1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37 
38 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39 
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44 
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48 
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 	u32	result;
66 
67 	do {
68 		result = readl(ptr);
69 		if (result == ~(u32)0)		/* card removed */
70 			return -ENODEV;
71 		result &= mask;
72 		if (result == done)
73 			return 0;
74 		udelay(1);
75 		usec--;
76 	} while (usec > 0);
77 	return -ETIMEDOUT;
78 }
79 
80 /*
81  * Disable interrupts and begin the xHCI halting process.
82  */
xhci_quiesce(struct xhci_hcd * xhci)83 void xhci_quiesce(struct xhci_hcd *xhci)
84 {
85 	u32 halted;
86 	u32 cmd;
87 	u32 mask;
88 
89 	mask = ~(XHCI_IRQS);
90 	halted = readl(&xhci->op_regs->status) & STS_HALT;
91 	if (!halted)
92 		mask &= ~CMD_RUN;
93 
94 	cmd = readl(&xhci->op_regs->command);
95 	cmd &= mask;
96 	writel(cmd, &xhci->op_regs->command);
97 }
98 
99 /*
100  * Force HC into halt state.
101  *
102  * Disable any IRQs and clear the run/stop bit.
103  * HC will complete any current and actively pipelined transactions, and
104  * should halt within 16 ms of the run/stop bit being cleared.
105  * Read HC Halted bit in the status register to see when the HC is finished.
106  */
xhci_halt(struct xhci_hcd * xhci)107 int xhci_halt(struct xhci_hcd *xhci)
108 {
109 	int ret;
110 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
111 	xhci_quiesce(xhci);
112 
113 	ret = xhci_handshake(&xhci->op_regs->status,
114 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
115 	if (!ret) {
116 		xhci->xhc_state |= XHCI_STATE_HALTED;
117 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
118 	} else
119 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
120 				XHCI_MAX_HALT_USEC);
121 	return ret;
122 }
123 
124 /*
125  * Set the run bit and wait for the host to be running.
126  */
xhci_start(struct xhci_hcd * xhci)127 static int xhci_start(struct xhci_hcd *xhci)
128 {
129 	u32 temp;
130 	int ret;
131 
132 	temp = readl(&xhci->op_regs->command);
133 	temp |= (CMD_RUN);
134 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
135 			temp);
136 	writel(temp, &xhci->op_regs->command);
137 
138 	/*
139 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
140 	 * running.
141 	 */
142 	ret = xhci_handshake(&xhci->op_regs->status,
143 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
144 	if (ret == -ETIMEDOUT)
145 		xhci_err(xhci, "Host took too long to start, "
146 				"waited %u microseconds.\n",
147 				XHCI_MAX_HALT_USEC);
148 	if (!ret)
149 		/* clear state flags. Including dying, halted or removing */
150 		xhci->xhc_state = 0;
151 
152 	return ret;
153 }
154 
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
xhci_reset(struct xhci_hcd * xhci)162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 	u32 command;
165 	u32 state;
166 	int ret, i;
167 
168 	state = readl(&xhci->op_regs->status);
169 	if ((state & STS_HALT) == 0) {
170 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 		return 0;
172 	}
173 
174 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 	command = readl(&xhci->op_regs->command);
176 	command |= CMD_RESET;
177 	writel(command, &xhci->op_regs->command);
178 
179 	/* Existing Intel xHCI controllers require a delay of 1 mS,
180 	 * after setting the CMD_RESET bit, and before accessing any
181 	 * HC registers. This allows the HC to complete the
182 	 * reset operation and be ready for HC register access.
183 	 * Without this delay, the subsequent HC register access,
184 	 * may result in a system hang very rarely.
185 	 */
186 	if (xhci->quirks & XHCI_INTEL_HOST)
187 		udelay(1000);
188 
189 	ret = xhci_handshake(&xhci->op_regs->command,
190 			CMD_RESET, 0, 10 * 1000 * 1000);
191 	if (ret)
192 		return ret;
193 
194 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 			 "Wait for controller to be ready for doorbell rings");
196 	/*
197 	 * xHCI cannot write to any doorbells or operational registers other
198 	 * than status until the "Controller Not Ready" flag is cleared.
199 	 */
200 	ret = xhci_handshake(&xhci->op_regs->status,
201 			STS_CNR, 0, 10 * 1000 * 1000);
202 
203 	for (i = 0; i < 2; ++i) {
204 		xhci->bus_state[i].port_c_suspend = 0;
205 		xhci->bus_state[i].suspended_ports = 0;
206 		xhci->bus_state[i].resuming_ports = 0;
207 	}
208 
209 	return ret;
210 }
211 
212 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 	int i;
216 
217 	if (!xhci->msix_entries)
218 		return -EINVAL;
219 
220 	for (i = 0; i < xhci->msix_count; i++)
221 		if (xhci->msix_entries[i].vector)
222 			free_irq(xhci->msix_entries[i].vector,
223 					xhci_to_hcd(xhci));
224 	return 0;
225 }
226 
227 /*
228  * Set up MSI
229  */
xhci_setup_msi(struct xhci_hcd * xhci)230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 	int ret;
233 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 
235 	ret = pci_enable_msi(pdev);
236 	if (ret) {
237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 				"failed to allocate MSI entry");
239 		return ret;
240 	}
241 
242 	ret = request_irq(pdev->irq, xhci_msi_irq,
243 				0, "xhci_hcd", xhci_to_hcd(xhci));
244 	if (ret) {
245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 				"disable MSI interrupt");
247 		pci_disable_msi(pdev);
248 	}
249 
250 	return ret;
251 }
252 
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
xhci_free_irq(struct xhci_hcd * xhci)257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 	int ret;
261 
262 	/* return if using legacy interrupt */
263 	if (xhci_to_hcd(xhci)->irq > 0)
264 		return;
265 
266 	ret = xhci_free_msi(xhci);
267 	if (!ret)
268 		return;
269 	if (pdev->irq > 0)
270 		free_irq(pdev->irq, xhci_to_hcd(xhci));
271 
272 	return;
273 }
274 
275 /*
276  * Set up MSI-X
277  */
xhci_setup_msix(struct xhci_hcd * xhci)278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 	int i, ret = 0;
281 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283 
284 	/*
285 	 * calculate number of msi-x vectors supported.
286 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
288 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 	 *   Add additional 1 vector to ensure always available interrupt.
290 	 */
291 	xhci->msix_count = min(num_online_cpus() + 1,
292 				HCS_MAX_INTRS(xhci->hcs_params1));
293 
294 	xhci->msix_entries =
295 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 				GFP_KERNEL);
297 	if (!xhci->msix_entries) {
298 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 		return -ENOMEM;
300 	}
301 
302 	for (i = 0; i < xhci->msix_count; i++) {
303 		xhci->msix_entries[i].entry = i;
304 		xhci->msix_entries[i].vector = 0;
305 	}
306 
307 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 	if (ret) {
309 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 				"Failed to enable MSI-X");
311 		goto free_entries;
312 	}
313 
314 	for (i = 0; i < xhci->msix_count; i++) {
315 		ret = request_irq(xhci->msix_entries[i].vector,
316 				xhci_msi_irq,
317 				0, "xhci_hcd", xhci_to_hcd(xhci));
318 		if (ret)
319 			goto disable_msix;
320 	}
321 
322 	hcd->msix_enabled = 1;
323 	return ret;
324 
325 disable_msix:
326 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 	xhci_free_irq(xhci);
328 	pci_disable_msix(pdev);
329 free_entries:
330 	kfree(xhci->msix_entries);
331 	xhci->msix_entries = NULL;
332 	return ret;
333 }
334 
335 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340 
341 	if (xhci->quirks & XHCI_PLAT)
342 		return;
343 
344 	xhci_free_irq(xhci);
345 
346 	if (xhci->msix_entries) {
347 		pci_disable_msix(pdev);
348 		kfree(xhci->msix_entries);
349 		xhci->msix_entries = NULL;
350 	} else {
351 		pci_disable_msi(pdev);
352 	}
353 
354 	hcd->msix_enabled = 0;
355 	return;
356 }
357 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 	int i;
361 
362 	if (xhci->msix_entries) {
363 		for (i = 0; i < xhci->msix_count; i++)
364 			synchronize_irq(xhci->msix_entries[i].vector);
365 	}
366 }
367 
xhci_try_enable_msi(struct usb_hcd * hcd)368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 	struct pci_dev  *pdev;
372 	int ret;
373 
374 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
375 	if (xhci->quirks & XHCI_PLAT)
376 		return 0;
377 
378 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 	/*
380 	 * Some Fresco Logic host controllers advertise MSI, but fail to
381 	 * generate interrupts.  Don't even try to enable MSI.
