1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51 * xhci_handshake - spin reading hc until handshake completes or fails
52 * @ptr: address of hc register to be read
53 * @mask: bits to look at in result of read
54 * @done: value of those bits when handshake succeeds
55 * @usec: timeout in microseconds
56 *
57 * Returns negative errno, or zero on success
58 *
59 * Success happens when the "mask" bits have the specified value (hardware
60 * handshake done). There are two failure modes: "usec" have passed (major
61 * hardware flakeout), or the register reads as all-ones (hardware removed).
62 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 u32 result;
66
67 do {
68 result = readl(ptr);
69 if (result == ~(u32)0) /* card removed */
70 return -ENODEV;
71 result &= mask;
72 if (result == done)
73 return 0;
74 udelay(1);
75 usec--;
76 } while (usec > 0);
77 return -ETIMEDOUT;
78 }
79
80 /*
81 * Disable interrupts and begin the xHCI halting process.
82 */
xhci_quiesce(struct xhci_hcd * xhci)83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85 u32 halted;
86 u32 cmd;
87 u32 mask;
88
89 mask = ~(XHCI_IRQS);
90 halted = readl(&xhci->op_regs->status) & STS_HALT;
91 if (!halted)
92 mask &= ~CMD_RUN;
93
94 cmd = readl(&xhci->op_regs->command);
95 cmd &= mask;
96 writel(cmd, &xhci->op_regs->command);
97 }
98
99 /*
100 * Force HC into halt state.
101 *
102 * Disable any IRQs and clear the run/stop bit.
103 * HC will complete any current and actively pipelined transactions, and
104 * should halt within 16 ms of the run/stop bit being cleared.
105 * Read HC Halted bit in the status register to see when the HC is finished.
106 */
xhci_halt(struct xhci_hcd * xhci)107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109 int ret;
110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 xhci_quiesce(xhci);
112
113 ret = xhci_handshake(&xhci->op_regs->status,
114 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 if (!ret) {
116 xhci->xhc_state |= XHCI_STATE_HALTED;
117 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 } else
119 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 XHCI_MAX_HALT_USEC);
121 return ret;
122 }
123
124 /*
125 * Set the run bit and wait for the host to be running.
126 */
xhci_start(struct xhci_hcd * xhci)127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129 u32 temp;
130 int ret;
131
132 temp = readl(&xhci->op_regs->command);
133 temp |= (CMD_RUN);
134 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 temp);
136 writel(temp, &xhci->op_regs->command);
137
138 /*
139 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 * running.
141 */
142 ret = xhci_handshake(&xhci->op_regs->status,
143 STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 if (ret == -ETIMEDOUT)
145 xhci_err(xhci, "Host took too long to start, "
146 "waited %u microseconds.\n",
147 XHCI_MAX_HALT_USEC);
148 if (!ret)
149 /* clear state flags. Including dying, halted or removing */
150 xhci->xhc_state = 0;
151
152 return ret;
153 }
154
155 /*
156 * Reset a halted HC.
157 *
158 * This resets pipelines, timers, counters, state machines, etc.
159 * Transactions will be terminated immediately, and operational registers
160 * will be set to their defaults.
161 */
xhci_reset(struct xhci_hcd * xhci)162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 u32 command;
165 u32 state;
166 int ret, i;
167
168 state = readl(&xhci->op_regs->status);
169 if ((state & STS_HALT) == 0) {
170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 return 0;
172 }
173
174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 command = readl(&xhci->op_regs->command);
176 command |= CMD_RESET;
177 writel(command, &xhci->op_regs->command);
178
179 /* Existing Intel xHCI controllers require a delay of 1 mS,
180 * after setting the CMD_RESET bit, and before accessing any
181 * HC registers. This allows the HC to complete the
182 * reset operation and be ready for HC register access.
183 * Without this delay, the subsequent HC register access,
184 * may result in a system hang very rarely.
185 */
186 if (xhci->quirks & XHCI_INTEL_HOST)
187 udelay(1000);
188
189 ret = xhci_handshake(&xhci->op_regs->command,
190 CMD_RESET, 0, 10 * 1000 * 1000);
191 if (ret)
192 return ret;
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; ++i) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 int i;
216
217 if (!xhci->msix_entries)
218 return -EINVAL;
219
220 for (i = 0; i < xhci->msix_count; i++)
221 if (xhci->msix_entries[i].vector)
222 free_irq(xhci->msix_entries[i].vector,
223 xhci_to_hcd(xhci));
224 return 0;
225 }
226
227 /*
228 * Set up MSI
229 */
xhci_setup_msi(struct xhci_hcd * xhci)230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 int ret;
233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235 ret = pci_enable_msi(pdev);
236 if (ret) {
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "failed to allocate MSI entry");
239 return ret;
240 }
241
242 ret = request_irq(pdev->irq, xhci_msi_irq,
243 0, "xhci_hcd", xhci_to_hcd(xhci));
244 if (ret) {
245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 "disable MSI interrupt");
247 pci_disable_msi(pdev);
248 }
249
250 return ret;
251 }
252
253 /*
254 * Free IRQs
255 * free all IRQs request
256 */
xhci_free_irq(struct xhci_hcd * xhci)257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 int ret;
261
262 /* return if using legacy interrupt */
263 if (xhci_to_hcd(xhci)->irq > 0)
264 return;
265
266 ret = xhci_free_msi(xhci);
267 if (!ret)
268 return;
269 if (pdev->irq > 0)
270 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272 return;
273 }
274
275 /*
276 * Set up MSI-X
277 */
xhci_setup_msix(struct xhci_hcd * xhci)278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 int i, ret = 0;
281 struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284 /*
285 * calculate number of msi-x vectors supported.
286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 * with max number of interrupters based on the xhci HCSPARAMS1.
288 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 * Add additional 1 vector to ensure always available interrupt.
290 */
291 xhci->msix_count = min(num_online_cpus() + 1,
292 HCS_MAX_INTRS(xhci->hcs_params1));
293
294 xhci->msix_entries =
295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 GFP_KERNEL);
297 if (!xhci->msix_entries) {
298 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 return -ENOMEM;
300 }
301
302 for (i = 0; i < xhci->msix_count; i++) {
303 xhci->msix_entries[i].entry = i;
304 xhci->msix_entries[i].vector = 0;
305 }
306
307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 if (ret) {
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "Failed to enable MSI-X");
311 goto free_entries;
312 }
313
314 for (i = 0; i < xhci->msix_count; i++) {
315 ret = request_irq(xhci->msix_entries[i].vector,
316 xhci_msi_irq,
317 0, "xhci_hcd", xhci_to_hcd(xhci));
318 if (ret)
319 goto disable_msix;
320 }
321
322 hcd->msix_enabled = 1;
323 return ret;
324
325 disable_msix:
326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 xhci_free_irq(xhci);
328 pci_disable_msix(pdev);
329 free_entries:
330 kfree(xhci->msix_entries);
331 xhci->msix_entries = NULL;
332 return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341 if (xhci->quirks & XHCI_PLAT)
342 return;
343
344 xhci_free_irq(xhci);
345
346 if (xhci->msix_entries) {
347 pci_disable_msix(pdev);
348 kfree(xhci->msix_entries);
349 xhci->msix_entries = NULL;
350 } else {
351 pci_disable_msi(pdev);
352 }
353
354 hcd->msix_enabled = 0;
355 return;
356 }
357
xhci_msix_sync_irqs(struct xhci_hcd * xhci)358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 int i;
361
362 if (xhci->msix_entries) {
363 for (i = 0; i < xhci->msix_count; i++)
364 synchronize_irq(xhci->msix_entries[i].vector);
365 }
366 }
367
xhci_try_enable_msi(struct usb_hcd * hcd)368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 struct pci_dev *pdev;
372 int ret;
373
374 /* The xhci platform device has set up IRQs through usb_add_hcd. */
375 if (xhci->quirks & XHCI_PLAT)
376 return 0;
377
378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 /*
380 * Some Fresco Logic host controllers advertise MSI, but fail to
381 * generate interrupts. Don't even try to enable MSI.
382 */
383 if (xhci->quirks & XHCI_BROKEN_MSI)
384 goto legacy_irq;
385
386 /* unregister the legacy interrupt */
387 if (hcd->irq)
388 free_irq(hcd->irq, hcd);
389 hcd->irq = 0;
390
391 ret = xhci_setup_msix(xhci);
392 if (ret)
393 /* fall back to msi*/
394 ret = xhci_setup_msi(xhci);
395
396 if (!ret)
397 /* hcd->irq is 0, we have MSI */
398 return 0;
399
400 if (!pdev->irq) {
401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 return -EINVAL;
403 }
404
405 legacy_irq:
406 if (!strlen(hcd->irq_descr))
407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 hcd->driver->description, hcd->self.busnum);
409
410 /* fall back to legacy interrupt*/
411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 hcd->irq_descr, hcd);
413 if (ret) {
414 xhci_err(xhci, "request interrupt %d failed\n",
415 pdev->irq);
416 return ret;
417 }
418 hcd->irq = pdev->irq;
419 return 0;
420 }
421
422 #else
423
xhci_try_enable_msi(struct usb_hcd * hcd)424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 return 0;
427 }
428
xhci_cleanup_msix(struct xhci_hcd * xhci)429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
xhci_msix_sync_irqs(struct xhci_hcd * xhci)433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
compliance_mode_recovery(unsigned long arg)439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 struct xhci_hcd *xhci;
442 struct usb_hcd *hcd;
443 u32 temp;
444 int i;
445
446 xhci = (struct xhci_hcd *)arg;
447
448 for (i = 0; i < xhci->num_usb3_ports; i++) {
449 temp = readl(xhci->usb3_ports[i]);
450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 /*
452 * Compliance Mode Detected. Letting USB Core
453 * handle the Warm Reset
454 */
455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 "Compliance mode detected->port %d",
457 i + 1);
458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 "Attempting compliance mode recovery");
460 hcd = xhci->shared_hcd;
461
462 if (hcd->state == HC_STATE_SUSPENDED)
463 usb_hcd_resume_root_hub(hcd);
464
465 usb_hcd_poll_rh_status(hcd);
466 }
467 }
468
469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 mod_timer(&xhci->comp_mode_recovery_timer,
471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476 * that causes ports behind that hardware to enter compliance mode sometimes.
477 * The quirk creates a timer that polls every 2 seconds the link state of
478 * each host controller's port and recovers it by issuing a Warm reset
479 * if Compliance mode is detected, otherwise the port will become "dead" (no
480 * device connections or disconnections will be detected anymore). Becasue no
481 * status event is generated when entering compliance mode (per xhci spec),
482 * this quirk is needed on systems that have the failing hardware installed.
483 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 xhci->port_status_u0 = 0;
487 setup_timer(&xhci->comp_mode_recovery_timer,
488 compliance_mode_recovery, (unsigned long)xhci);
489 xhci->comp_mode_recovery_timer.expires = jiffies +
490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492 set_timer_slack(&xhci->comp_mode_recovery_timer,
493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 add_timer(&xhci->comp_mode_recovery_timer);
495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 "Compliance mode recovery timer initialized");
497 }
498
499 /*
500 * This function identifies the systems that have installed the SN65LVPE502CP
501 * USB3.0 re-driver and that need the Compliance Mode Quirk.
502 * Systems:
503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504 */
xhci_compliance_mode_recovery_timer_quirk_check(void)505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 const char *dmi_product_name, *dmi_sys_vendor;
508
509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 if (!dmi_product_name || !dmi_sys_vendor)
512 return false;
513
514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 return false;
516
517 if (strstr(dmi_product_name, "Z420") ||
518 strstr(dmi_product_name, "Z620") ||
519 strstr(dmi_product_name, "Z820") ||
520 strstr(dmi_product_name, "Z1 Workstation"))
521 return true;
522
523 return false;
524 }
525
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533 * Initialize memory for HCD and xHC (one-time init).
534 *
535 * Program the PAGESIZE register, initialize the device context array, create
536 * device contexts (?), set up a command ring segment (or two?), create event
537 * ring (one for now).
538 */
xhci_init(struct usb_hcd * hcd)539 int xhci_init(struct usb_hcd *hcd)
540 {
541 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 int retval = 0;
543
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 spin_lock_init(&xhci->lock);
546 if (xhci->hci_version == 0x95 && link_quirk) {
547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 "QUIRK: Not clearing Link TRB chain bits.");
549 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 } else {
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "xHCI doesn't need link TRB QUIRK");
553 }
554 retval = xhci_mem_init(xhci, GFP_KERNEL);
555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557 /* Initializing Compliance Mode Recovery Data If Needed */
558 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 compliance_mode_recovery_timer_init(xhci);
561 }
562
563 return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
xhci_run_finished(struct xhci_hcd * xhci)569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 if (xhci_start(xhci)) {
572 xhci_halt(xhci);
573 return -ENODEV;
574 }
575 xhci->shared_hcd->state = HC_STATE_RUNNING;
576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578 if (xhci->quirks & XHCI_NEC_HOST)
579 xhci_ring_cmd_db(xhci);
580
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 "Finished xhci_run for USB3 roothub");
583 return 0;
584 }
585
586 /*
587 * Start the HC after it was halted.
588 *
589 * This function is called by the USB core when the HC driver is added.
590 * Its opposite is xhci_stop().
591 *
592 * xhci_init() must be called once before this function can be called.
593 * Reset the HC, enable device slot contexts, program DCBAAP, and
594 * set command ring pointer and event ring pointer.
595 *
596 * Setup MSI-X vectors and enable interrupts.
597 */
xhci_run(struct usb_hcd * hcd)598 int xhci_run(struct usb_hcd *hcd)
599 {
600 u32 temp;
601 u64 temp_64;
602 int ret;
603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605 /* Start the xHCI host controller running only after the USB 2.0 roothub
606 * is setup.
607 */
608
609 hcd->uses_new_polling = 1;
610 if (!usb_hcd_is_primary_hcd(hcd))
611 return xhci_run_finished(xhci);
612
613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615 ret = xhci_try_enable_msi(hcd);
616 if (ret)
617 return ret;
618
619 xhci_dbg(xhci, "Command ring memory map follows:\n");
620 xhci_debug_ring(xhci, xhci->cmd_ring);
621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 xhci_dbg_cmd_ptrs(xhci);
623
624 xhci_dbg(xhci, "ERST memory map follows:\n");
625 xhci_dbg_erst(xhci, &xhci->erst);
626 xhci_dbg(xhci, "Event ring:\n");
627 xhci_debug_ring(xhci, xhci->event_ring);
628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 temp_64 &= ~ERST_PTR_MASK;
631 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "// Set the interrupt modulation register");
636 temp = readl(&xhci->ir_set->irq_control);
637 temp &= ~ER_IRQ_INTERVAL_MASK;
638 temp |= (u32) 160;
639 writel(temp, &xhci->ir_set->irq_control);
640
641 /* Set the HCD state before we enable the irqs */
642 temp = readl(&xhci->op_regs->command);
643 temp |= (CMD_EIE);
644 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 "// Enable interrupts, cmd = 0x%x.", temp);
646 writel(temp, &xhci->op_regs->command);
647
648 temp = readl(&xhci->ir_set->irq_pending);
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653 xhci_print_ir_set(xhci, 0);
654
655 if (xhci->quirks & XHCI_NEC_HOST) {
656 struct xhci_command *command;
657 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658 if (!command)
659 return -ENOMEM;
660 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661 TRB_TYPE(TRB_NEC_GET_FW));
662 }
663 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 "Finished xhci_run for USB2 roothub");
665 return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668
xhci_only_stop_hcd(struct usb_hcd * hcd)669 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
670 {
671 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672
673 spin_lock_irq(&xhci->lock);
674 xhci_halt(xhci);
675
676 /* The shared_hcd is going to be deallocated shortly (the USB core only
677 * calls this function when allocation fails in usb_add_hcd(), or
678 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
679 */
680 xhci->shared_hcd = NULL;
681 spin_unlock_irq(&xhci->lock);
682 }
683
684 /*
685 * Stop xHCI driver.
686 *
687 * This function is called by the USB core when the HC driver is removed.
688 * Its opposite is xhci_run().
689 *
690 * Disable device contexts, disable IRQs, and quiesce the HC.
691 * Reset the HC, finish any completed transactions, and cleanup memory.
692 */
xhci_stop(struct usb_hcd * hcd)693 void xhci_stop(struct usb_hcd *hcd)
694 {
695 u32 temp;
696 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
697
698 mutex_lock(&xhci->mutex);
699
700 if (!usb_hcd_is_primary_hcd(hcd)) {
701 xhci_only_stop_hcd(xhci->shared_hcd);
702 mutex_unlock(&xhci->mutex);
703 return;
704 }
705
706 spin_lock_irq(&xhci->lock);
707 /* Make sure the xHC is halted for a USB3 roothub
708 * (xhci_stop() could be called as part of failed init).
709 */
710 xhci_halt(xhci);
711 xhci_reset(xhci);
712 spin_unlock_irq(&xhci->lock);
713
714 xhci_cleanup_msix(xhci);
715
716 /* Deleting Compliance Mode Recovery Timer */
717 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
718 (!(xhci_all_ports_seen_u0(xhci)))) {
719 del_timer_sync(&xhci->comp_mode_recovery_timer);
720 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
721 "%s: compliance mode recovery timer deleted",
722 __func__);
723 }
724
725 if (xhci->quirks & XHCI_AMD_PLL_FIX)
726 usb_amd_dev_put();
727
728 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
729 "// Disabling event ring interrupts");
730 temp = readl(&xhci->op_regs->status);
731 writel(temp & ~STS_EINT, &xhci->op_regs->status);
732 temp = readl(&xhci->ir_set->irq_pending);
733 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
734 xhci_print_ir_set(xhci, 0);
735
736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
737 xhci_mem_cleanup(xhci);
738 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
739 "xhci_stop completed - status = %x",
740 readl(&xhci->op_regs->status));
741 mutex_unlock(&xhci->mutex);
742 }
743
744 /*
745 * Shutdown HC (not bus-specific)
746 *
747 * This is called when the machine is rebooting or halting. We assume that the
748 * machine will be powered off, and the HC's internal state will be reset.
749 * Don't bother to free memory.
750 *
751 * This will only ever be called with the main usb_hcd (the USB3 roothub).
