a block is
429 * found, or with -1 (an invalid block number) if there is no such
430 * block in the range. The scan needs to occur from front to back
431 * and the pointer into the region must be updated since a later
432 * routine will need to perform another test.
433 */
434 STATIC int
xlog_find_verify_cycle(struct xlog * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)435 xlog_find_verify_cycle(
436 struct xlog *log,
437 xfs_daddr_t start_blk,
438 int nbblks,
439 uint stop_on_cycle_no,
440 xfs_daddr_t *new_blk)
441 {
442 xfs_daddr_t i, j;
443 uint cycle;
444 xfs_buf_t *bp;
445 xfs_daddr_t bufblks;
446 xfs_caddr_t buf = NULL;
447 int error = 0;
448
449 /*
450 * Greedily allocate a buffer big enough to handle the full
451 * range of basic blocks we'll be examining. If that fails,
452 * try a smaller size. We need to be able to read at least
453 * a log sector, or we're out of luck.
454 */
455 bufblks = 1 << ffs(nbblks);
456 while (bufblks > log->l_logBBsize)
457 bufblks >>= 1;
458 while (!(bp = xlog_get_bp(log, bufblks))) {
459 bufblks >>= 1;
460 if (bufblks < log->l_sectBBsize)
461 return -ENOMEM;
462 }
463
464 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 int bcount;
466
467 bcount = min(bufblks, (start_blk + nbblks - i));
468
469 error = xlog_bread(log, i, bcount, bp, &buf);
470 if (error)
471 goto out;
472
473 for (j = 0; j < bcount; j++) {
474 cycle = xlog_get_cycle(buf);
475 if (cycle == stop_on_cycle_no) {
476 *new_blk = i+j;
477 goto out;
478 }
479
480 buf += BBSIZE;
481 }
482 }
483
484 *new_blk = -1;
485
486 out:
487 xlog_put_bp(bp);
488 return error;
489 }
490
491 /*
492 * Potentially backup over partial log record write.
493 *
494 * In the typical case, last_blk is the number of the block directly after
495 * a good log record. Therefore, we subtract one to get the block number
496 * of the last block in the given buffer. extra_bblks contains the number
497 * of blocks we would have read on a previous read. This happens when the
498 * last log record is split over the end of the physical log.
499 *
500 * extra_bblks is the number of blocks potentially verified on a previous
501 * call to this routine.
502 */
503 STATIC int
xlog_find_verify_log_record(struct xlog * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)504 xlog_find_verify_log_record(
505 struct xlog *log,
506 xfs_daddr_t start_blk,
507 xfs_daddr_t *last_blk,
508 int extra_bblks)
509 {
510 xfs_daddr_t i;
511 xfs_buf_t *bp;
512 xfs_caddr_t offset = NULL;
513 xlog_rec_header_t *head = NULL;
514 int error = 0;
515 int smallmem = 0;
516 int num_blks = *last_blk - start_blk;
517 int xhdrs;
518
519 ASSERT(start_blk != 0 || *last_blk != start_blk);
520
521 if (!(bp = xlog_get_bp(log, num_blks))) {
522 if (!(bp = xlog_get_bp(log, 1)))
523 return -ENOMEM;
524 smallmem = 1;
525 } else {
526 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 if (error)
528 goto out;
529 offset += ((num_blks - 1) << BBSHIFT);
530 }
531
532 for (i = (*last_blk) - 1; i >= 0; i--) {
533 if (i < start_blk) {
534 /* valid log record not found */
535 xfs_warn(log->l_mp,
536 "Log inconsistent (didn't find previous header)");
537 ASSERT(0);
538 error = -EIO;
539 goto out;
540 }
541
542 if (smallmem) {
543 error = xlog_bread(log, i, 1, bp, &offset);
544 if (error)
545 goto out;
546 }
547
548 head = (xlog_rec_header_t *)offset;
549
550 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
551 break;
552
553 if (!smallmem)
554 offset -= BBSIZE;
555 }
556
557 /*
558 * We hit the beginning of the physical log & still no header. Return
559 * to caller. If caller can handle a return of -1, then this routine
560 * will be called again for the end of the physical log.
561 */
562 if (i == -1) {
563 error = 1;
564 goto out;
565 }
566
567 /*
568 * We have the final block of the good log (the first block
569 * of the log record _before_ the head. So we check the uuid.
570 */
571 if ((error = xlog_header_check_mount(log->l_mp, head)))
572 goto out;
573
574 /*
575 * We may have found a log record header before we expected one.
576 * last_blk will be the 1st block # with a given cycle #. We may end
577 * up reading an entire log record. In this case, we don't want to
578 * reset last_blk. Only when last_blk points in the middle of a log
579 * record do we update last_blk.
580 */
581 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
582 uint h_size = be32_to_cpu(head->h_size);
583
584 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
585 if (h_size % XLOG_HEADER_CYCLE_SIZE)
586 xhdrs++;
587 } else {
588 xhdrs = 1;
589 }
590
591 if (*last_blk - i + extra_bblks !=
592 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
593 *last_blk = i;
594
595 out:
596 xlog_put_bp(bp);
597 return error;
598 }
599
600 /*
601 * Head is defined to be the point of the log where the next log write
602 * could go. This means that incomplete LR writes at the end are
603 * eliminated when calculating the head. We aren't guaranteed that previous
604 * LR have complete transactions. We only know that a cycle number of
605 * current cycle number -1 won't be present in the log if we start writing
606 * from our current block number.
607 *
608 * last_blk contains the block number of the first block with a given
609 * cycle number.
610 *
611 * Return: zero if normal, non-zero if error.
612 */
613 STATIC int
xlog_find_head(struct xlog * log,xfs_daddr_t * return_head_blk)614 xlog_find_head(
615 struct xlog *log,
616 xfs_daddr_t *return_head_blk)
617 {
618 xfs_buf_t *bp;
619 xfs_caddr_t offset;
620 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
621 int num_scan_bblks;
622 uint first_half_cycle, last_half_cycle;
623 uint stop_on_cycle;
624 int error, log_bbnum = log->l_logBBsize;
625
626 /* Is the end of the log device zeroed? */
627 error = xlog_find_zeroed(log, &first_blk);
628 if (error < 0) {
629 xfs_warn(log->l_mp, "empty log check failed");
630 return error;
631 }
632 if (error == 1) {
633 *return_head_blk = first_blk;
634
635 /* Is the whole lot zeroed? */
636 if (!first_blk) {
637 /* Linux XFS shouldn't generate totally zeroed logs -
638 * mkfs etc write a dummy unmount record to a fresh
639 * log so we can store the uuid in there
640 */
641 xfs_warn(log->l_mp, "totally zeroed log");
642 }
643
644 return 0;
645 }
646
647 first_blk = 0; /* get cycle # of 1st block */
648 bp = xlog_get_bp(log, 1);
649 if (!bp)
650 return -ENOMEM;
651
652 error = xlog_bread(log, 0, 1, bp, &offset);
653 if (error)
654 goto bp_err;
655
656 first_half_cycle = xlog_get_cycle(offset);
657
658 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
659 error = xlog_bread(log, last_blk, 1, bp, &offset);
660 if (error)
661 goto bp_err;
662
663 last_half_cycle = xlog_get_cycle(offset);
664 ASSERT(last_half_cycle != 0);
665
666 /*
667 * If the 1st half cycle number is equal to the last half cycle number,
668 * then the entire log is stamped with the same cycle number. In this
669 * case, head_blk can't be set to zero (which makes sense). The below
670 * math doesn't work out properly with head_blk equal to zero. Instead,
671 * we set it to log_bbnum which is an invalid block number, but this
672 * value makes the math correct. If head_blk doesn't changed through
673 * all the tests below, *head_blk is set to zero at the very end rather
674 * than log_bbnum. In a sense, log_bbnum and zero are the same block
675 * in a circular file.
676 */
677 if (first_half_cycle == last_half_cycle) {
678 /*
679 * In this case we believe that the entire log should have
680 * cycle number last_half_cycle. We need to scan backwards
681 * from the end verifying that there are no holes still
682 * containing last_half_cycle - 1. If we find such a hole,
683 * then the start of that hole will be the new head. The
684 * simple case looks like
685 * x | x ... | x - 1 | x
686 * Another case that fits this picture would be
687 * x | x + 1 | x ... | x
688 * In this case the head really is somewhere at the end of the
689 * log, as one of the latest writes at the beginning was
690 * incomplete.
691 * One more case is
692 * x | x + 1 | x ... | x - 1 | x
693 * This is really the combination of the above two cases, and
694 * the head has to end up at the start of the x-1 hole at the
695 * end of the log.
696 *
697 * In the 256k log case, we will read from the beginning to the
698 * end of the log and search for cycle numbers equal to x-1.
699 * We don't worry about the x+1 blocks that we encounter,
700 * because we know that they cannot be the head since the log
701 * started with x.
702 */
703 head_blk = log_bbnum;
704 stop_on_cycle = last_half_cycle - 1;
705 } else {
706 /*
707 * In this case we want to find the first block with cycle
708 * number matching last_half_cycle. We expect the log to be
709 * some variation on
710 * x + 1 ... | x ... | x
711 * The first block with cycle number x (last_half_cycle) will
712 * be where the new head belongs. First we do a binary search
713 * for the first occurrence of last_half_cycle. The binary
714 * search may not be totally accurate, so then we scan back
715 * from there looking for occurrences of last_half_cycle before
716 * us. If that backwards scan wraps around the beginning of
717 * the log, then we look for occurrences of last_half_cycle - 1
718 * at the end of the log. The cases we're looking for look
719 * like
720 * v binary search stopped here
721 * x + 1 ... | x | x + 1 | x ... | x
722 * ^ but we want to locate this spot
723 * or
724 * <---------> less than scan distance
725 * x + 1 ... | x ... | x - 1 | x
726 * ^ we want to locate this spot
727 */
728 stop_on_cycle = last_half_cycle;
729 if ((error = xlog_find_cycle_start(log, bp, first_blk,
730 &head_blk, last_half_cycle)))
731 goto bp_err;
732 }
733
734 /*
735 * Now validate the answer. Scan back some number of maximum possible
736 * blocks and make sure each one has the expected cycle number. The
737 * maximum is determined by the total possible amount of buffering
738 * in the in-core log. The following number can be made tighter if
739 * we actually look at the block size of the filesystem.
740 */
741 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
742 if (head_blk >= num_scan_bblks) {
743 /*
744 * We are guaranteed that the entire check can be performed
745 * in one buffer.
746 */
747 start_blk = head_blk - num_scan_bblks;
748 if ((error = xlog_find_verify_cycle(log,
749 start_blk, num_scan_bblks,
750 stop_on_cycle, &new_blk)))
751 goto bp_err;
752 if (new_blk != -1)
753 head_blk = new_blk;
754 } else { /* need to read 2 parts of log */
755 /*
756 * We are going to scan backwards in the log in two parts.
757 * First we scan the physical end of the log. In this part
758 * of the log, we are looking for blocks with cycle number
759 * last_half_cycle - 1.
760 * If we find one, then we know that the log starts there, as
761 * we've found a hole that didn't get written in going around
762 * the end of the physical log. The simple case for this is
763 * x + 1 ... | x ... | x - 1 | x
764 * <---------> less than scan distance
765 * If all of the blocks at the end of the log have cycle number
766 * last_half_cycle, then we check the blocks at the start of
767 * the log looking for occurrences of last_half_cycle. If we
768 * find one, then our current estimate for the location of the
769 * first occurrence of last_half_cycle is wrong and we move
770 * back to the hole we've found. This case looks like
771 * x + 1 ... | x | x + 1 | x ...
772 * ^ binary search stopped here
773 * Another case we need to handle that only occurs in 256k
774 * logs is
775 * x + 1 ... | x ... | x+1 | x ...
776 * ^ binary search stops here
777 * In a 256k log, the scan at the end of the log will see the
778 * x + 1 blocks. We need to skip past those since that is
779 * certainly not the head of the log. By searching for
780 * last_half_cycle-1 we accomplish that.
781 */
782 ASSERT(head_blk <= INT_MAX &&
783 (xfs_daddr_t) num_scan_bblks >= head_blk);
784 start_blk = log_bbnum - (num_scan_bblks - head_blk);
785 if ((error = xlog_find_verify_cycle(log, start_blk,
786 num_scan_bblks - (int)head_blk,
787 (stop_on_cycle - 1), &new_blk)))
788 goto bp_err;
789 if (new_blk != -1) {
790 head_blk = new_blk;
791 goto validate_head;
792 }
793
794 /*
795 * Scan beginning of log now. The last part of the physical
796 * log is good. This scan needs to verify that it doesn't find
797 * the last_half_cycle.
798 */
799 start_blk = 0;
800 ASSERT(head_blk <= INT_MAX);
801 if ((error = xlog_find_verify_cycle(log,
802 start_blk, (int)head_blk,
803 stop_on_cycle, &new_blk)))
804 goto bp_err;
805 if (new_blk != -1)
806 head_blk = new_blk;
807 }
808
809 validate_head:
810 /*
811 * Now we need to make sure head_blk is not pointing to a block in
812 * the middle of a log record.
813 */
814 num_scan_bblks = XLOG_REC_SHIFT(log);
815 if (head_blk >= num_scan_bblks) {
816 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
817
818 /* start ptr at last block ptr before head_blk */
819 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
820 if (error == 1)
821 error = -EIO;
822 if (error)
823 goto bp_err;
824 } else {
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
827 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
828 if (error < 0)
829 goto bp_err;
830 if (error == 1) {
831 /* We hit the beginning of the log during our search */
832 start_blk = log_bbnum - (num_scan_bblks - head_blk);
833 new_blk = log_bbnum;
834 ASSERT(start_blk <= INT_MAX &&
835 (xfs_daddr_t) log_bbnum-start_blk >= 0);
836 ASSERT(head_blk <= INT_MAX);
837 error = xlog_find_verify_log_record(log, start_blk,
838 &new_blk, (int)head_blk);
839 if (error == 1)
840 error = -EIO;
841 if (error)
842 goto bp_err;
843 if (new_blk != log_bbnum)
844 head_blk = new_blk;
845 } else if (error)
846 goto bp_err;
847 }
848
849 xlog_put_bp(bp);
850 if (head_blk == log_bbnum)
851 *return_head_blk = 0;
852 else
853 *return_head_blk = head_blk;
854 /*
855 * When returning here, we have a good block number. Bad block
856 * means that during a previous crash, we didn't have a clean break
857 * from cycle number N to cycle number N-1. In this case, we need
858 * to find the first block with cycle number N-1.
859 */
860 return 0;
861
862 bp_err:
863 xlog_put_bp(bp);
864
865 if (error)
866 xfs_warn(log->l_mp, "failed to find log head");
867 return error;
868 }
869
870 /*
871 * Find the sync block number or the tail of the log.
872 *
873 * This will be the block number of the last record to have its
874 * associated buffers synced to disk. Every log record header has
875 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
876 * to get a sync block number. The only concern is to figure out which
877 * log record header to believe.
878 *
879 * The following algorithm uses the log record header with the largest
880 * lsn. The entire log record does not need to be valid. We only care
881 * that the header is valid.
882 *
883 * We could speed up search by using current head_blk buffer, but it is not
884 * available.
885 */
886 STATIC int
xlog_find_tail(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)887 xlog_find_tail(
888 struct xlog *log,
889 xfs_daddr_t *head_blk,
890 xfs_daddr_t *tail_blk)
891 {
892 xlog_rec_header_t *rhead;
893 xlog_op_header_t *op_head;
894 xfs_caddr_t offset = NULL;
895 xfs_buf_t *bp;
896 int error, i, found;
897 xfs_daddr_t umount_data_blk;
898 xfs_daddr_t after_umount_blk;
899 xfs_lsn_t tail_lsn;
900 int hblks;
901
902 found = 0;
903
904 /*
905 * Find previous log record
906 */
907 if ((error = xlog_find_head(log, head_blk)))
908 return error;
909
910 bp = xlog_get_bp(log, 1);
911 if (!bp)
912 return -ENOMEM;
913 if (*head_blk == 0) { /* special case */
914 error = xlog_bread(log, 0, 1, bp, &offset);
915 if (error)
916 goto done;
917
918 if (xlog_get_cycle(offset) == 0) {
919 *tail_blk = 0;
920 /* leave all other log inited values alone */
921 goto done;
922 }
923 }
924
925 /*
926 * Search backwards looking for log record header block
927 */
928 ASSERT(*head_blk < INT_MAX);
929 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
930 error = xlog_bread(log, i, 1, bp, &offset);
931 if (error)
932 goto done;
933
934 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
935 found = 1;
936 break;
937 }
938 }
939 /*
940 * If we haven't found the log record header block, start looking
941 * again from the end of the physical log. XXXmiken: There should be
942 * a check here to make sure we didn't search more than N blocks in
943 * the previous code.