382 	 */
383 	if (xhci->quirks & XHCI_BROKEN_MSI)
384 		goto legacy_irq;
385 
386 	/* unregister the legacy interrupt */
387 	if (hcd->irq)
388 		free_irq(hcd->irq, hcd);
389 	hcd->irq = 0;
390 
391 	ret = xhci_setup_msix(xhci);
392 	if (ret)
393 		/* fall back to msi*/
394 		ret = xhci_setup_msi(xhci);
395 
396 	if (!ret)
397 		/* hcd->irq is 0, we have MSI */
398 		return 0;
399 
400 	if (!pdev->irq) {
401 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 		return -EINVAL;
403 	}
404 
405  legacy_irq:
406 	if (!strlen(hcd->irq_descr))
407 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 			 hcd->driver->description, hcd->self.busnum);
409 
410 	/* fall back to legacy interrupt*/
411 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 			hcd->irq_descr, hcd);
413 	if (ret) {
414 		xhci_err(xhci, "request interrupt %d failed\n",
415 				pdev->irq);
416 		return ret;
417 	}
418 	hcd->irq = pdev->irq;
419 	return 0;
420 }
421 
422 #else
423 
xhci_try_enable_msi(struct usb_hcd * hcd)424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 	return 0;
427 }
428 
xhci_cleanup_msix(struct xhci_hcd * xhci)429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436 
437 #endif
438 
compliance_mode_recovery(unsigned long arg)439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 	struct xhci_hcd *xhci;
442 	struct usb_hcd *hcd;
443 	u32 temp;
444 	int i;
445 
446 	xhci = (struct xhci_hcd *)arg;
447 
448 	for (i = 0; i < xhci->num_usb3_ports; i++) {
449 		temp = readl(xhci->usb3_ports[i]);
450 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 			/*
452 			 * Compliance Mode Detected. Letting USB Core
453 			 * handle the Warm Reset
454 			 */
455 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 					"Compliance mode detected->port %d",
457 					i + 1);
458 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 					"Attempting compliance mode recovery");
460 			hcd = xhci->shared_hcd;
461 
462 			if (hcd->state == HC_STATE_SUSPENDED)
463 				usb_hcd_resume_root_hub(hcd);
464 
465 			usb_hcd_poll_rh_status(hcd);
466 		}
467 	}
468 
469 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 		mod_timer(&xhci->comp_mode_recovery_timer,
471 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473 
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 	xhci->port_status_u0 = 0;
487 	setup_timer(&xhci->comp_mode_recovery_timer,
488 		    compliance_mode_recovery, (unsigned long)xhci);
489 	xhci->comp_mode_recovery_timer.expires = jiffies +
490 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491 
492 	set_timer_slack(&xhci->comp_mode_recovery_timer,
493 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 	add_timer(&xhci->comp_mode_recovery_timer);
495 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 			"Compliance mode recovery timer initialized");
497 }
498 
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
xhci_compliance_mode_recovery_timer_quirk_check(void)505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 	const char *dmi_product_name, *dmi_sys_vendor;
508 
509 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 	if (!dmi_product_name || !dmi_sys_vendor)
512 		return false;
513 
514 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 		return false;
516 
517 	if (strstr(dmi_product_name, "Z420") ||
518 			strstr(dmi_product_name, "Z620") ||
519 			strstr(dmi_product_name, "Z820") ||
520 			strstr(dmi_product_name, "Z1 Workstation"))
521 		return true;
522 
523 	return false;
524 }
525 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530 
531 
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
xhci_init(struct usb_hcd * hcd)539 int xhci_init(struct usb_hcd *hcd)
540 {
541 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 	int retval = 0;
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 	spin_lock_init(&xhci->lock);
546 	if (xhci->hci_version == 0x95 && link_quirk) {
547 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 				"QUIRK: Not clearing Link TRB chain bits.");
549 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 	} else {
551 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 				"xHCI doesn't need link TRB QUIRK");
553 	}
554 	retval = xhci_mem_init(xhci, GFP_KERNEL);
555 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556 
557 	/* Initializing Compliance Mode Recovery Data If Needed */
558 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 		compliance_mode_recovery_timer_init(xhci);
561 	}
562 
563 	return retval;
564 }
565 
566 /*-------------------------------------------------------------------------*/
567 
568 
xhci_run_finished(struct xhci_hcd * xhci)569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 	if (xhci_start(xhci)) {
572 		xhci_halt(xhci);
573 		return -ENODEV;
574 	}
575 	xhci->shared_hcd->state = HC_STATE_RUNNING;
576 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577 
578 	if (xhci->quirks & XHCI_NEC_HOST)
579 		xhci_ring_cmd_db(xhci);
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 			"Finished xhci_run for USB3 roothub");
583 	return 0;
584 }
585 
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
xhci_run(struct usb_hcd * hcd)598 int xhci_run(struct usb_hcd *hcd)
599 {
600 	u32 temp;
601 	u64 temp_64;
602 	int ret;
603 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604 
605 	/* Start the xHCI host controller running only after the USB 2.0 roothub
606 	 * is setup.
607 	 */
608 
609 	hcd->uses_new_polling = 1;
610 	if (!usb_hcd_is_primary_hcd(hcd))
611 		return xhci_run_finished(xhci);
612 
613 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614 
615 	ret = xhci_try_enable_msi(hcd);
616 	if (ret)
617 		return ret;
618 
619 	xhci_dbg(xhci, "Command ring memory map follows:\n");
620 	xhci_debug_ring(xhci, xhci->cmd_ring);
621 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 	xhci_dbg_cmd_ptrs(xhci);
623 
624 	xhci_dbg(xhci, "ERST memory map follows:\n");
625 	xhci_dbg_erst(xhci, &xhci->erst);
626 	xhci_dbg(xhci, "Event ring:\n");
627 	xhci_debug_ring(xhci, xhci->event_ring);
628 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 	temp_64 &= ~ERST_PTR_MASK;
631 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633 
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"// Set the interrupt modulation register");
636 	temp = readl(&xhci->ir_set->irq_control);
637 	temp &= ~ER_IRQ_INTERVAL_MASK;
638 	temp |= (u32) 160;
639 	writel(temp, &xhci->ir_set->irq_control);
640 
641 	/* Set the HCD state before we enable the irqs */
642 	temp = readl(&xhci->op_regs->command);
643 	temp |= (CMD_EIE);
644 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
645 			"// Enable interrupts, cmd = 0x%x.", temp);
646 	writel(temp, &xhci->op_regs->command);
647 
648 	temp = readl(&xhci->ir_set->irq_pending);
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
651 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
652 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
653 	xhci_print_ir_set(xhci, 0);
654 
655 	if (xhci->quirks & XHCI_NEC_HOST) {
656 		struct xhci_command *command;
657 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
658 		if (!command)
659 			return -ENOMEM;
660 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
661 				TRB_TYPE(TRB_NEC_GET_FW));
662 	}
663 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664 			"Finished xhci_run for USB2 roothub");
665 	return 0;
666 }
667 EXPORT_SYMBOL_GPL(xhci_run);
668 
xhci_only_stop_hcd(struct usb_hcd * hcd)669 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
670 {
671 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672 
673 	spin_lock_irq(&xhci->lock);
674 	xhci_halt(xhci);
675 
676 	/* The shared_hcd is going to be deallocated shortly (the USB core only
677 	 * calls this function when allocation fails in usb_add_hcd(), or
678 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
679 	 */
680 	xhci->shared_hcd = NULL;
681 	spin_unlock_irq(&xhci->lock);
682 }
683 
684 /*
685  * Stop xHCI driver.
686  *
687  * This function is called by the USB core when the HC driver is removed.
688  * Its opposite is xhci_run().
689  *
690  * Disable device contexts, disable IRQs, and quiesce the HC.
691  * Reset the HC, finish any completed transactions, and cleanup memory.
692  */
xhci_stop(struct usb_hcd * hcd)693 void xhci_stop(struct usb_hcd *hcd)
694 {
695 	u32 temp;
696 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
697 
698 	mutex_lock(&xhci->mutex);
699 
700 	if (!usb_hcd_is_primary_hcd(hcd)) {
701 		xhci_only_stop_hcd(xhci->shared_hcd);
702 		mutex_unlock(&xhci->mutex);
703 		return;
704 	}
705 
706 	spin_lock_irq(&xhci->lock);
707 	/* Make sure the xHC is halted for a USB3 roothub
708 	 * (xhci_stop() could be called as part of failed init).