752 */
xhci_shutdown(struct usb_hcd * hcd)753 void xhci_shutdown(struct usb_hcd *hcd)
754 {
755 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
756
757 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
758 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
759
760 spin_lock_irq(&xhci->lock);
761 xhci_halt(xhci);
762 /* Workaround for spurious wakeups at shutdown with HSW */
763 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764 xhci_reset(xhci);
765 spin_unlock_irq(&xhci->lock);
766
767 xhci_cleanup_msix(xhci);
768
769 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
770 "xhci_shutdown completed - status = %x",
771 readl(&xhci->op_regs->status));
772
773 /* Yet another workaround for spurious wakeups at shutdown with HSW */
774 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
775 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
776 }
777
778 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)779 static void xhci_save_registers(struct xhci_hcd *xhci)
780 {
781 xhci->s3.command = readl(&xhci->op_regs->command);
782 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
783 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
784 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
785 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
786 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
787 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
788 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
789 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
790 }
791
xhci_restore_registers(struct xhci_hcd * xhci)792 static void xhci_restore_registers(struct xhci_hcd *xhci)
793 {
794 writel(xhci->s3.command, &xhci->op_regs->command);
795 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
796 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
797 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
798 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
799 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
800 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
801 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
802 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
803 }
804
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)805 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
806 {
807 u64 val_64;
808
809 /* step 2: initialize command ring buffer */
810 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
811 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
812 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
813 xhci->cmd_ring->dequeue) &
814 (u64) ~CMD_RING_RSVD_BITS) |
815 xhci->cmd_ring->cycle_state;
816 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
817 "// Setting command ring address to 0x%llx",
818 (long unsigned long) val_64);
819 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
820 }
821
822 /*
823 * The whole command ring must be cleared to zero when we suspend the host.
824 *
825 * The host doesn't save the command ring pointer in the suspend well, so we
826 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
827 * aligned, because of the reserved bits in the command ring dequeue pointer
828 * register. Therefore, we can't just set the dequeue pointer back in the
829 * middle of the ring (TRBs are 16-byte aligned).
830 */
xhci_clear_command_ring(struct xhci_hcd * xhci)831 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
832 {
833 struct xhci_ring *ring;
834 struct xhci_segment *seg;
835
836 ring = xhci->cmd_ring;
837 seg = ring->deq_seg;
838 do {
839 memset(seg->trbs, 0,
840 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
841 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
842 cpu_to_le32(~TRB_CYCLE);
843 seg = seg->next;
844 } while (seg != ring->deq_seg);
845
846 /* Reset the software enqueue and dequeue pointers */
847 ring->deq_seg = ring->first_seg;
848 ring->dequeue = ring->first_seg->trbs;
849 ring->enq_seg = ring->deq_seg;
850 ring->enqueue = ring->dequeue;
851
852 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
853 /*
854 * Ring is now zeroed, so the HW should look for change of ownership
855 * when the cycle bit is set to 1.
856 */
857 ring->cycle_state = 1;
858
859 /*
860 * Reset the hardware dequeue pointer.
861 * Yes, this will need to be re-written after resume, but we're paranoid
862 * and want to make sure the hardware doesn't access bogus memory
863 * because, say, the BIOS or an SMI started the host without changing
864 * the command ring pointers.
865 */
866 xhci_set_cmd_ring_deq(xhci);
867 }
868
xhci_disable_port_wake_on_bits(struct xhci_hcd * xhci)869 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
870 {
871 int port_index;
872 __le32 __iomem **port_array;
873 unsigned long flags;
874 u32 t1, t2;
875
876 spin_lock_irqsave(&xhci->lock, flags);
877
878 /* disble usb3 ports Wake bits*/
879 port_index = xhci->num_usb3_ports;
880 port_array = xhci->usb3_ports;
881 while (port_index--) {
882 t1 = readl(port_array[port_index]);
883 t1 = xhci_port_state_to_neutral(t1);
884 t2 = t1 & ~PORT_WAKE_BITS;
885 if (t1 != t2)
886 writel(t2, port_array[port_index]);
887 }
888
889 /* disble usb2 ports Wake bits*/
890 port_index = xhci->num_usb2_ports;
891 port_array = xhci->usb2_ports;
892 while (port_index--) {
893 t1 = readl(port_array[port_index]);
894 t1 = xhci_port_state_to_neutral(t1);
895 t2 = t1 & ~PORT_WAKE_BITS;
896 if (t1 != t2)
897 writel(t2, port_array[port_index]);
898 }
899
900 spin_unlock_irqrestore(&xhci->lock, flags);
901 }
902
903 /*
904 * Stop HC (not bus-specific)
905 *
906 * This is called when the machine transition into S3/S4 mode.
907 *
908 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)909 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
910 {
911 int rc = 0;
912 unsigned int delay = XHCI_MAX_HALT_USEC;
913 struct usb_hcd *hcd = xhci_to_hcd(xhci);
914 u32 command;
915
916 if (hcd->state != HC_STATE_SUSPENDED ||
917 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
918 return -EINVAL;
919
920 /* Clear root port wake on bits if wakeup not allowed. */
921 if (!do_wakeup)
922 xhci_disable_port_wake_on_bits(xhci);
923
924 /* Don't poll the roothubs on bus suspend. */
925 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
926 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
927 del_timer_sync(&hcd->rh_timer);
928 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
929 del_timer_sync(&xhci->shared_hcd->rh_timer);
930
931 spin_lock_irq(&xhci->lock);
932 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
933 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
934 /* step 1: stop endpoint */
935 /* skipped assuming that port suspend has done */
936
937 /* step 2: clear Run/Stop bit */
938 command = readl(&xhci->op_regs->command);
939 command &= ~CMD_RUN;
940 writel(command, &xhci->op_regs->command);
941
942 /* Some chips from Fresco Logic need an extraordinary delay */
943 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
944
945 if (xhci_handshake(&xhci->op_regs->status,
946 STS_HALT, STS_HALT, delay)) {
947 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
948 spin_unlock_irq(&xhci->lock);
949 return -ETIMEDOUT;
950 }
951 xhci_clear_command_ring(xhci);
952
953 /* step 3: save registers */
954 xhci_save_registers(xhci);
955
956 /* step 4: set CSS flag */
957 command = readl(&xhci->op_regs->command);
958 command |= CMD_CSS;
959 writel(command, &xhci->op_regs->command);
960 if (xhci_handshake(&xhci->op_regs->status,
961 STS_SAVE, 0, 10 * 1000)) {
962 xhci_warn(xhci, "WARN: xHC save state timeout\n");
963 spin_unlock_irq(&xhci->lock);
964 return -ETIMEDOUT;
965 }
966 spin_unlock_irq(&xhci->lock);
967
968 /*
969 * Deleting Compliance Mode Recovery Timer because the xHCI Host
970 * is about to be suspended.
971 */
972 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
973 (!(xhci_all_ports_seen_u0(xhci)))) {
974 del_timer_sync(&xhci->comp_mode_recovery_timer);
975 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
976 "%s: compliance mode recovery timer deleted",
977 __func__);
978 }
979
980 /* step 5: remove core well power */
981 /* synchronize irq when using MSI-X */
982 xhci_msix_sync_irqs(xhci);
983
984 return rc;
985 }
986 EXPORT_SYMBOL_GPL(xhci_suspend);
987
988 /*
989 * start xHC (not bus-specific)
990 *
991 * This is called when the machine transition from S3/S4 mode.
992 *
993 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)994 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
995 {
996 u32 command, temp = 0, status;
997 struct usb_hcd *hcd = xhci_to_hcd(xhci);
998 struct usb_hcd *secondary_hcd;
999 int retval = 0;
1000 bool comp_timer_running = false;
1001
1002 /* Wait a bit if either of the roothubs need to settle from the
1003 * transition into bus suspend.
1004 */
1005 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1006 time_before(jiffies,
1007 xhci->bus_state[1].next_statechange))
1008 msleep(100);
1009
1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1011 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1012
1013 spin_lock_irq(&xhci->lock);
1014 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1015 hibernated = true;
1016
1017 if (!hibernated) {
1018 /* step 1: restore register */
1019 xhci_restore_registers(xhci);
1020 /* step 2: initialize command ring buffer */
1021 xhci_set_cmd_ring_deq(xhci);
1022 /* step 3: restore state and start state*/
1023 /* step 3: set CRS flag */
1024 command = readl(&xhci->op_regs->command);
1025 command |= CMD_CRS;
1026 writel(command, &xhci->op_regs->command);
1027 if (xhci_handshake(&xhci->op_regs->status,
1028 STS_RESTORE, 0, 10 * 1000)) {
1029 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1030 spin_unlock_irq(&xhci->lock);
1031 return -ETIMEDOUT;
1032 }
1033 temp = readl(&xhci->op_regs->status);
1034 }
1035
1036 /* If restore operation fails, re-initialize the HC during resume */
1037 if ((temp & STS_SRE) || hibernated) {
1038
1039 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1040 !(xhci_all_ports_seen_u0(xhci))) {
1041 del_timer_sync(&xhci->comp_mode_recovery_timer);
1042 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1043 "Compliance Mode Recovery Timer deleted!");
1044 }
1045
1046 /* Let the USB core know _both_ roothubs lost power. */
1047 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1048 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1049
1050 xhci_dbg(xhci, "Stop HCD\n");
1051 xhci_halt(xhci);
1052 xhci_reset(xhci);
1053 spin_unlock_irq(&xhci->lock);
1054 xhci_cleanup_msix(xhci);
1055
1056 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1057 temp = readl(&xhci->op_regs->status);
1058 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1059 temp = readl(&xhci->ir_set->irq_pending);
1060 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1061 xhci_print_ir_set(xhci, 0);
1062
1063 xhci_dbg(xhci, "cleaning up memory\n");
1064 xhci_mem_cleanup(xhci);
1065 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1066 readl(&xhci->op_regs->status));
1067
1068 /* USB core calls the PCI reinit and start functions twice:
1069 * first with the primary HCD, and then with the secondary HCD.
1070 * If we don't do the same, the host will never be started.
1071 */
1072 if (!usb_hcd_is_primary_hcd(hcd))
1073 secondary_hcd = hcd;
1074 else
1075 secondary_hcd = xhci->shared_hcd;
1076
1077 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1078 retval = xhci_init(hcd->primary_hcd);
1079 if (retval)
1080 return retval;
1081 comp_timer_running = true;
1082
1083 xhci_dbg(xhci, "Start the primary HCD\n");
1084 retval = xhci_run(hcd->primary_hcd);
1085 if (!retval) {
1086 xhci_dbg(xhci, "Start the secondary HCD\n");
1087 retval = xhci_run(secondary_hcd);
1088 }
1089 hcd->state = HC_STATE_SUSPENDED;
1090 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1091 goto done;
1092 }
1093
1094 /* step 4: set Run/Stop bit */
1095 command = readl(&xhci->op_regs->command);
1096 command |= CMD_RUN;
1097 writel(command, &xhci->op_regs->command);
1098 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1099 0, 250 * 1000);
1100
1101 /* step 5: walk topology and initialize portsc,
1102 * portpmsc and portli
1103 */
1104 /* this is done in bus_resume */
1105
1106 /* step 6: restart each of the previously
1107 * Running endpoints by ringing their doorbells
1108 */
1109
1110 spin_unlock_irq(&xhci->lock);
1111
1112 done:
1113 if (retval == 0) {
1114 /* Resume root hubs only when have pending events. */
1115 status = readl(&xhci->op_regs->status);
1116 if (status & STS_EINT) {
1117 usb_hcd_resume_root_hub(xhci->shared_hcd);
1118 usb_hcd_resume_root_hub(hcd);
1119 }
1120 }
1121
1122 /*
1123 * If system is subject to the Quirk, Compliance Mode Timer needs to
1124 * be re-initialized Always after a system resume. Ports are subject
1125 * to suffer the Compliance Mode issue again. It doesn't matter if
1126 * ports have entered previously to U0 before system's suspension.
1127 */
1128 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1129 compliance_mode_recovery_timer_init(xhci);
1130
1131 /* Re-enable port polling. */
1132 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1133 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1134 usb_hcd_poll_rh_status(xhci->shared_hcd);
1135 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1136 usb_hcd_poll_rh_status(hcd);
1137
1138 return retval;
1139 }
1140 EXPORT_SYMBOL_GPL(xhci_resume);
1141 #endif /* CONFIG_PM */
1142
1143 /*-------------------------------------------------------------------------*/
1144
1145 /**
1146 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1147 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1148 * value to right shift 1 for the bitmask.
1149 *
1150 * Index = (epnum * 2) + direction - 1,
1151 * where direction = 0 for OUT, 1 for IN.
1152 * For control endpoints, the IN index is used (OUT index is unused), so
1153 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1154 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1155 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1156 {
1157 unsigned int index;
1158 if (usb_endpoint_xfer_control(desc))
1159 index = (unsigned int) (usb_endpoint_num(desc)*2);
1160 else
1161 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1162 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1163 return index;
1164 }
1165
1166 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1167 * address from the XHCI endpoint index.
1168 */
xhci_get_endpoint_address(unsigned int ep_index)1169 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1170 {
1171 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1172 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1173 return direction | number;
1174 }
1175
1176 /* Find the flag for this endpoint (for use in the control context). Use the
1177 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1178 * bit 1, etc.
1179 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1180 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1181 {
1182 return 1 << (xhci_get_endpoint_index(desc) + 1);
1183 }
1184
1185 /* Find the flag for this endpoint (for use in the control context). Use the
1186 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1187 * bit 1, etc.
1188 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1189 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1190 {
1191 return 1 << (ep_index + 1);
1192 }
1193
1194 /* Compute the last valid endpoint context index. Basically, this is the
1195 * endpoint index plus one. For slot contexts with more than valid endpoint,
1196 * we find the most significant bit set in the added contexts flags.
1197 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1198 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1199 */
xhci_last_valid_endpoint(u32 added_ctxs)1200 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1201 {
1202 return fls(added_ctxs) - 1;
1203 }
1204
1205 /* Returns 1 if the arguments are OK;
1206 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1207 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1208 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1209 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1210 const char *func) {
1211 struct xhci_hcd *xhci;
1212 struct xhci_virt_device *virt_dev;
1213
1214 if (!hcd || (check_ep && !ep) || !udev) {
1215 pr_debug("xHCI %s called with invalid args\n", func);
1216 return -EINVAL;
1217 }
1218 if (!udev->parent) {
1219 pr_debug("xHCI %s called for root hub\n", func);
1220 return 0;
1221 }
1222
1223 xhci = hcd_to_xhci(hcd);
1224 if (check_virt_dev) {
1225 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1226 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1227 func);
1228 return -EINVAL;
1229 }
1230
1231 virt_dev = xhci->devs[udev->slot_id];
1232 if (virt_dev->udev != udev) {
1233 xhci_dbg(xhci, "xHCI %s called with udev and "
1234 "virt_dev does not match\n", func);
1235 return -EINVAL;
1236 }
1237 }
1238
1239 if (xhci->xhc_state & XHCI_STATE_HALTED)
1240 return -ENODEV;
1241
1242 return 1;
1243 }
1244
1245 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1246 struct usb_device *udev, struct xhci_command *command,
1247 bool ctx_change, bool must_succeed);
1248
1249 /*
1250 * Full speed devices may have a max packet size greater than 8 bytes, but the
1251 * USB core doesn't know that until it reads the first 8 bytes of the
1252 * descriptor. If the usb_device's max packet size changes after that point,
1253 * we need to issue an evaluate context command and wait on it.
1254 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1255 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1256 unsigned int ep_index, struct urb *urb)
1257 {
1258 struct xhci_container_ctx *out_ctx;
1259 struct xhci_input_control_ctx *ctrl_ctx;
1260 struct xhci_ep_ctx *ep_ctx;
1261 struct xhci_command *command;
1262 int max_packet_size;
1263 int hw_max_packet_size;
1264 int ret = 0;
1265
1266 out_ctx = xhci->devs[slot_id]->out_ctx;
1267 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1268 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1269 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1270 if (hw_max_packet_size != max_packet_size) {
1271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1272 "Max Packet Size for ep 0 changed.");
1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1274 "Max packet size in usb_device = %d",
1275 max_packet_size);
1276 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1277 "Max packet size in xHCI HW = %d",
1278 hw_max_packet_size);
1279 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1280 "Issuing evaluate context command.");
1281
1282 /* Set up the input context flags for the command */
1283 /* FIXME: This won't work if a non-default control endpoint
1284 * changes max packet sizes.
1285 */
1286
1287 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1288 if (!command)
1289 return -ENOMEM;
1290
1291 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1292 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1293 if (!ctrl_ctx) {
1294 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1295 __func__);
1296 ret = -ENOMEM;
1297 goto command_cleanup;
1298 }
1299 /* Set up the modified control endpoint 0 */
1300 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1301 xhci->devs[slot_id]->out_ctx, ep_index);
1302
1303 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1304 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1305 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1306
1307 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1308 ctrl_ctx->drop_flags = 0;
1309
1310 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1311 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1312 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1313 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1314
1315 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1316 true, false);
1317
1318 /* Clean up the input context for later use by bandwidth
1319 * functions.
1320 */
1321 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1322 command_cleanup:
1323 kfree(command->completion);
1324 kfree(command);
1325 }
1326 return ret;
1327 }
1328
1329 /*
1330 * non-error returns are a promise to giveback() the urb later
1331 * we drop ownership so next owner (or urb unlink) can get it
1332 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1333 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1334 {
1335 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1336 struct xhci_td *buffer;
1337 unsigned long flags;
1338 int ret = 0;
1339 unsigned int slot_id, ep_index;
1340 struct urb_priv *urb_priv;
1341 int size, i;
1342
1343 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1344 true, true, __func__) <= 0)
1345 return -EINVAL;
1346
1347 slot_id = urb->dev->slot_id;
1348 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1349
1350 if (!HCD_HW_ACCESSIBLE(hcd)) {
1351 if (!in_interrupt())
1352 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1353 ret = -ESHUTDOWN;
1354 goto exit;
1355 }
1356
1357 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1358 size = urb->number_of_packets;
1359 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1360 urb->transfer_buffer_length > 0 &&
1361 urb->transfer_flags & URB_ZERO_PACKET &&
1362 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1363 size = 2;
1364 else
1365 size = 1;
1366
1367 urb_priv = kzalloc(sizeof(struct urb_priv) +
1368 size * sizeof(struct xhci_td *), mem_flags);
1369 if (!urb_priv)
1370 return -ENOMEM;
1371
1372 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1373 if (!buffer) {
1374 kfree(urb_priv);
1375 return -ENOMEM;
1376 }
1377
1378 for (i = 0; i < size; i++) {
1379 urb_priv->td[i] = buffer;
1380 buffer++;
1381 }
1382
1383 urb_priv->length = size;
1384 urb_priv->td_cnt = 0;
1385 urb->hcpriv = urb_priv;
1386
1387 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1388 /* Check to see if the max packet size for the default control
1389 * endpoint changed during FS device enumeration
1390 */
1391 if (urb->dev->speed == USB_SPEED_FULL) {
1392 ret = xhci_check_maxpacket(xhci, slot_id,
1393 ep_index, urb);
1394 if (ret < 0) {
1395 xhci_urb_free_priv(urb_priv);
1396 urb->hcpriv = NULL;
1397 return ret;
1398 }
1399 }
1400
1401 /* We have a spinlock and interrupts disabled, so we must pass
1402 * atomic context to this function, which may allocate memory.