944 */
945 if (!found) {
946 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
947 error = xlog_bread(log, i, 1, bp, &offset);
948 if (error)
949 goto done;
950
951 if (*(__be32 *)offset ==
952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
953 found = 2;
954 break;
955 }
956 }
957 }
958 if (!found) {
959 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
960 xlog_put_bp(bp);
961 ASSERT(0);
962 return -EIO;
963 }
964
965 /* find blk_no of tail of log */
966 rhead = (xlog_rec_header_t *)offset;
967 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
968
969 /*
970 * Reset log values according to the state of the log when we
971 * crashed. In the case where head_blk == 0, we bump curr_cycle
972 * one because the next write starts a new cycle rather than
973 * continuing the cycle of the last good log record. At this
974 * point we have guaranteed that all partial log records have been
975 * accounted for. Therefore, we know that the last good log record
976 * written was complete and ended exactly on the end boundary
977 * of the physical log.
978 */
979 log->l_prev_block = i;
980 log->l_curr_block = (int)*head_blk;
981 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
982 if (found == 2)
983 log->l_curr_cycle++;
984 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
985 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
986 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
987 BBTOB(log->l_curr_block));
988 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
989 BBTOB(log->l_curr_block));
990
991 /*
992 * Look for unmount record. If we find it, then we know there
993 * was a clean unmount. Since 'i' could be the last block in
994 * the physical log, we convert to a log block before comparing
995 * to the head_blk.
996 *
997 * Save the current tail lsn to use to pass to
998 * xlog_clear_stale_blocks() below. We won't want to clear the
999 * unmount record if there is one, so we pass the lsn of the
1000 * unmount record rather than the block after it.
1001 */
1002 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1003 int h_size = be32_to_cpu(rhead->h_size);
1004 int h_version = be32_to_cpu(rhead->h_version);
1005
1006 if ((h_version & XLOG_VERSION_2) &&
1007 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1008 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1009 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1010 hblks++;
1011 } else {
1012 hblks = 1;
1013 }
1014 } else {
1015 hblks = 1;
1016 }
1017 after_umount_blk = (i + hblks + (int)
1018 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1019 tail_lsn = atomic64_read(&log->l_tail_lsn);
1020 if (*head_blk == after_umount_blk &&
1021 be32_to_cpu(rhead->h_num_logops) == 1) {
1022 umount_data_blk = (i + hblks) % log->l_logBBsize;
1023 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1024 if (error)
1025 goto done;
1026
1027 op_head = (xlog_op_header_t *)offset;
1028 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1029 /*
1030 * Set tail and last sync so that newly written
1031 * log records will point recovery to after the
1032 * current unmount record.
1033 */
1034 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1035 log->l_curr_cycle, after_umount_blk);
1036 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1037 log->l_curr_cycle, after_umount_blk);
1038 *tail_blk = after_umount_blk;
1039
1040 /*
1041 * Note that the unmount was clean. If the unmount
1042 * was not clean, we need to know this to rebuild the
1043 * superblock counters from the perag headers if we
1044 * have a filesystem using non-persistent counters.
1045 */
1046 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1047 }
1048 }
1049
1050 /*
1051 * Make sure that there are no blocks in front of the head
1052 * with the same cycle number as the head. This can happen
1053 * because we allow multiple outstanding log writes concurrently,
1054 * and the later writes might make it out before earlier ones.
1055 *
1056 * We use the lsn from before modifying it so that we'll never
1057 * overwrite the unmount record after a clean unmount.
1058 *
1059 * Do this only if we are going to recover the filesystem
1060 *
1061 * NOTE: This used to say "if (!readonly)"
1062 * However on Linux, we can & do recover a read-only filesystem.
1063 * We only skip recovery if NORECOVERY is specified on mount,
1064 * in which case we would not be here.
1065 *
1066 * But... if the -device- itself is readonly, just skip this.
1067 * We can't recover this device anyway, so it won't matter.
1068 */
1069 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1070 error = xlog_clear_stale_blocks(log, tail_lsn);
1071
1072 done:
1073 xlog_put_bp(bp);
1074
1075 if (error)
1076 xfs_warn(log->l_mp, "failed to locate log tail");
1077 return error;
1078 }
1079
1080 /*
1081 * Is the log zeroed at all?
1082 *
1083 * The last binary search should be changed to perform an X block read
1084 * once X becomes small enough. You can then search linearly through
1085 * the X blocks. This will cut down on the number of reads we need to do.
1086 *
1087 * If the log is partially zeroed, this routine will pass back the blkno
1088 * of the first block with cycle number 0. It won't have a complete LR
1089 * preceding it.
1090 *
1091 * Return:
1092 * 0 => the log is completely written to
1093 * 1 => use *blk_no as the first block of the log
1094 * <0 => error has occurred
1095 */
1096 STATIC int
xlog_find_zeroed(struct xlog * log,xfs_daddr_t * blk_no)1097 xlog_find_zeroed(
1098 struct xlog *log,
1099 xfs_daddr_t *blk_no)
1100 {
1101 xfs_buf_t *bp;
1102 xfs_caddr_t offset;
1103 uint first_cycle, last_cycle;
1104 xfs_daddr_t new_blk, last_blk, start_blk;
1105 xfs_daddr_t num_scan_bblks;
1106 int error, log_bbnum = log->l_logBBsize;
1107
1108 *blk_no = 0;
1109
1110 /* check totally zeroed log */
1111 bp = xlog_get_bp(log, 1);
1112 if (!bp)
1113 return -ENOMEM;
1114 error = xlog_bread(log, 0, 1, bp, &offset);
1115 if (error)
1116 goto bp_err;
1117
1118 first_cycle = xlog_get_cycle(offset);
1119 if (first_cycle == 0) { /* completely zeroed log */
1120 *blk_no = 0;
1121 xlog_put_bp(bp);
1122 return 1;
1123 }
1124
1125 /* check partially zeroed log */
1126 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1127 if (error)
1128 goto bp_err;
1129
1130 last_cycle = xlog_get_cycle(offset);
1131 if (last_cycle != 0) { /* log completely written to */
1132 xlog_put_bp(bp);
1133 return 0;
1134 } else if (first_cycle != 1) {
1135 /*
1136 * If the cycle of the last block is zero, the cycle of
1137 * the first block must be 1. If it's not, maybe we're
1138 * not looking at a log... Bail out.
1139 */
1140 xfs_warn(log->l_mp,
1141 "Log inconsistent or not a log (last==0, first!=1)");
1142 error = -EINVAL;
1143 goto bp_err;
1144 }
1145
1146 /* we have a partially zeroed log */
1147 last_blk = log_bbnum-1;
1148 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1149 goto bp_err;
1150
1151 /*
1152 * Validate the answer. Because there is no way to guarantee that
1153 * the entire log is made up of log records which are the same size,
1154 * we scan over the defined maximum blocks. At this point, the maximum
1155 * is not chosen to mean anything special. XXXmiken
1156 */
1157 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1158 ASSERT(num_scan_bblks <= INT_MAX);
1159
1160 if (last_blk < num_scan_bblks)
1161 num_scan_bblks = last_blk;
1162 start_blk = last_blk - num_scan_bblks;
1163
1164 /*
1165 * We search for any instances of cycle number 0 that occur before
1166 * our current estimate of the head. What we're trying to detect is
1167 * 1 ... | 0 | 1 | 0...
1168 * ^ binary search ends here
1169 */
1170 if ((error = xlog_find_verify_cycle(log, start_blk,
1171 (int)num_scan_bblks, 0, &new_blk)))
1172 goto bp_err;
1173 if (new_blk != -1)
1174 last_blk = new_blk;
1175
1176 /*
1177 * Potentially backup over partial log record write. We don't need
1178 * to search the end of the log because we know it is zero.
1179 */
1180 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1181 if (error == 1)
1182 error = -EIO;
1183 if (error)
1184 goto bp_err;
1185
1186 *blk_no = last_blk;
1187 bp_err:
1188 xlog_put_bp(bp);
1189 if (error)
1190 return error;
1191 return 1;
1192 }
1193
1194 /*
1195 * These are simple subroutines used by xlog_clear_stale_blocks() below
1196 * to initialize a buffer full of empty log record headers and write
1197 * them into the log.
1198 */
1199 STATIC void
xlog_add_record(struct xlog * log,xfs_caddr_t buf,int cycle,int block,int tail_cycle,int tail_block)1200 xlog_add_record(
1201 struct xlog *log,
1202 xfs_caddr_t buf,
1203 int cycle,
1204 int block,
1205 int tail_cycle,
1206 int tail_block)
1207 {
1208 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1209
1210 memset(buf, 0, BBSIZE);
1211 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1212 recp->h_cycle = cpu_to_be32(cycle);
1213 recp->h_version = cpu_to_be32(
1214 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1215 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1216 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1217 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1218 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1219 }
1220
1221 STATIC int
xlog_write_log_records(struct xlog * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1222 xlog_write_log_records(
1223 struct xlog *log,
1224 int cycle,
1225 int start_block,
1226 int blocks,
1227 int tail_cycle,
1228 int tail_block)
1229 {
1230 xfs_caddr_t offset;
1231 xfs_buf_t *bp;
1232 int balign, ealign;
1233 int sectbb = log->l_sectBBsize;
1234 int end_block = start_block + blocks;
1235 int bufblks;
1236 int error = 0;
1237 int i, j = 0;
1238
1239 /*
1240 * Greedily allocate a buffer big enough to handle the full
1241 * range of basic blocks to be written. If that fails, try
1242 * a smaller size. We need to be able to write at least a
1243 * log sector, or we're out of luck.
1244 */
1245 bufblks = 1 << ffs(blocks);
1246 while (bufblks > log->l_logBBsize)
1247 bufblks >>= 1;
1248 while (!(bp = xlog_get_bp(log, bufblks))) {
1249 bufblks >>= 1;
1250 if (bufblks < sectbb)
1251 return -ENOMEM;
1252 }
1253
1254 /* We may need to do a read at the start to fill in part of
1255 * the buffer in the starting sector not covered by the first
1256 * write below.
1257 */
1258 balign = round_down(start_block, sectbb);
1259 if (balign != start_block) {
1260 error = xlog_bread_noalign(log, start_block, 1, bp);
1261 if (error)
1262 goto out_put_bp;
1263
1264 j = start_block - balign;
1265 }
1266
1267 for (i = start_block; i < end_block; i += bufblks) {
1268 int bcount, endcount;
1269
1270 bcount = min(bufblks, end_block - start_block);
1271 endcount = bcount - j;
1272
1273 /* We may need to do a read at the end to fill in part of
1274 * the buffer in the final sector not covered by the write.
1275 * If this is the same sector as the above read, skip it.
1276 */
1277 ealign = round_down(end_block, sectbb);
1278 if (j == 0 && (start_block + endcount > ealign)) {
1279 offset = bp->b_addr + BBTOB(ealign - start_block);
1280 error = xlog_bread_offset(log, ealign, sectbb,
1281 bp, offset);
1282 if (error)
1283 break;
1284
1285 }
1286
1287 offset = xlog_align(log, start_block, endcount, bp);
1288 for (; j < endcount; j++) {
1289 xlog_add_record(log, offset, cycle, i+j,
1290 tail_cycle, tail_block);
1291 offset += BBSIZE;
1292 }
1293 error = xlog_bwrite(log, start_block, endcount, bp);
1294 if (error)
1295 break;
1296 start_block += endcount;
1297 j = 0;
1298 }
1299
1300 out_put_bp:
1301 xlog_put_bp(bp);
1302 return error;
1303 }
1304
1305 /*
1306 * This routine is called to blow away any incomplete log writes out
1307 * in front of the log head. We do this so that we won't become confused
1308 * if we come up, write only a little bit more, and then crash again.
1309 * If we leave the partial log records out there, this situation could
1310 * cause us to think those partial writes are valid blocks since they
1311 * have the current cycle number. We get rid of them by overwriting them
1312 * with empty log records with the old cycle number rather than the
1313 * current one.
1314 *
1315 * The tail lsn is passed in rather than taken from
1316 * the log so that we will not write over the unmount record after a
1317 * clean unmount in a 512 block log. Doing so would leave the log without
1318 * any valid log records in it until a new one was written. If we crashed
1319 * during that time we would not be able to recover.
1320 */
1321 STATIC int
xlog_clear_stale_blocks(struct xlog * log,xfs_lsn_t tail_lsn)1322 xlog_clear_stale_blocks(
1323 struct xlog *log,
1324 xfs_lsn_t tail_lsn)
1325 {
1326 int tail_cycle, head_cycle;
1327 int tail_block, head_block;
1328 int tail_distance, max_distance;
1329 int distance;
1330 int error;
1331
1332 tail_cycle = CYCLE_LSN(tail_lsn);
1333 tail_block = BLOCK_LSN(tail_lsn);
1334 head_cycle = log->l_curr_cycle;
1335 head_block = log->l_curr_block;
1336
1337 /*
1338 * Figure out the distance between the new head of the log
1339 * and the tail. We want to write over any blocks beyond the
1340 * head that we may have written just before the crash, but
1341 * we don't want to overwrite the tail of the log.
1342 */
1343 if (head_cycle == tail_cycle) {
1344 /*
1345 * The tail is behind the head in the physical log,
1346 * so the distance from the head to the tail is the
1347 * distance from the head to the end of the log plus
1348 * the distance from the beginning of the log to the
1349 * tail.
1350 */
1351 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 XFS_ERRLEVEL_LOW, log->l_mp);
1354 return -EFSCORRUPTED;
1355 }
1356 tail_distance = tail_block + (log->l_logBBsize - head_block);
1357 } else {
1358 /*
1359 * The head is behind the tail in the physical log,
1360 * so the distance from the head to the tail is just
1361 * the tail block minus the head block.
1362 */
1363 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 XFS_ERRLEVEL_LOW, log->l_mp);
1366 return -EFSCORRUPTED;
1367 }
1368 tail_distance = tail_block - head_block;
1369 }
1370
1371 /*
1372 * If the head is right up against the tail, we can't clear
1373 * anything.
1374 */
1375 if (tail_distance <= 0) {
1376 ASSERT(tail_distance == 0);
1377 return 0;
1378 }
1379
1380 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1381 /*
1382 * Take the smaller of the maximum amount of outstanding I/O
1383 * we could have and the distance to the tail to clear out.
1384 * We take the smaller so that we don't overwrite the tail and
1385 * we don't waste all day writing from the head to the tail
1386 * for no reason.
1387 */
1388 max_distance = MIN(max_distance, tail_distance);
1389
1390 if ((head_block + max_distance) <= log->l_logBBsize) {
1391 /*
1392 * We can stomp all the blocks we need to without
1393 * wrapping around the end of the log. Just do it
1394 * in a single write. Use the cycle number of the
1395 * current cycle minus one so that the log will look like:
1396 * n ... | n - 1 ...
1397 */
1398 error = xlog_write_log_records(log, (head_cycle - 1),
1399 head_block, max_distance, tail_cycle,
1400 tail_block);
1401 if (error)
1402 return error;
1403 } else {
1404 /*
1405 * We need to wrap around the end of the physical log in
1406 * order to clear all the blocks. Do it in two separate
1407 * I/Os. The first write should be from the head to the
1408 * end of the physical log, and it should use the current
1409 * cycle number minus one just like above.
1410 */
1411 distance = log->l_logBBsize - head_block;
1412 error = xlog_write_log_records(log, (head_cycle - 1),
1413 head_block, distance, tail_cycle,
1414 tail_block);
1415
1416 if (error)
1417 return error;
1418
1419 /*
1420 * Now write the blocks at the start of the physical log.
1421 * This writes the remainder of the blocks we want to clear.
1422 * It uses the current cycle number since we're now on the
1423 * same cycle as the head so that we get:
1424 * n ... n ... | n - 1 ...
1425 * ^^^^^ blocks we're writing
1426 */
1427 distance = max_distance - (log->l_logBBsize - head_block);
1428 error = xlog_write_log_records(log, head_cycle, 0, distance,
1429 tail_cycle, tail_block);
1430 if (error)
1431 return error;
1432 }
1433
1434 return 0;
1435 }
1436
1437 /******************************************************************************
1438 *
1439 * Log recover routines
1440 *
1441 ******************************************************************************
1442 */
1443
1444 /*
1445 * Sort the log items in the transaction.
1446 *
1447 * The ordering constraints are defined by the inode allocation and unlink
1448 * behaviour. The rules are:
1449 *
1450 * 1. Every item is only logged once in a given transaction. Hence it
1451 * represents the last logged state of the item. Hence ordering is
1452 * dependent on the order in which operations need to be performed so
1453 * required initial conditions are always met.
1454 *
1455 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1456 * there's nothing to replay from them so we can simply cull them
1457 * from the transaction. However, we can't do that until after we've
1458 * replayed all the other items because they may be dependent on the
1459 * cancelled buffer and replaying the cancelled buffer can remove it
1460 * form the cancelled buffer table. Hence they have tobe done last.
1461 *
1462 * 3. Inode allocation buffers must be replayed before inode items that
1463 * read the buffer and replay changes into it. For filesystems using the
1464 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1465 * treated the same as inode allocation buffers as they create and
1466 * initialise the buffers directly.
1467 *
1468 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1469 * This ensures that inodes are completely flushed to the inode buffer
1470 * in a "free" state before we remove the unlinked inode list pointer.
1471 *
1472 * Hence the ordering needs to be inode allocation buffers first, inode items
1473 * second, inode unlink buffers third and cancelled buffers last.