709 	 */
710 	xhci_halt(xhci);
711 	xhci_reset(xhci);
712 	spin_unlock_irq(&xhci->lock);
713 
714 	xhci_cleanup_msix(xhci);
715 
716 	/* Deleting Compliance Mode Recovery Timer */
717 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
718 			(!(xhci_all_ports_seen_u0(xhci)))) {
719 		del_timer_sync(&xhci->comp_mode_recovery_timer);
720 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
721 				"%s: compliance mode recovery timer deleted",
722 				__func__);
723 	}
724 
725 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
726 		usb_amd_dev_put();
727 
728 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
729 			"// Disabling event ring interrupts");
730 	temp = readl(&xhci->op_regs->status);
731 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
732 	temp = readl(&xhci->ir_set->irq_pending);
733 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
734 	xhci_print_ir_set(xhci, 0);
735 
736 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
737 	xhci_mem_cleanup(xhci);
738 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
739 			"xhci_stop completed - status = %x",
740 			readl(&xhci->op_regs->status));
741 	mutex_unlock(&xhci->mutex);
742 }
743 
744 /*
745  * Shutdown HC (not bus-specific)
746  *
747  * This is called when the machine is rebooting or halting.  We assume that the
748  * machine will be powered off, and the HC's internal state will be reset.
749  * Don't bother to free memory.
750  *
751  * This will only ever be called with the main usb_hcd (the USB3 roothub).
752  */
xhci_shutdown(struct usb_hcd * hcd)753 void xhci_shutdown(struct usb_hcd *hcd)
754 {
755 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
756 
757 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
758 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
759 
760 	spin_lock_irq(&xhci->lock);
761 	xhci_halt(xhci);
762 	/* Workaround for spurious wakeups at shutdown with HSW */
763 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
764 		xhci_reset(xhci);
765 	spin_unlock_irq(&xhci->lock);
766 
767 	xhci_cleanup_msix(xhci);
768 
769 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
770 			"xhci_shutdown completed - status = %x",
771 			readl(&xhci->op_regs->status));
772 
773 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
774 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
775 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
776 }
777 
778 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)779 static void xhci_save_registers(struct xhci_hcd *xhci)
780 {
781 	xhci->s3.command = readl(&xhci->op_regs->command);
782 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
783 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
784 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
785 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
786 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
787 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
788 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
789 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
790 }
791 
xhci_restore_registers(struct xhci_hcd * xhci)792 static void xhci_restore_registers(struct xhci_hcd *xhci)
793 {
794 	writel(xhci->s3.command, &xhci->op_regs->command);
795 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
796 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
797 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
798 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
799 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
800 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
801 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
802 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
803 }
804 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)805 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
806 {
807 	u64	val_64;
808 
809 	/* step 2: initialize command ring buffer */
810 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
811 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
812 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
813 				      xhci->cmd_ring->dequeue) &
814 		 (u64) ~CMD_RING_RSVD_BITS) |
815 		xhci->cmd_ring->cycle_state;
816 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
817 			"// Setting command ring address to 0x%llx",
818 			(long unsigned long) val_64);
819 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
820 }
821 
822 /*
823  * The whole command ring must be cleared to zero when we suspend the host.
824  *
825  * The host doesn't save the command ring pointer in the suspend well, so we
826  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
827  * aligned, because of the reserved bits in the command ring dequeue pointer
828  * register.  Therefore, we can't just set the dequeue pointer back in the
829  * middle of the ring (TRBs are 16-byte aligned).
830  */
xhci_clear_command_ring(struct xhci_hcd * xhci)831 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
832 {
833 	struct xhci_ring *ring;
834 	struct xhci_segment *seg;
835 
836 	ring = xhci->cmd_ring;
837 	seg = ring->deq_seg;
838 	do {
839 		memset(seg->trbs, 0,
840 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
841 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
842 			cpu_to_le32(~TRB_CYCLE);
843 		seg = seg->next;
844 	} while (seg != ring->deq_seg);
845 
846 	/* Reset the software enqueue and dequeue pointers */
847 	ring->deq_seg = ring->first_seg;
848 	ring->dequeue = ring->first_seg->trbs;
849 	ring->enq_seg = ring->deq_seg;
850 	ring->enqueue = ring->dequeue;
851 
852 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
853 	/*
854 	 * Ring is now zeroed, so the HW should look for change of ownership
855 	 * when the cycle bit is set to 1.
856 	 */
857 	ring->cycle_state = 1;
858 
859 	/*
860 	 * Reset the hardware dequeue pointer.
861 	 * Yes, this will need to be re-written after resume, but we're paranoid
862 	 * and want to make sure the hardware doesn't access bogus memory
863 	 * because, say, the BIOS or an SMI started the host without changing
864 	 * the command ring pointers.
865 	 */
866 	xhci_set_cmd_ring_deq(xhci);
867 }
868 
xhci_disable_port_wake_on_bits(struct xhci_hcd * xhci)869 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
870 {
871 	int port_index;
872 	__le32 __iomem **port_array;
873 	unsigned long flags;
874 	u32 t1, t2;
875 
876 	spin_lock_irqsave(&xhci->lock, flags);
877 
878 	/* disble usb3 ports Wake bits*/
879 	port_index = xhci->num_usb3_ports;
880 	port_array = xhci->usb3_ports;
881 	while (port_index--) {
882 		t1 = readl(port_array[port_index]);
883 		t1 = xhci_port_state_to_neutral(t1);
884 		t2 = t1 & ~PORT_WAKE_BITS;
885 		if (t1 != t2)
886 			writel(t2, port_array[port_index]);
887 	}
888 
889 	/* disble usb2 ports Wake bits*/
890 	port_index = xhci->num_usb2_ports;
891 	port_array = xhci->usb2_ports;
892 	while (port_index--) {
893 		t1 = readl(port_array[port_index]);
894 		t1 = xhci_port_state_to_neutral(t1);
895 		t2 = t1 & ~PORT_WAKE_BITS;
896 		if (t1 != t2)
897 			writel(t2, port_array[port_index]);
898 	}
899 
900 	spin_unlock_irqrestore(&xhci->lock, flags);
901 }
902 
903 /*
904  * Stop HC (not bus-specific)
905  *
906  * This is called when the machine transition into S3/S4 mode.
907  *
908  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)909 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
910 {
911 	int			rc = 0;
912 	unsigned int		delay = XHCI_MAX_HALT_USEC;
913 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
914 	u32			command;
915 
916 	if (hcd->state != HC_STATE_SUSPENDED ||
917 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
918 		return -EINVAL;
919 
920 	/* Clear root port wake on bits if wakeup not allowed. */
921 	if (!do_wakeup)
922 		xhci_disable_port_wake_on_bits(xhci);
923 
924 	/* Don't poll the roothubs on bus suspend. */
925 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
926 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
927 	del_timer_sync(&hcd->rh_timer);
928 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
929 	del_timer_sync(&xhci->shared_hcd->rh_timer);
930 
931 	spin_lock_irq(&xhci->lock);
932 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
933 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
934 	/* step 1: stop endpoint */
935 	/* skipped assuming that port suspend has done */
936 
937 	/* step 2: clear Run/Stop bit */
938 	command = readl(&xhci->op_regs->command);
939 	command &= ~CMD_RUN;
940 	writel(command, &xhci->op_regs->command);
941 
942 	/* Some chips from Fresco Logic need an extraordinary delay */
943 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
944 
945 	if (xhci_handshake(&xhci->op_regs->status,
946 		      STS_HALT, STS_HALT, delay)) {
947 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
948 		spin_unlock_irq(&xhci->lock);
949 		return -ETIMEDOUT;
950 	}
951 	xhci_clear_command_ring(xhci);
952 
953 	/* step 3: save registers */
954 	xhci_save_registers(xhci);
955 
956 	/* step 4: set CSS flag */
957 	command = readl(&xhci->op_regs->command);
958 	command |= CMD_CSS;
959 	writel(command, &xhci->op_regs->command);
960 	if (xhci_handshake(&xhci->op_regs->status,
961 				STS_SAVE, 0, 10 * 1000)) {
962 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
963 		spin_unlock_irq(&xhci->lock);
964 		return -ETIMEDOUT;
965 	}
966 	spin_unlock_irq(&xhci->lock);
967 
968 	/*
969 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
970 	 * is about to be suspended.