1403 */
1404 spin_lock_irqsave(&xhci->lock, flags);
1405 if (xhci->xhc_state & XHCI_STATE_DYING)
1406 goto dying;
1407 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1408 slot_id, ep_index);
1409 if (ret)
1410 goto free_priv;
1411 spin_unlock_irqrestore(&xhci->lock, flags);
1412 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1413 spin_lock_irqsave(&xhci->lock, flags);
1414 if (xhci->xhc_state & XHCI_STATE_DYING)
1415 goto dying;
1416 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417 EP_GETTING_STREAMS) {
1418 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419 "is transitioning to using streams.\n");
1420 ret = -EINVAL;
1421 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1422 EP_GETTING_NO_STREAMS) {
1423 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1424 "is transitioning to "
1425 "not having streams.\n");
1426 ret = -EINVAL;
1427 } else {
1428 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1429 slot_id, ep_index);
1430 }
1431 if (ret)
1432 goto free_priv;
1433 spin_unlock_irqrestore(&xhci->lock, flags);
1434 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1435 spin_lock_irqsave(&xhci->lock, flags);
1436 if (xhci->xhc_state & XHCI_STATE_DYING)
1437 goto dying;
1438 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1439 slot_id, ep_index);
1440 if (ret)
1441 goto free_priv;
1442 spin_unlock_irqrestore(&xhci->lock, flags);
1443 } else {
1444 spin_lock_irqsave(&xhci->lock, flags);
1445 if (xhci->xhc_state & XHCI_STATE_DYING)
1446 goto dying;
1447 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1448 slot_id, ep_index);
1449 if (ret)
1450 goto free_priv;
1451 spin_unlock_irqrestore(&xhci->lock, flags);
1452 }
1453 exit:
1454 return ret;
1455 dying:
1456 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1457 "non-responsive xHCI host.\n",
1458 urb->ep->desc.bEndpointAddress, urb);
1459 ret = -ESHUTDOWN;
1460 free_priv:
1461 xhci_urb_free_priv(urb_priv);
1462 urb->hcpriv = NULL;
1463 spin_unlock_irqrestore(&xhci->lock, flags);
1464 return ret;
1465 }
1466
1467 /* Get the right ring for the given URB.
1468 * If the endpoint supports streams, boundary check the URB's stream ID.
1469 * If the endpoint doesn't support streams, return the singular endpoint ring.
1470 */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1471 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1472 struct urb *urb)
1473 {
1474 unsigned int slot_id;
1475 unsigned int ep_index;
1476 unsigned int stream_id;
1477 struct xhci_virt_ep *ep;
1478
1479 slot_id = urb->dev->slot_id;
1480 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1481 stream_id = urb->stream_id;
1482 ep = &xhci->devs[slot_id]->eps[ep_index];
1483 /* Common case: no streams */
1484 if (!(ep->ep_state & EP_HAS_STREAMS))
1485 return ep->ring;
1486
1487 if (stream_id == 0) {
1488 xhci_warn(xhci,
1489 "WARN: Slot ID %u, ep index %u has streams, "
1490 "but URB has no stream ID.\n",
1491 slot_id, ep_index);
1492 return NULL;
1493 }
1494
1495 if (stream_id < ep->stream_info->num_streams)
1496 return ep->stream_info->stream_rings[stream_id];
1497
1498 xhci_warn(xhci,
1499 "WARN: Slot ID %u, ep index %u has "
1500 "stream IDs 1 to %u allocated, "
1501 "but stream ID %u is requested.\n",
1502 slot_id, ep_index,
1503 ep->stream_info->num_streams - 1,
1504 stream_id);
1505 return NULL;
1506 }
1507
1508 /*
1509 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1510 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1511 * should pick up where it left off in the TD, unless a Set Transfer Ring
1512 * Dequeue Pointer is issued.
1513 *
1514 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1515 * the ring. Since the ring is a contiguous structure, they can't be physically
1516 * removed. Instead, there are two options:
1517 *
1518 * 1) If the HC is in the middle of processing the URB to be canceled, we
1519 * simply move the ring's dequeue pointer past those TRBs using the Set
1520 * Transfer Ring Dequeue Pointer command. This will be the common case,
1521 * when drivers timeout on the last submitted URB and attempt to cancel.
1522 *
1523 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1524 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1525 * HC will need to invalidate the any TRBs it has cached after the stop
1526 * endpoint command, as noted in the xHCI 0.95 errata.
1527 *
1528 * 3) The TD may have completed by the time the Stop Endpoint Command
1529 * completes, so software needs to handle that case too.
1530 *
1531 * This function should protect against the TD enqueueing code ringing the
1532 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1533 * It also needs to account for multiple cancellations on happening at the same
1534 * time for the same endpoint.
1535 *
1536 * Note that this function can be called in any context, or so says
1537 * usb_hcd_unlink_urb()
1538 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1539 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1540 {
1541 unsigned long flags;
1542 int ret, i;
1543 u32 temp;
1544 struct xhci_hcd *xhci;
1545 struct urb_priv *urb_priv;
1546 struct xhci_td *td;
1547 unsigned int ep_index;
1548 struct xhci_ring *ep_ring;
1549 struct xhci_virt_ep *ep;
1550 struct xhci_command *command;
1551
1552 xhci = hcd_to_xhci(hcd);
1553 spin_lock_irqsave(&xhci->lock, flags);
1554 /* Make sure the URB hasn't completed or been unlinked already */
1555 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1556 if (ret || !urb->hcpriv)
1557 goto done;
1558 temp = readl(&xhci->op_regs->status);
1559 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1560 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1561 "HW died, freeing TD.");
1562 urb_priv = urb->hcpriv;
1563 for (i = urb_priv->td_cnt;
1564 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1565 i++) {
1566 td = urb_priv->td[i];
1567 if (!list_empty(&td->td_list))
1568 list_del_init(&td->td_list);
1569 if (!list_empty(&td->cancelled_td_list))
1570 list_del_init(&td->cancelled_td_list);
1571 }
1572
1573 usb_hcd_unlink_urb_from_ep(hcd, urb);
1574 spin_unlock_irqrestore(&xhci->lock, flags);
1575 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1576 xhci_urb_free_priv(urb_priv);
1577 return ret;
1578 }
1579 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1580 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1581 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1582 "Ep 0x%x: URB %p to be canceled on "
1583 "non-responsive xHCI host.",
1584 urb->ep->desc.bEndpointAddress, urb);
1585 /* Let the stop endpoint command watchdog timer (which set this
1586 * state) finish cleaning up the endpoint TD lists. We must
1587 * have caught it in the middle of dropping a lock and giving
1588 * back an URB.
1589 */
1590 goto done;
1591 }
1592
1593 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1594 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1595 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1596 if (!ep_ring) {
1597 ret = -EINVAL;
1598 goto done;
1599 }
1600
1601 urb_priv = urb->hcpriv;
1602 i = urb_priv->td_cnt;
1603 if (i < urb_priv->length)
1604 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1605 "Cancel URB %p, dev %s, ep 0x%x, "
1606 "starting at offset 0x%llx",
1607 urb, urb->dev->devpath,
1608 urb->ep->desc.bEndpointAddress,
1609 (unsigned long long) xhci_trb_virt_to_dma(
1610 urb_priv->td[i]->start_seg,
1611 urb_priv->td[i]->first_trb));
1612
1613 for (; i < urb_priv->length; i++) {
1614 td = urb_priv->td[i];
1615 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1616 }
1617
1618 /* Queue a stop endpoint command, but only if this is
1619 * the first cancellation to be handled.
1620 */
1621 if (!(ep->ep_state & EP_HALT_PENDING)) {
1622 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1623 if (!command) {
1624 ret = -ENOMEM;
1625 goto done;
1626 }
1627 ep->ep_state |= EP_HALT_PENDING;
1628 ep->stop_cmds_pending++;
1629 ep->stop_cmd_timer.expires = jiffies +
1630 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1631 add_timer(&ep->stop_cmd_timer);
1632 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1633 ep_index, 0);
1634 xhci_ring_cmd_db(xhci);
1635 }
1636 done:
1637 spin_unlock_irqrestore(&xhci->lock, flags);
1638 return ret;
1639 }
1640
1641 /* Drop an endpoint from a new bandwidth configuration for this device.
1642 * Only one call to this function is allowed per endpoint before
1643 * check_bandwidth() or reset_bandwidth() must be called.
1644 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1645 * add the endpoint to the schedule with possibly new parameters denoted by a
1646 * different endpoint descriptor in usb_host_endpoint.
1647 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1648 * not allowed.
1649 *
1650 * The USB core will not allow URBs to be queued to an endpoint that is being
1651 * disabled, so there's no need for mutual exclusion to protect
1652 * the xhci->devs[slot_id] structure.
1653 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1654 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1655 struct usb_host_endpoint *ep)
1656 {
1657 struct xhci_hcd *xhci;
1658 struct xhci_container_ctx *in_ctx, *out_ctx;
1659 struct xhci_input_control_ctx *ctrl_ctx;
1660 unsigned int ep_index;
1661 struct xhci_ep_ctx *ep_ctx;
1662 u32 drop_flag;
1663 u32 new_add_flags, new_drop_flags;
1664 int ret;
1665
1666 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1667 if (ret <= 0)
1668 return ret;
1669 xhci = hcd_to_xhci(hcd);
1670 if (xhci->xhc_state & XHCI_STATE_DYING)
1671 return -ENODEV;
1672
1673 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1674 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1675 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1676 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1677 __func__, drop_flag);
1678 return 0;
1679 }
1680
1681 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1682 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1683 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1684 if (!ctrl_ctx) {
1685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1686 __func__);
1687 return 0;
1688 }
1689
1690 ep_index = xhci_get_endpoint_index(&ep->desc);
1691 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1692 /* If the HC already knows the endpoint is disabled,
1693 * or the HCD has noted it is disabled, ignore this request
1694 */
1695 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1696 cpu_to_le32(EP_STATE_DISABLED)) ||
1697 le32_to_cpu(ctrl_ctx->drop_flags) &
1698 xhci_get_endpoint_flag(&ep->desc)) {
1699 /* Do not warn when called after a usb_device_reset */
1700 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1701 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1702 __func__, ep);
1703 return 0;
1704 }
1705
1706 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1707 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1708
1709 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1710 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1711
1712 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1713
1714 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1715 (unsigned int) ep->desc.bEndpointAddress,
1716 udev->slot_id,
1717 (unsigned int) new_drop_flags,
1718 (unsigned int) new_add_flags);
1719 return 0;
1720 }
1721
1722 /* Add an endpoint to a new possible bandwidth configuration for this device.
1723 * Only one call to this function is allowed per endpoint before
1724 * check_bandwidth() or reset_bandwidth() must be called.
1725 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1726 * add the endpoint to the schedule with possibly new parameters denoted by a
1727 * different endpoint descriptor in usb_host_endpoint.
1728 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729 * not allowed.
1730 *
1731 * The USB core will not allow URBs to be queued to an endpoint until the
1732 * configuration or alt setting is installed in the device, so there's no need
1733 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1734 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1735 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1736 struct usb_host_endpoint *ep)
1737 {
1738 struct xhci_hcd *xhci;
1739 struct xhci_container_ctx *in_ctx;
1740 unsigned int ep_index;
1741 struct xhci_input_control_ctx *ctrl_ctx;
1742 u32 added_ctxs;
1743 u32 new_add_flags, new_drop_flags;
1744 struct xhci_virt_device *virt_dev;
1745 int ret = 0;
1746
1747 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1748 if (ret <= 0) {
1749 /* So we won't queue a reset ep command for a root hub */
1750 ep->hcpriv = NULL;
1751 return ret;
1752 }
1753 xhci = hcd_to_xhci(hcd);
1754 if (xhci->xhc_state & XHCI_STATE_DYING)
1755 return -ENODEV;
1756
1757 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1758 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1759 /* FIXME when we have to issue an evaluate endpoint command to
1760 * deal with ep0 max packet size changing once we get the
1761 * descriptors
1762 */
1763 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1764 __func__, added_ctxs);
1765 return 0;
1766 }
1767
1768 virt_dev = xhci->devs[udev->slot_id];
1769 in_ctx = virt_dev->in_ctx;
1770 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1771 if (!ctrl_ctx) {
1772 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1773 __func__);
1774 return 0;
1775 }
1776
1777 ep_index = xhci_get_endpoint_index(&ep->desc);
1778 /* If this endpoint is already in use, and the upper layers are trying
1779 * to add it again without dropping it, reject the addition.
1780 */
1781 if (virt_dev->eps[ep_index].ring &&
1782 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1783 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1784 "without dropping it.\n",
1785 (unsigned int) ep->desc.bEndpointAddress);
1786 return -EINVAL;
1787 }
1788
1789 /* If the HCD has already noted the endpoint is enabled,
1790 * ignore this request.
1791 */
1792 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1793 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1794 __func__, ep);
1795 return 0;
1796 }
1797
1798 /*
1799 * Configuration and alternate setting changes must be done in
1800 * process context, not interrupt context (or so documenation
1801 * for usb_set_interface() and usb_set_configuration() claim).
1802 */
1803 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1804 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1805 __func__, ep->desc.bEndpointAddress);
1806 return -ENOMEM;
1807 }
1808
1809 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1810 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1811
1812 /* If xhci_endpoint_disable() was called for this endpoint, but the
1813 * xHC hasn't been notified yet through the check_bandwidth() call,
1814 * this re-adds a new state for the endpoint from the new endpoint
1815 * descriptors. We must drop and re-add this endpoint, so we leave the
1816 * drop flags alone.
1817 */
1818 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1819
1820 /* Store the usb_device pointer for later use */
1821 ep->hcpriv = udev;
1822
1823 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1824 (unsigned int) ep->desc.bEndpointAddress,
1825 udev->slot_id,
1826 (unsigned int) new_drop_flags,
1827 (unsigned int) new_add_flags);
1828 return 0;
1829 }
1830
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1831 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1832 {
1833 struct xhci_input_control_ctx *ctrl_ctx;
1834 struct xhci_ep_ctx *ep_ctx;
1835 struct xhci_slot_ctx *slot_ctx;
1836 int i;
1837
1838 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1839 if (!ctrl_ctx) {
1840 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1841 __func__);
1842 return;
1843 }
1844
1845 /* When a device's add flag and drop flag are zero, any subsequent
1846 * configure endpoint command will leave that endpoint's state
1847 * untouched. Make sure we don't leave any old state in the input
1848 * endpoint contexts.
1849 */
1850 ctrl_ctx->drop_flags = 0;
1851 ctrl_ctx->add_flags = 0;
1852 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1853 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1854 /* Endpoint 0 is always valid */
1855 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1856 for (i = 1; i < 31; ++i) {
1857 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1858 ep_ctx->ep_info = 0;
1859 ep_ctx->ep_info2 = 0;
1860 ep_ctx->deq = 0;
1861 ep_ctx->tx_info = 0;
1862 }
1863 }
1864
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1865 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1866 struct usb_device *udev, u32 *cmd_status)
1867 {
1868 int ret;
1869
1870 switch (*cmd_status) {
1871 case COMP_CMD_ABORT:
1872 case COMP_CMD_STOP:
1873 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1874 ret = -ETIME;
1875 break;
1876 case COMP_ENOMEM:
1877 dev_warn(&udev->dev,
1878 "Not enough host controller resources for new device state.\n");
1879 ret = -ENOMEM;
1880 /* FIXME: can we allocate more resources for the HC? */
1881 break;
1882 case COMP_BW_ERR:
1883 case COMP_2ND_BW_ERR:
1884 dev_warn(&udev->dev,
1885 "Not enough bandwidth for new device state.\n");
1886 ret = -ENOSPC;
1887 /* FIXME: can we go back to the old state? */
1888 break;
1889 case COMP_TRB_ERR:
1890 /* the HCD set up something wrong */
1891 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1892 "add flag = 1, "
1893 "and endpoint is not disabled.\n");
1894 ret = -EINVAL;
1895 break;
1896 case COMP_DEV_ERR:
1897 dev_warn(&udev->dev,
1898 "ERROR: Incompatible device for endpoint configure command.\n");
1899 ret = -ENODEV;
1900 break;
1901 case COMP_SUCCESS:
1902 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1903 "Successful Endpoint Configure command");
1904 ret = 0;
1905 break;
1906 default:
1907 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1908 *cmd_status);
1909 ret = -EINVAL;
1910 break;
1911 }
1912 return ret;
1913 }
1914
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1915 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1916 struct usb_device *udev, u32 *cmd_status)
1917 {
1918 int ret;
1919 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1920
1921 switch (*cmd_status) {
1922 case COMP_CMD_ABORT:
1923 case COMP_CMD_STOP:
1924 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1925 ret = -ETIME;
1926 break;
1927 case COMP_EINVAL:
1928 dev_warn(&udev->dev,
1929 "WARN: xHCI driver setup invalid evaluate context command.\n");
1930 ret = -EINVAL;
1931 break;
1932 case COMP_EBADSLT:
1933 dev_warn(&udev->dev,
1934 "WARN: slot not enabled for evaluate context command.\n");
1935 ret = -EINVAL;
1936 break;
1937 case COMP_CTX_STATE:
1938 dev_warn(&udev->dev,
1939 "WARN: invalid context state for evaluate context command.\n");
1940 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1941 ret = -EINVAL;
1942 break;
1943 case COMP_DEV_ERR:
1944 dev_warn(&udev->dev,
1945 "ERROR: Incompatible device for evaluate context command.\n");
1946 ret = -ENODEV;
1947 break;
1948 case COMP_MEL_ERR:
1949 /* Max Exit Latency too large error */
1950 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1951 ret = -EINVAL;
1952 break;
1953 case COMP_SUCCESS:
1954 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1955 "Successful evaluate context command");
1956 ret = 0;
1957 break;
1958 default:
1959 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1960 *cmd_status);
1961 ret = -EINVAL;
1962 break;
1963 }
1964 return ret;
1965 }
1966
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)1967 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1968 struct xhci_input_control_ctx *ctrl_ctx)
1969 {
1970 u32 valid_add_flags;
1971 u32 valid_drop_flags;
1972
1973 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1974 * (bit 1). The default control endpoint is added during the Address
1975 * Device command and is never removed until the slot is disabled.
1976 */
1977 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1978 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1979
1980 /* Use hweight32 to count the number of ones in the add flags, or
1981 * number of endpoints added. Don't count endpoints that are changed
1982 * (both added and dropped).
1983 */
1984 return hweight32(valid_add_flags) -
1985 hweight32(valid_add_flags & valid_drop_flags);
1986 }
1987
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)1988 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1989 struct xhci_input_control_ctx *ctrl_ctx)
1990 {
1991 u32 valid_add_flags;
1992 u32 valid_drop_flags;
1993
1994 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1995 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1996
1997 return hweight32(valid_drop_flags) -
1998 hweight32(valid_add_flags & valid_drop_flags);
1999 }
2000
2001 /*
2002 * We need to reserve the new number of endpoints before the configure endpoint
2003 * command completes. We can't subtract the dropped endpoints from the number
2004 * of active endpoints until the command completes because we can oversubscribe
2005 * the host in this case:
2006 *
2007 * - the first configure endpoint command drops more endpoints than it adds
2008 * - a second configure endpoint command that adds more endpoints is queued
2009 * - the first configure endpoint command fails, so the config is unchanged
2010 * - the second command may succeed, even though there isn't enough resources
2011 *
2012 * Must be called with xhci->lock held.