1474 *
1475 * But there's a problem with that - we can't tell an inode allocation buffer
1476 * apart from a regular buffer, so we can't separate them. We can, however,
1477 * tell an inode unlink buffer from the others, and so we can separate them out
1478 * from all the other buffers and move them to last.
1479 *
1480 * Hence, 4 lists, in order from head to tail:
1481 * - buffer_list for all buffers except cancelled/inode unlink buffers
1482 * - item_list for all non-buffer items
1483 * - inode_buffer_list for inode unlink buffers
1484 * - cancel_list for the cancelled buffers
1485 *
1486 * Note that we add objects to the tail of the lists so that first-to-last
1487 * ordering is preserved within the lists. Adding objects to the head of the
1488 * list means when we traverse from the head we walk them in last-to-first
1489 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1490 * but for all other items there may be specific ordering that we need to
1491 * preserve.
1492 */
1493 STATIC int
xlog_recover_reorder_trans(struct xlog * log,struct xlog_recover * trans,int pass)1494 xlog_recover_reorder_trans(
1495 struct xlog *log,
1496 struct xlog_recover *trans,
1497 int pass)
1498 {
1499 xlog_recover_item_t *item, *n;
1500 int error = 0;
1501 LIST_HEAD(sort_list);
1502 LIST_HEAD(cancel_list);
1503 LIST_HEAD(buffer_list);
1504 LIST_HEAD(inode_buffer_list);
1505 LIST_HEAD(inode_list);
1506
1507 list_splice_init(&trans->r_itemq, &sort_list);
1508 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1509 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1510
1511 switch (ITEM_TYPE(item)) {
1512 case XFS_LI_ICREATE:
1513 list_move_tail(&item->ri_list, &buffer_list);
1514 break;
1515 case XFS_LI_BUF:
1516 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1517 trace_xfs_log_recover_item_reorder_head(log,
1518 trans, item, pass);
1519 list_move(&item->ri_list, &cancel_list);
1520 break;
1521 }
1522 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1523 list_move(&item->ri_list, &inode_buffer_list);
1524 break;
1525 }
1526 list_move_tail(&item->ri_list, &buffer_list);
1527 break;
1528 case XFS_LI_INODE:
1529 case XFS_LI_DQUOT:
1530 case XFS_LI_QUOTAOFF:
1531 case XFS_LI_EFD:
1532 case XFS_LI_EFI:
1533 trace_xfs_log_recover_item_reorder_tail(log,
1534 trans, item, pass);
1535 list_move_tail(&item->ri_list, &inode_list);
1536 break;
1537 default:
1538 xfs_warn(log->l_mp,
1539 "%s: unrecognized type of log operation",
1540 __func__);
1541 ASSERT(0);
1542 /*
1543 * return the remaining items back to the transaction
1544 * item list so they can be freed in caller.
1545 */
1546 if (!list_empty(&sort_list))
1547 list_splice_init(&sort_list, &trans->r_itemq);
1548 error = -EIO;
1549 goto out;
1550 }
1551 }
1552 out:
1553 ASSERT(list_empty(&sort_list));
1554 if (!list_empty(&buffer_list))
1555 list_splice(&buffer_list, &trans->r_itemq);
1556 if (!list_empty(&inode_list))
1557 list_splice_tail(&inode_list, &trans->r_itemq);
1558 if (!list_empty(&inode_buffer_list))
1559 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1560 if (!list_empty(&cancel_list))
1561 list_splice_tail(&cancel_list, &trans->r_itemq);
1562 return error;
1563 }
1564
1565 /*
1566 * Build up the table of buf cancel records so that we don't replay
1567 * cancelled data in the second pass. For buffer records that are
1568 * not cancel records, there is nothing to do here so we just return.
1569 *
1570 * If we get a cancel record which is already in the table, this indicates
1571 * that the buffer was cancelled multiple times. In order to ensure
1572 * that during pass 2 we keep the record in the table until we reach its
1573 * last occurrence in the log, we keep a reference count in the cancel
1574 * record in the table to tell us how many times we expect to see this
1575 * record during the second pass.
1576 */
1577 STATIC int
xlog_recover_buffer_pass1(struct xlog * log,struct xlog_recover_item * item)1578 xlog_recover_buffer_pass1(
1579 struct xlog *log,
1580 struct xlog_recover_item *item)
1581 {
1582 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1583 struct list_head *bucket;
1584 struct xfs_buf_cancel *bcp;
1585
1586 /*
1587 * If this isn't a cancel buffer item, then just return.
1588 */
1589 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1590 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1591 return 0;
1592 }
1593
1594 /*
1595 * Insert an xfs_buf_cancel record into the hash table of them.
1596 * If there is already an identical record, bump its reference count.
1597 */
1598 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1599 list_for_each_entry(bcp, bucket, bc_list) {
1600 if (bcp->bc_blkno == buf_f->blf_blkno &&
1601 bcp->bc_len == buf_f->blf_len) {
1602 bcp->bc_refcount++;
1603 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1604 return 0;
1605 }
1606 }
1607
1608 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1609 bcp->bc_blkno = buf_f->blf_blkno;
1610 bcp->bc_len = buf_f->blf_len;
1611 bcp->bc_refcount = 1;
1612 list_add_tail(&bcp->bc_list, bucket);
1613
1614 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1615 return 0;
1616 }
1617
1618 /*
1619 * Check to see whether the buffer being recovered has a corresponding
1620 * entry in the buffer cancel record table. If it is, return the cancel
1621 * buffer structure to the caller.
1622 */
1623 STATIC struct xfs_buf_cancel *
xlog_peek_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,ushort flags)1624 xlog_peek_buffer_cancelled(
1625 struct xlog *log,
1626 xfs_daddr_t blkno,
1627 uint len,
1628 ushort flags)
1629 {
1630 struct list_head *bucket;
1631 struct xfs_buf_cancel *bcp;
1632
1633 if (!log->l_buf_cancel_table) {
1634 /* empty table means no cancelled buffers in the log */
1635 ASSERT(!(flags & XFS_BLF_CANCEL));
1636 return NULL;
1637 }
1638
1639 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1640 list_for_each_entry(bcp, bucket, bc_list) {
1641 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1642 return bcp;
1643 }
1644
1645 /*
1646 * We didn't find a corresponding entry in the table, so return 0 so
1647 * that the buffer is NOT cancelled.
1648 */
1649 ASSERT(!(flags & XFS_BLF_CANCEL));
1650 return NULL;
1651 }
1652
1653 /*
1654 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1655 * otherwise return 0. If the buffer is actually a buffer cancel item
1656 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1657 * table and remove it from the table if this is the last reference.
1658 *
1659 * We remove the cancel record from the table when we encounter its last
1660 * occurrence in the log so that if the same buffer is re-used again after its
1661 * last cancellation we actually replay the changes made at that point.
1662 */
1663 STATIC int
xlog_check_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,ushort flags)1664 xlog_check_buffer_cancelled(
1665 struct xlog *log,
1666 xfs_daddr_t blkno,
1667 uint len,
1668 ushort flags)
1669 {
1670 struct xfs_buf_cancel *bcp;
1671
1672 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1673 if (!bcp)
1674 return 0;
1675
1676 /*
1677 * We've go a match, so return 1 so that the recovery of this buffer
1678 * is cancelled. If this buffer is actually a buffer cancel log
1679 * item, then decrement the refcount on the one in the table and
1680 * remove it if this is the last reference.
1681 */
1682 if (flags & XFS_BLF_CANCEL) {
1683 if (--bcp->bc_refcount == 0) {
1684 list_del(&bcp->bc_list);
1685 kmem_free(bcp);
1686 }
1687 }
1688 return 1;
1689 }
1690
1691 /*
1692 * Perform recovery for a buffer full of inodes. In these buffers, the only
1693 * data which should be recovered is that which corresponds to the
1694 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1695 * data for the inodes is always logged through the inodes themselves rather
1696 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1697 *
1698 * The only time when buffers full of inodes are fully recovered is when the
1699 * buffer is full of newly allocated inodes. In this case the buffer will
1700 * not be marked as an inode buffer and so will be sent to
1701 * xlog_recover_do_reg_buffer() below during recovery.
1702 */
1703 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)1704 xlog_recover_do_inode_buffer(
1705 struct xfs_mount *mp,
1706 xlog_recover_item_t *item,
1707 struct xfs_buf *bp,
1708 xfs_buf_log_format_t *buf_f)
1709 {
1710 int i;
1711 int item_index = 0;
1712 int bit = 0;
1713 int nbits = 0;
1714 int reg_buf_offset = 0;
1715 int reg_buf_bytes = 0;
1716 int next_unlinked_offset;
1717 int inodes_per_buf;
1718 xfs_agino_t *logged_nextp;
1719 xfs_agino_t *buffer_nextp;
1720
1721 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1722
1723 /*
1724 * Post recovery validation only works properly on CRC enabled
1725 * filesystems.
1726 */
1727 if (xfs_sb_version_hascrc(&mp->m_sb))
1728 bp->b_ops = &xfs_inode_buf_ops;
1729
1730 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1731 for (i = 0; i < inodes_per_buf; i++) {
1732 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1733 offsetof(xfs_dinode_t, di_next_unlinked);
1734
1735 while (next_unlinked_offset >=
1736 (reg_buf_offset + reg_buf_bytes)) {
1737 /*
1738 * The next di_next_unlinked field is beyond
1739 * the current logged region. Find the next
1740 * logged region that contains or is beyond
1741 * the current di_next_unlinked field.
1742 */
1743 bit += nbits;
1744 bit = xfs_next_bit(buf_f->blf_data_map,
1745 buf_f->blf_map_size, bit);
1746
1747 /*
1748 * If there are no more logged regions in the
1749 * buffer, then we're done.
1750 */
1751 if (bit == -1)
1752 return 0;
1753
1754 nbits = xfs_contig_bits(buf_f->blf_data_map,
1755 buf_f->blf_map_size, bit);
1756 ASSERT(nbits > 0);
1757 reg_buf_offset = bit << XFS_BLF_SHIFT;
1758 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1759 item_index++;
1760 }
1761
1762 /*
1763 * If the current logged region starts after the current
1764 * di_next_unlinked field, then move on to the next
1765 * di_next_unlinked field.
1766 */
1767 if (next_unlinked_offset < reg_buf_offset)
1768 continue;
1769
1770 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1771 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1772 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1773 BBTOB(bp->b_io_length));
1774
1775 /*
1776 * The current logged region contains a copy of the
1777 * current di_next_unlinked field. Extract its value
1778 * and copy it to the buffer copy.
1779 */
1780 logged_nextp = item->ri_buf[item_index].i_addr +
1781 next_unlinked_offset - reg_buf_offset;
1782 if (unlikely(*logged_nextp == 0)) {
1783 xfs_alert(mp,
1784 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1785 "Trying to replay bad (0) inode di_next_unlinked field.",
1786 item, bp);
1787 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1788 XFS_ERRLEVEL_LOW, mp);
1789 return -EFSCORRUPTED;
1790 }
1791
1792 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1793 next_unlinked_offset);
1794 *buffer_nextp = *logged_nextp;
1795
1796 /*
1797 * If necessary, recalculate the CRC in the on-disk inode. We
1798 * have to leave the inode in a consistent state for whoever
1799 * reads it next....
1800 */
1801 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1802 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1803
1804 }
1805
1806 return 0;
1807 }
1808
1809 /*
1810 * V5 filesystems know the age of the buffer on disk being recovered. We can
1811 * have newer objects on disk than we are replaying, and so for these cases we
1812 * don't want to replay the current change as that will make the buffer contents
1813 * temporarily invalid on disk.
1814 *
1815 * The magic number might not match the buffer type we are going to recover
1816 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1817 * extract the LSN of the existing object in the buffer based on it's current
1818 * magic number. If we don't recognise the magic number in the buffer, then
1819 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1820 * so can recover the buffer.
1821 *
1822 * Note: we cannot rely solely on magic number matches to determine that the
1823 * buffer has a valid LSN - we also need to verify that it belongs to this
1824 * filesystem, so we need to extract the object's LSN and compare it to that
1825 * which we read from the superblock. If the UUIDs don't match, then we've got a
1826 * stale metadata block from an old filesystem instance that we need to recover
1827 * over the top of.
1828 */
1829 static xfs_lsn_t
xlog_recover_get_buf_lsn(struct xfs_mount * mp,struct xfs_buf * bp)1830 xlog_recover_get_buf_lsn(
1831 struct xfs_mount *mp,
1832 struct xfs_buf *bp)
1833 {
1834 __uint32_t magic32;
1835 __uint16_t magic16;
1836 __uint16_t magicda;
1837 void *blk = bp->b_addr;
1838 uuid_t *uuid;
1839 xfs_lsn_t lsn = -1;
1840
1841 /* v4 filesystems always recover immediately */
1842 if (!xfs_sb_version_hascrc(&mp->m_sb))
1843 goto recover_immediately;
1844
1845 magic32 = be32_to_cpu(*(__be32 *)blk);
1846 switch (magic32) {
1847 case XFS_ABTB_CRC_MAGIC:
1848 case XFS_ABTC_CRC_MAGIC:
1849 case XFS_ABTB_MAGIC:
1850 case XFS_ABTC_MAGIC:
1851 case XFS_IBT_CRC_MAGIC:
1852 case XFS_IBT_MAGIC: {
1853 struct xfs_btree_block *btb = blk;
1854
1855 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1856 uuid = &btb->bb_u.s.bb_uuid;
1857 break;
1858 }
1859 case XFS_BMAP_CRC_MAGIC:
1860 case XFS_BMAP_MAGIC: {
1861 struct xfs_btree_block *btb = blk;
1862
1863 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1864 uuid = &btb->bb_u.l.bb_uuid;
1865 break;
1866 }
1867 case XFS_AGF_MAGIC:
1868 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1869 uuid = &((struct xfs_agf *)blk)->agf_uuid;
1870 break;
1871 case XFS_AGFL_MAGIC:
1872 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1873 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1874 break;
1875 case XFS_AGI_MAGIC:
1876 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1877 uuid = &((struct xfs_agi *)blk)->agi_uuid;
1878 break;
1879 case XFS_SYMLINK_MAGIC:
1880 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1881 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1882 break;
1883 case XFS_DIR3_BLOCK_MAGIC:
1884 case XFS_DIR3_DATA_MAGIC:
1885 case XFS_DIR3_FREE_MAGIC:
1886 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1887 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1888 break;
1889 case XFS_ATTR3_RMT_MAGIC:
1890 /*
1891 * Remote attr blocks are written synchronously, rather than
1892 * being logged. That means they do not contain a valid LSN
1893 * (i.e. transactionally ordered) in them, and hence any time we
1894 * see a buffer to replay over the top of a remote attribute
1895 * block we should simply do so.
1896 */
1897 goto recover_immediately;
1898 case XFS_SB_MAGIC:
1899 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
1900 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
1901 break;
1902 default:
1903 break;
1904 }
1905
1906 if (lsn != (xfs_lsn_t)-1) {
1907 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1908 goto recover_immediately;
1909 return lsn;
1910 }
1911
1912 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1913 switch (magicda) {
1914 case XFS_DIR3_LEAF1_MAGIC:
1915 case XFS_DIR3_LEAFN_MAGIC:
1916 case XFS_DA3_NODE_MAGIC:
1917 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1918 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1919 break;
1920 default:
1921 break;
1922 }
1923
1924 if (lsn != (xfs_lsn_t)-1) {
1925 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1926 goto recover_immediately;
1927 return lsn;
1928 }
1929
1930 /*
1931 * We do individual object checks on dquot and inode buffers as they
1932 * have their own individual LSN records. Also, we could have a stale
1933 * buffer here, so we have to at least recognise these buffer types.
1934 *
1935 * A notd complexity here is inode unlinked list processing - it logs
1936 * the inode directly in the buffer, but we don't know which inodes have
1937 * been modified, and there is no global buffer LSN. Hence we need to
1938 * recover all inode buffer types immediately. This problem will be
1939 * fixed by logical logging of the unlinked list modifications.
1940 */
1941 magic16 = be16_to_cpu(*(__be16 *)blk);
1942 switch (magic16) {
1943 case XFS_DQUOT_MAGIC:
1944 case XFS_DINODE_MAGIC:
1945 goto recover_immediately;
1946 default:
1947 break;
1948 }
1949
1950 /* unknown buffer contents, recover immediately */
1951
1952 recover_immediately:
1953 return (xfs_lsn_t)-1;
1954
1955 }
1956
1957 /*
1958 * Validate the recovered buffer is of the correct type and attach the
1959 * appropriate buffer operations to them for writeback. Magic numbers are in a
1960 * few places:
1961 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1962 * the first 32 bits of the buffer (most blocks),
1963 * inside a struct xfs_da_blkinfo at the start of the buffer.