971 	 */
972 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
973 			(!(xhci_all_ports_seen_u0(xhci)))) {
974 		del_timer_sync(&xhci->comp_mode_recovery_timer);
975 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
976 				"%s: compliance mode recovery timer deleted",
977 				__func__);
978 	}
979 
980 	/* step 5: remove core well power */
981 	/* synchronize irq when using MSI-X */
982 	xhci_msix_sync_irqs(xhci);
983 
984 	return rc;
985 }
986 EXPORT_SYMBOL_GPL(xhci_suspend);
987 
988 /*
989  * start xHC (not bus-specific)
990  *
991  * This is called when the machine transition from S3/S4 mode.
992  *
993  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)994 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
995 {
996 	u32			command, temp = 0, status;
997 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
998 	struct usb_hcd		*secondary_hcd;
999 	int			retval = 0;
1000 	bool			comp_timer_running = false;
1001 
1002 	/* Wait a bit if either of the roothubs need to settle from the
1003 	 * transition into bus suspend.
1004 	 */
1005 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1006 			time_before(jiffies,
1007 				xhci->bus_state[1].next_statechange))
1008 		msleep(100);
1009 
1010 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1011 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1012 
1013 	spin_lock_irq(&xhci->lock);
1014 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1015 		hibernated = true;
1016 
1017 	if (!hibernated) {
1018 		/* step 1: restore register */
1019 		xhci_restore_registers(xhci);
1020 		/* step 2: initialize command ring buffer */
1021 		xhci_set_cmd_ring_deq(xhci);
1022 		/* step 3: restore state and start state*/
1023 		/* step 3: set CRS flag */
1024 		command = readl(&xhci->op_regs->command);
1025 		command |= CMD_CRS;
1026 		writel(command, &xhci->op_regs->command);
1027 		if (xhci_handshake(&xhci->op_regs->status,
1028 			      STS_RESTORE, 0, 10 * 1000)) {
1029 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1030 			spin_unlock_irq(&xhci->lock);
1031 			return -ETIMEDOUT;
1032 		}
1033 		temp = readl(&xhci->op_regs->status);
1034 	}
1035 
1036 	/* If restore operation fails, re-initialize the HC during resume */
1037 	if ((temp & STS_SRE) || hibernated) {
1038 
1039 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1040 				!(xhci_all_ports_seen_u0(xhci))) {
1041 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1042 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1043 				"Compliance Mode Recovery Timer deleted!");
1044 		}
1045 
1046 		/* Let the USB core know _both_ roothubs lost power. */
1047 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1048 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1049 
1050 		xhci_dbg(xhci, "Stop HCD\n");
1051 		xhci_halt(xhci);
1052 		xhci_reset(xhci);
1053 		spin_unlock_irq(&xhci->lock);
1054 		xhci_cleanup_msix(xhci);
1055 
1056 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1057 		temp = readl(&xhci->op_regs->status);
1058 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1059 		temp = readl(&xhci->ir_set->irq_pending);
1060 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1061 		xhci_print_ir_set(xhci, 0);
1062 
1063 		xhci_dbg(xhci, "cleaning up memory\n");
1064 		xhci_mem_cleanup(xhci);
1065 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1066 			    readl(&xhci->op_regs->status));
1067 
1068 		/* USB core calls the PCI reinit and start functions twice:
1069 		 * first with the primary HCD, and then with the secondary HCD.
1070 		 * If we don't do the same, the host will never be started.
1071 		 */
1072 		if (!usb_hcd_is_primary_hcd(hcd))
1073 			secondary_hcd = hcd;
1074 		else
1075 			secondary_hcd = xhci->shared_hcd;
1076 
1077 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1078 		retval = xhci_init(hcd->primary_hcd);
1079 		if (retval)
1080 			return retval;
1081 		comp_timer_running = true;
1082 
1083 		xhci_dbg(xhci, "Start the primary HCD\n");
1084 		retval = xhci_run(hcd->primary_hcd);
1085 		if (!retval) {
1086 			xhci_dbg(xhci, "Start the secondary HCD\n");
1087 			retval = xhci_run(secondary_hcd);
1088 		}
1089 		hcd->state = HC_STATE_SUSPENDED;
1090 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1091 		goto done;
1092 	}
1093 
1094 	/* step 4: set Run/Stop bit */
1095 	command = readl(&xhci->op_regs->command);
1096 	command |= CMD_RUN;
1097 	writel(command, &xhci->op_regs->command);
1098 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1099 		  0, 250 * 1000);
1100 
1101 	/* step 5: walk topology and initialize portsc,
1102 	 * portpmsc and portli
1103 	 */
1104 	/* this is done in bus_resume */
1105 
1106 	/* step 6: restart each of the previously
1107 	 * Running endpoints by ringing their doorbells
1108 	 */
1109 
1110 	spin_unlock_irq(&xhci->lock);
1111 
1112  done:
1113 	if (retval == 0) {
1114 		/* Resume root hubs only when have pending events. */
1115 		status = readl(&xhci->op_regs->status);
1116 		if (status & STS_EINT) {
1117 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1118 			usb_hcd_resume_root_hub(hcd);
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1124 	 * be re-initialized Always after a system resume. Ports are subject
1125 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1126 	 * ports have entered previously to U0 before system's suspension.
1127 	 */
1128 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1129 		compliance_mode_recovery_timer_init(xhci);
1130 
1131 	/* Re-enable port polling. */
1132 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1133 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1134 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1135 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1136 	usb_hcd_poll_rh_status(hcd);
1137 
1138 	return retval;
1139 }
1140 EXPORT_SYMBOL_GPL(xhci_resume);
1141 #endif	/* CONFIG_PM */
1142 
1143 /*-------------------------------------------------------------------------*/
1144 
1145 /**
1146  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1147  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1148  * value to right shift 1 for the bitmask.
1149  *
1150  * Index  = (epnum * 2) + direction - 1,
1151  * where direction = 0 for OUT, 1 for IN.
1152  * For control endpoints, the IN index is used (OUT index is unused), so
1153  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1154  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1155 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1156 {
1157 	unsigned int index;
1158 	if (usb_endpoint_xfer_control(desc))
1159 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1160 	else
1161 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1162 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1163 	return index;
1164 }
1165 
1166 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1167  * address from the XHCI endpoint index.
1168  */
xhci_get_endpoint_address(unsigned int ep_index)1169 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1170 {
1171 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1172 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1173 	return direction | number;
1174 }
1175 
1176 /* Find the flag for this endpoint (for use in the control context).  Use the
1177  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1178  * bit 1, etc.
1179  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1180 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1181 {
1182 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1183 }
1184 
1185 /* Find the flag for this endpoint (for use in the control context).  Use the
1186  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1187  * bit 1, etc.
1188  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1189 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1190 {
1191 	return 1 << (ep_index + 1);
1192 }
1193 
1194 /* Compute the last valid endpoint context index.  Basically, this is the
1195  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1196  * we find the most significant bit set in the added contexts flags.
1197  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1198  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1199  */
xhci_last_valid_endpoint(u32 added_ctxs)1200 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1201 {
1202 	return fls(added_ctxs) - 1;
1203 }
1204 
1205 /* Returns 1 if the arguments are OK;
1206  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1207  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1208 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1209 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1210 		const char *func) {
1211 	struct xhci_hcd	*xhci;
1212 	struct xhci_virt_device	*virt_dev;
1213 
1214 	if (!hcd || (check_ep && !ep) || !udev) {
1215 		pr_debug("xHCI %s called with invalid args\n", func);
1216 		return -EINVAL;
1217 	}
1218 	if (!udev->parent) {
1219 		pr_debug("xHCI %s called for root hub\n", func);
1220 		return 0;
1221 	}
1222 
1223 	xhci = hcd_to_xhci(hcd);
1224 	if (check_virt_dev) {
1225 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1226 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1227 					func);
1228 			return -EINVAL;
1229 		}
1230 
1231 		virt_dev = xhci->devs[udev->slot_id];
1232 		if (virt_dev->udev != udev) {
1233 			xhci_dbg(xhci, "xHCI %s called with udev and "
1234 					  "virt_dev does not match\n", func);
1235 			return -EINVAL;
1236 		}
1237 	}
1238 
1239 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1240 		return -ENODEV;
1241 
1242 	return 1;
1243 }
1244 
1245 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1246 		struct usb_device *udev, struct xhci_command *command,
1247 		bool ctx_change, bool must_succeed);
1248 
1249 /*
1250  * Full speed devices may have a max packet size greater than 8 bytes, but the
1251  * USB core doesn't know that until it reads the first 8 bytes of the
1252  * descriptor.  If the usb_device's max packet size changes after that point,
1253  * we need to issue an evaluate context command and wait on it.