2013 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2014 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2015 struct xhci_input_control_ctx *ctrl_ctx)
2016 {
2017 u32 added_eps;
2018
2019 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2020 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2021 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2022 "Not enough ep ctxs: "
2023 "%u active, need to add %u, limit is %u.",
2024 xhci->num_active_eps, added_eps,
2025 xhci->limit_active_eps);
2026 return -ENOMEM;
2027 }
2028 xhci->num_active_eps += added_eps;
2029 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2030 "Adding %u ep ctxs, %u now active.", added_eps,
2031 xhci->num_active_eps);
2032 return 0;
2033 }
2034
2035 /*
2036 * The configure endpoint was failed by the xHC for some other reason, so we
2037 * need to revert the resources that failed configuration would have used.
2038 *
2039 * Must be called with xhci->lock held.
2040 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2041 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2042 struct xhci_input_control_ctx *ctrl_ctx)
2043 {
2044 u32 num_failed_eps;
2045
2046 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2047 xhci->num_active_eps -= num_failed_eps;
2048 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2049 "Removing %u failed ep ctxs, %u now active.",
2050 num_failed_eps,
2051 xhci->num_active_eps);
2052 }
2053
2054 /*
2055 * Now that the command has completed, clean up the active endpoint count by
2056 * subtracting out the endpoints that were dropped (but not changed).
2057 *
2058 * Must be called with xhci->lock held.
2059 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2060 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2061 struct xhci_input_control_ctx *ctrl_ctx)
2062 {
2063 u32 num_dropped_eps;
2064
2065 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2066 xhci->num_active_eps -= num_dropped_eps;
2067 if (num_dropped_eps)
2068 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2069 "Removing %u dropped ep ctxs, %u now active.",
2070 num_dropped_eps,
2071 xhci->num_active_eps);
2072 }
2073
xhci_get_block_size(struct usb_device * udev)2074 static unsigned int xhci_get_block_size(struct usb_device *udev)
2075 {
2076 switch (udev->speed) {
2077 case USB_SPEED_LOW:
2078 case USB_SPEED_FULL:
2079 return FS_BLOCK;
2080 case USB_SPEED_HIGH:
2081 return HS_BLOCK;
2082 case USB_SPEED_SUPER:
2083 return SS_BLOCK;
2084 case USB_SPEED_UNKNOWN:
2085 case USB_SPEED_WIRELESS:
2086 default:
2087 /* Should never happen */
2088 return 1;
2089 }
2090 }
2091
2092 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2093 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2094 {
2095 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2096 return LS_OVERHEAD;
2097 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2098 return FS_OVERHEAD;
2099 return HS_OVERHEAD;
2100 }
2101
2102 /* If we are changing a LS/FS device under a HS hub,
2103 * make sure (if we are activating a new TT) that the HS bus has enough
2104 * bandwidth for this new TT.
2105 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2106 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2107 struct xhci_virt_device *virt_dev,
2108 int old_active_eps)
2109 {
2110 struct xhci_interval_bw_table *bw_table;
2111 struct xhci_tt_bw_info *tt_info;
2112
2113 /* Find the bandwidth table for the root port this TT is attached to. */
2114 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2115 tt_info = virt_dev->tt_info;
2116 /* If this TT already had active endpoints, the bandwidth for this TT
2117 * has already been added. Removing all periodic endpoints (and thus
2118 * making the TT enactive) will only decrease the bandwidth used.
2119 */
2120 if (old_active_eps)
2121 return 0;
2122 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2123 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2124 return -ENOMEM;
2125 return 0;
2126 }
2127 /* Not sure why we would have no new active endpoints...
2128 *
2129 * Maybe because of an Evaluate Context change for a hub update or a
2130 * control endpoint 0 max packet size change?
2131 * FIXME: skip the bandwidth calculation in that case.
2132 */
2133 return 0;
2134 }
2135
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2136 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2137 struct xhci_virt_device *virt_dev)
2138 {
2139 unsigned int bw_reserved;
2140
2141 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2142 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2143 return -ENOMEM;
2144
2145 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2146 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2147 return -ENOMEM;
2148
2149 return 0;
2150 }
2151
2152 /*
2153 * This algorithm is a very conservative estimate of the worst-case scheduling
2154 * scenario for any one interval. The hardware dynamically schedules the
2155 * packets, so we can't tell which microframe could be the limiting factor in
2156 * the bandwidth scheduling. This only takes into account periodic endpoints.
2157 *
2158 * Obviously, we can't solve an NP complete problem to find the minimum worst
2159 * case scenario. Instead, we come up with an estimate that is no less than
2160 * the worst case bandwidth used for any one microframe, but may be an
2161 * over-estimate.
2162 *
2163 * We walk the requirements for each endpoint by interval, starting with the
2164 * smallest interval, and place packets in the schedule where there is only one
2165 * possible way to schedule packets for that interval. In order to simplify
2166 * this algorithm, we record the largest max packet size for each interval, and
2167 * assume all packets will be that size.
2168 *
2169 * For interval 0, we obviously must schedule all packets for each interval.
2170 * The bandwidth for interval 0 is just the amount of data to be transmitted
2171 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2172 * the number of packets).
2173 *
2174 * For interval 1, we have two possible microframes to schedule those packets
2175 * in. For this algorithm, if we can schedule the same number of packets for
2176 * each possible scheduling opportunity (each microframe), we will do so. The
2177 * remaining number of packets will be saved to be transmitted in the gaps in
2178 * the next interval's scheduling sequence.
2179 *
2180 * As we move those remaining packets to be scheduled with interval 2 packets,
2181 * we have to double the number of remaining packets to transmit. This is
2182 * because the intervals are actually powers of 2, and we would be transmitting
2183 * the previous interval's packets twice in this interval. We also have to be
2184 * sure that when we look at the largest max packet size for this interval, we
2185 * also look at the largest max packet size for the remaining packets and take
2186 * the greater of the two.
2187 *
2188 * The algorithm continues to evenly distribute packets in each scheduling
2189 * opportunity, and push the remaining packets out, until we get to the last
2190 * interval. Then those packets and their associated overhead are just added
2191 * to the bandwidth used.
2192 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2193 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2194 struct xhci_virt_device *virt_dev,
2195 int old_active_eps)
2196 {
2197 unsigned int bw_reserved;
2198 unsigned int max_bandwidth;
2199 unsigned int bw_used;
2200 unsigned int block_size;
2201 struct xhci_interval_bw_table *bw_table;
2202 unsigned int packet_size = 0;
2203 unsigned int overhead = 0;
2204 unsigned int packets_transmitted = 0;
2205 unsigned int packets_remaining = 0;
2206 unsigned int i;
2207
2208 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2209 return xhci_check_ss_bw(xhci, virt_dev);
2210
2211 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2212 max_bandwidth = HS_BW_LIMIT;
2213 /* Convert percent of bus BW reserved to blocks reserved */
2214 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2215 } else {
2216 max_bandwidth = FS_BW_LIMIT;
2217 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2218 }
2219
2220 bw_table = virt_dev->bw_table;
2221 /* We need to translate the max packet size and max ESIT payloads into
2222 * the units the hardware uses.
2223 */
2224 block_size = xhci_get_block_size(virt_dev->udev);
2225
2226 /* If we are manipulating a LS/FS device under a HS hub, double check
2227 * that the HS bus has enough bandwidth if we are activing a new TT.
2228 */
2229 if (virt_dev->tt_info) {
2230 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 "Recalculating BW for rootport %u",
2232 virt_dev->real_port);
2233 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2234 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2235 "newly activated TT.\n");
2236 return -ENOMEM;
2237 }
2238 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239 "Recalculating BW for TT slot %u port %u",
2240 virt_dev->tt_info->slot_id,
2241 virt_dev->tt_info->ttport);
2242 } else {
2243 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2244 "Recalculating BW for rootport %u",
2245 virt_dev->real_port);
2246 }
2247
2248 /* Add in how much bandwidth will be used for interval zero, or the
2249 * rounded max ESIT payload + number of packets * largest overhead.
2250 */
2251 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2252 bw_table->interval_bw[0].num_packets *
2253 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2254
2255 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2256 unsigned int bw_added;
2257 unsigned int largest_mps;
2258 unsigned int interval_overhead;
2259
2260 /*
2261 * How many packets could we transmit in this interval?
2262 * If packets didn't fit in the previous interval, we will need
2263 * to transmit that many packets twice within this interval.
2264 */
2265 packets_remaining = 2 * packets_remaining +
2266 bw_table->interval_bw[i].num_packets;
2267
2268 /* Find the largest max packet size of this or the previous
2269 * interval.
2270 */
2271 if (list_empty(&bw_table->interval_bw[i].endpoints))
2272 largest_mps = 0;
2273 else {
2274 struct xhci_virt_ep *virt_ep;
2275 struct list_head *ep_entry;
2276
2277 ep_entry = bw_table->interval_bw[i].endpoints.next;
2278 virt_ep = list_entry(ep_entry,
2279 struct xhci_virt_ep, bw_endpoint_list);
2280 /* Convert to blocks, rounding up */
2281 largest_mps = DIV_ROUND_UP(
2282 virt_ep->bw_info.max_packet_size,
2283 block_size);
2284 }
2285 if (largest_mps > packet_size)
2286 packet_size = largest_mps;
2287
2288 /* Use the larger overhead of this or the previous interval. */
2289 interval_overhead = xhci_get_largest_overhead(
2290 &bw_table->interval_bw[i]);
2291 if (interval_overhead > overhead)
2292 overhead = interval_overhead;
2293
2294 /* How many packets can we evenly distribute across
2295 * (1 << (i + 1)) possible scheduling opportunities?
2296 */
2297 packets_transmitted = packets_remaining >> (i + 1);
2298
2299 /* Add in the bandwidth used for those scheduled packets */
2300 bw_added = packets_transmitted * (overhead + packet_size);
2301
2302 /* How many packets do we have remaining to transmit? */
2303 packets_remaining = packets_remaining % (1 << (i + 1));
2304
2305 /* What largest max packet size should those packets have? */
2306 /* If we've transmitted all packets, don't carry over the
2307 * largest packet size.
2308 */
2309 if (packets_remaining == 0) {
2310 packet_size = 0;
2311 overhead = 0;
2312 } else if (packets_transmitted > 0) {
2313 /* Otherwise if we do have remaining packets, and we've
2314 * scheduled some packets in this interval, take the
2315 * largest max packet size from endpoints with this
2316 * interval.
2317 */
2318 packet_size = largest_mps;
2319 overhead = interval_overhead;
2320 }
2321 /* Otherwise carry over packet_size and overhead from the last
2322 * time we had a remainder.
2323 */
2324 bw_used += bw_added;
2325 if (bw_used > max_bandwidth) {
2326 xhci_warn(xhci, "Not enough bandwidth. "
2327 "Proposed: %u, Max: %u\n",
2328 bw_used, max_bandwidth);
2329 return -ENOMEM;
2330 }
2331 }
2332 /*
2333 * Ok, we know we have some packets left over after even-handedly
2334 * scheduling interval 15. We don't know which microframes they will
2335 * fit into, so we over-schedule and say they will be scheduled every
2336 * microframe.
2337 */
2338 if (packets_remaining > 0)
2339 bw_used += overhead + packet_size;
2340
2341 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2342 unsigned int port_index = virt_dev->real_port - 1;
2343
2344 /* OK, we're manipulating a HS device attached to a
2345 * root port bandwidth domain. Include the number of active TTs
2346 * in the bandwidth used.
2347 */
2348 bw_used += TT_HS_OVERHEAD *
2349 xhci->rh_bw[port_index].num_active_tts;
2350 }
2351
2352 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2353 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2354 "Available: %u " "percent",
2355 bw_used, max_bandwidth, bw_reserved,
2356 (max_bandwidth - bw_used - bw_reserved) * 100 /
2357 max_bandwidth);
2358
2359 bw_used += bw_reserved;
2360 if (bw_used > max_bandwidth) {
2361 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2362 bw_used, max_bandwidth);
2363 return -ENOMEM;
2364 }
2365
2366 bw_table->bw_used = bw_used;
2367 return 0;
2368 }
2369
xhci_is_async_ep(unsigned int ep_type)2370 static bool xhci_is_async_ep(unsigned int ep_type)
2371 {
2372 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2373 ep_type != ISOC_IN_EP &&
2374 ep_type != INT_IN_EP);
2375 }
2376
xhci_is_sync_in_ep(unsigned int ep_type)2377 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2378 {
2379 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2380 }
2381
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2382 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2383 {
2384 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2385
2386 if (ep_bw->ep_interval == 0)
2387 return SS_OVERHEAD_BURST +
2388 (ep_bw->mult * ep_bw->num_packets *
2389 (SS_OVERHEAD + mps));
2390 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2391 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2392 1 << ep_bw->ep_interval);
2393
2394 }
2395
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2396 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2397 struct xhci_bw_info *ep_bw,
2398 struct xhci_interval_bw_table *bw_table,
2399 struct usb_device *udev,
2400 struct xhci_virt_ep *virt_ep,
2401 struct xhci_tt_bw_info *tt_info)
2402 {
2403 struct xhci_interval_bw *interval_bw;
2404 int normalized_interval;
2405
2406 if (xhci_is_async_ep(ep_bw->type))
2407 return;
2408
2409 if (udev->speed == USB_SPEED_SUPER) {
2410 if (xhci_is_sync_in_ep(ep_bw->type))
2411 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2412 xhci_get_ss_bw_consumed(ep_bw);
2413 else
2414 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2415 xhci_get_ss_bw_consumed(ep_bw);
2416 return;
2417 }
2418
2419 /* SuperSpeed endpoints never get added to intervals in the table, so
2420 * this check is only valid for HS/FS/LS devices.
2421 */
2422 if (list_empty(&virt_ep->bw_endpoint_list))
2423 return;
2424 /* For LS/FS devices, we need to translate the interval expressed in
2425 * microframes to frames.
2426 */
2427 if (udev->speed == USB_SPEED_HIGH)
2428 normalized_interval = ep_bw->ep_interval;
2429 else
2430 normalized_interval = ep_bw->ep_interval - 3;
2431
2432 if (normalized_interval == 0)
2433 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2434 interval_bw = &bw_table->interval_bw[normalized_interval];
2435 interval_bw->num_packets -= ep_bw->num_packets;
2436 switch (udev->speed) {
2437 case USB_SPEED_LOW:
2438 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2439 break;
2440 case USB_SPEED_FULL:
2441 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2442 break;
2443 case USB_SPEED_HIGH:
2444 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2445 break;
2446 case USB_SPEED_SUPER:
2447 case USB_SPEED_UNKNOWN:
2448 case USB_SPEED_WIRELESS:
2449 /* Should never happen because only LS/FS/HS endpoints will get
2450 * added to the endpoint list.
2451 */
2452 return;
2453 }
2454 if (tt_info)
2455 tt_info->active_eps -= 1;
2456 list_del_init(&virt_ep->bw_endpoint_list);
2457 }
2458
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2459 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2460 struct xhci_bw_info *ep_bw,
2461 struct xhci_interval_bw_table *bw_table,
2462 struct usb_device *udev,
2463 struct xhci_virt_ep *virt_ep,
2464 struct xhci_tt_bw_info *tt_info)
2465 {
2466 struct xhci_interval_bw *interval_bw;
2467 struct xhci_virt_ep *smaller_ep;
2468 int normalized_interval;
2469
2470 if (xhci_is_async_ep(ep_bw->type))
2471 return;
2472
2473 if (udev->speed == USB_SPEED_SUPER) {
2474 if (xhci_is_sync_in_ep(ep_bw->type))
2475 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2476 xhci_get_ss_bw_consumed(ep_bw);
2477 else
2478 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2479 xhci_get_ss_bw_consumed(ep_bw);
2480 return;
2481 }
2482
2483 /* For LS/FS devices, we need to translate the interval expressed in
2484 * microframes to frames.
2485 */
2486 if (udev->speed == USB_SPEED_HIGH)
2487 normalized_interval = ep_bw->ep_interval;
2488 else
2489 normalized_interval = ep_bw->ep_interval - 3;
2490
2491 if (normalized_interval == 0)
2492 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2493 interval_bw = &bw_table->interval_bw[normalized_interval];
2494 interval_bw->num_packets += ep_bw->num_packets;
2495 switch (udev->speed) {
2496 case USB_SPEED_LOW:
2497 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2498 break;
2499 case USB_SPEED_FULL:
2500 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2501 break;
2502 case USB_SPEED_HIGH:
2503 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2504 break;
2505 case USB_SPEED_SUPER:
2506 case USB_SPEED_UNKNOWN:
2507 case USB_SPEED_WIRELESS:
2508 /* Should never happen because only LS/FS/HS endpoints will get
2509 * added to the endpoint list.
2510 */
2511 return;
2512 }
2513
2514 if (tt_info)
2515 tt_info->active_eps += 1;
2516 /* Insert the endpoint into the list, largest max packet size first. */
2517 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2518 bw_endpoint_list) {
2519 if (ep_bw->max_packet_size >=
2520 smaller_ep->bw_info.max_packet_size) {
2521 /* Add the new ep before the smaller endpoint */
2522 list_add_tail(&virt_ep->bw_endpoint_list,
2523 &smaller_ep->bw_endpoint_list);
2524 return;
2525 }
2526 }
2527 /* Add the new endpoint at the end of the list. */
2528 list_add_tail(&virt_ep->bw_endpoint_list,
2529 &interval_bw->endpoints);
2530 }
2531
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2532 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2533 struct xhci_virt_device *virt_dev,
2534 int old_active_eps)
2535 {
2536 struct xhci_root_port_bw_info *rh_bw_info;
2537 if (!virt_dev->tt_info)
2538 return;
2539
2540 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2541 if (old_active_eps == 0 &&
2542 virt_dev->tt_info->active_eps != 0) {
2543 rh_bw_info->num_active_tts += 1;
2544 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2545 } else if (old_active_eps != 0 &&
2546 virt_dev->tt_info->active_eps == 0) {
2547 rh_bw_info->num_active_tts -= 1;
2548 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2549 }
2550 }
2551
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2552 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2553 struct xhci_virt_device *virt_dev,
2554 struct xhci_container_ctx *in_ctx)
2555 {
2556 struct xhci_bw_info ep_bw_info[31];
2557 int i;
2558 struct xhci_input_control_ctx *ctrl_ctx;
2559 int old_active_eps = 0;
2560
2561 if (virt_dev->tt_info)
2562 old_active_eps = virt_dev->tt_info->active_eps;
2563
2564 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2565 if (!ctrl_ctx) {
2566 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2567 __func__);
2568 return -ENOMEM;
2569 }
2570
2571 for (i = 0; i < 31; i++) {
2572 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2573 continue;
2574
2575 /* Make a copy of the BW info in case we need to revert this */
2576 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2577 sizeof(ep_bw_info[i]));
2578 /* Drop the endpoint from the interval table if the endpoint is
2579 * being dropped or changed.