1964 */
1965 static void
xlog_recover_validate_buf_type(struct xfs_mount * mp,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)1966 xlog_recover_validate_buf_type(
1967 struct xfs_mount *mp,
1968 struct xfs_buf *bp,
1969 xfs_buf_log_format_t *buf_f)
1970 {
1971 struct xfs_da_blkinfo *info = bp->b_addr;
1972 __uint32_t magic32;
1973 __uint16_t magic16;
1974 __uint16_t magicda;
1975
1976 /*
1977 * We can only do post recovery validation on items on CRC enabled
1978 * fielsystems as we need to know when the buffer was written to be able
1979 * to determine if we should have replayed the item. If we replay old
1980 * metadata over a newer buffer, then it will enter a temporarily
1981 * inconsistent state resulting in verification failures. Hence for now
1982 * just avoid the verification stage for non-crc filesystems
1983 */
1984 if (!xfs_sb_version_hascrc(&mp->m_sb))
1985 return;
1986
1987 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1988 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1989 magicda = be16_to_cpu(info->magic);
1990 switch (xfs_blft_from_flags(buf_f)) {
1991 case XFS_BLFT_BTREE_BUF:
1992 switch (magic32) {
1993 case XFS_ABTB_CRC_MAGIC:
1994 case XFS_ABTC_CRC_MAGIC:
1995 case XFS_ABTB_MAGIC:
1996 case XFS_ABTC_MAGIC:
1997 bp->b_ops = &xfs_allocbt_buf_ops;
1998 break;
1999 case XFS_IBT_CRC_MAGIC:
2000 case XFS_FIBT_CRC_MAGIC:
2001 case XFS_IBT_MAGIC:
2002 case XFS_FIBT_MAGIC:
2003 bp->b_ops = &xfs_inobt_buf_ops;
2004 break;
2005 case XFS_BMAP_CRC_MAGIC:
2006 case XFS_BMAP_MAGIC:
2007 bp->b_ops = &xfs_bmbt_buf_ops;
2008 break;
2009 default:
2010 xfs_warn(mp, "Bad btree block magic!");
2011 ASSERT(0);
2012 break;
2013 }
2014 break;
2015 case XFS_BLFT_AGF_BUF:
2016 if (magic32 != XFS_AGF_MAGIC) {
2017 xfs_warn(mp, "Bad AGF block magic!");
2018 ASSERT(0);
2019 break;
2020 }
2021 bp->b_ops = &xfs_agf_buf_ops;
2022 break;
2023 case XFS_BLFT_AGFL_BUF:
2024 if (magic32 != XFS_AGFL_MAGIC) {
2025 xfs_warn(mp, "Bad AGFL block magic!");
2026 ASSERT(0);
2027 break;
2028 }
2029 bp->b_ops = &xfs_agfl_buf_ops;
2030 break;
2031 case XFS_BLFT_AGI_BUF:
2032 if (magic32 != XFS_AGI_MAGIC) {
2033 xfs_warn(mp, "Bad AGI block magic!");
2034 ASSERT(0);
2035 break;
2036 }
2037 bp->b_ops = &xfs_agi_buf_ops;
2038 break;
2039 case XFS_BLFT_UDQUOT_BUF:
2040 case XFS_BLFT_PDQUOT_BUF:
2041 case XFS_BLFT_GDQUOT_BUF:
2042 #ifdef CONFIG_XFS_QUOTA
2043 if (magic16 != XFS_DQUOT_MAGIC) {
2044 xfs_warn(mp, "Bad DQUOT block magic!");
2045 ASSERT(0);
2046 break;
2047 }
2048 bp->b_ops = &xfs_dquot_buf_ops;
2049 #else
2050 xfs_alert(mp,
2051 "Trying to recover dquots without QUOTA support built in!");
2052 ASSERT(0);
2053 #endif
2054 break;
2055 case XFS_BLFT_DINO_BUF:
2056 if (magic16 != XFS_DINODE_MAGIC) {
2057 xfs_warn(mp, "Bad INODE block magic!");
2058 ASSERT(0);
2059 break;
2060 }
2061 bp->b_ops = &xfs_inode_buf_ops;
2062 break;
2063 case XFS_BLFT_SYMLINK_BUF:
2064 if (magic32 != XFS_SYMLINK_MAGIC) {
2065 xfs_warn(mp, "Bad symlink block magic!");
2066 ASSERT(0);
2067 break;
2068 }
2069 bp->b_ops = &xfs_symlink_buf_ops;
2070 break;
2071 case XFS_BLFT_DIR_BLOCK_BUF:
2072 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2073 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2074 xfs_warn(mp, "Bad dir block magic!");
2075 ASSERT(0);
2076 break;
2077 }
2078 bp->b_ops = &xfs_dir3_block_buf_ops;
2079 break;
2080 case XFS_BLFT_DIR_DATA_BUF:
2081 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2082 magic32 != XFS_DIR3_DATA_MAGIC) {
2083 xfs_warn(mp, "Bad dir data magic!");
2084 ASSERT(0);
2085 break;
2086 }
2087 bp->b_ops = &xfs_dir3_data_buf_ops;
2088 break;
2089 case XFS_BLFT_DIR_FREE_BUF:
2090 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2091 magic32 != XFS_DIR3_FREE_MAGIC) {
2092 xfs_warn(mp, "Bad dir3 free magic!");
2093 ASSERT(0);
2094 break;
2095 }
2096 bp->b_ops = &xfs_dir3_free_buf_ops;
2097 break;
2098 case XFS_BLFT_DIR_LEAF1_BUF:
2099 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2100 magicda != XFS_DIR3_LEAF1_MAGIC) {
2101 xfs_warn(mp, "Bad dir leaf1 magic!");
2102 ASSERT(0);
2103 break;
2104 }
2105 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2106 break;
2107 case XFS_BLFT_DIR_LEAFN_BUF:
2108 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2109 magicda != XFS_DIR3_LEAFN_MAGIC) {
2110 xfs_warn(mp, "Bad dir leafn magic!");
2111 ASSERT(0);
2112 break;
2113 }
2114 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2115 break;
2116 case XFS_BLFT_DA_NODE_BUF:
2117 if (magicda != XFS_DA_NODE_MAGIC &&
2118 magicda != XFS_DA3_NODE_MAGIC) {
2119 xfs_warn(mp, "Bad da node magic!");
2120 ASSERT(0);
2121 break;
2122 }
2123 bp->b_ops = &xfs_da3_node_buf_ops;
2124 break;
2125 case XFS_BLFT_ATTR_LEAF_BUF:
2126 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2127 magicda != XFS_ATTR3_LEAF_MAGIC) {
2128 xfs_warn(mp, "Bad attr leaf magic!");
2129 ASSERT(0);
2130 break;
2131 }
2132 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2133 break;
2134 case XFS_BLFT_ATTR_RMT_BUF:
2135 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2136 xfs_warn(mp, "Bad attr remote magic!");
2137 ASSERT(0);
2138 break;
2139 }
2140 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2141 break;
2142 case XFS_BLFT_SB_BUF:
2143 if (magic32 != XFS_SB_MAGIC) {
2144 xfs_warn(mp, "Bad SB block magic!");
2145 ASSERT(0);
2146 break;
2147 }
2148 bp->b_ops = &xfs_sb_buf_ops;
2149 break;
2150 default:
2151 xfs_warn(mp, "Unknown buffer type %d!",
2152 xfs_blft_from_flags(buf_f));
2153 break;
2154 }
2155 }
2156
2157 /*
2158 * Perform a 'normal' buffer recovery. Each logged region of the
2159 * buffer should be copied over the corresponding region in the
2160 * given buffer. The bitmap in the buf log format structure indicates
2161 * where to place the logged data.
2162 */
2163 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)2164 xlog_recover_do_reg_buffer(
2165 struct xfs_mount *mp,
2166 xlog_recover_item_t *item,
2167 struct xfs_buf *bp,
2168 xfs_buf_log_format_t *buf_f)
2169 {
2170 int i;
2171 int bit;
2172 int nbits;
2173 int error;
2174
2175 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2176
2177 bit = 0;
2178 i = 1; /* 0 is the buf format structure */
2179 while (1) {
2180 bit = xfs_next_bit(buf_f->blf_data_map,
2181 buf_f->blf_map_size, bit);
2182 if (bit == -1)
2183 break;
2184 nbits = xfs_contig_bits(buf_f->blf_data_map,
2185 buf_f->blf_map_size, bit);
2186 ASSERT(nbits > 0);
2187 ASSERT(item->ri_buf[i].i_addr != NULL);
2188 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2189 ASSERT(BBTOB(bp->b_io_length) >=
2190 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2191
2192 /*
2193 * The dirty regions logged in the buffer, even though
2194 * contiguous, may span multiple chunks. This is because the
2195 * dirty region may span a physical page boundary in a buffer
2196 * and hence be split into two separate vectors for writing into
2197 * the log. Hence we need to trim nbits back to the length of
2198 * the current region being copied out of the log.
2199 */
2200 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2201 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2202
2203 /*
2204 * Do a sanity check if this is a dquot buffer. Just checking
2205 * the first dquot in the buffer should do. XXXThis is
2206 * probably a good thing to do for other buf types also.
2207 */
2208 error = 0;
2209 if (buf_f->blf_flags &
2210 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2211 if (item->ri_buf[i].i_addr == NULL) {
2212 xfs_alert(mp,
2213 "XFS: NULL dquot in %s.", __func__);
2214 goto next;
2215 }
2216 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2217 xfs_alert(mp,
2218 "XFS: dquot too small (%d) in %s.",
2219 item->ri_buf[i].i_len, __func__);
2220 goto next;
2221 }
2222 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2223 -1, 0, XFS_QMOPT_DOWARN,
2224 "dquot_buf_recover");
2225 if (error)
2226 goto next;
2227 }
2228
2229 memcpy(xfs_buf_offset(bp,
2230 (uint)bit << XFS_BLF_SHIFT), /* dest */
2231 item->ri_buf[i].i_addr, /* source */
2232 nbits<<XFS_BLF_SHIFT); /* length */
2233 next:
2234 i++;
2235 bit += nbits;
2236 }
2237
2238 /* Shouldn't be any more regions */
2239 ASSERT(i == item->ri_total);
2240
2241 xlog_recover_validate_buf_type(mp, bp, buf_f);
2242 }
2243
2244 /*
2245 * Perform a dquot buffer recovery.
2246 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2247 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2248 * Else, treat it as a regular buffer and do recovery.
2249 *
2250 * Return false if the buffer was tossed and true if we recovered the buffer to
2251 * indicate to the caller if the buffer needs writing.
2252 */
2253 STATIC bool
xlog_recover_do_dquot_buffer(struct xfs_mount * mp,struct xlog * log,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)2254 xlog_recover_do_dquot_buffer(
2255 struct xfs_mount *mp,
2256 struct xlog *log,
2257 struct xlog_recover_item *item,
2258 struct xfs_buf *bp,
2259 struct xfs_buf_log_format *buf_f)
2260 {
2261 uint type;
2262
2263 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2264
2265 /*
2266 * Filesystems are required to send in quota flags at mount time.
2267 */
2268 if (!mp->m_qflags)
2269 return false;
2270
2271 type = 0;
2272 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2273 type |= XFS_DQ_USER;
2274 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2275 type |= XFS_DQ_PROJ;
2276 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2277 type |= XFS_DQ_GROUP;
2278 /*
2279 * This type of quotas was turned off, so ignore this buffer
2280 */
2281 if (log->l_quotaoffs_flag & type)
2282 return false;
2283
2284 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2285 return true;
2286 }
2287
2288 /*
2289 * This routine replays a modification made to a buffer at runtime.
2290 * There are actually two types of buffer, regular and inode, which
2291 * are handled differently. Inode buffers are handled differently
2292 * in that we only recover a specific set of data from them, namely
2293 * the inode di_next_unlinked fields. This is because all other inode
2294 * data is actually logged via inode records and any data we replay
2295 * here which overlaps that may be stale.
2296 *
2297 * When meta-data buffers are freed at run time we log a buffer item
2298 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2299 * of the buffer in the log should not be replayed at recovery time.
2300 * This is so that if the blocks covered by the buffer are reused for
2301 * file data before we crash we don't end up replaying old, freed
2302 * meta-data into a user's file.
2303 *
2304 * To handle the cancellation of buffer log items, we make two passes
2305 * over the log during recovery. During the first we build a table of
2306 * those buffers which have been cancelled, and during the second we
2307 * only replay those buffers which do not have corresponding cancel
2308 * records in the table. See xlog_recover_buffer_pass[1,2] above
2309 * for more details on the implementation of the table of cancel records.
2310 */
2311 STATIC int
xlog_recover_buffer_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2312 xlog_recover_buffer_pass2(
2313 struct xlog *log,
2314 struct list_head *buffer_list,
2315 struct xlog_recover_item *item,
2316 xfs_lsn_t current_lsn)
2317 {
2318 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2319 xfs_mount_t *mp = log->l_mp;
2320 xfs_buf_t *bp;
2321 int error;
2322 uint buf_flags;
2323 xfs_lsn_t lsn;
2324
2325 /*
2326 * In this pass we only want to recover all the buffers which have
2327 * not been cancelled and are not cancellation buffers themselves.
2328 */
2329 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2330 buf_f->blf_len, buf_f->blf_flags)) {
2331 trace_xfs_log_recover_buf_cancel(log, buf_f);
2332 return 0;
2333 }
2334
2335 trace_xfs_log_recover_buf_recover(log, buf_f);
2336
2337 buf_flags = 0;
2338 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2339 buf_flags |= XBF_UNMAPPED;
2340
2341 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2342 buf_flags, NULL);
2343 if (!bp)
2344 return -ENOMEM;
2345 error = bp->b_error;
2346 if (error) {
2347 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2348 goto out_release;
2349 }
2350
2351 /*
2352 * Recover the buffer only if we get an LSN from it and it's less than
2353 * the lsn of the transaction we are replaying.
2354 *
2355 * Note that we have to be extremely careful of readahead here.
2356 * Readahead does not attach verfiers to the buffers so if we don't
2357 * actually do any replay after readahead because of the LSN we found
2358 * in the buffer if more recent than that current transaction then we
2359 * need to attach the verifier directly. Failure to do so can lead to
2360 * future recovery actions (e.g. EFI and unlinked list recovery) can
2361 * operate on the buffers and they won't get the verifier attached. This
2362 * can lead to blocks on disk having the correct content but a stale
2363 * CRC.
2364 *
2365 * It is safe to assume these clean buffers are currently up to date.
2366 * If the buffer is dirtied by a later transaction being replayed, then
2367 * the verifier will be reset to match whatever recover turns that
2368 * buffer into.
2369 */
2370 lsn = xlog_recover_get_buf_lsn(mp, bp);
2371 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2372 xlog_recover_validate_buf_type(mp, bp, buf_f);
2373 goto out_release;
2374 }
2375
2376 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2377 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2378 if (error)
2379 goto out_release;
2380 } else if (buf_f->blf_flags &
2381 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2382 bool dirty;
2383
2384 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2385 if (!dirty)
2386 goto out_release;
2387 } else {
2388 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2389 }
2390
2391 /*
2392 * Perform delayed write on the buffer. Asynchronous writes will be
2393 * slower when taking into account all the buffers to be flushed.
2394 *
2395 * Also make sure that only inode buffers with good sizes stay in
2396 * the buffer cache. The kernel moves inodes in buffers of 1 block
2397 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2398 * buffers in the log can be a different size if the log was generated
2399 * by an older kernel using unclustered inode buffers or a newer kernel
2400 * running with a different inode cluster size. Regardless, if the
2401 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2402 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2403 * the buffer out of the buffer cache so that the buffer won't
2404 * overlap with future reads of those inodes.
2405 */
2406 if (XFS_DINODE_MAGIC ==
2407 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2408 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2409 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2410 xfs_buf_stale(bp);
2411 error = xfs_bwrite(bp);
2412 } else {
2413 ASSERT(bp->b_target->bt_mount == mp);
2414 bp->b_iodone = xlog_recover_iodone;
2415 xfs_buf_delwri_queue(bp, buffer_list);
2416 }
2417
2418 out_release:
2419 xfs_buf_relse(bp);
2420 return error;
2421 }
2422
2423 /*
2424 * Inode fork owner changes
2425 *
2426 * If we have been told that we have to reparent the inode fork, it's because an
2427 * extent swap operation on a CRC enabled filesystem has been done and we are
2428 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2429 * owners of it.
2430 *
2431 * The complexity here is that we don't have an inode context to work with, so
2432 * after we've replayed the inode we need to instantiate one. This is where the
2433 * fun begins.
2434 *
2435 * We are in the middle of log recovery, so we can't run transactions. That
2436 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2437 * that will result in the corresponding iput() running the inode through
2438 * xfs_inactive(). If we've just replayed an inode core that changes the link
2439 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2440 * transactions (bad!).
2441 *
2442 * So, to avoid this, we instantiate an inode directly from the inode core we've
2443 * just recovered. We have the buffer still locked, and all we really need to
2444 * instantiate is the inode core and the forks being modified. We can do this
2445 * manually, then run the inode btree owner change, and then tear down the
2446 * xfs_inode without having to run any transactions at all.
2447 *
2448 * Also, because we don't have a transaction context available here but need to
2449 * gather all the buffers we modify for writeback so we pass the buffer_list
2450 * instead for the operation to use.