1254  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1255 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1256 		unsigned int ep_index, struct urb *urb)
1257 {
1258 	struct xhci_container_ctx *out_ctx;
1259 	struct xhci_input_control_ctx *ctrl_ctx;
1260 	struct xhci_ep_ctx *ep_ctx;
1261 	struct xhci_command *command;
1262 	int max_packet_size;
1263 	int hw_max_packet_size;
1264 	int ret = 0;
1265 
1266 	out_ctx = xhci->devs[slot_id]->out_ctx;
1267 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1268 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1269 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1270 	if (hw_max_packet_size != max_packet_size) {
1271 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272 				"Max Packet Size for ep 0 changed.");
1273 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274 				"Max packet size in usb_device = %d",
1275 				max_packet_size);
1276 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1277 				"Max packet size in xHCI HW = %d",
1278 				hw_max_packet_size);
1279 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1280 				"Issuing evaluate context command.");
1281 
1282 		/* Set up the input context flags for the command */
1283 		/* FIXME: This won't work if a non-default control endpoint
1284 		 * changes max packet sizes.
1285 		 */
1286 
1287 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1288 		if (!command)
1289 			return -ENOMEM;
1290 
1291 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1292 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1293 		if (!ctrl_ctx) {
1294 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1295 					__func__);
1296 			ret = -ENOMEM;
1297 			goto command_cleanup;
1298 		}
1299 		/* Set up the modified control endpoint 0 */
1300 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1301 				xhci->devs[slot_id]->out_ctx, ep_index);
1302 
1303 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1304 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1305 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1306 
1307 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1308 		ctrl_ctx->drop_flags = 0;
1309 
1310 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1311 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1312 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1313 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1314 
1315 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1316 				true, false);
1317 
1318 		/* Clean up the input context for later use by bandwidth
1319 		 * functions.
1320 		 */
1321 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1322 command_cleanup:
1323 		kfree(command->completion);
1324 		kfree(command);
1325 	}
1326 	return ret;
1327 }
1328 
1329 /*
1330  * non-error returns are a promise to giveback() the urb later
1331  * we drop ownership so next owner (or urb unlink) can get it
1332  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1333 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1334 {
1335 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1336 	struct xhci_td *buffer;
1337 	unsigned long flags;
1338 	int ret = 0;
1339 	unsigned int slot_id, ep_index;
1340 	struct urb_priv	*urb_priv;
1341 	int size, i;
1342 
1343 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1344 					true, true, __func__) <= 0)
1345 		return -EINVAL;
1346 
1347 	slot_id = urb->dev->slot_id;
1348 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1349 
1350 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1351 		if (!in_interrupt())
1352 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1353 		ret = -ESHUTDOWN;
1354 		goto exit;
1355 	}
1356 
1357 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1358 		size = urb->number_of_packets;
1359 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1360 	    urb->transfer_buffer_length > 0 &&
1361 	    urb->transfer_flags & URB_ZERO_PACKET &&
1362 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1363 		size = 2;
1364 	else
1365 		size = 1;
1366 
1367 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1368 				  size * sizeof(struct xhci_td *), mem_flags);
1369 	if (!urb_priv)
1370 		return -ENOMEM;
1371 
1372 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1373 	if (!buffer) {
1374 		kfree(urb_priv);
1375 		return -ENOMEM;
1376 	}
1377 
1378 	for (i = 0; i < size; i++) {
1379 		urb_priv->td[i] = buffer;
1380 		buffer++;
1381 	}
1382 
1383 	urb_priv->length = size;
1384 	urb_priv->td_cnt = 0;
1385 	urb->hcpriv = urb_priv;
1386 
1387 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1388 		/* Check to see if the max packet size for the default control
1389 		 * endpoint changed during FS device enumeration
1390 		 */
1391 		if (urb->dev->speed == USB_SPEED_FULL) {
1392 			ret = xhci_check_maxpacket(xhci, slot_id,
1393 					ep_index, urb);
1394 			if (ret < 0) {
1395 				xhci_urb_free_priv(urb_priv);
1396 				urb->hcpriv = NULL;
1397 				return ret;
1398 			}
1399 		}
1400 
1401 		/* We have a spinlock and interrupts disabled, so we must pass
1402 		 * atomic context to this function, which may allocate memory.
1403 		 */
1404 		spin_lock_irqsave(&xhci->lock, flags);
1405 		if (xhci->xhc_state & XHCI_STATE_DYING)
1406 			goto dying;
1407 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1408 				slot_id, ep_index);
1409 		if (ret)
1410 			goto free_priv;
1411 		spin_unlock_irqrestore(&xhci->lock, flags);
1412 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1413 		spin_lock_irqsave(&xhci->lock, flags);
1414 		if (xhci->xhc_state & XHCI_STATE_DYING)
1415 			goto dying;
1416 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417 				EP_GETTING_STREAMS) {
1418 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419 					"is transitioning to using streams.\n");
1420 			ret = -EINVAL;
1421 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1422 				EP_GETTING_NO_STREAMS) {
1423 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1424 					"is transitioning to "
1425 					"not having streams.\n");
1426 			ret = -EINVAL;
1427 		} else {
1428 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1429 					slot_id, ep_index);
1430 		}
1431 		if (ret)
1432 			goto free_priv;
1433 		spin_unlock_irqrestore(&xhci->lock, flags);
1434 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1435 		spin_lock_irqsave(&xhci->lock, flags);
1436 		if (xhci->xhc_state & XHCI_STATE_DYING)
1437 			goto dying;
1438 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1439 				slot_id, ep_index);
1440 		if (ret)
1441 			goto free_priv;
1442 		spin_unlock_irqrestore(&xhci->lock, flags);
1443 	} else {
1444 		spin_lock_irqsave(&xhci->lock, flags);
1445 		if (xhci->xhc_state & XHCI_STATE_DYING)
1446 			goto dying;
1447 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1448 				slot_id, ep_index);
1449 		if (ret)
1450 			goto free_priv;
1451 		spin_unlock_irqrestore(&xhci->lock, flags);
1452 	}
1453 exit:
1454 	return ret;
1455 dying:
1456 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1457 			"non-responsive xHCI host.\n",
1458 			urb->ep->desc.bEndpointAddress, urb);
1459 	ret = -ESHUTDOWN;
1460 free_priv:
1461 	xhci_urb_free_priv(urb_priv);
1462 	urb->hcpriv = NULL;
1463 	spin_unlock_irqrestore(&xhci->lock, flags);
1464 	return ret;
1465 }
1466 
1467 /* Get the right ring for the given URB.
1468  * If the endpoint supports streams, boundary check the URB's stream ID.
1469  * If the endpoint doesn't support streams, return the singular endpoint ring.
1470  */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1471 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1472 		struct urb *urb)
1473 {
1474 	unsigned int slot_id;
1475 	unsigned int ep_index;
1476 	unsigned int stream_id;
1477 	struct xhci_virt_ep *ep;
1478 
1479 	slot_id = urb->dev->slot_id;
1480 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1481 	stream_id = urb->stream_id;
1482 	ep = &xhci->devs[slot_id]->eps[ep_index];
1483 	/* Common case: no streams */
1484 	if (!(ep->ep_state & EP_HAS_STREAMS))
1485 		return ep->ring;
1486 
1487 	if (stream_id == 0) {
1488 		xhci_warn(xhci,
1489 				"WARN: Slot ID %u, ep index %u has streams, "
1490 				"but URB has no stream ID.\n",
1491 				slot_id, ep_index);
1492 		return NULL;
1493 	}
1494 
1495 	if (stream_id < ep->stream_info->num_streams)
1496 		return ep->stream_info->stream_rings[stream_id];
1497 
1498 	xhci_warn(xhci,
1499 			"WARN: Slot ID %u, ep index %u has "
1500 			"stream IDs 1 to %u allocated, "
1501 			"but stream ID %u is requested.\n",
1502 			slot_id, ep_index,
1503 			ep->stream_info->num_streams - 1,
1504 			stream_id);
1505 	return NULL;
1506 }
1507 
1508 /*
1509  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1510  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1511  * should pick up where it left off in the TD, unless a Set Transfer Ring
1512  * Dequeue Pointer is issued.