2580 */
2581 if (EP_IS_DROPPED(ctrl_ctx, i))
2582 xhci_drop_ep_from_interval_table(xhci,
2583 &virt_dev->eps[i].bw_info,
2584 virt_dev->bw_table,
2585 virt_dev->udev,
2586 &virt_dev->eps[i],
2587 virt_dev->tt_info);
2588 }
2589 /* Overwrite the information stored in the endpoints' bw_info */
2590 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2591 for (i = 0; i < 31; i++) {
2592 /* Add any changed or added endpoints to the interval table */
2593 if (EP_IS_ADDED(ctrl_ctx, i))
2594 xhci_add_ep_to_interval_table(xhci,
2595 &virt_dev->eps[i].bw_info,
2596 virt_dev->bw_table,
2597 virt_dev->udev,
2598 &virt_dev->eps[i],
2599 virt_dev->tt_info);
2600 }
2601
2602 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2603 /* Ok, this fits in the bandwidth we have.
2604 * Update the number of active TTs.
2605 */
2606 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2607 return 0;
2608 }
2609
2610 /* We don't have enough bandwidth for this, revert the stored info. */
2611 for (i = 0; i < 31; i++) {
2612 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2613 continue;
2614
2615 /* Drop the new copies of any added or changed endpoints from
2616 * the interval table.
2617 */
2618 if (EP_IS_ADDED(ctrl_ctx, i)) {
2619 xhci_drop_ep_from_interval_table(xhci,
2620 &virt_dev->eps[i].bw_info,
2621 virt_dev->bw_table,
2622 virt_dev->udev,
2623 &virt_dev->eps[i],
2624 virt_dev->tt_info);
2625 }
2626 /* Revert the endpoint back to its old information */
2627 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2628 sizeof(ep_bw_info[i]));
2629 /* Add any changed or dropped endpoints back into the table */
2630 if (EP_IS_DROPPED(ctrl_ctx, i))
2631 xhci_add_ep_to_interval_table(xhci,
2632 &virt_dev->eps[i].bw_info,
2633 virt_dev->bw_table,
2634 virt_dev->udev,
2635 &virt_dev->eps[i],
2636 virt_dev->tt_info);
2637 }
2638 return -ENOMEM;
2639 }
2640
2641
2642 /* Issue a configure endpoint command or evaluate context command
2643 * and wait for it to finish.
2644 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2645 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2646 struct usb_device *udev,
2647 struct xhci_command *command,
2648 bool ctx_change, bool must_succeed)
2649 {
2650 int ret;
2651 unsigned long flags;
2652 struct xhci_input_control_ctx *ctrl_ctx;
2653 struct xhci_virt_device *virt_dev;
2654
2655 if (!command)
2656 return -EINVAL;
2657
2658 spin_lock_irqsave(&xhci->lock, flags);
2659 virt_dev = xhci->devs[udev->slot_id];
2660
2661 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2662 if (!ctrl_ctx) {
2663 spin_unlock_irqrestore(&xhci->lock, flags);
2664 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665 __func__);
2666 return -ENOMEM;
2667 }
2668
2669 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2670 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2671 spin_unlock_irqrestore(&xhci->lock, flags);
2672 xhci_warn(xhci, "Not enough host resources, "
2673 "active endpoint contexts = %u\n",
2674 xhci->num_active_eps);
2675 return -ENOMEM;
2676 }
2677 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2678 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2679 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2680 xhci_free_host_resources(xhci, ctrl_ctx);
2681 spin_unlock_irqrestore(&xhci->lock, flags);
2682 xhci_warn(xhci, "Not enough bandwidth\n");
2683 return -ENOMEM;
2684 }
2685
2686 if (!ctx_change)
2687 ret = xhci_queue_configure_endpoint(xhci, command,
2688 command->in_ctx->dma,
2689 udev->slot_id, must_succeed);
2690 else
2691 ret = xhci_queue_evaluate_context(xhci, command,
2692 command->in_ctx->dma,
2693 udev->slot_id, must_succeed);
2694 if (ret < 0) {
2695 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2696 xhci_free_host_resources(xhci, ctrl_ctx);
2697 spin_unlock_irqrestore(&xhci->lock, flags);
2698 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2699 "FIXME allocate a new ring segment");
2700 return -ENOMEM;
2701 }
2702 xhci_ring_cmd_db(xhci);
2703 spin_unlock_irqrestore(&xhci->lock, flags);
2704
2705 /* Wait for the configure endpoint command to complete */
2706 wait_for_completion(command->completion);
2707
2708 if (!ctx_change)
2709 ret = xhci_configure_endpoint_result(xhci, udev,
2710 &command->status);
2711 else
2712 ret = xhci_evaluate_context_result(xhci, udev,
2713 &command->status);
2714
2715 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2716 spin_lock_irqsave(&xhci->lock, flags);
2717 /* If the command failed, remove the reserved resources.
2718 * Otherwise, clean up the estimate to include dropped eps.
2719 */
2720 if (ret)
2721 xhci_free_host_resources(xhci, ctrl_ctx);
2722 else
2723 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2724 spin_unlock_irqrestore(&xhci->lock, flags);
2725 }
2726 return ret;
2727 }
2728
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2729 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2730 struct xhci_virt_device *vdev, int i)
2731 {
2732 struct xhci_virt_ep *ep = &vdev->eps[i];
2733
2734 if (ep->ep_state & EP_HAS_STREAMS) {
2735 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2736 xhci_get_endpoint_address(i));
2737 xhci_free_stream_info(xhci, ep->stream_info);
2738 ep->stream_info = NULL;
2739 ep->ep_state &= ~EP_HAS_STREAMS;
2740 }
2741 }
2742
2743 /* Called after one or more calls to xhci_add_endpoint() or
2744 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2745 * to call xhci_reset_bandwidth().
2746 *
2747 * Since we are in the middle of changing either configuration or
2748 * installing a new alt setting, the USB core won't allow URBs to be
2749 * enqueued for any endpoint on the old config or interface. Nothing
2750 * else should be touching the xhci->devs[slot_id] structure, so we
2751 * don't need to take the xhci->lock for manipulating that.
2752 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2753 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2754 {
2755 int i;
2756 int ret = 0;
2757 struct xhci_hcd *xhci;
2758 struct xhci_virt_device *virt_dev;
2759 struct xhci_input_control_ctx *ctrl_ctx;
2760 struct xhci_slot_ctx *slot_ctx;
2761 struct xhci_command *command;
2762
2763 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2764 if (ret <= 0)
2765 return ret;
2766 xhci = hcd_to_xhci(hcd);
2767 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2768 (xhci->xhc_state & XHCI_STATE_REMOVING))
2769 return -ENODEV;
2770
2771 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2772 virt_dev = xhci->devs[udev->slot_id];
2773
2774 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2775 if (!command)
2776 return -ENOMEM;
2777
2778 command->in_ctx = virt_dev->in_ctx;
2779
2780 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2781 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2782 if (!ctrl_ctx) {
2783 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2784 __func__);
2785 ret = -ENOMEM;
2786 goto command_cleanup;
2787 }
2788 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2789 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2790 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2791
2792 /* Don't issue the command if there's no endpoints to update. */
2793 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2794 ctrl_ctx->drop_flags == 0) {
2795 ret = 0;
2796 goto command_cleanup;
2797 }
2798 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2799 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2800 for (i = 31; i >= 1; i--) {
2801 __le32 le32 = cpu_to_le32(BIT(i));
2802
2803 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2804 || (ctrl_ctx->add_flags & le32) || i == 1) {
2805 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2806 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2807 break;
2808 }
2809 }
2810 xhci_dbg(xhci, "New Input Control Context:\n");
2811 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2812 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2813
2814 ret = xhci_configure_endpoint(xhci, udev, command,
2815 false, false);
2816 if (ret)
2817 /* Callee should call reset_bandwidth() */
2818 goto command_cleanup;
2819
2820 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2821 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2822 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823
2824 /* Free any rings that were dropped, but not changed. */
2825 for (i = 1; i < 31; ++i) {
2826 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2827 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2828 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2829 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2830 }
2831 }
2832 xhci_zero_in_ctx(xhci, virt_dev);
2833 /*
2834 * Install any rings for completely new endpoints or changed endpoints,
2835 * and free or cache any old rings from changed endpoints.
2836 */
2837 for (i = 1; i < 31; ++i) {
2838 if (!virt_dev->eps[i].new_ring)
2839 continue;
2840 /* Only cache or free the old ring if it exists.
2841 * It may not if this is the first add of an endpoint.
2842 */
2843 if (virt_dev->eps[i].ring) {
2844 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2845 }
2846 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2847 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2848 virt_dev->eps[i].new_ring = NULL;
2849 }
2850 command_cleanup:
2851 kfree(command->completion);
2852 kfree(command);
2853
2854 return ret;
2855 }
2856
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2857 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2858 {
2859 struct xhci_hcd *xhci;
2860 struct xhci_virt_device *virt_dev;
2861 int i, ret;
2862
2863 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2864 if (ret <= 0)
2865 return;
2866 xhci = hcd_to_xhci(hcd);
2867
2868 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2869 virt_dev = xhci->devs[udev->slot_id];
2870 /* Free any rings allocated for added endpoints */
2871 for (i = 0; i < 31; ++i) {
2872 if (virt_dev->eps[i].new_ring) {
2873 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2874 virt_dev->eps[i].new_ring = NULL;
2875 }
2876 }
2877 xhci_zero_in_ctx(xhci, virt_dev);
2878 }
2879
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2880 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2881 struct xhci_container_ctx *in_ctx,
2882 struct xhci_container_ctx *out_ctx,
2883 struct xhci_input_control_ctx *ctrl_ctx,
2884 u32 add_flags, u32 drop_flags)
2885 {
2886 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2887 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2888 xhci_slot_copy(xhci, in_ctx, out_ctx);
2889 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2890
2891 xhci_dbg(xhci, "Input Context:\n");
2892 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2893 }
2894
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2895 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2896 unsigned int slot_id, unsigned int ep_index,
2897 struct xhci_dequeue_state *deq_state)
2898 {
2899 struct xhci_input_control_ctx *ctrl_ctx;
2900 struct xhci_container_ctx *in_ctx;
2901 struct xhci_ep_ctx *ep_ctx;
2902 u32 added_ctxs;
2903 dma_addr_t addr;
2904
2905 in_ctx = xhci->devs[slot_id]->in_ctx;
2906 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2907 if (!ctrl_ctx) {
2908 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2909 __func__);
2910 return;
2911 }
2912
2913 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2914 xhci->devs[slot_id]->out_ctx, ep_index);
2915 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2916 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2917 deq_state->new_deq_ptr);
2918 if (addr == 0) {
2919 xhci_warn(xhci, "WARN Cannot submit config ep after "
2920 "reset ep command\n");
2921 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2922 deq_state->new_deq_seg,
2923 deq_state->new_deq_ptr);
2924 return;
2925 }
2926 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2927
2928 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2929 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2930 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2931 added_ctxs, added_ctxs);
2932 }
2933
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int ep_index,struct xhci_td * td)2934 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2935 unsigned int ep_index, struct xhci_td *td)
2936 {
2937 struct xhci_dequeue_state deq_state;
2938 struct xhci_virt_ep *ep;
2939 struct usb_device *udev = td->urb->dev;
2940
2941 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2942 "Cleaning up stalled endpoint ring");
2943 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2944 /* We need to move the HW's dequeue pointer past this TD,
2945 * or it will attempt to resend it on the next doorbell ring.
2946 */
2947 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2948 ep_index, ep->stopped_stream, td, &deq_state);
2949
2950 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2951 return;
2952
2953 /* HW with the reset endpoint quirk will use the saved dequeue state to
2954 * issue a configure endpoint command later.
2955 */
2956 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2957 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2958 "Queueing new dequeue state");
2959 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2960 ep_index, ep->stopped_stream, &deq_state);
2961 } else {
2962 /* Better hope no one uses the input context between now and the
2963 * reset endpoint completion!
2964 * XXX: No idea how this hardware will react when stream rings
2965 * are enabled.
2966 */
2967 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2968 "Setting up input context for "
2969 "configure endpoint command");
2970 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2971 ep_index, &deq_state);
2972 }
2973 }
2974
2975 /* Called when clearing halted device. The core should have sent the control
2976 * message to clear the device halt condition. The host side of the halt should
2977 * already be cleared with a reset endpoint command issued when the STALL tx
2978 * event was received.
2979 *
2980 * Context: in_interrupt
2981 */
2982
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2983 void xhci_endpoint_reset(struct usb_hcd *hcd,
2984 struct usb_host_endpoint *ep)
2985 {
2986 struct xhci_hcd *xhci;
2987
2988 xhci = hcd_to_xhci(hcd);
2989
2990 /*
2991 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2992 * The Reset Endpoint Command may only be issued to endpoints in the
2993 * Halted state. If software wishes reset the Data Toggle or Sequence
2994 * Number of an endpoint that isn't in the Halted state, then software
2995 * may issue a Configure Endpoint Command with the Drop and Add bits set
2996 * for the target endpoint. that is in the Stopped state.
2997 */
2998
2999 /* For now just print debug to follow the situation */
3000 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3001 ep->desc.bEndpointAddress);
3002 }
3003
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3004 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3005 struct usb_device *udev, struct usb_host_endpoint *ep,
3006 unsigned int slot_id)
3007 {
3008 int ret;
3009 unsigned int ep_index;
3010 unsigned int ep_state;
3011
3012 if (!ep)
3013 return -EINVAL;
3014 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3015 if (ret <= 0)
3016 return -EINVAL;
3017 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3018 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3019 " descriptor for ep 0x%x does not support streams\n",
3020 ep->desc.bEndpointAddress);
3021 return -EINVAL;
3022 }
3023
3024 ep_index = xhci_get_endpoint_index(&ep->desc);
3025 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3026 if (ep_state & EP_HAS_STREAMS ||
3027 ep_state & EP_GETTING_STREAMS) {
3028 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3029 "already has streams set up.\n",
3030 ep->desc.bEndpointAddress);
3031 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3032 "dynamic stream context array reallocation.\n");
3033 return -EINVAL;
3034 }
3035 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3036 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3037 "endpoint 0x%x; URBs are pending.\n",
3038 ep->desc.bEndpointAddress);
3039 return -EINVAL;
3040 }
3041 return 0;
3042 }
3043
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3044 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3045 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3046 {
3047 unsigned int max_streams;
3048
3049 /* The stream context array size must be a power of two */
3050 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3051 /*
3052 * Find out how many primary stream array entries the host controller
3053 * supports. Later we may use secondary stream arrays (similar to 2nd
3054 * level page entries), but that's an optional feature for xHCI host
3055 * controllers. xHCs must support at least 4 stream IDs.
3056 */
3057 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3058 if (*num_stream_ctxs > max_streams) {
3059 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3060 max_streams);
3061 *num_stream_ctxs = max_streams;
3062 *num_streams = max_streams;
3063 }
3064 }
3065
3066 /* Returns an error code if one of the endpoint already has streams.
3067 * This does not change any data structures, it only checks and gathers
3068 * information.
3069 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3070 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3071 struct usb_device *udev,
3072 struct usb_host_endpoint **eps, unsigned int num_eps,
3073 unsigned int *num_streams, u32 *changed_ep_bitmask)
3074 {
3075 unsigned int max_streams;
3076 unsigned int endpoint_flag;
3077 int i;
3078 int ret;
3079
3080 for (i = 0; i < num_eps; i++) {
3081 ret = xhci_check_streams_endpoint(xhci, udev,
3082 eps[i], udev->slot_id);
3083 if (ret < 0)
3084 return ret;
3085
3086 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3087 if (max_streams < (*num_streams - 1)) {
3088 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3089 eps[i]->desc.bEndpointAddress,
3090 max_streams);
3091 *num_streams = max_streams+1;
3092 }
3093
3094 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3095 if (*changed_ep_bitmask & endpoint_flag)
3096 return -EINVAL;
3097 *changed_ep_bitmask |= endpoint_flag;
3098 }
3099 return 0;
3100 }
3101
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3102 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3103 struct usb_device *udev,
3104 struct usb_host_endpoint **eps, unsigned int num_eps)
3105 {
3106 u32 changed_ep_bitmask = 0;
3107 unsigned int slot_id;
3108 unsigned int ep_index;
3109 unsigned int ep_state;
3110 int i;
3111
3112 slot_id = udev->slot_id;
3113 if (!xhci->devs[slot_id])
3114 return 0;
3115
3116 for (i = 0; i < num_eps; i++) {
3117 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3118 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3119 /* Are streams already being freed for the endpoint? */
3120 if (ep_state & EP_GETTING_NO_STREAMS) {
3121 xhci_warn(xhci, "WARN Can't disable streams for "
3122 "endpoint 0x%x, "
3123 "streams are being disabled already\n",
3124 eps[i]->desc.bEndpointAddress);
3125 return 0;
3126 }
3127 /* Are there actually any streams to free? */
3128 if (!(ep_state & EP_HAS_STREAMS) &&
3129 !(ep_state & EP_GETTING_STREAMS)) {
3130 xhci_warn(xhci, "WARN Can't disable streams for "
3131 "endpoint 0x%x, "
3132 "streams are already disabled!\n",
3133 eps[i]->desc.bEndpointAddress);
3134 xhci_warn(xhci, "WARN xhci_free_streams() called "
3135 "with non-streams endpoint\n");
3136 return 0;
3137 }
3138 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3139 }
3140 return changed_ep_bitmask;
3141 }
3142
3143 /*
3144 * The USB device drivers use this function (though the HCD interface in USB
3145 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3146 * coordinate mass storage command queueing across multiple endpoints (basically
3147 * a stream ID == a task ID).
3148 *
3149 * Setting up streams involves allocating the same size stream context array
3150 * for each endpoint and issuing a configure endpoint command for all endpoints.
3151 *
3152 * Don't allow the call to succeed if one endpoint only supports one stream
3153 * (which means it doesn't support streams at all).
3154 *
3155 * Drivers may get less stream IDs than they asked for, if the host controller
3156 * hardware or endpoints claim they can't support the number of requested
3157 * stream IDs.
3158 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3159 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3160 struct usb_host_endpoint **eps, unsigned int num_eps,
3161 unsigned int num_streams, gfp_t mem_flags)
3162 {
3163 int i, ret;
3164 struct xhci_hcd *xhci;
3165 struct xhci_virt_device *vdev;
3166 struct xhci_command *config_cmd;
3167 struct xhci_input_control_ctx *ctrl_ctx;
3168 unsigned int ep_index;
3169 unsigned int num_stream_ctxs;
3170 unsigned long flags;
3171 u32 changed_ep_bitmask = 0;
3172
3173 if (!eps)
3174 return -EINVAL;
3175
3176 /* Add one to the number of streams requested to account for
3177 * stream 0 that is reserved for xHCI usage.