2451 */
2452
2453 STATIC int
xfs_recover_inode_owner_change(struct xfs_mount * mp,struct xfs_dinode * dip,struct xfs_inode_log_format * in_f,struct list_head * buffer_list)2454 xfs_recover_inode_owner_change(
2455 struct xfs_mount *mp,
2456 struct xfs_dinode *dip,
2457 struct xfs_inode_log_format *in_f,
2458 struct list_head *buffer_list)
2459 {
2460 struct xfs_inode *ip;
2461 int error;
2462
2463 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2464
2465 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2466 if (!ip)
2467 return -ENOMEM;
2468
2469 /* instantiate the inode */
2470 xfs_dinode_from_disk(&ip->i_d, dip);
2471 ASSERT(ip->i_d.di_version >= 3);
2472
2473 error = xfs_iformat_fork(ip, dip);
2474 if (error)
2475 goto out_free_ip;
2476
2477
2478 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2479 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2480 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2481 ip->i_ino, buffer_list);
2482 if (error)
2483 goto out_free_ip;
2484 }
2485
2486 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2487 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2488 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2489 ip->i_ino, buffer_list);
2490 if (error)
2491 goto out_free_ip;
2492 }
2493
2494 out_free_ip:
2495 xfs_inode_free(ip);
2496 return error;
2497 }
2498
2499 STATIC int
xlog_recover_inode_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2500 xlog_recover_inode_pass2(
2501 struct xlog *log,
2502 struct list_head *buffer_list,
2503 struct xlog_recover_item *item,
2504 xfs_lsn_t current_lsn)
2505 {
2506 xfs_inode_log_format_t *in_f;
2507 xfs_mount_t *mp = log->l_mp;
2508 xfs_buf_t *bp;
2509 xfs_dinode_t *dip;
2510 int len;
2511 xfs_caddr_t src;
2512 xfs_caddr_t dest;
2513 int error;
2514 int attr_index;
2515 uint fields;
2516 xfs_icdinode_t *dicp;
2517 uint isize;
2518 int need_free = 0;
2519
2520 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2521 in_f = item->ri_buf[0].i_addr;
2522 } else {
2523 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2524 need_free = 1;
2525 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2526 if (error)
2527 goto error;
2528 }
2529
2530 /*
2531 * Inode buffers can be freed, look out for it,
2532 * and do not replay the inode.
2533 */
2534 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2535 in_f->ilf_len, 0)) {
2536 error = 0;
2537 trace_xfs_log_recover_inode_cancel(log, in_f);
2538 goto error;
2539 }
2540 trace_xfs_log_recover_inode_recover(log, in_f);
2541
2542 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2543 &xfs_inode_buf_ops);
2544 if (!bp) {
2545 error = -ENOMEM;
2546 goto error;
2547 }
2548 error = bp->b_error;
2549 if (error) {
2550 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2551 goto out_release;
2552 }
2553 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2554 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2555
2556 /*
2557 * Make sure the place we're flushing out to really looks
2558 * like an inode!
2559 */
2560 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2561 xfs_alert(mp,
2562 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2563 __func__, dip, bp, in_f->ilf_ino);
2564 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2565 XFS_ERRLEVEL_LOW, mp);
2566 error = -EFSCORRUPTED;
2567 goto out_release;
2568 }
2569 dicp = item->ri_buf[1].i_addr;
2570 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2571 xfs_alert(mp,
2572 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2573 __func__, item, in_f->ilf_ino);
2574 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2575 XFS_ERRLEVEL_LOW, mp);
2576 error = -EFSCORRUPTED;
2577 goto out_release;
2578 }
2579
2580 /*
2581 * If the inode has an LSN in it, recover the inode only if it's less
2582 * than the lsn of the transaction we are replaying. Note: we still
2583 * need to replay an owner change even though the inode is more recent
2584 * than the transaction as there is no guarantee that all the btree
2585 * blocks are more recent than this transaction, too.
2586 */
2587 if (dip->di_version >= 3) {
2588 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2589
2590 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2591 trace_xfs_log_recover_inode_skip(log, in_f);
2592 error = 0;
2593 goto out_owner_change;
2594 }
2595 }
2596
2597 /*
2598 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2599 * are transactional and if ordering is necessary we can determine that
2600 * more accurately by the LSN field in the V3 inode core. Don't trust
2601 * the inode versions we might be changing them here - use the
2602 * superblock flag to determine whether we need to look at di_flushiter
2603 * to skip replay when the on disk inode is newer than the log one
2604 */
2605 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2606 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2607 /*
2608 * Deal with the wrap case, DI_MAX_FLUSH is less
2609 * than smaller numbers
2610 */
2611 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2612 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2613 /* do nothing */
2614 } else {
2615 trace_xfs_log_recover_inode_skip(log, in_f);
2616 error = 0;
2617 goto out_release;
2618 }
2619 }
2620
2621 /* Take the opportunity to reset the flush iteration count */
2622 dicp->di_flushiter = 0;
2623
2624 if (unlikely(S_ISREG(dicp->di_mode))) {
2625 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2626 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2627 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2628 XFS_ERRLEVEL_LOW, mp, dicp);
2629 xfs_alert(mp,
2630 "%s: Bad regular inode log record, rec ptr 0x%p, "
2631 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2632 __func__, item, dip, bp, in_f->ilf_ino);
2633 error = -EFSCORRUPTED;
2634 goto out_release;
2635 }
2636 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2637 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2638 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2639 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2640 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2641 XFS_ERRLEVEL_LOW, mp, dicp);
2642 xfs_alert(mp,
2643 "%s: Bad dir inode log record, rec ptr 0x%p, "
2644 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2645 __func__, item, dip, bp, in_f->ilf_ino);
2646 error = -EFSCORRUPTED;
2647 goto out_release;
2648 }
2649 }
2650 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2651 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2652 XFS_ERRLEVEL_LOW, mp, dicp);
2653 xfs_alert(mp,
2654 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2655 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2656 __func__, item, dip, bp, in_f->ilf_ino,
2657 dicp->di_nextents + dicp->di_anextents,
2658 dicp->di_nblocks);
2659 error = -EFSCORRUPTED;
2660 goto out_release;
2661 }
2662 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2663 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2664 XFS_ERRLEVEL_LOW, mp, dicp);
2665 xfs_alert(mp,
2666 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2667 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2668 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2669 error = -EFSCORRUPTED;
2670 goto out_release;
2671 }
2672 isize = xfs_icdinode_size(dicp->di_version);
2673 if (unlikely(item->ri_buf[1].i_len > isize)) {
2674 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2675 XFS_ERRLEVEL_LOW, mp, dicp);
2676 xfs_alert(mp,
2677 "%s: Bad inode log record length %d, rec ptr 0x%p",
2678 __func__, item->ri_buf[1].i_len, item);
2679 error = -EFSCORRUPTED;
2680 goto out_release;
2681 }
2682
2683 /* The core is in in-core format */
2684 xfs_dinode_to_disk(dip, dicp);
2685
2686 /* the rest is in on-disk format */
2687 if (item->ri_buf[1].i_len > isize) {
2688 memcpy((char *)dip + isize,
2689 item->ri_buf[1].i_addr + isize,
2690 item->ri_buf[1].i_len - isize);
2691 }
2692
2693 fields = in_f->ilf_fields;
2694 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2695 case XFS_ILOG_DEV:
2696 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2697 break;
2698 case XFS_ILOG_UUID:
2699 memcpy(XFS_DFORK_DPTR(dip),
2700 &in_f->ilf_u.ilfu_uuid,
2701 sizeof(uuid_t));
2702 break;
2703 }
2704
2705 if (in_f->ilf_size == 2)
2706 goto out_owner_change;
2707 len = item->ri_buf[2].i_len;
2708 src = item->ri_buf[2].i_addr;
2709 ASSERT(in_f->ilf_size <= 4);
2710 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2711 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2712 (len == in_f->ilf_dsize));
2713
2714 switch (fields & XFS_ILOG_DFORK) {
2715 case XFS_ILOG_DDATA:
2716 case XFS_ILOG_DEXT:
2717 memcpy(XFS_DFORK_DPTR(dip), src, len);
2718 break;
2719
2720 case XFS_ILOG_DBROOT:
2721 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2722 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2723 XFS_DFORK_DSIZE(dip, mp));
2724 break;
2725
2726 default:
2727 /*
2728 * There are no data fork flags set.
2729 */
2730 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2731 break;
2732 }
2733
2734 /*
2735 * If we logged any attribute data, recover it. There may or
2736 * may not have been any other non-core data logged in this
2737 * transaction.
2738 */
2739 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2740 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2741 attr_index = 3;
2742 } else {
2743 attr_index = 2;
2744 }
2745 len = item->ri_buf[attr_index].i_len;
2746 src = item->ri_buf[attr_index].i_addr;
2747 ASSERT(len == in_f->ilf_asize);
2748
2749 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2750 case XFS_ILOG_ADATA:
2751 case XFS_ILOG_AEXT:
2752 dest = XFS_DFORK_APTR(dip);
2753 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2754 memcpy(dest, src, len);
2755 break;
2756
2757 case XFS_ILOG_ABROOT:
2758 dest = XFS_DFORK_APTR(dip);
2759 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2760 len, (xfs_bmdr_block_t*)dest,
2761 XFS_DFORK_ASIZE(dip, mp));
2762 break;
2763
2764 default:
2765 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2766 ASSERT(0);
2767 error = -EIO;
2768 goto out_release;
2769 }
2770 }
2771
2772 out_owner_change:
2773 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2774 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2775 buffer_list);
2776 /* re-generate the checksum. */
2777 xfs_dinode_calc_crc(log->l_mp, dip);
2778
2779 ASSERT(bp->b_target->bt_mount == mp);
2780 bp->b_iodone = xlog_recover_iodone;
2781 xfs_buf_delwri_queue(bp, buffer_list);
2782
2783 out_release:
2784 xfs_buf_relse(bp);
2785 error:
2786 if (need_free)
2787 kmem_free(in_f);
2788 return error;
2789 }
2790
2791 /*
2792 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2793 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2794 * of that type.
2795 */
2796 STATIC int
xlog_recover_quotaoff_pass1(struct xlog * log,struct xlog_recover_item * item)2797 xlog_recover_quotaoff_pass1(
2798 struct xlog *log,
2799 struct xlog_recover_item *item)
2800 {
2801 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2802 ASSERT(qoff_f);
2803
2804 /*
2805 * The logitem format's flag tells us if this was user quotaoff,
2806 * group/project quotaoff or both.
2807 */
2808 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2809 log->l_quotaoffs_flag |= XFS_DQ_USER;
2810 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2811 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2812 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2813 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2814
2815 return 0;
2816 }
2817
2818 /*
2819 * Recover a dquot record
2820 */
2821 STATIC int
xlog_recover_dquot_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2822 xlog_recover_dquot_pass2(
2823 struct xlog *log,
2824 struct list_head *buffer_list,
2825 struct xlog_recover_item *item,
2826 xfs_lsn_t current_lsn)
2827 {
2828 xfs_mount_t *mp = log->l_mp;
2829 xfs_buf_t *bp;
2830 struct xfs_disk_dquot *ddq, *recddq;
2831 int error;
2832 xfs_dq_logformat_t *dq_f;
2833 uint type;
2834
2835
2836 /*
2837 * Filesystems are required to send in quota flags at mount time.
2838 */
2839 if (mp->m_qflags == 0)
2840 return 0;
2841
2842 recddq = item->ri_buf[1].i_addr;
2843 if (recddq == NULL) {
2844 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2845 return -EIO;
2846 }
2847 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2848 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2849 item->ri_buf[1].i_len, __func__);
2850 return -EIO;
2851 }
2852
2853 /*
2854 * This type of quotas was turned off, so ignore this record.
2855 */
2856 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2857 ASSERT(type);
2858 if (log->l_quotaoffs_flag & type)
2859 return 0;
2860
2861 /*
2862 * At this point we know that quota was _not_ turned off.
2863 * Since the mount flags are not indicating to us otherwise, this
2864 * must mean that quota is on, and the dquot needs to be replayed.
2865 * Remember that we may not have fully recovered the superblock yet,
2866 * so we can't do the usual trick of looking at the SB quota bits.
2867 *
2868 * The other possibility, of course, is that the quota subsystem was
2869 * removed since the last mount - ENOSYS.
2870 */
2871 dq_f = item->ri_buf[0].i_addr;
2872 ASSERT(dq_f);
2873 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2874 "xlog_recover_dquot_pass2 (log copy)");
2875 if (error)
2876 return -EIO;
2877 ASSERT(dq_f->qlf_len == 1);
2878
2879 /*
2880 * At this point we are assuming that the dquots have been allocated
2881 * and hence the buffer has valid dquots stamped in it. It should,
2882 * therefore, pass verifier validation. If the dquot is bad, then the
2883 * we'll return an error here, so we don't need to specifically check
2884 * the dquot in the buffer after the verifier has run.
2885 */
2886 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2887 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2888 &xfs_dquot_buf_ops);
2889 if (error)
2890 return error;
2891
2892 ASSERT(bp);
2893 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2894
2895 /*
2896 * If the dquot has an LSN in it, recover the dquot only if it's less
2897 * than the lsn of the transaction we are replaying.
2898 */
2899 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2900 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2901 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
2902
2903 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2904 goto out_release;
2905 }
2906 }
2907
2908 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2909 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2910 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2911 XFS_DQUOT_CRC_OFF);
2912 }
2913
2914 ASSERT(dq_f->qlf_size == 2);
2915 ASSERT(bp->b_target->bt_mount == mp);
2916 bp->b_iodone = xlog_recover_iodone;
2917 xfs_buf_delwri_queue(bp, buffer_list);
2918
2919 out_release:
2920 xfs_buf_relse(bp);
2921 return 0;
2922 }
2923
2924 /*
2925 * This routine is called to create an in-core extent free intent
2926 * item from the efi format structure which was logged on disk.
2927 * It allocates an in-core efi, copies the extents from the format
2928 * structure into it, and adds the efi to the AIL with the given
2929 * LSN.
2930 */
2931 STATIC int
xlog_recover_efi_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)2932 xlog_recover_efi_pass2(
2933 struct xlog *log,
2934 struct xlog_recover_item *item,
2935 xfs_lsn_t lsn)
2936 {
2937 int error;
2938 xfs_mount_t *mp = log->l_mp;
2939 xfs_efi_log_item_t *efip;
2940 xfs_efi_log_format_t *efi_formatp;
2941
2942 efi_formatp = item->ri_buf[0].i_addr;
2943
2944 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2945 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2946 &(efip->efi_format)))) {
2947 xfs_efi_item_free(efip);
2948 return error;
2949 }
2950 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2951
2952 spin_lock(&log->l_ailp->xa_lock);
2953 /*
2954 * xfs_trans_ail_update() drops the AIL lock.
2955 */
2956 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2957 return 0;
2958 }
2959
2960
2961 /*
2962 * This routine is called when an efd format structure is found in
2963 * a committed transaction in the log. It's purpose is to cancel
2964 * the corresponding efi if it was still in the log. To do this
2965 * it searches the AIL for the efi with an id equal to that in the
2966 * efd format structure. If we find it, we remove the efi from the
2967 * AIL and free it.
2968 */
2969 STATIC int
xlog_recover_efd_pass2(struct xlog * log,struct xlog_recover_item * item)2970 xlog_recover_efd_pass2(
2971 struct xlog *log,
2972 struct xlog_recover_item *item)
2973 {
2974 xfs_efd_log_format_t *efd_formatp;
2975 xfs_efi_log_item_t *efip = NULL;
2976 xfs_log_item_t *lip;
2977 __uint64_t efi_id;
2978 struct xfs_ail_cursor cur;
2979 struct xfs_ail *ailp = log->l_ailp;
2980
2981 efd_formatp = item->ri_buf[0].i_addr;
2982 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2983 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2984 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2985 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2986 efi_id = efd_formatp->efd_efi_id;
2987
2988 /*
2989 * Search for the efi with the id in the efd format structure
2990 * in the AIL.
2991 */
2992 spin_lock(&ailp->xa_lock);
2993 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2994 while (lip != NULL) {
2995 if (lip->li_type == XFS_LI_EFI) {
2996 efip = (xfs_efi_log_item_t *)lip;
2997 if (efip->efi_format.efi_id == efi_id) {
2998 /*
2999 * xfs_trans_ail_delete() drops the
3000 * AIL lock.
3001 */
3002 xfs_trans_ail_delete(ailp, lip,
3003 SHUTDOWN_CORRUPT_INCORE);
3004 xfs_efi_item_free(efip);
3005 spin_lock(&ailp->xa_lock);
3006 break;
3007 }
3008 }
3009 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3010 }
3011 xfs_trans_ail_cursor_done(&cur);
3012 spin_unlock(&ailp->xa_lock);
3013
3014 return 0;
3015 }
3016
3017 /*
3018 * This routine is called when an inode create format structure is found in a
3019 * committed transaction in the log. It's purpose is to initialise the inodes
3020 * being allocated on disk. This requires us to get inode cluster buffers that
3021 * match the range to be intialised, stamped with inode templates and written
3022 * by delayed write so that subsequent modifications will hit the cached buffer
3023 * and only need writing out at the end of recovery.