1513  *
1514  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1515  * the ring.  Since the ring is a contiguous structure, they can't be physically
1516  * removed.  Instead, there are two options:
1517  *
1518  *  1) If the HC is in the middle of processing the URB to be canceled, we
1519  *     simply move the ring's dequeue pointer past those TRBs using the Set
1520  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1521  *     when drivers timeout on the last submitted URB and attempt to cancel.
1522  *
1523  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1524  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1525  *     HC will need to invalidate the any TRBs it has cached after the stop
1526  *     endpoint command, as noted in the xHCI 0.95 errata.
1527  *
1528  *  3) The TD may have completed by the time the Stop Endpoint Command
1529  *     completes, so software needs to handle that case too.
1530  *
1531  * This function should protect against the TD enqueueing code ringing the
1532  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1533  * It also needs to account for multiple cancellations on happening at the same
1534  * time for the same endpoint.
1535  *
1536  * Note that this function can be called in any context, or so says
1537  * usb_hcd_unlink_urb()
1538  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1539 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1540 {
1541 	unsigned long flags;
1542 	int ret, i;
1543 	u32 temp;
1544 	struct xhci_hcd *xhci;
1545 	struct urb_priv	*urb_priv;
1546 	struct xhci_td *td;
1547 	unsigned int ep_index;
1548 	struct xhci_ring *ep_ring;
1549 	struct xhci_virt_ep *ep;
1550 	struct xhci_command *command;
1551 
1552 	xhci = hcd_to_xhci(hcd);
1553 	spin_lock_irqsave(&xhci->lock, flags);
1554 	/* Make sure the URB hasn't completed or been unlinked already */
1555 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1556 	if (ret || !urb->hcpriv)
1557 		goto done;
1558 	temp = readl(&xhci->op_regs->status);
1559 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1560 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1561 				"HW died, freeing TD.");
1562 		urb_priv = urb->hcpriv;
1563 		for (i = urb_priv->td_cnt;
1564 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1565 		     i++) {
1566 			td = urb_priv->td[i];
1567 			if (!list_empty(&td->td_list))
1568 				list_del_init(&td->td_list);
1569 			if (!list_empty(&td->cancelled_td_list))
1570 				list_del_init(&td->cancelled_td_list);
1571 		}
1572 
1573 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1574 		spin_unlock_irqrestore(&xhci->lock, flags);
1575 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1576 		xhci_urb_free_priv(urb_priv);
1577 		return ret;
1578 	}
1579 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1580 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1581 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1582 				"Ep 0x%x: URB %p to be canceled on "
1583 				"non-responsive xHCI host.",
1584 				urb->ep->desc.bEndpointAddress, urb);
1585 		/* Let the stop endpoint command watchdog timer (which set this
1586 		 * state) finish cleaning up the endpoint TD lists.  We must
1587 		 * have caught it in the middle of dropping a lock and giving
1588 		 * back an URB.
1589 		 */
1590 		goto done;
1591 	}
1592 
1593 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1594 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1595 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1596 	if (!ep_ring) {
1597 		ret = -EINVAL;
1598 		goto done;
1599 	}
1600 
1601 	urb_priv = urb->hcpriv;
1602 	i = urb_priv->td_cnt;
1603 	if (i < urb_priv->length)
1604 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1605 				"Cancel URB %p, dev %s, ep 0x%x, "
1606 				"starting at offset 0x%llx",
1607 				urb, urb->dev->devpath,
1608 				urb->ep->desc.bEndpointAddress,
1609 				(unsigned long long) xhci_trb_virt_to_dma(
1610 					urb_priv->td[i]->start_seg,
1611 					urb_priv->td[i]->first_trb));
1612 
1613 	for (; i < urb_priv->length; i++) {
1614 		td = urb_priv->td[i];
1615 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1616 	}
1617 
1618 	/* Queue a stop endpoint command, but only if this is
1619 	 * the first cancellation to be handled.
1620 	 */
1621 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1622 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1623 		if (!command) {
1624 			ret = -ENOMEM;
1625 			goto done;
1626 		}
1627 		ep->ep_state |= EP_HALT_PENDING;
1628 		ep->stop_cmds_pending++;
1629 		ep->stop_cmd_timer.expires = jiffies +
1630 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1631 		add_timer(&ep->stop_cmd_timer);
1632 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1633 					 ep_index, 0);
1634 		xhci_ring_cmd_db(xhci);
1635 	}
1636 done:
1637 	spin_unlock_irqrestore(&xhci->lock, flags);
1638 	return ret;
1639 }
1640 
1641 /* Drop an endpoint from a new bandwidth configuration for this device.
1642  * Only one call to this function is allowed per endpoint before
1643  * check_bandwidth() or reset_bandwidth() must be called.
1644  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1645  * add the endpoint to the schedule with possibly new parameters denoted by a
1646  * different endpoint descriptor in usb_host_endpoint.
1647  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1648  * not allowed.
1649  *
1650  * The USB core will not allow URBs to be queued to an endpoint that is being
1651  * disabled, so there's no need for mutual exclusion to protect
1652  * the xhci->devs[slot_id] structure.
1653  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1654 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1655 		struct usb_host_endpoint *ep)
1656 {
1657 	struct xhci_hcd *xhci;
1658 	struct xhci_container_ctx *in_ctx, *out_ctx;
1659 	struct xhci_input_control_ctx *ctrl_ctx;
1660 	unsigned int ep_index;
1661 	struct xhci_ep_ctx *ep_ctx;
1662 	u32 drop_flag;
1663 	u32 new_add_flags, new_drop_flags;
1664 	int ret;
1665 
1666 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1667 	if (ret <= 0)
1668 		return ret;
1669 	xhci = hcd_to_xhci(hcd);
1670 	if (xhci->xhc_state & XHCI_STATE_DYING)
1671 		return -ENODEV;
1672 
1673 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1674 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1675 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1676 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1677 				__func__, drop_flag);
1678 		return 0;
1679 	}
1680 
1681 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1682 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1683 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1684 	if (!ctrl_ctx) {
1685 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1686 				__func__);
1687 		return 0;
1688 	}
1689 
1690 	ep_index = xhci_get_endpoint_index(&ep->desc);
1691 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1692 	/* If the HC already knows the endpoint is disabled,
1693 	 * or the HCD has noted it is disabled, ignore this request
1694 	 */
1695 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1696 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1697 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1698 	    xhci_get_endpoint_flag(&ep->desc)) {
1699 		/* Do not warn when called after a usb_device_reset */
1700 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1701 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1702 				  __func__, ep);
1703 		return 0;
1704 	}
1705 
1706 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1707 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1708 
1709 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1710 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1711 
1712 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1713 
1714 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1715 			(unsigned int) ep->desc.bEndpointAddress,
1716 			udev->slot_id,
1717 			(unsigned int) new_drop_flags,
1718 			(unsigned int) new_add_flags);
1719 	return 0;
1720 }
1721 
1722 /* Add an endpoint to a new possible bandwidth configuration for this device.
1723  * Only one call to this function is allowed per endpoint before
1724  * check_bandwidth() or reset_bandwidth() must be called.
1725  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1726  * add the endpoint to the schedule with possibly new parameters denoted by a
1727  * different endpoint descriptor in usb_host_endpoint.
1728  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1729  * not allowed.
1730  *
1731  * The USB core will not allow URBs to be queued to an endpoint until the
1732  * configuration or alt setting is installed in the device, so there's no need
1733  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1734  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1735 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1736 		struct usb_host_endpoint *ep)
1737 {
1738 	struct xhci_hcd *xhci;
1739 	struct xhci_container_ctx *in_ctx;
1740 	unsigned int ep_index;
1741 	struct xhci_input_control_ctx *ctrl_ctx;
1742 	u32 added_ctxs;
1743 	u32 new_add_flags, new_drop_flags;
1744 	struct xhci_virt_device *virt_dev;
1745 	int ret = 0;
1746 
1747 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1748 	if (ret <= 0) {
1749 		/* So we won't queue a reset ep command for a root hub */
1750 		ep->hcpriv = NULL;
1751 		return ret;
1752 	}
1753 	xhci = hcd_to_xhci(hcd);
1754 	if (xhci->xhc_state & XHCI_STATE_DYING)
1755 		return -ENODEV;
1756 
1757 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1758 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1759 		/* FIXME when we have to issue an evaluate endpoint command to
1760 		 * deal with ep0 max packet size changing once we get the
1761 		 * descriptors
1762 		 */
1763 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1764 				__func__, added_ctxs);
1765 		return 0;
1766 	}
1767 
1768 	virt_dev = xhci->devs[udev->slot_id];
1769 	in_ctx = virt_dev->in_ctx;
1770 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1771 	if (!ctrl_ctx) {
1772 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1773 				__func__);
1774 		return 0;
1775 	}
1776 
1777 	ep_index = xhci_get_endpoint_index(&ep->desc);
1778 	/* If this endpoint is already in use, and the upper layers are trying
1779 	 * to add it again without dropping it, reject the addition.