3178 */
3179 num_streams += 1;
3180 xhci = hcd_to_xhci(hcd);
3181 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3182 num_streams);
3183
3184 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3185 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3186 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3187 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3188 return -ENOSYS;
3189 }
3190
3191 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3192 if (!config_cmd) {
3193 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3194 return -ENOMEM;
3195 }
3196 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3197 if (!ctrl_ctx) {
3198 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3199 __func__);
3200 xhci_free_command(xhci, config_cmd);
3201 return -ENOMEM;
3202 }
3203
3204 /* Check to make sure all endpoints are not already configured for
3205 * streams. While we're at it, find the maximum number of streams that
3206 * all the endpoints will support and check for duplicate endpoints.
3207 */
3208 spin_lock_irqsave(&xhci->lock, flags);
3209 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3210 num_eps, &num_streams, &changed_ep_bitmask);
3211 if (ret < 0) {
3212 xhci_free_command(xhci, config_cmd);
3213 spin_unlock_irqrestore(&xhci->lock, flags);
3214 return ret;
3215 }
3216 if (num_streams <= 1) {
3217 xhci_warn(xhci, "WARN: endpoints can't handle "
3218 "more than one stream.\n");
3219 xhci_free_command(xhci, config_cmd);
3220 spin_unlock_irqrestore(&xhci->lock, flags);
3221 return -EINVAL;
3222 }
3223 vdev = xhci->devs[udev->slot_id];
3224 /* Mark each endpoint as being in transition, so
3225 * xhci_urb_enqueue() will reject all URBs.
3226 */
3227 for (i = 0; i < num_eps; i++) {
3228 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3230 }
3231 spin_unlock_irqrestore(&xhci->lock, flags);
3232
3233 /* Setup internal data structures and allocate HW data structures for
3234 * streams (but don't install the HW structures in the input context
3235 * until we're sure all memory allocation succeeded).
3236 */
3237 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3238 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3239 num_stream_ctxs, num_streams);
3240
3241 for (i = 0; i < num_eps; i++) {
3242 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3244 num_stream_ctxs,
3245 num_streams, mem_flags);
3246 if (!vdev->eps[ep_index].stream_info)
3247 goto cleanup;
3248 /* Set maxPstreams in endpoint context and update deq ptr to
3249 * point to stream context array. FIXME
3250 */
3251 }
3252
3253 /* Set up the input context for a configure endpoint command. */
3254 for (i = 0; i < num_eps; i++) {
3255 struct xhci_ep_ctx *ep_ctx;
3256
3257 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3258 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3259
3260 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3261 vdev->out_ctx, ep_index);
3262 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3263 vdev->eps[ep_index].stream_info);
3264 }
3265 /* Tell the HW to drop its old copy of the endpoint context info
3266 * and add the updated copy from the input context.
3267 */
3268 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3269 vdev->out_ctx, ctrl_ctx,
3270 changed_ep_bitmask, changed_ep_bitmask);
3271
3272 /* Issue and wait for the configure endpoint command */
3273 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3274 false, false);
3275
3276 /* xHC rejected the configure endpoint command for some reason, so we
3277 * leave the old ring intact and free our internal streams data
3278 * structure.
3279 */
3280 if (ret < 0)
3281 goto cleanup;
3282
3283 spin_lock_irqsave(&xhci->lock, flags);
3284 for (i = 0; i < num_eps; i++) {
3285 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3287 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3288 udev->slot_id, ep_index);
3289 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3290 }
3291 xhci_free_command(xhci, config_cmd);
3292 spin_unlock_irqrestore(&xhci->lock, flags);
3293
3294 /* Subtract 1 for stream 0, which drivers can't use */
3295 return num_streams - 1;
3296
3297 cleanup:
3298 /* If it didn't work, free the streams! */
3299 for (i = 0; i < num_eps; i++) {
3300 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3301 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3302 vdev->eps[ep_index].stream_info = NULL;
3303 /* FIXME Unset maxPstreams in endpoint context and
3304 * update deq ptr to point to normal string ring.
3305 */
3306 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3307 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3308 xhci_endpoint_zero(xhci, vdev, eps[i]);
3309 }
3310 xhci_free_command(xhci, config_cmd);
3311 return -ENOMEM;
3312 }
3313
3314 /* Transition the endpoint from using streams to being a "normal" endpoint
3315 * without streams.
3316 *
3317 * Modify the endpoint context state, submit a configure endpoint command,
3318 * and free all endpoint rings for streams if that completes successfully.
3319 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3320 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3321 struct usb_host_endpoint **eps, unsigned int num_eps,
3322 gfp_t mem_flags)
3323 {
3324 int i, ret;
3325 struct xhci_hcd *xhci;
3326 struct xhci_virt_device *vdev;
3327 struct xhci_command *command;
3328 struct xhci_input_control_ctx *ctrl_ctx;
3329 unsigned int ep_index;
3330 unsigned long flags;
3331 u32 changed_ep_bitmask;
3332
3333 xhci = hcd_to_xhci(hcd);
3334 vdev = xhci->devs[udev->slot_id];
3335
3336 /* Set up a configure endpoint command to remove the streams rings */
3337 spin_lock_irqsave(&xhci->lock, flags);
3338 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3339 udev, eps, num_eps);
3340 if (changed_ep_bitmask == 0) {
3341 spin_unlock_irqrestore(&xhci->lock, flags);
3342 return -EINVAL;
3343 }
3344
3345 /* Use the xhci_command structure from the first endpoint. We may have
3346 * allocated too many, but the driver may call xhci_free_streams() for
3347 * each endpoint it grouped into one call to xhci_alloc_streams().
3348 */
3349 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3350 command = vdev->eps[ep_index].stream_info->free_streams_command;
3351 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3352 if (!ctrl_ctx) {
3353 spin_unlock_irqrestore(&xhci->lock, flags);
3354 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3355 __func__);
3356 return -EINVAL;
3357 }
3358
3359 for (i = 0; i < num_eps; i++) {
3360 struct xhci_ep_ctx *ep_ctx;
3361
3362 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3364 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3365 EP_GETTING_NO_STREAMS;
3366
3367 xhci_endpoint_copy(xhci, command->in_ctx,
3368 vdev->out_ctx, ep_index);
3369 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3370 &vdev->eps[ep_index]);
3371 }
3372 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3373 vdev->out_ctx, ctrl_ctx,
3374 changed_ep_bitmask, changed_ep_bitmask);
3375 spin_unlock_irqrestore(&xhci->lock, flags);
3376
3377 /* Issue and wait for the configure endpoint command,
3378 * which must succeed.
3379 */
3380 ret = xhci_configure_endpoint(xhci, udev, command,
3381 false, true);
3382
3383 /* xHC rejected the configure endpoint command for some reason, so we
3384 * leave the streams rings intact.
3385 */
3386 if (ret < 0)
3387 return ret;
3388
3389 spin_lock_irqsave(&xhci->lock, flags);
3390 for (i = 0; i < num_eps; i++) {
3391 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3392 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3393 vdev->eps[ep_index].stream_info = NULL;
3394 /* FIXME Unset maxPstreams in endpoint context and
3395 * update deq ptr to point to normal string ring.
3396 */
3397 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3398 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3399 }
3400 spin_unlock_irqrestore(&xhci->lock, flags);
3401
3402 return 0;
3403 }
3404
3405 /*
3406 * Deletes endpoint resources for endpoints that were active before a Reset
3407 * Device command, or a Disable Slot command. The Reset Device command leaves
3408 * the control endpoint intact, whereas the Disable Slot command deletes it.
3409 *
3410 * Must be called with xhci->lock held.
3411 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3412 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3413 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3414 {
3415 int i;
3416 unsigned int num_dropped_eps = 0;
3417 unsigned int drop_flags = 0;
3418
3419 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3420 if (virt_dev->eps[i].ring) {
3421 drop_flags |= 1 << i;
3422 num_dropped_eps++;
3423 }
3424 }
3425 xhci->num_active_eps -= num_dropped_eps;
3426 if (num_dropped_eps)
3427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3428 "Dropped %u ep ctxs, flags = 0x%x, "
3429 "%u now active.",
3430 num_dropped_eps, drop_flags,
3431 xhci->num_active_eps);
3432 }
3433
3434 /*
3435 * This submits a Reset Device Command, which will set the device state to 0,
3436 * set the device address to 0, and disable all the endpoints except the default
3437 * control endpoint. The USB core should come back and call
3438 * xhci_address_device(), and then re-set up the configuration. If this is
3439 * called because of a usb_reset_and_verify_device(), then the old alternate
3440 * settings will be re-installed through the normal bandwidth allocation
3441 * functions.
3442 *
3443 * Wait for the Reset Device command to finish. Remove all structures
3444 * associated with the endpoints that were disabled. Clear the input device
3445 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3446 *
3447 * If the virt_dev to be reset does not exist or does not match the udev,
3448 * it means the device is lost, possibly due to the xHC restore error and
3449 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3450 * re-allocate the device.
3451 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3452 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3453 {
3454 int ret, i;
3455 unsigned long flags;
3456 struct xhci_hcd *xhci;
3457 unsigned int slot_id;
3458 struct xhci_virt_device *virt_dev;
3459 struct xhci_command *reset_device_cmd;
3460 int last_freed_endpoint;
3461 struct xhci_slot_ctx *slot_ctx;
3462 int old_active_eps = 0;
3463
3464 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3465 if (ret <= 0)
3466 return ret;
3467 xhci = hcd_to_xhci(hcd);
3468 slot_id = udev->slot_id;
3469 virt_dev = xhci->devs[slot_id];
3470 if (!virt_dev) {
3471 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3472 "not exist. Re-allocate the device\n", slot_id);
3473 ret = xhci_alloc_dev(hcd, udev);
3474 if (ret == 1)
3475 return 0;
3476 else
3477 return -EINVAL;
3478 }
3479
3480 if (virt_dev->tt_info)
3481 old_active_eps = virt_dev->tt_info->active_eps;
3482
3483 if (virt_dev->udev != udev) {
3484 /* If the virt_dev and the udev does not match, this virt_dev
3485 * may belong to another udev.
3486 * Re-allocate the device.
3487 */
3488 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3489 "not match the udev. Re-allocate the device\n",
3490 slot_id);
3491 ret = xhci_alloc_dev(hcd, udev);
3492 if (ret == 1)
3493 return 0;
3494 else
3495 return -EINVAL;
3496 }
3497
3498 /* If device is not setup, there is no point in resetting it */
3499 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3500 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3501 SLOT_STATE_DISABLED)
3502 return 0;
3503
3504 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3505 /* Allocate the command structure that holds the struct completion.
3506 * Assume we're in process context, since the normal device reset
3507 * process has to wait for the device anyway. Storage devices are
3508 * reset as part of error handling, so use GFP_NOIO instead of
3509 * GFP_KERNEL.
3510 */
3511 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3512 if (!reset_device_cmd) {
3513 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3514 return -ENOMEM;
3515 }
3516
3517 /* Attempt to submit the Reset Device command to the command ring */
3518 spin_lock_irqsave(&xhci->lock, flags);
3519
3520 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3521 if (ret) {
3522 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3523 spin_unlock_irqrestore(&xhci->lock, flags);
3524 goto command_cleanup;
3525 }
3526 xhci_ring_cmd_db(xhci);
3527 spin_unlock_irqrestore(&xhci->lock, flags);
3528
3529 /* Wait for the Reset Device command to finish */
3530 wait_for_completion(reset_device_cmd->completion);
3531
3532 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3533 * unless we tried to reset a slot ID that wasn't enabled,
3534 * or the device wasn't in the addressed or configured state.
3535 */
3536 ret = reset_device_cmd->status;
3537 switch (ret) {
3538 case COMP_CMD_ABORT:
3539 case COMP_CMD_STOP:
3540 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3541 ret = -ETIME;
3542 goto command_cleanup;
3543 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3544 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3545 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3546 slot_id,
3547 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3548 xhci_dbg(xhci, "Not freeing device rings.\n");
3549 /* Don't treat this as an error. May change my mind later. */
3550 ret = 0;
3551 goto command_cleanup;
3552 case COMP_SUCCESS:
3553 xhci_dbg(xhci, "Successful reset device command.\n");
3554 break;
3555 default:
3556 if (xhci_is_vendor_info_code(xhci, ret))
3557 break;
3558 xhci_warn(xhci, "Unknown completion code %u for "
3559 "reset device command.\n", ret);
3560 ret = -EINVAL;
3561 goto command_cleanup;
3562 }
3563
3564 /* Free up host controller endpoint resources */
3565 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3566 spin_lock_irqsave(&xhci->lock, flags);
3567 /* Don't delete the default control endpoint resources */
3568 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3569 spin_unlock_irqrestore(&xhci->lock, flags);
3570 }
3571
3572 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3573 last_freed_endpoint = 1;
3574 for (i = 1; i < 31; ++i) {
3575 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3576
3577 if (ep->ep_state & EP_HAS_STREAMS) {
3578 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3579 xhci_get_endpoint_address(i));
3580 xhci_free_stream_info(xhci, ep->stream_info);
3581 ep->stream_info = NULL;
3582 ep->ep_state &= ~EP_HAS_STREAMS;
3583 }
3584
3585 if (ep->ring) {
3586 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3587 last_freed_endpoint = i;
3588 }
3589 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3590 xhci_drop_ep_from_interval_table(xhci,
3591 &virt_dev->eps[i].bw_info,
3592 virt_dev->bw_table,
3593 udev,
3594 &virt_dev->eps[i],
3595 virt_dev->tt_info);
3596 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3597 }
3598 /* If necessary, update the number of active TTs on this root port */
3599 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3600
3601 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3602 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3603 ret = 0;
3604
3605 command_cleanup:
3606 xhci_free_command(xhci, reset_device_cmd);
3607 return ret;
3608 }
3609
3610 /*
3611 * At this point, the struct usb_device is about to go away, the device has
3612 * disconnected, and all traffic has been stopped and the endpoints have been
3613 * disabled. Free any HC data structures associated with that device.
3614 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3615 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3616 {
3617 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3618 struct xhci_virt_device *virt_dev;
3619 unsigned long flags;
3620 u32 state;
3621 int i, ret;
3622 struct xhci_command *command;
3623
3624 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3625 if (!command)
3626 return;
3627
3628 #ifndef CONFIG_USB_DEFAULT_PERSIST
3629 /*
3630 * We called pm_runtime_get_noresume when the device was attached.
3631 * Decrement the counter here to allow controller to runtime suspend
3632 * if no devices remain.
3633 */
3634 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3635 pm_runtime_put_noidle(hcd->self.controller);
3636 #endif
3637
3638 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3639 /* If the host is halted due to driver unload, we still need to free the
3640 * device.
3641 */
3642 if (ret <= 0 && ret != -ENODEV) {
3643 kfree(command);
3644 return;
3645 }
3646
3647 virt_dev = xhci->devs[udev->slot_id];
3648
3649 /* Stop any wayward timer functions (which may grab the lock) */
3650 for (i = 0; i < 31; ++i) {
3651 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3652 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3653 }
3654
3655 spin_lock_irqsave(&xhci->lock, flags);
3656 /* Don't disable the slot if the host controller is dead. */
3657 state = readl(&xhci->op_regs->status);
3658 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3659 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3660 xhci_free_virt_device(xhci, udev->slot_id);
3661 spin_unlock_irqrestore(&xhci->lock, flags);
3662 kfree(command);
3663 return;
3664 }
3665
3666 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3667 udev->slot_id)) {
3668 spin_unlock_irqrestore(&xhci->lock, flags);
3669 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3670 return;
3671 }
3672 xhci_ring_cmd_db(xhci);
3673 spin_unlock_irqrestore(&xhci->lock, flags);
3674
3675 /*
3676 * Event command completion handler will free any data structures
3677 * associated with the slot. XXX Can free sleep?
3678 */
3679 }
3680
3681 /*
3682 * Checks if we have enough host controller resources for the default control
3683 * endpoint.
3684 *
3685 * Must be called with xhci->lock held.
3686 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3687 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3688 {
3689 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3690 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3691 "Not enough ep ctxs: "
3692 "%u active, need to add 1, limit is %u.",
3693 xhci->num_active_eps, xhci->limit_active_eps);
3694 return -ENOMEM;
3695 }
3696 xhci->num_active_eps += 1;
3697 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3698 "Adding 1 ep ctx, %u now active.",
3699 xhci->num_active_eps);
3700 return 0;
3701 }
3702
3703
3704 /*
3705 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3706 * timed out, or allocating memory failed. Returns 1 on success.
3707 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3708 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3709 {
3710 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3711 unsigned long flags;
3712 int ret, slot_id;
3713 struct xhci_command *command;
3714
3715 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3716 if (!command)
3717 return 0;
3718
3719 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3720 mutex_lock(&xhci->mutex);
3721 spin_lock_irqsave(&xhci->lock, flags);
3722 command->completion = &xhci->addr_dev;
3723 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3724 if (ret) {
3725 spin_unlock_irqrestore(&xhci->lock, flags);
3726 mutex_unlock(&xhci->mutex);
3727 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3728 kfree(command);
3729 return 0;
3730 }
3731 xhci_ring_cmd_db(xhci);
3732 spin_unlock_irqrestore(&xhci->lock, flags);
3733
3734 wait_for_completion(command->completion);
3735 slot_id = xhci->slot_id;
3736 mutex_unlock(&xhci->mutex);
3737
3738 if (!slot_id || command->status != COMP_SUCCESS) {
3739 xhci_err(xhci, "Error while assigning device slot ID\n");
3740 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3741 HCS_MAX_SLOTS(
3742 readl(&xhci->cap_regs->hcs_params1)));
3743 kfree(command);
3744 return 0;
3745 }
3746
3747 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3748 spin_lock_irqsave(&xhci->lock, flags);
3749 ret = xhci_reserve_host_control_ep_resources(xhci);
3750 if (ret) {
3751 spin_unlock_irqrestore(&xhci->lock, flags);
3752 xhci_warn(xhci, "Not enough host resources, "
3753 "active endpoint contexts = %u\n",
3754 xhci->num_active_eps);
3755 goto disable_slot;
3756 }
3757 spin_unlock_irqrestore(&xhci->lock, flags);
3758 }
3759 /* Use GFP_NOIO, since this function can be called from
3760 * xhci_discover_or_reset_device(), which may be called as part of
3761 * mass storage driver error handling.
3762 */
3763 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3764 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3765 goto disable_slot;
3766 }
3767 udev->slot_id = slot_id;
3768
3769 #ifndef CONFIG_USB_DEFAULT_PERSIST
3770 /*
3771 * If resetting upon resume, we can't put the controller into runtime
3772 * suspend if there is a device attached.