3024 */
3025 STATIC int
xlog_recover_do_icreate_pass2(struct xlog * log,struct list_head * buffer_list,xlog_recover_item_t * item)3026 xlog_recover_do_icreate_pass2(
3027 struct xlog *log,
3028 struct list_head *buffer_list,
3029 xlog_recover_item_t *item)
3030 {
3031 struct xfs_mount *mp = log->l_mp;
3032 struct xfs_icreate_log *icl;
3033 xfs_agnumber_t agno;
3034 xfs_agblock_t agbno;
3035 unsigned int count;
3036 unsigned int isize;
3037 xfs_agblock_t length;
3038
3039 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3040 if (icl->icl_type != XFS_LI_ICREATE) {
3041 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3042 return -EINVAL;
3043 }
3044
3045 if (icl->icl_size != 1) {
3046 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3047 return -EINVAL;
3048 }
3049
3050 agno = be32_to_cpu(icl->icl_ag);
3051 if (agno >= mp->m_sb.sb_agcount) {
3052 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3053 return -EINVAL;
3054 }
3055 agbno = be32_to_cpu(icl->icl_agbno);
3056 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3057 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3058 return -EINVAL;
3059 }
3060 isize = be32_to_cpu(icl->icl_isize);
3061 if (isize != mp->m_sb.sb_inodesize) {
3062 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3063 return -EINVAL;
3064 }
3065 count = be32_to_cpu(icl->icl_count);
3066 if (!count) {
3067 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3068 return -EINVAL;
3069 }
3070 length = be32_to_cpu(icl->icl_length);
3071 if (!length || length >= mp->m_sb.sb_agblocks) {
3072 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3073 return -EINVAL;
3074 }
3075
3076 /* existing allocation is fixed value */
3077 ASSERT(count == mp->m_ialloc_inos);
3078 ASSERT(length == mp->m_ialloc_blks);
3079 if (count != mp->m_ialloc_inos ||
3080 length != mp->m_ialloc_blks) {
3081 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3082 return -EINVAL;
3083 }
3084
3085 /*
3086 * Inode buffers can be freed. Do not replay the inode initialisation as
3087 * we could be overwriting something written after this inode buffer was
3088 * cancelled.
3089 *
3090 * XXX: we need to iterate all buffers and only init those that are not
3091 * cancelled. I think that a more fine grained factoring of
3092 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3093 * done easily.
3094 */
3095 if (xlog_check_buffer_cancelled(log,
3096 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3097 return 0;
3098
3099 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3100 be32_to_cpu(icl->icl_gen));
3101 return 0;
3102 }
3103
3104 STATIC void
xlog_recover_buffer_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3105 xlog_recover_buffer_ra_pass2(
3106 struct xlog *log,
3107 struct xlog_recover_item *item)
3108 {
3109 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3110 struct xfs_mount *mp = log->l_mp;
3111
3112 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3113 buf_f->blf_len, buf_f->blf_flags)) {
3114 return;
3115 }
3116
3117 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3118 buf_f->blf_len, NULL);
3119 }
3120
3121 STATIC void
xlog_recover_inode_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3122 xlog_recover_inode_ra_pass2(
3123 struct xlog *log,
3124 struct xlog_recover_item *item)
3125 {
3126 struct xfs_inode_log_format ilf_buf;
3127 struct xfs_inode_log_format *ilfp;
3128 struct xfs_mount *mp = log->l_mp;
3129 int error;
3130
3131 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3132 ilfp = item->ri_buf[0].i_addr;
3133 } else {
3134 ilfp = &ilf_buf;
3135 memset(ilfp, 0, sizeof(*ilfp));
3136 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3137 if (error)
3138 return;
3139 }
3140
3141 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3142 return;
3143
3144 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3145 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3146 }
3147
3148 STATIC void
xlog_recover_dquot_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3149 xlog_recover_dquot_ra_pass2(
3150 struct xlog *log,
3151 struct xlog_recover_item *item)
3152 {
3153 struct xfs_mount *mp = log->l_mp;
3154 struct xfs_disk_dquot *recddq;
3155 struct xfs_dq_logformat *dq_f;
3156 uint type;
3157 int len;
3158
3159
3160 if (mp->m_qflags == 0)
3161 return;
3162
3163 recddq = item->ri_buf[1].i_addr;
3164 if (recddq == NULL)
3165 return;
3166 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3167 return;
3168
3169 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3170 ASSERT(type);
3171 if (log->l_quotaoffs_flag & type)
3172 return;
3173
3174 dq_f = item->ri_buf[0].i_addr;
3175 ASSERT(dq_f);
3176 ASSERT(dq_f->qlf_len == 1);
3177
3178 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3179 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3180 return;
3181
3182 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3183 &xfs_dquot_buf_ra_ops);
3184 }
3185
3186 STATIC void
xlog_recover_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3187 xlog_recover_ra_pass2(
3188 struct xlog *log,
3189 struct xlog_recover_item *item)
3190 {
3191 switch (ITEM_TYPE(item)) {
3192 case XFS_LI_BUF:
3193 xlog_recover_buffer_ra_pass2(log, item);
3194 break;
3195 case XFS_LI_INODE:
3196 xlog_recover_inode_ra_pass2(log, item);
3197 break;
3198 case XFS_LI_DQUOT:
3199 xlog_recover_dquot_ra_pass2(log, item);
3200 break;
3201 case XFS_LI_EFI:
3202 case XFS_LI_EFD:
3203 case XFS_LI_QUOTAOFF:
3204 default:
3205 break;
3206 }
3207 }
3208
3209 STATIC int
xlog_recover_commit_pass1(struct xlog * log,struct xlog_recover * trans,struct xlog_recover_item * item)3210 xlog_recover_commit_pass1(
3211 struct xlog *log,
3212 struct xlog_recover *trans,
3213 struct xlog_recover_item *item)
3214 {
3215 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3216
3217 switch (ITEM_TYPE(item)) {
3218 case XFS_LI_BUF:
3219 return xlog_recover_buffer_pass1(log, item);
3220 case XFS_LI_QUOTAOFF:
3221 return xlog_recover_quotaoff_pass1(log, item);
3222 case XFS_LI_INODE:
3223 case XFS_LI_EFI:
3224 case XFS_LI_EFD:
3225 case XFS_LI_DQUOT:
3226 case XFS_LI_ICREATE:
3227 /* nothing to do in pass 1 */
3228 return 0;
3229 default:
3230 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3231 __func__, ITEM_TYPE(item));
3232 ASSERT(0);
3233 return -EIO;
3234 }
3235 }
3236
3237 STATIC int
xlog_recover_commit_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct xlog_recover_item * item)3238 xlog_recover_commit_pass2(
3239 struct xlog *log,
3240 struct xlog_recover *trans,
3241 struct list_head *buffer_list,
3242 struct xlog_recover_item *item)
3243 {
3244 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3245
3246 switch (ITEM_TYPE(item)) {
3247 case XFS_LI_BUF:
3248 return xlog_recover_buffer_pass2(log, buffer_list, item,
3249 trans->r_lsn);
3250 case XFS_LI_INODE:
3251 return xlog_recover_inode_pass2(log, buffer_list, item,
3252 trans->r_lsn);
3253 case XFS_LI_EFI:
3254 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3255 case XFS_LI_EFD:
3256 return xlog_recover_efd_pass2(log, item);
3257 case XFS_LI_DQUOT:
3258 return xlog_recover_dquot_pass2(log, buffer_list, item,
3259 trans->r_lsn);
3260 case XFS_LI_ICREATE:
3261 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3262 case XFS_LI_QUOTAOFF:
3263 /* nothing to do in pass2 */
3264 return 0;
3265 default:
3266 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3267 __func__, ITEM_TYPE(item));
3268 ASSERT(0);
3269 return -EIO;
3270 }
3271 }
3272
3273 STATIC int
xlog_recover_items_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct list_head * item_list)3274 xlog_recover_items_pass2(
3275 struct xlog *log,
3276 struct xlog_recover *trans,
3277 struct list_head *buffer_list,
3278 struct list_head *item_list)
3279 {
3280 struct xlog_recover_item *item;
3281 int error = 0;
3282
3283 list_for_each_entry(item, item_list, ri_list) {
3284 error = xlog_recover_commit_pass2(log, trans,
3285 buffer_list, item);
3286 if (error)
3287 return error;
3288 }
3289
3290 return error;
3291 }
3292
3293 /*
3294 * Perform the transaction.
3295 *
3296 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3297 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3298 */
3299 STATIC int
xlog_recover_commit_trans(struct xlog * log,struct xlog_recover * trans,int pass)3300 xlog_recover_commit_trans(
3301 struct xlog *log,
3302 struct xlog_recover *trans,
3303 int pass)
3304 {
3305 int error = 0;
3306 int error2;
3307 int items_queued = 0;
3308 struct xlog_recover_item *item;
3309 struct xlog_recover_item *next;
3310 LIST_HEAD (buffer_list);
3311 LIST_HEAD (ra_list);
3312 LIST_HEAD (done_list);
3313
3314 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3315
3316 hlist_del(&trans->r_list);
3317
3318 error = xlog_recover_reorder_trans(log, trans, pass);
3319 if (error)
3320 return error;
3321
3322 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3323 switch (pass) {
3324 case XLOG_RECOVER_PASS1:
3325 error = xlog_recover_commit_pass1(log, trans, item);
3326 break;
3327 case XLOG_RECOVER_PASS2:
3328 xlog_recover_ra_pass2(log, item);
3329 list_move_tail(&item->ri_list, &ra_list);
3330 items_queued++;
3331 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3332 error = xlog_recover_items_pass2(log, trans,
3333 &buffer_list, &ra_list);
3334 list_splice_tail_init(&ra_list, &done_list);
3335 items_queued = 0;
3336 }
3337
3338 break;
3339 default:
3340 ASSERT(0);
3341 }
3342
3343 if (error)
3344 goto out;
3345 }
3346
3347 out:
3348 if (!list_empty(&ra_list)) {
3349 if (!error)
3350 error = xlog_recover_items_pass2(log, trans,
3351 &buffer_list, &ra_list);
3352 list_splice_tail_init(&ra_list, &done_list);
3353 }
3354
3355 if (!list_empty(&done_list))
3356 list_splice_init(&done_list, &trans->r_itemq);
3357
3358 error2 = xfs_buf_delwri_submit(&buffer_list);
3359 return error ? error : error2;
3360 }
3361
3362 STATIC void
xlog_recover_add_item(struct list_head * head)3363 xlog_recover_add_item(
3364 struct list_head *head)
3365 {
3366 xlog_recover_item_t *item;
3367
3368 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3369 INIT_LIST_HEAD(&item->ri_list);
3370 list_add_tail(&item->ri_list, head);
3371 }
3372
3373 STATIC int
xlog_recover_add_to_cont_trans(struct xlog * log,struct xlog_recover * trans,xfs_caddr_t dp,int len)3374 xlog_recover_add_to_cont_trans(
3375 struct xlog *log,
3376 struct xlog_recover *trans,
3377 xfs_caddr_t dp,
3378 int len)
3379 {
3380 xlog_recover_item_t *item;
3381 xfs_caddr_t ptr, old_ptr;
3382 int old_len;
3383
3384 if (list_empty(&trans->r_itemq)) {
3385 /* finish copying rest of trans header */
3386 xlog_recover_add_item(&trans->r_itemq);
3387 ptr = (xfs_caddr_t) &trans->r_theader +
3388 sizeof(xfs_trans_header_t) - len;
3389 memcpy(ptr, dp, len);
3390 return 0;
3391 }
3392 /* take the tail entry */
3393 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3394
3395 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3396 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3397
3398 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3399 memcpy(&ptr[old_len], dp, len);
3400 item->ri_buf[item->ri_cnt-1].i_len += len;
3401 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3402 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3403 return 0;
3404 }
3405
3406 /*
3407 * The next region to add is the start of a new region. It could be
3408 * a whole region or it could be the first part of a new region. Because
3409 * of this, the assumption here is that the type and size fields of all
3410 * format structures fit into the first 32 bits of the structure.
3411 *
3412 * This works because all regions must be 32 bit aligned. Therefore, we
3413 * either have both fields or we have neither field. In the case we have
3414 * neither field, the data part of the region is zero length. We only have
3415 * a log_op_header and can throw away the header since a new one will appear
3416 * later. If we have at least 4 bytes, then we can determine how many regions
3417 * will appear in the current log item.
3418 */
3419 STATIC int
xlog_recover_add_to_trans(struct xlog * log,struct xlog_recover * trans,xfs_caddr_t dp,int len)3420 xlog_recover_add_to_trans(
3421 struct xlog *log,
3422 struct xlog_recover *trans,
3423 xfs_caddr_t dp,
3424 int len)
3425 {
3426 xfs_inode_log_format_t *in_f; /* any will do */
3427 xlog_recover_item_t *item;
3428 xfs_caddr_t ptr;
3429
3430 if (!len)
3431 return 0;
3432 if (list_empty(&trans->r_itemq)) {
3433 /* we need to catch log corruptions here */
3434 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3435 xfs_warn(log->l_mp, "%s: bad header magic number",
3436 __func__);
3437 ASSERT(0);
3438 return -EIO;
3439 }
3440 if (len == sizeof(xfs_trans_header_t))
3441 xlog_recover_add_item(&trans->r_itemq);
3442 memcpy(&trans->r_theader, dp, len);
3443 return 0;
3444 }
3445
3446 ptr = kmem_alloc(len, KM_SLEEP);
3447 memcpy(ptr, dp, len);
3448 in_f = (xfs_inode_log_format_t *)ptr;
3449
3450 /* take the tail entry */
3451 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3452 if (item->ri_total != 0 &&
3453 item->ri_total == item->ri_cnt) {
3454 /* tail item is in use, get a new one */
3455 xlog_recover_add_item(&trans->r_itemq);
3456 item = list_entry(trans->r_itemq.prev,
3457 xlog_recover_item_t, ri_list);
3458 }
3459
3460 if (item->ri_total == 0) { /* first region to be added */
3461 if (in_f->ilf_size == 0 ||
3462 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3463 xfs_warn(log->l_mp,
3464 "bad number of regions (%d) in inode log format",
3465 in_f->ilf_size);
3466 ASSERT(0);
3467 kmem_free(ptr);
3468 return -EIO;
3469 }
3470
3471 item->ri_total = in_f->ilf_size;
3472 item->ri_buf =
3473 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3474 KM_SLEEP);
3475 }
3476 ASSERT(item->ri_total > item->ri_cnt);
3477 /* Description region is ri_buf[0] */
3478 item->ri_buf[item->ri_cnt].i_addr = ptr;
3479 item->ri_buf[item->ri_cnt].i_len = len;
3480 item->ri_cnt++;
3481 trace_xfs_log_recover_item_add(log, trans, item, 0);
3482 return 0;
3483 }
3484
3485 /*
3486 * Free up any resources allocated by the transaction
3487 *
3488 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3489 */
3490 STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)3491 xlog_recover_free_trans(
3492 struct xlog_recover *trans)
3493 {
3494 xlog_recover_item_t *item, *n;
3495 int i;
3496
3497 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3498 /* Free the regions in the item. */
3499 list_del(&item->ri_list);
3500 for (i = 0; i < item->ri_cnt; i++)
3501 kmem_free(item->ri_buf[i].i_addr);
3502 /* Free the item itself */
3503 kmem_free(item->ri_buf);
3504 kmem_free(item);
3505 }
3506 /* Free the transaction recover structure */
3507 kmem_free(trans);
3508 }
3509
3510 /*
3511 * On error or completion, trans is freed.
3512 */
3513 STATIC int
xlog_recovery_process_trans(struct xlog * log,struct xlog_recover * trans,xfs_caddr_t dp,unsigned int len,unsigned int flags,int pass)3514 xlog_recovery_process_trans(
3515 struct xlog *log,
3516 struct xlog_recover *trans,
3517 xfs_caddr_t dp,
3518 unsigned int len,
3519 unsigned int flags,
3520 int pass)
3521 {
3522 int error = 0;
3523 bool freeit = false;
3524
3525 /* mask off ophdr transaction container flags */
3526 flags &= ~XLOG_END_TRANS;
3527 if (flags & XLOG_WAS_CONT_TRANS)
3528 flags &= ~XLOG_CONTINUE_TRANS;
3529
3530 /*
3531 * Callees must not free the trans structure. We'll decide if we need to
3532 * free it or not based on the operation being done and it's result.
3533 */
3534 switch (flags) {
3535 /* expected flag values */
3536 case 0:
3537 case XLOG_CONTINUE_TRANS:
3538 error = xlog_recover_add_to_trans(log, trans, dp, len);
3539 break;
3540 case XLOG_WAS_CONT_TRANS:
3541 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3542 break;
3543 case XLOG_COMMIT_TRANS:
3544 error = xlog_recover_commit_trans(log, trans, pass);
3545 /* success or fail, we are now done with this transaction. */
3546 freeit = true;
3547 break;
3548
3549 /* unexpected flag values */
3550 case XLOG_UNMOUNT_TRANS:
3551 /* just skip trans */
3552 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3553 freeit = true;
3554 break;
3555 case XLOG_START_TRANS:
3556 default:
3557 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3558 ASSERT(0);
3559 error = -EIO;
3560 break;
3561 }
3562 if (error || freeit)
3563 xlog_recover_free_trans(trans);
3564 return error;
3565 }
3566
3567 /*
3568 * Lookup the transaction recovery structure associated with the ID in the
3569 * current ophdr. If the transaction doesn't exist and the start flag is set in
3570 * the ophdr, then allocate a new transaction for future ID matches to find.