1780 	 */
1781 	if (virt_dev->eps[ep_index].ring &&
1782 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1783 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1784 				"without dropping it.\n",
1785 				(unsigned int) ep->desc.bEndpointAddress);
1786 		return -EINVAL;
1787 	}
1788 
1789 	/* If the HCD has already noted the endpoint is enabled,
1790 	 * ignore this request.
1791 	 */
1792 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1793 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1794 				__func__, ep);
1795 		return 0;
1796 	}
1797 
1798 	/*
1799 	 * Configuration and alternate setting changes must be done in
1800 	 * process context, not interrupt context (or so documenation
1801 	 * for usb_set_interface() and usb_set_configuration() claim).
1802 	 */
1803 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1804 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1805 				__func__, ep->desc.bEndpointAddress);
1806 		return -ENOMEM;
1807 	}
1808 
1809 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1810 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1811 
1812 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1813 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1814 	 * this re-adds a new state for the endpoint from the new endpoint
1815 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1816 	 * drop flags alone.
1817 	 */
1818 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1819 
1820 	/* Store the usb_device pointer for later use */
1821 	ep->hcpriv = udev;
1822 
1823 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1824 			(unsigned int) ep->desc.bEndpointAddress,
1825 			udev->slot_id,
1826 			(unsigned int) new_drop_flags,
1827 			(unsigned int) new_add_flags);
1828 	return 0;
1829 }
1830 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1831 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1832 {
1833 	struct xhci_input_control_ctx *ctrl_ctx;
1834 	struct xhci_ep_ctx *ep_ctx;
1835 	struct xhci_slot_ctx *slot_ctx;
1836 	int i;
1837 
1838 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1839 	if (!ctrl_ctx) {
1840 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1841 				__func__);
1842 		return;
1843 	}
1844 
1845 	/* When a device's add flag and drop flag are zero, any subsequent
1846 	 * configure endpoint command will leave that endpoint's state
1847 	 * untouched.  Make sure we don't leave any old state in the input
1848 	 * endpoint contexts.
1849 	 */
1850 	ctrl_ctx->drop_flags = 0;
1851 	ctrl_ctx->add_flags = 0;
1852 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1853 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1854 	/* Endpoint 0 is always valid */
1855 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1856 	for (i = 1; i < 31; ++i) {
1857 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1858 		ep_ctx->ep_info = 0;
1859 		ep_ctx->ep_info2 = 0;
1860 		ep_ctx->deq = 0;
1861 		ep_ctx->tx_info = 0;
1862 	}
1863 }
1864 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1865 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1866 		struct usb_device *udev, u32 *cmd_status)
1867 {
1868 	int ret;
1869 
1870 	switch (*cmd_status) {
1871 	case COMP_CMD_ABORT:
1872 	case COMP_CMD_STOP:
1873 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1874 		ret = -ETIME;
1875 		break;
1876 	case COMP_ENOMEM:
1877 		dev_warn(&udev->dev,
1878 			 "Not enough host controller resources for new device state.\n");
1879 		ret = -ENOMEM;
1880 		/* FIXME: can we allocate more resources for the HC? */
1881 		break;
1882 	case COMP_BW_ERR:
1883 	case COMP_2ND_BW_ERR:
1884 		dev_warn(&udev->dev,
1885 			 "Not enough bandwidth for new device state.\n");
1886 		ret = -ENOSPC;
1887 		/* FIXME: can we go back to the old state? */
1888 		break;
1889 	case COMP_TRB_ERR:
1890 		/* the HCD set up something wrong */
1891 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1892 				"add flag = 1, "
1893 				"and endpoint is not disabled.\n");
1894 		ret = -EINVAL;
1895 		break;
1896 	case COMP_DEV_ERR:
1897 		dev_warn(&udev->dev,
1898 			 "ERROR: Incompatible device for endpoint configure command.\n");
1899 		ret = -ENODEV;
1900 		break;
1901 	case COMP_SUCCESS:
1902 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1903 				"Successful Endpoint Configure command");
1904 		ret = 0;
1905 		break;
1906 	default:
1907 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1908 				*cmd_status);
1909 		ret = -EINVAL;
1910 		break;
1911 	}
1912 	return ret;
1913 }
1914 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1915 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1916 		struct usb_device *udev, u32 *cmd_status)
1917 {
1918 	int ret;
1919 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1920 
1921 	switch (*cmd_status) {
1922 	case COMP_CMD_ABORT:
1923 	case COMP_CMD_STOP:
1924 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1925 		ret = -ETIME;
1926 		break;
1927 	case COMP_EINVAL:
1928 		dev_warn(&udev->dev,
1929 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1930 		ret = -EINVAL;
1931 		break;
1932 	case COMP_EBADSLT:
1933 		dev_warn(&udev->dev,
1934 			"WARN: slot not enabled for evaluate context command.\n");
1935 		ret = -EINVAL;
1936 		break;
1937 	case COMP_CTX_STATE:
1938 		dev_warn(&udev->dev,
1939 			"WARN: invalid context state for evaluate context command.\n");
1940 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1941 		ret = -EINVAL;
1942 		break;
1943 	case COMP_DEV_ERR:
1944 		dev_warn(&udev->dev,
1945 			"ERROR: Incompatible device for evaluate context command.\n");
1946 		ret = -ENODEV;
1947 		break;
1948 	case COMP_MEL_ERR:
1949 		/* Max Exit Latency too large error */
1950 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1951 		ret = -EINVAL;
1952 		break;
1953 	case COMP_SUCCESS:
1954 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1955 				"Successful evaluate context command");
1956 		ret = 0;
1957 		break;
1958 	default:
1959 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1960 			*cmd_status);
1961 		ret = -EINVAL;
1962 		break;
1963 	}
1964 	return ret;
1965 }
1966 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)1967 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1968 		struct xhci_input_control_ctx *ctrl_ctx)
1969 {
1970 	u32 valid_add_flags;
1971 	u32 valid_drop_flags;
1972 
1973 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1974 	 * (bit 1).  The default control endpoint is added during the Address
1975 	 * Device command and is never removed until the slot is disabled.
1976 	 */
1977 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1978 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1979 
1980 	/* Use hweight32 to count the number of ones in the add flags, or
1981 	 * number of endpoints added.  Don't count endpoints that are changed
1982 	 * (both added and dropped).
1983 	 */
1984 	return hweight32(valid_add_flags) -
1985 		hweight32(valid_add_flags & valid_drop_flags);
1986 }
1987 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)1988 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1989 		struct xhci_input_control_ctx *ctrl_ctx)
1990 {
1991 	u32 valid_add_flags;
1992 	u32 valid_drop_flags;
1993 
1994 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1995 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1996 
1997 	return hweight32(valid_drop_flags) -
1998 		hweight32(valid_add_flags & valid_drop_flags);
1999 }
2000 
2001 /*
2002  * We need to reserve the new number of endpoints before the configure endpoint
2003  * command completes.  We can't subtract the dropped endpoints from the number
2004  * of active endpoints until the command completes because we can oversubscribe
2005  * the host in this case:
2006  *
2007  *  - the first configure endpoint command drops more endpoints than it adds
2008  *  - a second configure endpoint command that adds more endpoints is queued
2009  *  - the first configure endpoint command fails, so the config is unchanged
2010  *  - the second command may succeed, even though there isn't enough resources
2011  *
2012  * Must be called with xhci->lock held.
2013  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2014 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2015 		struct xhci_input_control_ctx *ctrl_ctx)
2016 {
2017 	u32 added_eps;
2018 
2019 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2020 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2021 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2022 				"Not enough ep ctxs: "
2023 				"%u active, need to add %u, limit is %u.",
2024 				xhci->num_active_eps, added_eps,
2025 				xhci->limit_active_eps);
2026 		return -ENOMEM;
2027 	}
2028 	xhci->num_active_eps += added_eps;
2029 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2030 			"Adding %u ep ctxs, %u now active.", added_eps,
2031 			xhci->num_active_eps);
2032 	return 0;
2033 }
2034 
2035 /*
2036  * The configure endpoint was failed by the xHC for some other reason, so we
2037  * need to revert the resources that failed configuration would have used.