3773 */
3774 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3775 pm_runtime_get_noresume(hcd->self.controller);
3776 #endif
3777
3778
3779 kfree(command);
3780 /* Is this a LS or FS device under a HS hub? */
3781 /* Hub or peripherial? */
3782 return 1;
3783
3784 disable_slot:
3785 /* Disable slot, if we can do it without mem alloc */
3786 spin_lock_irqsave(&xhci->lock, flags);
3787 command->completion = NULL;
3788 command->status = 0;
3789 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3790 udev->slot_id))
3791 xhci_ring_cmd_db(xhci);
3792 spin_unlock_irqrestore(&xhci->lock, flags);
3793 return 0;
3794 }
3795
3796 /*
3797 * Issue an Address Device command and optionally send a corresponding
3798 * SetAddress request to the device.
3799 * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3800 * so we should only issue and wait on one address command at the same time.
3801 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)3802 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3803 enum xhci_setup_dev setup)
3804 {
3805 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3806 unsigned long flags;
3807 struct xhci_virt_device *virt_dev;
3808 int ret = 0;
3809 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3810 struct xhci_slot_ctx *slot_ctx;
3811 struct xhci_input_control_ctx *ctrl_ctx;
3812 u64 temp_64;
3813 struct xhci_command *command = NULL;
3814
3815 mutex_lock(&xhci->mutex);
3816
3817 if (xhci->xhc_state) /* dying, removing or halted */
3818 goto out;
3819
3820 if (!udev->slot_id) {
3821 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3822 "Bad Slot ID %d", udev->slot_id);
3823 ret = -EINVAL;
3824 goto out;
3825 }
3826
3827 virt_dev = xhci->devs[udev->slot_id];
3828
3829 if (WARN_ON(!virt_dev)) {
3830 /*
3831 * In plug/unplug torture test with an NEC controller,
3832 * a zero-dereference was observed once due to virt_dev = 0.
3833 * Print useful debug rather than crash if it is observed again!
3834 */
3835 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3836 udev->slot_id);
3837 ret = -EINVAL;
3838 goto out;
3839 }
3840
3841 if (setup == SETUP_CONTEXT_ONLY) {
3842 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3843 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3844 SLOT_STATE_DEFAULT) {
3845 xhci_dbg(xhci, "Slot already in default state\n");
3846 goto out;
3847 }
3848 }
3849
3850 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3851 if (!command) {
3852 ret = -ENOMEM;
3853 goto out;
3854 }
3855
3856 command->in_ctx = virt_dev->in_ctx;
3857 command->completion = &xhci->addr_dev;
3858
3859 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3860 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3861 if (!ctrl_ctx) {
3862 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3863 __func__);
3864 ret = -EINVAL;
3865 goto out;
3866 }
3867 /*
3868 * If this is the first Set Address since device plug-in or
3869 * virt_device realloaction after a resume with an xHCI power loss,
3870 * then set up the slot context.
3871 */
3872 if (!slot_ctx->dev_info)
3873 xhci_setup_addressable_virt_dev(xhci, udev);
3874 /* Otherwise, update the control endpoint ring enqueue pointer. */
3875 else
3876 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3877 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3878 ctrl_ctx->drop_flags = 0;
3879
3880 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3881 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3882 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3883 le32_to_cpu(slot_ctx->dev_info) >> 27);
3884
3885 spin_lock_irqsave(&xhci->lock, flags);
3886 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3887 udev->slot_id, setup);
3888 if (ret) {
3889 spin_unlock_irqrestore(&xhci->lock, flags);
3890 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3891 "FIXME: allocate a command ring segment");
3892 goto out;
3893 }
3894 xhci_ring_cmd_db(xhci);
3895 spin_unlock_irqrestore(&xhci->lock, flags);
3896
3897 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3898 wait_for_completion(command->completion);
3899
3900 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3901 * the SetAddress() "recovery interval" required by USB and aborting the
3902 * command on a timeout.
3903 */
3904 switch (command->status) {
3905 case COMP_CMD_ABORT:
3906 case COMP_CMD_STOP:
3907 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3908 ret = -ETIME;
3909 break;
3910 case COMP_CTX_STATE:
3911 case COMP_EBADSLT:
3912 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3913 act, udev->slot_id);
3914 ret = -EINVAL;
3915 break;
3916 case COMP_TX_ERR:
3917 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3918 ret = -EPROTO;
3919 break;
3920 case COMP_DEV_ERR:
3921 dev_warn(&udev->dev,
3922 "ERROR: Incompatible device for setup %s command\n", act);
3923 ret = -ENODEV;
3924 break;
3925 case COMP_SUCCESS:
3926 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927 "Successful setup %s command", act);
3928 break;
3929 default:
3930 xhci_err(xhci,
3931 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3932 act, command->status);
3933 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3934 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3935 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3936 ret = -EINVAL;
3937 break;
3938 }
3939 if (ret)
3940 goto out;
3941 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3942 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3943 "Op regs DCBAA ptr = %#016llx", temp_64);
3944 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3945 "Slot ID %d dcbaa entry @%p = %#016llx",
3946 udev->slot_id,
3947 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3948 (unsigned long long)
3949 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3950 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951 "Output Context DMA address = %#08llx",
3952 (unsigned long long)virt_dev->out_ctx->dma);
3953 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3954 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3955 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3956 le32_to_cpu(slot_ctx->dev_info) >> 27);
3957 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3958 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3959 /*
3960 * USB core uses address 1 for the roothubs, so we add one to the
3961 * address given back to us by the HC.
3962 */
3963 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3964 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3965 le32_to_cpu(slot_ctx->dev_info) >> 27);
3966 /* Zero the input context control for later use */
3967 ctrl_ctx->add_flags = 0;
3968 ctrl_ctx->drop_flags = 0;
3969
3970 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3971 "Internal device address = %d",
3972 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3973 out:
3974 mutex_unlock(&xhci->mutex);
3975 kfree(command);
3976 return ret;
3977 }
3978
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3979 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3980 {
3981 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3982 }
3983
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)3984 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3985 {
3986 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3987 }
3988
3989 /*
3990 * Transfer the port index into real index in the HW port status
3991 * registers. Caculate offset between the port's PORTSC register
3992 * and port status base. Divide the number of per port register
3993 * to get the real index. The raw port number bases 1.
3994 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)3995 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3996 {
3997 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3998 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3999 __le32 __iomem *addr;
4000 int raw_port;
4001
4002 if (hcd->speed != HCD_USB3)
4003 addr = xhci->usb2_ports[port1 - 1];
4004 else
4005 addr = xhci->usb3_ports[port1 - 1];
4006
4007 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4008 return raw_port;
4009 }
4010
4011 /*
4012 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4013 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4014 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4015 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4016 struct usb_device *udev, u16 max_exit_latency)
4017 {
4018 struct xhci_virt_device *virt_dev;
4019 struct xhci_command *command;
4020 struct xhci_input_control_ctx *ctrl_ctx;
4021 struct xhci_slot_ctx *slot_ctx;
4022 unsigned long flags;
4023 int ret;
4024
4025 spin_lock_irqsave(&xhci->lock, flags);
4026
4027 virt_dev = xhci->devs[udev->slot_id];
4028
4029 /*
4030 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4031 * xHC was re-initialized. Exit latency will be set later after
4032 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4033 */
4034
4035 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4036 spin_unlock_irqrestore(&xhci->lock, flags);
4037 return 0;
4038 }
4039
4040 /* Attempt to issue an Evaluate Context command to change the MEL. */
4041 command = xhci->lpm_command;
4042 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4043 if (!ctrl_ctx) {
4044 spin_unlock_irqrestore(&xhci->lock, flags);
4045 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4046 __func__);
4047 return -ENOMEM;
4048 }
4049
4050 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4051 spin_unlock_irqrestore(&xhci->lock, flags);
4052
4053 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4054 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4055 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4056 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4057 slot_ctx->dev_state = 0;
4058
4059 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4060 "Set up evaluate context for LPM MEL change.");
4061 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4062 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4063
4064 /* Issue and wait for the evaluate context command. */
4065 ret = xhci_configure_endpoint(xhci, udev, command,
4066 true, true);
4067 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4068 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4069
4070 if (!ret) {
4071 spin_lock_irqsave(&xhci->lock, flags);
4072 virt_dev->current_mel = max_exit_latency;
4073 spin_unlock_irqrestore(&xhci->lock, flags);
4074 }
4075 return ret;
4076 }
4077
4078 #ifdef CONFIG_PM
4079
4080 /* BESL to HIRD Encoding array for USB2 LPM */
4081 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4082 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4083
4084 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4085 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4086 struct usb_device *udev)
4087 {
4088 int u2del, besl, besl_host;
4089 int besl_device = 0;
4090 u32 field;
4091
4092 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4093 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4094
4095 if (field & USB_BESL_SUPPORT) {
4096 for (besl_host = 0; besl_host < 16; besl_host++) {
4097 if (xhci_besl_encoding[besl_host] >= u2del)
4098 break;
4099 }
4100 /* Use baseline BESL value as default */
4101 if (field & USB_BESL_BASELINE_VALID)
4102 besl_device = USB_GET_BESL_BASELINE(field);
4103 else if (field & USB_BESL_DEEP_VALID)
4104 besl_device = USB_GET_BESL_DEEP(field);
4105 } else {
4106 if (u2del <= 50)
4107 besl_host = 0;
4108 else
4109 besl_host = (u2del - 51) / 75 + 1;
4110 }
4111
4112 besl = besl_host + besl_device;
4113 if (besl > 15)
4114 besl = 15;
4115
4116 return besl;
4117 }
4118
4119 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4120 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4121 {
4122 u32 field;
4123 int l1;
4124 int besld = 0;
4125 int hirdm = 0;
4126
4127 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4128
4129 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4130 l1 = udev->l1_params.timeout / 256;
4131
4132 /* device has preferred BESLD */
4133 if (field & USB_BESL_DEEP_VALID) {
4134 besld = USB_GET_BESL_DEEP(field);
4135 hirdm = 1;
4136 }
4137
4138 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4139 }
4140
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4141 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4142 struct usb_device *udev, int enable)
4143 {
4144 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4145 __le32 __iomem **port_array;
4146 __le32 __iomem *pm_addr, *hlpm_addr;
4147 u32 pm_val, hlpm_val, field;
4148 unsigned int port_num;
4149 unsigned long flags;
4150 int hird, exit_latency;
4151 int ret;
4152
4153 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4154 !udev->lpm_capable)
4155 return -EPERM;
4156
4157 if (!udev->parent || udev->parent->parent ||
4158 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4159 return -EPERM;
4160
4161 if (udev->usb2_hw_lpm_capable != 1)
4162 return -EPERM;
4163
4164 spin_lock_irqsave(&xhci->lock, flags);
4165
4166 port_array = xhci->usb2_ports;
4167 port_num = udev->portnum - 1;
4168 pm_addr = port_array[port_num] + PORTPMSC;
4169 pm_val = readl(pm_addr);
4170 hlpm_addr = port_array[port_num] + PORTHLPMC;
4171 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4172
4173 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4174 enable ? "enable" : "disable", port_num + 1);
4175
4176 if (enable) {
4177 /* Host supports BESL timeout instead of HIRD */
4178 if (udev->usb2_hw_lpm_besl_capable) {
4179 /* if device doesn't have a preferred BESL value use a
4180 * default one which works with mixed HIRD and BESL
4181 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4182 */
4183 if ((field & USB_BESL_SUPPORT) &&
4184 (field & USB_BESL_BASELINE_VALID))
4185 hird = USB_GET_BESL_BASELINE(field);
4186 else
4187 hird = udev->l1_params.besl;
4188
4189 exit_latency = xhci_besl_encoding[hird];
4190 spin_unlock_irqrestore(&xhci->lock, flags);
4191
4192 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4193 * input context for link powermanagement evaluate
4194 * context commands. It is protected by hcd->bandwidth
4195 * mutex and is shared by all devices. We need to set
4196 * the max ext latency in USB 2 BESL LPM as well, so
4197 * use the same mutex and xhci_change_max_exit_latency()
4198 */
4199 mutex_lock(hcd->bandwidth_mutex);
4200 ret = xhci_change_max_exit_latency(xhci, udev,
4201 exit_latency);
4202 mutex_unlock(hcd->bandwidth_mutex);
4203
4204 if (ret < 0)
4205 return ret;
4206 spin_lock_irqsave(&xhci->lock, flags);
4207
4208 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4209 writel(hlpm_val, hlpm_addr);
4210 /* flush write */
4211 readl(hlpm_addr);
4212 } else {
4213 hird = xhci_calculate_hird_besl(xhci, udev);
4214 }
4215
4216 pm_val &= ~PORT_HIRD_MASK;
4217 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4218 writel(pm_val, pm_addr);
4219 pm_val = readl(pm_addr);
4220 pm_val |= PORT_HLE;
4221 writel(pm_val, pm_addr);
4222 /* flush write */
4223 readl(pm_addr);
4224 } else {
4225 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4226 writel(pm_val, pm_addr);
4227 /* flush write */
4228 readl(pm_addr);
4229 if (udev->usb2_hw_lpm_besl_capable) {
4230 spin_unlock_irqrestore(&xhci->lock, flags);
4231 mutex_lock(hcd->bandwidth_mutex);
4232 xhci_change_max_exit_latency(xhci, udev, 0);
4233 mutex_unlock(hcd->bandwidth_mutex);
4234 return 0;
4235 }
4236 }
4237
4238 spin_unlock_irqrestore(&xhci->lock, flags);
4239 return 0;
4240 }
4241
4242 /* check if a usb2 port supports a given extened capability protocol
4243 * only USB2 ports extended protocol capability values are cached.
4244 * Return 1 if capability is supported
4245 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4246 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4247 unsigned capability)
4248 {
4249 u32 port_offset, port_count;
4250 int i;
4251
4252 for (i = 0; i < xhci->num_ext_caps; i++) {
4253 if (xhci->ext_caps[i] & capability) {
4254 /* port offsets starts at 1 */
4255 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4256 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4257 if (port >= port_offset &&
4258 port < port_offset + port_count)
4259 return 1;
4260 }
4261 }
4262 return 0;
4263 }
4264
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4265 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4266 {
4267 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4268 int portnum = udev->portnum - 1;
4269
4270 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4271 !udev->lpm_capable)
4272 return 0;
4273
4274 /* we only support lpm for non-hub device connected to root hub yet */
4275 if (!udev->parent || udev->parent->parent ||
4276 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4277 return 0;
4278
4279 if (xhci->hw_lpm_support == 1 &&
4280 xhci_check_usb2_port_capability(
4281 xhci, portnum, XHCI_HLC)) {
4282 udev->usb2_hw_lpm_capable = 1;
4283 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4284 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4285 if (xhci_check_usb2_port_capability(xhci, portnum,
4286 XHCI_BLC))
4287 udev->usb2_hw_lpm_besl_capable = 1;
4288 }
4289
4290 return 0;
4291 }
4292
4293 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4294
4295 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4296 static unsigned long long xhci_service_interval_to_ns(
4297 struct usb_endpoint_descriptor *desc)
4298 {
4299 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4300 }
4301
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4302 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4303 enum usb3_link_state state)
4304 {
4305 unsigned long long sel;
4306 unsigned long long pel;
4307 unsigned int max_sel_pel;
4308 char *state_name;
4309
4310 switch (state) {
4311 case USB3_LPM_U1:
4312 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4313 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4314 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4315 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4316 state_name = "U1";
4317 break;
4318 case USB3_LPM_U2:
4319 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4320 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4321 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4322 state_name = "U2";
4323 break;
4324 default:
4325 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4326 __func__);
4327 return USB3_LPM_DISABLED;
4328 }
4329
4330 if (sel <= max_sel_pel && pel <= max_sel_pel)
4331 return USB3_LPM_DEVICE_INITIATED;
4332
4333 if (sel > max_sel_pel)
4334 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4335 "due to long SEL %llu ms\n",
4336 state_name, sel);
4337 else
4338 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4339 "due to long PEL %llu ms\n",
4340 state_name, pel);
4341 return USB3_LPM_DISABLED;
4342 }
4343
4344 /* The U1 timeout should be the maximum of the following values:
4345 * - For control endpoints, U1 system exit latency (SEL) * 3
4346 * - For bulk endpoints, U1 SEL * 5
4347 * - For interrupt endpoints:
4348 * - Notification EPs, U1 SEL * 3
4349 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4350 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4351 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4352 static unsigned long long xhci_calculate_intel_u1_timeout(
4353 struct usb_device *udev,
4354 struct usb_endpoint_descriptor *desc)
4355 {
4356 unsigned long long timeout_ns;
4357 int ep_type;
4358 int intr_type;
4359
4360 ep_type = usb_endpoint_type(desc);
4361 switch (ep_type) {
4362 case USB_ENDPOINT_XFER_CONTROL:
4363 timeout_ns = udev->u1_params.sel * 3;
4364 break;
4365 case USB_ENDPOINT_XFER_BULK:
4366 timeout_ns = udev->u1_params.sel * 5;
4367 break;
4368 case USB_ENDPOINT_XFER_INT:
4369 intr_type = usb_endpoint_interrupt_type(desc);
4370 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4371 timeout_ns = udev->u1_params.sel * 3;
4372 break;
4373 }
4374 /* Otherwise the calculation is the same as isoc eps */
4375 case USB_ENDPOINT_XFER_ISOC:
4376 timeout_ns = xhci_service_interval_to_ns(desc);
4377 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4378 if (timeout_ns < udev->u1_params.sel * 2)
4379 timeout_ns = udev->u1_params.sel * 2;
4380 break;
4381 default:
4382 return 0;
4383 }
4384
4385 return timeout_ns;
4386 }
4387
4388 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4389 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4390 struct usb_device *udev,
4391 struct usb_endpoint_descriptor *desc)
4392 {
4393 unsigned long long timeout_ns;
4394
4395 if (xhci->quirks & XHCI_INTEL_HOST)
4396 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4397 else
4398 timeout_ns = udev->u1_params.sel;
4399
4400 /* The U1 timeout is encoded in 1us intervals.
4401 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4402 */
4403 if (timeout_ns == USB3_LPM_DISABLED)
4404 timeout_ns = 1;
4405 else
4406 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4407
4408 /* If the necessary timeout value is bigger than what we can set in the
4409 * USB 3.0 hub, we have to disable hub-initiated U1.
4410 */
4411 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4412 return timeout_ns;
4413 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4414 "due to long timeout %llu ms\n", timeout_ns);
4415 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4416 }
4417
4418 /* The U2 timeout should be the maximum of:
4419 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4420 * - largest bInterval of any active periodic endpoint (to avoid going
4421 * into lower power link states between intervals).