3571 * Either way, return what we found during the lookup - an existing transaction
3572 * or nothing.
3573 */
3574 STATIC struct xlog_recover *
xlog_recover_ophdr_to_trans(struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead)3575 xlog_recover_ophdr_to_trans(
3576 struct hlist_head rhash[],
3577 struct xlog_rec_header *rhead,
3578 struct xlog_op_header *ohead)
3579 {
3580 struct xlog_recover *trans;
3581 xlog_tid_t tid;
3582 struct hlist_head *rhp;
3583
3584 tid = be32_to_cpu(ohead->oh_tid);
3585 rhp = &rhash[XLOG_RHASH(tid)];
3586 hlist_for_each_entry(trans, rhp, r_list) {
3587 if (trans->r_log_tid == tid)
3588 return trans;
3589 }
3590
3591 /*
3592 * skip over non-start transaction headers - we could be
3593 * processing slack space before the next transaction starts
3594 */
3595 if (!(ohead->oh_flags & XLOG_START_TRANS))
3596 return NULL;
3597
3598 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3599
3600 /*
3601 * This is a new transaction so allocate a new recovery container to
3602 * hold the recovery ops that will follow.
3603 */
3604 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3605 trans->r_log_tid = tid;
3606 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3607 INIT_LIST_HEAD(&trans->r_itemq);
3608 INIT_HLIST_NODE(&trans->r_list);
3609 hlist_add_head(&trans->r_list, rhp);
3610
3611 /*
3612 * Nothing more to do for this ophdr. Items to be added to this new
3613 * transaction will be in subsequent ophdr containers.
3614 */
3615 return NULL;
3616 }
3617
3618 STATIC int
xlog_recover_process_ophdr(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead,xfs_caddr_t dp,xfs_caddr_t end,int pass)3619 xlog_recover_process_ophdr(
3620 struct xlog *log,
3621 struct hlist_head rhash[],
3622 struct xlog_rec_header *rhead,
3623 struct xlog_op_header *ohead,
3624 xfs_caddr_t dp,
3625 xfs_caddr_t end,
3626 int pass)
3627 {
3628 struct xlog_recover *trans;
3629 unsigned int len;
3630
3631 /* Do we understand who wrote this op? */
3632 if (ohead->oh_clientid != XFS_TRANSACTION &&
3633 ohead->oh_clientid != XFS_LOG) {
3634 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3635 __func__, ohead->oh_clientid);
3636 ASSERT(0);
3637 return -EIO;
3638 }
3639
3640 /*
3641 * Check the ophdr contains all the data it is supposed to contain.
3642 */
3643 len = be32_to_cpu(ohead->oh_len);
3644 if (dp + len > end) {
3645 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3646 WARN_ON(1);
3647 return -EIO;
3648 }
3649
3650 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3651 if (!trans) {
3652 /* nothing to do, so skip over this ophdr */
3653 return 0;
3654 }
3655
3656 return xlog_recovery_process_trans(log, trans, dp, len,
3657 ohead->oh_flags, pass);
3658 }
3659
3660 /*
3661 * There are two valid states of the r_state field. 0 indicates that the
3662 * transaction structure is in a normal state. We have either seen the
3663 * start of the transaction or the last operation we added was not a partial
3664 * operation. If the last operation we added to the transaction was a
3665 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3666 *
3667 * NOTE: skip LRs with 0 data length.
3668 */
3669 STATIC int
xlog_recover_process_data(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,xfs_caddr_t dp,int pass)3670 xlog_recover_process_data(
3671 struct xlog *log,
3672 struct hlist_head rhash[],
3673 struct xlog_rec_header *rhead,
3674 xfs_caddr_t dp,
3675 int pass)
3676 {
3677 struct xlog_op_header *ohead;
3678 xfs_caddr_t end;
3679 int num_logops;
3680 int error;
3681
3682 end = dp + be32_to_cpu(rhead->h_len);
3683 num_logops = be32_to_cpu(rhead->h_num_logops);
3684
3685 /* check the log format matches our own - else we can't recover */
3686 if (xlog_header_check_recover(log->l_mp, rhead))
3687 return -EIO;
3688
3689 while ((dp < end) && num_logops) {
3690
3691 ohead = (struct xlog_op_header *)dp;
3692 dp += sizeof(*ohead);
3693 ASSERT(dp <= end);
3694
3695 /* errors will abort recovery */
3696 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3697 dp, end, pass);
3698 if (error)
3699 return error;
3700
3701 dp += be32_to_cpu(ohead->oh_len);
3702 num_logops--;
3703 }
3704 return 0;
3705 }
3706
3707 /*
3708 * Process an extent free intent item that was recovered from
3709 * the log. We need to free the extents that it describes.
3710 */
3711 STATIC int
xlog_recover_process_efi(xfs_mount_t * mp,xfs_efi_log_item_t * efip)3712 xlog_recover_process_efi(
3713 xfs_mount_t *mp,
3714 xfs_efi_log_item_t *efip)
3715 {
3716 xfs_efd_log_item_t *efdp;
3717 xfs_trans_t *tp;
3718 int i;
3719 int error = 0;
3720 xfs_extent_t *extp;
3721 xfs_fsblock_t startblock_fsb;
3722
3723 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3724
3725 /*
3726 * First check the validity of the extents described by the
3727 * EFI. If any are bad, then assume that all are bad and
3728 * just toss the EFI.
3729 */
3730 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3731 extp = &(efip->efi_format.efi_extents[i]);
3732 startblock_fsb = XFS_BB_TO_FSB(mp,
3733 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3734 if ((startblock_fsb == 0) ||
3735 (extp->ext_len == 0) ||
3736 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3737 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3738 /*
3739 * This will pull the EFI from the AIL and
3740 * free the memory associated with it.
3741 */
3742 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3743 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3744 return -EIO;
3745 }
3746 }
3747
3748 tp = xfs_trans_alloc(mp, 0);
3749 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3750 if (error)
3751 goto abort_error;
3752 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3753
3754 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3755 extp = &(efip->efi_format.efi_extents[i]);
3756 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3757 if (error)
3758 goto abort_error;
3759 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3760 extp->ext_len);
3761 }
3762
3763 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3764 error = xfs_trans_commit(tp, 0);
3765 return error;
3766
3767 abort_error:
3768 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3769 return error;
3770 }
3771
3772 /*
3773 * When this is called, all of the EFIs which did not have
3774 * corresponding EFDs should be in the AIL. What we do now
3775 * is free the extents associated with each one.
3776 *
3777 * Since we process the EFIs in normal transactions, they
3778 * will be removed at some point after the commit. This prevents
3779 * us from just walking down the list processing each one.
3780 * We'll use a flag in the EFI to skip those that we've already
3781 * processed and use the AIL iteration mechanism's generation
3782 * count to try to speed this up at least a bit.
3783 *
3784 * When we start, we know that the EFIs are the only things in
3785 * the AIL. As we process them, however, other items are added
3786 * to the AIL. Since everything added to the AIL must come after
3787 * everything already in the AIL, we stop processing as soon as
3788 * we see something other than an EFI in the AIL.
3789 */
3790 STATIC int
xlog_recover_process_efis(struct xlog * log)3791 xlog_recover_process_efis(
3792 struct xlog *log)
3793 {
3794 xfs_log_item_t *lip;
3795 xfs_efi_log_item_t *efip;
3796 int error = 0;
3797 struct xfs_ail_cursor cur;
3798 struct xfs_ail *ailp;
3799
3800 ailp = log->l_ailp;
3801 spin_lock(&ailp->xa_lock);
3802 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3803 while (lip != NULL) {
3804 /*
3805 * We're done when we see something other than an EFI.
3806 * There should be no EFIs left in the AIL now.
3807 */
3808 if (lip->li_type != XFS_LI_EFI) {
3809 #ifdef DEBUG
3810 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3811 ASSERT(lip->li_type != XFS_LI_EFI);
3812 #endif
3813 break;
3814 }
3815
3816 /*
3817 * Skip EFIs that we've already processed.
3818 */
3819 efip = (xfs_efi_log_item_t *)lip;
3820 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3821 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3822 continue;
3823 }
3824
3825 spin_unlock(&ailp->xa_lock);
3826 error = xlog_recover_process_efi(log->l_mp, efip);
3827 spin_lock(&ailp->xa_lock);
3828 if (error)
3829 goto out;
3830 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3831 }
3832 out:
3833 xfs_trans_ail_cursor_done(&cur);
3834 spin_unlock(&ailp->xa_lock);
3835 return error;
3836 }
3837
3838 /*
3839 * This routine performs a transaction to null out a bad inode pointer
3840 * in an agi unlinked inode hash bucket.
3841 */
3842 STATIC void
xlog_recover_clear_agi_bucket(xfs_mount_t * mp,xfs_agnumber_t agno,int bucket)3843 xlog_recover_clear_agi_bucket(
3844 xfs_mount_t *mp,
3845 xfs_agnumber_t agno,
3846 int bucket)
3847 {
3848 xfs_trans_t *tp;
3849 xfs_agi_t *agi;
3850 xfs_buf_t *agibp;
3851 int offset;
3852 int error;
3853
3854 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3855 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3856 if (error)
3857 goto out_abort;
3858
3859 error = xfs_read_agi(mp, tp, agno, &agibp);
3860 if (error)
3861 goto out_abort;
3862
3863 agi = XFS_BUF_TO_AGI(agibp);
3864 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3865 offset = offsetof(xfs_agi_t, agi_unlinked) +
3866 (sizeof(xfs_agino_t) * bucket);
3867 xfs_trans_log_buf(tp, agibp, offset,
3868 (offset + sizeof(xfs_agino_t) - 1));
3869
3870 error = xfs_trans_commit(tp, 0);
3871 if (error)
3872 goto out_error;
3873 return;
3874
3875 out_abort:
3876 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3877 out_error:
3878 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3879 return;
3880 }
3881
3882 STATIC xfs_agino_t
xlog_recover_process_one_iunlink(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t agino,int bucket)3883 xlog_recover_process_one_iunlink(
3884 struct xfs_mount *mp,
3885 xfs_agnumber_t agno,
3886 xfs_agino_t agino,
3887 int bucket)
3888 {
3889 struct xfs_buf *ibp;
3890 struct xfs_dinode *dip;
3891 struct xfs_inode *ip;
3892 xfs_ino_t ino;
3893 int error;
3894
3895 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3896 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3897 if (error)
3898 goto fail;
3899
3900 /*
3901 * Get the on disk inode to find the next inode in the bucket.
3902 */
3903 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3904 if (error)
3905 goto fail_iput;
3906
3907 ASSERT(ip->i_d.di_nlink == 0);
3908 ASSERT(ip->i_d.di_mode != 0);
3909
3910 /* setup for the next pass */
3911 agino = be32_to_cpu(dip->di_next_unlinked);
3912 xfs_buf_relse(ibp);
3913
3914 /*
3915 * Prevent any DMAPI event from being sent when the reference on
3916 * the inode is dropped.
3917 */
3918 ip->i_d.di_dmevmask = 0;
3919
3920 IRELE(ip);
3921 return agino;
3922
3923 fail_iput:
3924 IRELE(ip);
3925 fail:
3926 /*
3927 * We can't read in the inode this bucket points to, or this inode
3928 * is messed up. Just ditch this bucket of inodes. We will lose
3929 * some inodes and space, but at least we won't hang.
3930 *
3931 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3932 * clear the inode pointer in the bucket.
3933 */
3934 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3935 return NULLAGINO;
3936 }
3937
3938 /*
3939 * xlog_iunlink_recover
3940 *
3941 * This is called during recovery to process any inodes which
3942 * we unlinked but not freed when the system crashed. These
3943 * inodes will be on the lists in the AGI blocks. What we do
3944 * here is scan all the AGIs and fully truncate and free any
3945 * inodes found on the lists. Each inode is removed from the
3946 * lists when it has been fully truncated and is freed. The
3947 * freeing of the inode and its removal from the list must be
3948 * atomic.
3949 */
3950 STATIC void
xlog_recover_process_iunlinks(struct xlog * log)3951 xlog_recover_process_iunlinks(
3952 struct xlog *log)
3953 {
3954 xfs_mount_t *mp;
3955 xfs_agnumber_t agno;
3956 xfs_agi_t *agi;
3957 xfs_buf_t *agibp;
3958 xfs_agino_t agino;
3959 int bucket;
3960 int error;
3961 uint mp_dmevmask;
3962
3963 mp = log->l_mp;
3964
3965 /*
3966 * Prevent any DMAPI event from being sent while in this function.
3967 */
3968 mp_dmevmask = mp->m_dmevmask;
3969 mp->m_dmevmask = 0;
3970
3971 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3972 /*
3973 * Find the agi for this ag.
3974 */
3975 error = xfs_read_agi(mp, NULL, agno, &agibp);
3976 if (error) {
3977 /*
3978 * AGI is b0rked. Don't process it.
3979 *
3980 * We should probably mark the filesystem as corrupt
3981 * after we've recovered all the ag's we can....
3982 */
3983 continue;
3984 }
3985 /*
3986 * Unlock the buffer so that it can be acquired in the normal
3987 * course of the transaction to truncate and free each inode.
3988 * Because we are not racing with anyone else here for the AGI
3989 * buffer, we don't even need to hold it locked to read the
3990 * initial unlinked bucket entries out of the buffer. We keep
3991 * buffer reference though, so that it stays pinned in memory
3992 * while we need the buffer.
3993 */
3994 agi = XFS_BUF_TO_AGI(agibp);
3995 xfs_buf_unlock(agibp);
3996
3997 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3998 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3999 while (agino != NULLAGINO) {
4000 agino = xlog_recover_process_one_iunlink(mp,
4001 agno, agino, bucket);
4002 }
4003 }
4004 xfs_buf_rele(agibp);
4005 }
4006
4007 mp->m_dmevmask = mp_dmevmask;
4008 }
4009
4010 /*
4011 * Upack the log buffer data and crc check it. If the check fails, issue a
4012 * warning if and only if the CRC in the header is non-zero. This makes the
4013 * check an advisory warning, and the zero CRC check will prevent failure
4014 * warnings from being emitted when upgrading the kernel from one that does not
4015 * add CRCs by default.
4016 *
4017 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4018 * corruption failure
4019 */
4020 STATIC int
xlog_unpack_data_crc(struct xlog_rec_header * rhead,xfs_caddr_t dp,struct xlog * log)4021 xlog_unpack_data_crc(
4022 struct xlog_rec_header *rhead,
4023 xfs_caddr_t dp,
4024 struct xlog *log)
4025 {
4026 __le32 crc;
4027
4028 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4029 if (crc != rhead->h_crc) {
4030 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4031 xfs_alert(log->l_mp,
4032 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4033 le32_to_cpu(rhead->h_crc),
4034 le32_to_cpu(crc));
4035 xfs_hex_dump(dp, 32);
4036 }
4037
4038 /*
4039 * If we've detected a log record corruption, then we can't
4040 * recover past this point. Abort recovery if we are enforcing
4041 * CRC protection by punting an error back up the stack.
4042 */
4043 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4044 return -EFSCORRUPTED;
4045 }
4046
4047 return 0;
4048 }
4049
4050 STATIC int
xlog_unpack_data(struct xlog_rec_header * rhead,xfs_caddr_t dp,struct xlog * log)4051 xlog_unpack_data(
4052 struct xlog_rec_header *rhead,
4053 xfs_caddr_t dp,
4054 struct xlog *log)
4055 {
4056 int i, j, k;
4057 int error;
4058
4059 error = xlog_unpack_data_crc(rhead, dp, log);
4060 if (error)
4061 return error;
4062
4063 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4064 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4065 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4066 dp += BBSIZE;
4067 }
4068
4069 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4070 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4071 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4072 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4073 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4074 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4075 dp += BBSIZE;
4076 }
4077 }
4078
4079 return 0;
4080 }
4081
4082 STATIC int
xlog_valid_rec_header(struct xlog * log,struct xlog_rec_header * rhead,xfs_daddr_t blkno)4083 xlog_valid_rec_header(
4084 struct xlog *log,
4085 struct xlog_rec_header *rhead,
4086 xfs_daddr_t blkno)
4087 {
4088 int hlen;
4089
4090 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4091 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4092 XFS_ERRLEVEL_LOW, log->l_mp);
4093 return -EFSCORRUPTED;
4094 }
4095 if (unlikely(
4096 (!rhead->h_version ||
4097 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4098 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4099 __func__, be32_to_cpu(rhead->h_version));
4100 return -EIO;
4101 }
4102
4103 /* LR body must have data or it wouldn't have been written */
4104 hlen = be32_to_cpu(rhead->h_len);
4105 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4106 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4107 XFS_ERRLEVEL_LOW, log->l_mp);
4108 return -EFSCORRUPTED;
4109 }
4110 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4111 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4112 XFS_ERRLEVEL_LOW, log->l_mp);
4113 return -EFSCORRUPTED;
4114 }
4115 return 0;
4116 }
4117
4118 /*
4119 * Read the log from tail to head and process the log records found.