4422 * - the U2 Exit Latency of the device
4423 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4424 static unsigned long long xhci_calculate_intel_u2_timeout(
4425 struct usb_device *udev,
4426 struct usb_endpoint_descriptor *desc)
4427 {
4428 unsigned long long timeout_ns;
4429 unsigned long long u2_del_ns;
4430
4431 timeout_ns = 10 * 1000 * 1000;
4432
4433 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4434 (xhci_service_interval_to_ns(desc) > timeout_ns))
4435 timeout_ns = xhci_service_interval_to_ns(desc);
4436
4437 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4438 if (u2_del_ns > timeout_ns)
4439 timeout_ns = u2_del_ns;
4440
4441 return timeout_ns;
4442 }
4443
4444 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4445 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4446 struct usb_device *udev,
4447 struct usb_endpoint_descriptor *desc)
4448 {
4449 unsigned long long timeout_ns;
4450
4451 if (xhci->quirks & XHCI_INTEL_HOST)
4452 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4453 else
4454 timeout_ns = udev->u2_params.sel;
4455
4456 /* The U2 timeout is encoded in 256us intervals */
4457 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4458 /* If the necessary timeout value is bigger than what we can set in the
4459 * USB 3.0 hub, we have to disable hub-initiated U2.
4460 */
4461 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4462 return timeout_ns;
4463 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4464 "due to long timeout %llu ms\n", timeout_ns);
4465 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4466 }
4467
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4468 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4469 struct usb_device *udev,
4470 struct usb_endpoint_descriptor *desc,
4471 enum usb3_link_state state,
4472 u16 *timeout)
4473 {
4474 if (state == USB3_LPM_U1)
4475 return xhci_calculate_u1_timeout(xhci, udev, desc);
4476 else if (state == USB3_LPM_U2)
4477 return xhci_calculate_u2_timeout(xhci, udev, desc);
4478
4479 return USB3_LPM_DISABLED;
4480 }
4481
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4482 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4483 struct usb_device *udev,
4484 struct usb_endpoint_descriptor *desc,
4485 enum usb3_link_state state,
4486 u16 *timeout)
4487 {
4488 u16 alt_timeout;
4489
4490 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4491 desc, state, timeout);
4492
4493 /* If we found we can't enable hub-initiated LPM, or
4494 * the U1 or U2 exit latency was too high to allow
4495 * device-initiated LPM as well, just stop searching.
4496 */
4497 if (alt_timeout == USB3_LPM_DISABLED ||
4498 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4499 *timeout = alt_timeout;
4500 return -E2BIG;
4501 }
4502 if (alt_timeout > *timeout)
4503 *timeout = alt_timeout;
4504 return 0;
4505 }
4506
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4507 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4508 struct usb_device *udev,
4509 struct usb_host_interface *alt,
4510 enum usb3_link_state state,
4511 u16 *timeout)
4512 {
4513 int j;
4514
4515 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4516 if (xhci_update_timeout_for_endpoint(xhci, udev,
4517 &alt->endpoint[j].desc, state, timeout))
4518 return -E2BIG;
4519 continue;
4520 }
4521 return 0;
4522 }
4523
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4524 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4525 enum usb3_link_state state)
4526 {
4527 struct usb_device *parent;
4528 unsigned int num_hubs;
4529
4530 if (state == USB3_LPM_U2)
4531 return 0;
4532
4533 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4534 for (parent = udev->parent, num_hubs = 0; parent->parent;
4535 parent = parent->parent)
4536 num_hubs++;
4537
4538 if (num_hubs < 2)
4539 return 0;
4540
4541 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4542 " below second-tier hub.\n");
4543 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4544 "to decrease power consumption.\n");
4545 return -E2BIG;
4546 }
4547
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4548 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4549 struct usb_device *udev,
4550 enum usb3_link_state state)
4551 {
4552 if (xhci->quirks & XHCI_INTEL_HOST)
4553 return xhci_check_intel_tier_policy(udev, state);
4554 else
4555 return 0;
4556 }
4557
4558 /* Returns the U1 or U2 timeout that should be enabled.
4559 * If the tier check or timeout setting functions return with a non-zero exit
4560 * code, that means the timeout value has been finalized and we shouldn't look
4561 * at any more endpoints.
4562 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4563 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4564 struct usb_device *udev, enum usb3_link_state state)
4565 {
4566 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4567 struct usb_host_config *config;
4568 char *state_name;
4569 int i;
4570 u16 timeout = USB3_LPM_DISABLED;
4571
4572 if (state == USB3_LPM_U1)
4573 state_name = "U1";
4574 else if (state == USB3_LPM_U2)
4575 state_name = "U2";
4576 else {
4577 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4578 state);
4579 return timeout;
4580 }
4581
4582 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4583 return timeout;
4584
4585 /* Gather some information about the currently installed configuration
4586 * and alternate interface settings.
4587 */
4588 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4589 state, &timeout))
4590 return timeout;
4591
4592 config = udev->actconfig;
4593 if (!config)
4594 return timeout;
4595
4596 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4597 struct usb_driver *driver;
4598 struct usb_interface *intf = config->interface[i];
4599
4600 if (!intf)
4601 continue;
4602
4603 /* Check if any currently bound drivers want hub-initiated LPM
4604 * disabled.
4605 */
4606 if (intf->dev.driver) {
4607 driver = to_usb_driver(intf->dev.driver);
4608 if (driver && driver->disable_hub_initiated_lpm) {
4609 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4610 "at request of driver %s\n",
4611 state_name, driver->name);
4612 return xhci_get_timeout_no_hub_lpm(udev, state);
4613 }
4614 }
4615
4616 /* Not sure how this could happen... */
4617 if (!intf->cur_altsetting)
4618 continue;
4619
4620 if (xhci_update_timeout_for_interface(xhci, udev,
4621 intf->cur_altsetting,
4622 state, &timeout))
4623 return timeout;
4624 }
4625 return timeout;
4626 }
4627
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4628 static int calculate_max_exit_latency(struct usb_device *udev,
4629 enum usb3_link_state state_changed,
4630 u16 hub_encoded_timeout)
4631 {
4632 unsigned long long u1_mel_us = 0;
4633 unsigned long long u2_mel_us = 0;
4634 unsigned long long mel_us = 0;
4635 bool disabling_u1;
4636 bool disabling_u2;
4637 bool enabling_u1;
4638 bool enabling_u2;
4639
4640 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4641 hub_encoded_timeout == USB3_LPM_DISABLED);
4642 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4643 hub_encoded_timeout == USB3_LPM_DISABLED);
4644
4645 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4646 hub_encoded_timeout != USB3_LPM_DISABLED);
4647 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4648 hub_encoded_timeout != USB3_LPM_DISABLED);
4649
4650 /* If U1 was already enabled and we're not disabling it,
4651 * or we're going to enable U1, account for the U1 max exit latency.
4652 */
4653 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4654 enabling_u1)
4655 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4656 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4657 enabling_u2)
4658 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4659
4660 if (u1_mel_us > u2_mel_us)
4661 mel_us = u1_mel_us;
4662 else
4663 mel_us = u2_mel_us;
4664 /* xHCI host controller max exit latency field is only 16 bits wide. */
4665 if (mel_us > MAX_EXIT) {
4666 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4667 "is too big.\n", mel_us);
4668 return -E2BIG;
4669 }
4670 return mel_us;
4671 }
4672
4673 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4674 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4675 struct usb_device *udev, enum usb3_link_state state)
4676 {
4677 struct xhci_hcd *xhci;
4678 u16 hub_encoded_timeout;
4679 int mel;
4680 int ret;
4681
4682 xhci = hcd_to_xhci(hcd);
4683 /* The LPM timeout values are pretty host-controller specific, so don't
4684 * enable hub-initiated timeouts unless the vendor has provided
4685 * information about their timeout algorithm.
4686 */
4687 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4688 !xhci->devs[udev->slot_id])
4689 return USB3_LPM_DISABLED;
4690
4691 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4692 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4693 if (mel < 0) {
4694 /* Max Exit Latency is too big, disable LPM. */
4695 hub_encoded_timeout = USB3_LPM_DISABLED;
4696 mel = 0;
4697 }
4698
4699 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4700 if (ret)
4701 return ret;
4702 return hub_encoded_timeout;
4703 }
4704
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4705 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4706 struct usb_device *udev, enum usb3_link_state state)
4707 {
4708 struct xhci_hcd *xhci;
4709 u16 mel;
4710 int ret;
4711
4712 xhci = hcd_to_xhci(hcd);
4713 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4714 !xhci->devs[udev->slot_id])
4715 return 0;
4716
4717 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4718 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4719 if (ret)
4720 return ret;
4721 return 0;
4722 }
4723 #else /* CONFIG_PM */
4724
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4725 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4726 struct usb_device *udev, int enable)
4727 {
4728 return 0;
4729 }
4730
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4731 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4732 {
4733 return 0;
4734 }
4735
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4736 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4737 struct usb_device *udev, enum usb3_link_state state)
4738 {
4739 return USB3_LPM_DISABLED;
4740 }
4741
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4742 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4743 struct usb_device *udev, enum usb3_link_state state)
4744 {
4745 return 0;
4746 }
4747 #endif /* CONFIG_PM */
4748
4749 /*-------------------------------------------------------------------------*/
4750
4751 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4752 * internal data structures for the device.
4753 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4754 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4755 struct usb_tt *tt, gfp_t mem_flags)
4756 {
4757 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4758 struct xhci_virt_device *vdev;
4759 struct xhci_command *config_cmd;
4760 struct xhci_input_control_ctx *ctrl_ctx;
4761 struct xhci_slot_ctx *slot_ctx;
4762 unsigned long flags;
4763 unsigned think_time;
4764 int ret;
4765
4766 /* Ignore root hubs */
4767 if (!hdev->parent)
4768 return 0;
4769
4770 vdev = xhci->devs[hdev->slot_id];
4771 if (!vdev) {
4772 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4773 return -EINVAL;
4774 }
4775 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4776 if (!config_cmd) {
4777 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4778 return -ENOMEM;
4779 }
4780 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4781 if (!ctrl_ctx) {
4782 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4783 __func__);
4784 xhci_free_command(xhci, config_cmd);
4785 return -ENOMEM;
4786 }
4787
4788 spin_lock_irqsave(&xhci->lock, flags);
4789 if (hdev->speed == USB_SPEED_HIGH &&
4790 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4791 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4792 xhci_free_command(xhci, config_cmd);
4793 spin_unlock_irqrestore(&xhci->lock, flags);
4794 return -ENOMEM;
4795 }
4796
4797 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4798 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4799 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4800 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4801 /*
4802 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4803 * but it may be already set to 1 when setup an xHCI virtual
4804 * device, so clear it anyway.
4805 */
4806 if (tt->multi)
4807 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4808 else if (hdev->speed == USB_SPEED_FULL)
4809 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4810
4811 if (xhci->hci_version > 0x95) {
4812 xhci_dbg(xhci, "xHCI version %x needs hub "
4813 "TT think time and number of ports\n",
4814 (unsigned int) xhci->hci_version);
4815 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4816 /* Set TT think time - convert from ns to FS bit times.
4817 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4818 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4819 *
4820 * xHCI 1.0: this field shall be 0 if the device is not a
4821 * High-spped hub.
4822 */
4823 think_time = tt->think_time;
4824 if (think_time != 0)
4825 think_time = (think_time / 666) - 1;
4826 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4827 slot_ctx->tt_info |=
4828 cpu_to_le32(TT_THINK_TIME(think_time));
4829 } else {
4830 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4831 "TT think time or number of ports\n",
4832 (unsigned int) xhci->hci_version);
4833 }
4834 slot_ctx->dev_state = 0;
4835 spin_unlock_irqrestore(&xhci->lock, flags);
4836
4837 xhci_dbg(xhci, "Set up %s for hub device.\n",
4838 (xhci->hci_version > 0x95) ?
4839 "configure endpoint" : "evaluate context");
4840 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4841 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4842
4843 /* Issue and wait for the configure endpoint or
4844 * evaluate context command.
4845 */
4846 if (xhci->hci_version > 0x95)
4847 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4848 false, false);
4849 else
4850 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4851 true, false);
4852
4853 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4854 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4855
4856 xhci_free_command(xhci, config_cmd);
4857 return ret;
4858 }
4859
xhci_get_frame(struct usb_hcd * hcd)4860 int xhci_get_frame(struct usb_hcd *hcd)
4861 {
4862 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4863 /* EHCI mods by the periodic size. Why? */
4864 return readl(&xhci->run_regs->microframe_index) >> 3;
4865 }
4866
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4867 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4868 {
4869 struct xhci_hcd *xhci;
4870 struct device *dev = hcd->self.controller;
4871 int retval;
4872
4873 /* Accept arbitrarily long scatter-gather lists */
4874 hcd->self.sg_tablesize = ~0;
4875
4876 /* support to build packet from discontinuous buffers */
4877 hcd->self.no_sg_constraint = 1;
4878
4879 /* XHCI controllers don't stop the ep queue on short packets :| */
4880 hcd->self.no_stop_on_short = 1;
4881
4882 if (usb_hcd_is_primary_hcd(hcd)) {
4883 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4884 if (!xhci)
4885 return -ENOMEM;
4886 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4887 xhci->main_hcd = hcd;
4888 /* Mark the first roothub as being USB 2.0.
4889 * The xHCI driver will register the USB 3.0 roothub.
4890 */
4891 hcd->speed = HCD_USB2;
4892 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4893 /*
4894 * USB 2.0 roothub under xHCI has an integrated TT,
4895 * (rate matching hub) as opposed to having an OHCI/UHCI
4896 * companion controller.
4897 */
4898 hcd->has_tt = 1;
4899 } else {
4900 /* xHCI private pointer was set in xhci_pci_probe for the second
4901 * registered roothub.
4902 */
4903 return 0;
4904 }
4905
4906 mutex_init(&xhci->mutex);
4907 xhci->cap_regs = hcd->regs;
4908 xhci->op_regs = hcd->regs +
4909 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4910 xhci->run_regs = hcd->regs +
4911 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4912 /* Cache read-only capability registers */
4913 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4914 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4915 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4916 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4917 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4918 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4919 xhci_print_registers(xhci);
4920
4921 xhci->quirks = quirks;
4922
4923 get_quirks(dev, xhci);
4924
4925 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4926 * success event after a short transfer. This quirk will ignore such
4927 * spurious event.
4928 */
4929 if (xhci->hci_version > 0x96)
4930 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4931
4932 /* Make sure the HC is halted. */
4933 retval = xhci_halt(xhci);
4934 if (retval)
4935 goto error;
4936
4937 xhci_dbg(xhci, "Resetting HCD\n");
4938 /* Reset the internal HC memory state and registers. */
4939 retval = xhci_reset(xhci);
4940 if (retval)
4941 goto error;
4942 xhci_dbg(xhci, "Reset complete\n");
4943
4944 /*
4945 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4946 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4947 * address memory pointers actually. So, this driver clears the AC64
4948 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4949 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4950 */
4951 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4952 xhci->hcc_params &= ~BIT(0);
4953
4954 /* Set dma_mask and coherent_dma_mask to 64-bits,
4955 * if xHC supports 64-bit addressing */
4956 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4957 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4958 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4959 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4960 }
4961
4962 xhci_dbg(xhci, "Calling HCD init\n");
4963 /* Initialize HCD and host controller data structures. */
4964 retval = xhci_init(hcd);
4965 if (retval)
4966 goto error;
4967 xhci_dbg(xhci, "Called HCD init\n");
4968
4969 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4970 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4971
4972 return 0;
4973 error:
4974 kfree(xhci);
4975 return retval;
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4978
4979 static const struct hc_driver xhci_hc_driver = {
4980 .description = "xhci-hcd",
4981 .product_desc = "xHCI Host Controller",
4982 .hcd_priv_size = sizeof(struct xhci_hcd *),
4983
4984 /*
4985 * generic hardware linkage
4986 */
4987 .irq = xhci_irq,
4988 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4989
4990 /*
4991 * basic lifecycle operations
4992 */
4993 .reset = NULL, /* set in xhci_init_driver() */
4994 .start = xhci_run,
4995 .stop = xhci_stop,
4996 .shutdown = xhci_shutdown,
4997
4998 /*
4999 * managing i/o requests and associated device resources
5000 */
5001 .urb_enqueue = xhci_urb_enqueue,
5002 .urb_dequeue = xhci_urb_dequeue,
5003 .alloc_dev = xhci_alloc_dev,
5004 .free_dev = xhci_free_dev,
5005 .alloc_streams = xhci_alloc_streams,
5006 .free_streams = xhci_free_streams,
5007 .add_endpoint = xhci_add_endpoint,
5008 .drop_endpoint = xhci_drop_endpoint,
5009 .endpoint_reset = xhci_endpoint_reset,
5010 .check_bandwidth = xhci_check_bandwidth,
5011 .reset_bandwidth = xhci_reset_bandwidth,
5012 .address_device = xhci_address_device,
5013 .enable_device = xhci_enable_device,
5014 .update_hub_device = xhci_update_hub_device,
5015 .reset_device = xhci_discover_or_reset_device,
5016
5017 /*
5018 * scheduling support
5019 */
5020 .get_frame_number = xhci_get_frame,
5021
5022 /*
5023 * root hub support
5024 */
5025 .hub_control = xhci_hub_control,
5026 .hub_status_data = xhci_hub_status_data,
5027 .bus_suspend = xhci_bus_suspend,
5028 .bus_resume = xhci_bus_resume,
5029
5030 /*
5031 * call back when device connected and addressed
5032 */
5033 .update_device = xhci_update_device,
5034 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5035 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5036 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5037 .find_raw_port_number = xhci_find_raw_port_number,
5038 };
5039
xhci_init_driver(struct hc_driver * drv,int (* setup_fn)(struct usb_hcd *))5040 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
5041 {
5042 BUG_ON(!setup_fn);
5043 *drv = xhci_hc_driver;
5044 drv->reset = setup_fn;
5045 }
5046 EXPORT_SYMBOL_GPL(xhci_init_driver);
5047
5048 MODULE_DESCRIPTION(DRIVER_DESC);
5049 MODULE_AUTHOR(DRIVER_AUTHOR);
5050 MODULE_LICENSE("GPL");
5051
xhci_hcd_init(void)5052 static int __init xhci_hcd_init(void)
5053 {
5054 /*
5055 * Check the compiler generated sizes of structures that must be laid
5056 * out in specific ways for hardware access.
5057 */
5058 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5059 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5060 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5061 /* xhci_device_control has eight fields, and also
5062 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5063 */
5064 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5065 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5066 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5067 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5068 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5069 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5070 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5071
5072 if (usb_disabled())
5073 return -ENODEV;
5074
5075 return 0;
5076 }
5077
5078 /*
5079 * If an init function is provided, an exit function must also be provided
5080 * to allow module unload.
5081 */
xhci_hcd_fini(void)5082 static void __exit xhci_hcd_fini(void) { }
5083
5084 module_init(xhci_hcd_init);
5085 module_exit(xhci_hcd_fini);
5086