4120 * Handle the two cases where the tail and head are in the same cycle
4121 * and where the active portion of the log wraps around the end of
4122 * the physical log separately. The pass parameter is passed through
4123 * to the routines called to process the data and is not looked at
4124 * here.
4125 */
4126 STATIC int
xlog_do_recovery_pass(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass)4127 xlog_do_recovery_pass(
4128 struct xlog *log,
4129 xfs_daddr_t head_blk,
4130 xfs_daddr_t tail_blk,
4131 int pass)
4132 {
4133 xlog_rec_header_t *rhead;
4134 xfs_daddr_t blk_no;
4135 xfs_caddr_t offset;
4136 xfs_buf_t *hbp, *dbp;
4137 int error = 0, h_size;
4138 int bblks, split_bblks;
4139 int hblks, split_hblks, wrapped_hblks;
4140 struct hlist_head rhash[XLOG_RHASH_SIZE];
4141
4142 ASSERT(head_blk != tail_blk);
4143
4144 /*
4145 * Read the header of the tail block and get the iclog buffer size from
4146 * h_size. Use this to tell how many sectors make up the log header.
4147 */
4148 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4149 /*
4150 * When using variable length iclogs, read first sector of
4151 * iclog header and extract the header size from it. Get a
4152 * new hbp that is the correct size.
4153 */
4154 hbp = xlog_get_bp(log, 1);
4155 if (!hbp)
4156 return -ENOMEM;
4157
4158 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4159 if (error)
4160 goto bread_err1;
4161
4162 rhead = (xlog_rec_header_t *)offset;
4163 error = xlog_valid_rec_header(log, rhead, tail_blk);
4164 if (error)
4165 goto bread_err1;
4166 h_size = be32_to_cpu(rhead->h_size);
4167 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4168 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4169 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4170 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4171 hblks++;
4172 xlog_put_bp(hbp);
4173 hbp = xlog_get_bp(log, hblks);
4174 } else {
4175 hblks = 1;
4176 }
4177 } else {
4178 ASSERT(log->l_sectBBsize == 1);
4179 hblks = 1;
4180 hbp = xlog_get_bp(log, 1);
4181 h_size = XLOG_BIG_RECORD_BSIZE;
4182 }
4183
4184 if (!hbp)
4185 return -ENOMEM;
4186 dbp = xlog_get_bp(log, BTOBB(h_size));
4187 if (!dbp) {
4188 xlog_put_bp(hbp);
4189 return -ENOMEM;
4190 }
4191
4192 memset(rhash, 0, sizeof(rhash));
4193 blk_no = tail_blk;
4194 if (tail_blk > head_blk) {
4195 /*
4196 * Perform recovery around the end of the physical log.
4197 * When the head is not on the same cycle number as the tail,
4198 * we can't do a sequential recovery.
4199 */
4200 while (blk_no < log->l_logBBsize) {
4201 /*
4202 * Check for header wrapping around physical end-of-log
4203 */
4204 offset = hbp->b_addr;
4205 split_hblks = 0;
4206 wrapped_hblks = 0;
4207 if (blk_no + hblks <= log->l_logBBsize) {
4208 /* Read header in one read */
4209 error = xlog_bread(log, blk_no, hblks, hbp,
4210 &offset);
4211 if (error)
4212 goto bread_err2;
4213 } else {
4214 /* This LR is split across physical log end */
4215 if (blk_no != log->l_logBBsize) {
4216 /* some data before physical log end */
4217 ASSERT(blk_no <= INT_MAX);
4218 split_hblks = log->l_logBBsize - (int)blk_no;
4219 ASSERT(split_hblks > 0);
4220 error = xlog_bread(log, blk_no,
4221 split_hblks, hbp,
4222 &offset);
4223 if (error)
4224 goto bread_err2;
4225 }
4226
4227 /*
4228 * Note: this black magic still works with
4229 * large sector sizes (non-512) only because:
4230 * - we increased the buffer size originally
4231 * by 1 sector giving us enough extra space
4232 * for the second read;
4233 * - the log start is guaranteed to be sector
4234 * aligned;
4235 * - we read the log end (LR header start)
4236 * _first_, then the log start (LR header end)
4237 * - order is important.
4238 */
4239 wrapped_hblks = hblks - split_hblks;
4240 error = xlog_bread_offset(log, 0,
4241 wrapped_hblks, hbp,
4242 offset + BBTOB(split_hblks));
4243 if (error)
4244 goto bread_err2;
4245 }
4246 rhead = (xlog_rec_header_t *)offset;
4247 error = xlog_valid_rec_header(log, rhead,
4248 split_hblks ? blk_no : 0);
4249 if (error)
4250 goto bread_err2;
4251
4252 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4253 blk_no += hblks;
4254
4255 /* Read in data for log record */
4256 if (blk_no + bblks <= log->l_logBBsize) {
4257 error = xlog_bread(log, blk_no, bblks, dbp,
4258 &offset);
4259 if (error)
4260 goto bread_err2;
4261 } else {
4262 /* This log record is split across the
4263 * physical end of log */
4264 offset = dbp->b_addr;
4265 split_bblks = 0;
4266 if (blk_no != log->l_logBBsize) {
4267 /* some data is before the physical
4268 * end of log */
4269 ASSERT(!wrapped_hblks);
4270 ASSERT(blk_no <= INT_MAX);
4271 split_bblks =
4272 log->l_logBBsize - (int)blk_no;
4273 ASSERT(split_bblks > 0);
4274 error = xlog_bread(log, blk_no,
4275 split_bblks, dbp,
4276 &offset);
4277 if (error)
4278 goto bread_err2;
4279 }
4280
4281 /*
4282 * Note: this black magic still works with
4283 * large sector sizes (non-512) only because:
4284 * - we increased the buffer size originally
4285 * by 1 sector giving us enough extra space
4286 * for the second read;
4287 * - the log start is guaranteed to be sector
4288 * aligned;
4289 * - we read the log end (LR header start)
4290 * _first_, then the log start (LR header end)
4291 * - order is important.
4292 */
4293 error = xlog_bread_offset(log, 0,
4294 bblks - split_bblks, dbp,
4295 offset + BBTOB(split_bblks));
4296 if (error)
4297 goto bread_err2;
4298 }
4299
4300 error = xlog_unpack_data(rhead, offset, log);
4301 if (error)
4302 goto bread_err2;
4303
4304 error = xlog_recover_process_data(log, rhash,
4305 rhead, offset, pass);
4306 if (error)
4307 goto bread_err2;
4308 blk_no += bblks;
4309 }
4310
4311 ASSERT(blk_no >= log->l_logBBsize);
4312 blk_no -= log->l_logBBsize;
4313 }
4314
4315 /* read first part of physical log */
4316 while (blk_no < head_blk) {
4317 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4318 if (error)
4319 goto bread_err2;
4320
4321 rhead = (xlog_rec_header_t *)offset;
4322 error = xlog_valid_rec_header(log, rhead, blk_no);
4323 if (error)
4324 goto bread_err2;
4325
4326 /* blocks in data section */
4327 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4328 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4329 &offset);
4330 if (error)
4331 goto bread_err2;
4332
4333 error = xlog_unpack_data(rhead, offset, log);
4334 if (error)
4335 goto bread_err2;
4336
4337 error = xlog_recover_process_data(log, rhash,
4338 rhead, offset, pass);
4339 if (error)
4340 goto bread_err2;
4341 blk_no += bblks + hblks;
4342 }
4343
4344 bread_err2:
4345 xlog_put_bp(dbp);
4346 bread_err1:
4347 xlog_put_bp(hbp);
4348 return error;
4349 }
4350
4351 /*
4352 * Do the recovery of the log. We actually do this in two phases.
4353 * The two passes are necessary in order to implement the function
4354 * of cancelling a record written into the log. The first pass
4355 * determines those things which have been cancelled, and the
4356 * second pass replays log items normally except for those which
4357 * have been cancelled. The handling of the replay and cancellations
4358 * takes place in the log item type specific routines.
4359 *
4360 * The table of items which have cancel records in the log is allocated
4361 * and freed at this level, since only here do we know when all of
4362 * the log recovery has been completed.
4363 */
4364 STATIC int
xlog_do_log_recovery(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)4365 xlog_do_log_recovery(
4366 struct xlog *log,
4367 xfs_daddr_t head_blk,
4368 xfs_daddr_t tail_blk)
4369 {
4370 int error, i;
4371
4372 ASSERT(head_blk != tail_blk);
4373
4374 /*
4375 * First do a pass to find all of the cancelled buf log items.
4376 * Store them in the buf_cancel_table for use in the second pass.
4377 */
4378 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4379 sizeof(struct list_head),
4380 KM_SLEEP);
4381 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4382 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4383
4384 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4385 XLOG_RECOVER_PASS1);
4386 if (error != 0) {
4387 kmem_free(log->l_buf_cancel_table);
4388 log->l_buf_cancel_table = NULL;
4389 return error;
4390 }
4391 /*
4392 * Then do a second pass to actually recover the items in the log.
4393 * When it is complete free the table of buf cancel items.
4394 */
4395 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4396 XLOG_RECOVER_PASS2);
4397 #ifdef DEBUG
4398 if (!error) {
4399 int i;
4400
4401 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4402 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4403 }
4404 #endif /* DEBUG */
4405
4406 kmem_free(log->l_buf_cancel_table);
4407 log->l_buf_cancel_table = NULL;
4408
4409 return error;
4410 }
4411
4412 /*
4413 * Do the actual recovery
4414 */
4415 STATIC int
xlog_do_recover(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)4416 xlog_do_recover(
4417 struct xlog *log,
4418 xfs_daddr_t head_blk,
4419 xfs_daddr_t tail_blk)
4420 {
4421 int error;
4422 xfs_buf_t *bp;
4423 xfs_sb_t *sbp;
4424
4425 /*
4426 * First replay the images in the log.
4427 */
4428 error = xlog_do_log_recovery(log, head_blk, tail_blk);
4429 if (error)
4430 return error;
4431
4432 /*
4433 * If IO errors happened during recovery, bail out.
4434 */
4435 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4436 return -EIO;
4437 }
4438
4439 /*
4440 * We now update the tail_lsn since much of the recovery has completed
4441 * and there may be space available to use. If there were no extent
4442 * or iunlinks, we can free up the entire log and set the tail_lsn to
4443 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4444 * lsn of the last known good LR on disk. If there are extent frees
4445 * or iunlinks they will have some entries in the AIL; so we look at
4446 * the AIL to determine how to set the tail_lsn.
4447 */
4448 xlog_assign_tail_lsn(log->l_mp);
4449
4450 /*
4451 * Now that we've finished replaying all buffer and inode
4452 * updates, re-read in the superblock and reverify it.
4453 */
4454 bp = xfs_getsb(log->l_mp, 0);
4455 XFS_BUF_UNDONE(bp);
4456 ASSERT(!(XFS_BUF_ISWRITE(bp)));
4457 XFS_BUF_READ(bp);
4458 XFS_BUF_UNASYNC(bp);
4459 bp->b_ops = &xfs_sb_buf_ops;
4460
4461 error = xfs_buf_submit_wait(bp);
4462 if (error) {
4463 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4464 xfs_buf_ioerror_alert(bp, __func__);
4465 ASSERT(0);
4466 }
4467 xfs_buf_relse(bp);
4468 return error;
4469 }
4470
4471 /* Convert superblock from on-disk format */
4472 sbp = &log->l_mp->m_sb;
4473 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4474 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4475 ASSERT(xfs_sb_good_version(sbp));
4476 xfs_reinit_percpu_counters(log->l_mp);
4477
4478 xfs_buf_relse(bp);
4479
4480
4481 xlog_recover_check_summary(log);
4482
4483 /* Normal transactions can now occur */
4484 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4485 return 0;
4486 }
4487
4488 /*
4489 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4490 *
4491 * Return error or zero.
4492 */
4493 int
xlog_recover(struct xlog * log)4494 xlog_recover(
4495 struct xlog *log)
4496 {
4497 xfs_daddr_t head_blk, tail_blk;
4498 int error;
4499
4500 /* find the tail of the log */
4501 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4502 return error;
4503
4504 if (tail_blk != head_blk) {
4505 /* There used to be a comment here:
4506 *
4507 * disallow recovery on read-only mounts. note -- mount
4508 * checks for ENOSPC and turns it into an intelligent
4509 * error message.
4510 * ...but this is no longer true. Now, unless you specify
4511 * NORECOVERY (in which case this function would never be
4512 * called), we just go ahead and recover. We do this all
4513 * under the vfs layer, so we can get away with it unless
4514 * the device itself is read-only, in which case we fail.
4515 */
4516 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4517 return error;
4518 }
4519
4520 /*
4521 * Version 5 superblock log feature mask validation. We know the
4522 * log is dirty so check if there are any unknown log features
4523 * in what we need to recover. If there are unknown features
4524 * (e.g. unsupported transactions, then simply reject the
4525 * attempt at recovery before touching anything.
4526 */
4527 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4528 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4529 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4530 xfs_warn(log->l_mp,
4531 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4532 "The log can not be fully and/or safely recovered by this kernel.\n"
4533 "Please recover the log on a kernel that supports the unknown features.",
4534 (log->l_mp->m_sb.sb_features_log_incompat &
4535 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4536 return -EINVAL;
4537 }
4538
4539 /*
4540 * Delay log recovery if the debug hook is set. This is debug
4541 * instrumention to coordinate simulation of I/O failures with
4542 * log recovery.
4543 */
4544 if (xfs_globals.log_recovery_delay) {
4545 xfs_notice(log->l_mp,
4546 "Delaying log recovery for %d seconds.",
4547 xfs_globals.log_recovery_delay);
4548 msleep(xfs_globals.log_recovery_delay * 1000);
4549 }
4550
4551 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4552 log->l_mp->m_logname ? log->l_mp->m_logname
4553 : "internal");
4554
4555 error = xlog_do_recover(log, head_blk, tail_blk);
4556 log->l_flags |= XLOG_RECOVERY_NEEDED;
4557 }
4558 return error;
4559 }
4560
4561 /*
4562 * In the first part of recovery we replay inodes and buffers and build
4563 * up the list of extent free items which need to be processed. Here
4564 * we process the extent free items and clean up the on disk unlinked
4565 * inode lists. This is separated from the first part of recovery so
4566 * that the root and real-time bitmap inodes can be read in from disk in
4567 * between the two stages. This is necessary so that we can free space
4568 * in the real-time portion of the file system.
4569 */
4570 int
xlog_recover_finish(struct xlog * log)4571 xlog_recover_finish(
4572 struct xlog *log)
4573 {
4574 /*
4575 * Now we're ready to do the transactions needed for the
4576 * rest of recovery. Start with completing all the extent
4577 * free intent records and then process the unlinked inode
4578 * lists. At this point, we essentially run in normal mode
4579 * except that we're still performing recovery actions
4580 * rather than accepting new requests.
4581 */
4582 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4583 int error;
4584 error = xlog_recover_process_efis(log);
4585 if (error) {
4586 xfs_alert(log->l_mp, "Failed to recover EFIs");
4587 return error;
4588 }
4589 /*
4590 * Sync the log to get all the EFIs out of the AIL.
4591 * This isn't absolutely necessary, but it helps in
4592 * case the unlink transactions would have problems
4593 * pushing the EFIs out of the way.
4594 */
4595 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4596
4597 xlog_recover_process_iunlinks(log);
4598
4599 xlog_recover_check_summary(log);
4600
4601 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4602 log->l_mp->m_logname ? log->l_mp->m_logname
4603 : "internal");
4604 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4605 } else {
4606 xfs_info(log->l_mp, "Ending clean mount");
4607 }
4608 return 0;
4609 }
4610
4611
4612 #if defined(DEBUG)
4613 /*
4614 * Read all of the agf and agi counters and check that they
4615 * are consistent with the superblock counters.
4616 */
4617 void
xlog_recover_check_summary(struct xlog * log)4618 xlog_recover_check_summary(
4619 struct xlog *log)
4620 {
4621 xfs_mount_t *mp;
4622 xfs_agf_t *agfp;
4623 xfs_buf_t *agfbp;
4624 xfs_buf_t *agibp;
4625 xfs_agnumber_t agno;
4626 __uint64_t freeblks;
4627 __uint64_t itotal;
4628 __uint64_t ifree;
4629 int error;
4630
4631 mp = log->l_mp;
4632
4633 freeblks = 0LL;
4634 itotal = 0LL;
4635 ifree = 0LL;
4636 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4637 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4638 if (error) {
4639 xfs_alert(mp, "%s agf read failed agno %d error %d",
4640 __func__, agno, error);
4641 } else {
4642 agfp = XFS_BUF_TO_AGF(agfbp);
4643 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4644 be32_to_cpu(agfp->agf_flcount);
4645 xfs_buf_relse(agfbp);
4646 }
4647
4648 error = xfs_read_agi(mp, NULL, agno, &agibp);
4649 if (error) {
4650 xfs_alert(mp, "%s agi read failed agno %d error %d",
4651 __func__, agno, error);
4652 } else {
4653 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4654
4655 itotal += be32_to_cpu(agi->agi_count);
4656 ifree += be32_to_cpu(agi->agi_freecount);
4657 xfs_buf_relse(agibp);
4658 }
4659 }
4660 }
4661 #endif /* DEBUG */
4662