2038  *
2039  * Must be called with xhci->lock held.
2040  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2041 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2042 		struct xhci_input_control_ctx *ctrl_ctx)
2043 {
2044 	u32 num_failed_eps;
2045 
2046 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2047 	xhci->num_active_eps -= num_failed_eps;
2048 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2049 			"Removing %u failed ep ctxs, %u now active.",
2050 			num_failed_eps,
2051 			xhci->num_active_eps);
2052 }
2053 
2054 /*
2055  * Now that the command has completed, clean up the active endpoint count by
2056  * subtracting out the endpoints that were dropped (but not changed).
2057  *
2058  * Must be called with xhci->lock held.
2059  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2060 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2061 		struct xhci_input_control_ctx *ctrl_ctx)
2062 {
2063 	u32 num_dropped_eps;
2064 
2065 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2066 	xhci->num_active_eps -= num_dropped_eps;
2067 	if (num_dropped_eps)
2068 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2069 				"Removing %u dropped ep ctxs, %u now active.",
2070 				num_dropped_eps,
2071 				xhci->num_active_eps);
2072 }
2073 
xhci_get_block_size(struct usb_device * udev)2074 static unsigned int xhci_get_block_size(struct usb_device *udev)
2075 {
2076 	switch (udev->speed) {
2077 	case USB_SPEED_LOW:
2078 	case USB_SPEED_FULL:
2079 		return FS_BLOCK;
2080 	case USB_SPEED_HIGH:
2081 		return HS_BLOCK;
2082 	case USB_SPEED_SUPER:
2083 		return SS_BLOCK;
2084 	case USB_SPEED_UNKNOWN:
2085 	case USB_SPEED_WIRELESS:
2086 	default:
2087 		/* Should never happen */
2088 		return 1;
2089 	}
2090 }
2091 
2092 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2093 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2094 {
2095 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2096 		return LS_OVERHEAD;
2097 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2098 		return FS_OVERHEAD;
2099 	return HS_OVERHEAD;
2100 }
2101 
2102 /* If we are changing a LS/FS device under a HS hub,
2103  * make sure (if we are activating a new TT) that the HS bus has enough
2104  * bandwidth for this new TT.
2105  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2106 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2107 		struct xhci_virt_device *virt_dev,
2108 		int old_active_eps)
2109 {
2110 	struct xhci_interval_bw_table *bw_table;
2111 	struct xhci_tt_bw_info *tt_info;
2112 
2113 	/* Find the bandwidth table for the root port this TT is attached to. */
2114 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2115 	tt_info = virt_dev->tt_info;
2116 	/* If this TT already had active endpoints, the bandwidth for this TT
2117 	 * has already been added.  Removing all periodic endpoints (and thus
2118 	 * making the TT enactive) will only decrease the bandwidth used.
2119 	 */
2120 	if (old_active_eps)
2121 		return 0;
2122 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2123 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2124 			return -ENOMEM;
2125 		return 0;
2126 	}
2127 	/* Not sure why we would have no new active endpoints...
2128 	 *
2129 	 * Maybe because of an Evaluate Context change for a hub update or a
2130 	 * control endpoint 0 max packet size change?
2131 	 * FIXME: skip the bandwidth calculation in that case.
2132 	 */
2133 	return 0;
2134 }
2135 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2136 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2137 		struct xhci_virt_device *virt_dev)
2138 {
2139 	unsigned int bw_reserved;
2140 
2141 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2142 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2143 		return -ENOMEM;
2144 
2145 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2146 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2147 		return -ENOMEM;
2148 
2149 	return 0;
2150 }
2151 
2152 /*
2153  * This algorithm is a very conservative estimate of the worst-case scheduling
2154  * scenario for any one interval.  The hardware dynamically schedules the
2155  * packets, so we can't tell which microframe could be the limiting factor in
2156  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2157  *
2158  * Obviously, we can't solve an NP complete problem to find the minimum worst
2159  * case scenario.  Instead, we come up with an estimate that is no less than
2160  * the worst case bandwidth used for any one microframe, but may be an
2161  * over-estimate.
2162  *
2163  * We walk the requirements for each endpoint by interval, starting with the
2164  * smallest interval, and place packets in the schedule where there is only one
2165  * possible way to schedule packets for that interval.  In order to simplify
2166  * this algorithm, we record the largest max packet size for each interval, and
2167  * assume all packets will be that size.
2168  *
2169  * For interval 0, we obviously must schedule all packets for each interval.
2170  * The bandwidth for interval 0 is just the amount of data to be transmitted
2171  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2172  * the number of packets).
2173  *
2174  * For interval 1, we have two possible microframes to schedule those packets
2175  * in.  For this algorithm, if we can schedule the same number of packets for
2176  * each possible scheduling opportunity (each microframe), we will do so.  The
2177  * remaining number of packets will be saved to be transmitted in the gaps in
2178  * the next interval's scheduling sequence.
2179  *
2180  * As we move those remaining packets to be scheduled with interval 2 packets,
2181  * we have to double the number of remaining packets to transmit.  This is
2182  * because the intervals are actually powers of 2, and we would be transmitting
2183  * the previous interval's packets twice in this interval.  We also have to be
2184  * sure that when we look at the largest max packet size for this interval, we
2185  * also look at the largest max packet size for the remaining packets and take
2186  * the greater of the two.
2187  *
2188  * The algorithm continues to evenly distribute packets in each scheduling
2189  * opportunity, and push the remaining packets out, until we get to the last
2190  * interval.  Then those packets and their associated overhead are just added
2191  * to the bandwidth used.
2192  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2193 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2194 		struct xhci_virt_device *virt_dev,
2195 		int old_active_eps)
2196 {
2197 	unsigned int bw_reserved;
2198 	unsigned int max_bandwidth;
2199 	unsigned int bw_used;
2200 	unsigned int block_size;
2201 	struct xhci_interval_bw_table *bw_table;
2202 	unsigned int packet_size = 0;
2203 	unsigned int overhead = 0;
2204 	unsigned int packets_transmitted = 0;
2205 	unsigned int packets_remaining = 0;
2206 	unsigned int i;
2207 
2208 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2209 		return xhci_check_ss_bw(xhci, virt_dev);
2210 
2211 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2212 		max_bandwidth = HS_BW_LIMIT;
2213 		/* Convert percent of bus BW reserved to blocks reserved */
2214 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2215 	} else {
2216 		max_bandwidth = FS_BW_LIMIT;
2217 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2218 	}
2219 
2220 	bw_table = virt_dev->bw_table;
2221 	/* We need to translate the max packet size and max ESIT payloads into
2222 	 * the units the hardware uses.
2223 	 */
2224 	block_size = xhci_get_block_size(virt_dev->udev);
2225 
2226 	/* If we are manipulating a LS/FS device under a HS hub, double check
2227 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2228 	 */
2229 	if (virt_dev->tt_info) {
2230 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2231 				"Recalculating BW for rootport %u",
2232 				virt_dev->real_port);
2233 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2234 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2235 					"newly activated TT.\n");
2236 			return -ENOMEM;
2237 		}
2238 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239 				"Recalculating BW for TT slot %u port %u",
2240 				virt_dev->tt_info->slot_id,
2241 				virt_dev->tt_info->ttport);
2242 	} else {
2243 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2244 				"Recalculating BW for rootport %u",
2245 				virt_dev->real_port);
2246 	}
2247 
2248 	/* Add in how much bandwidth will be used for interval zero, or the
2249 	 * rounded max ESIT payload + number of packets * largest overhead.
2250 	 */
2251 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2252 		bw_table->interval_bw[0].num_packets *
2253 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2254 
2255 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2256 		unsigned int bw_added;
2257 		unsigned int largest_mps;
2258 		unsigned int interval_overhead;
2259 
2260 		/*
2261 		 * How many packets could we transmit in this interval?
2262 		 * If packets didn't fit in the previous interval, we will need
2263 		 * to transmit that many packets twice within this interval.
2264 		 */
2265 		packets_remaining = 2 * packets_remaining +
2266 			bw_table->interval_bw[i].num_packets;
2267 
2268 		/* Find the largest max packet size of this or the previous
2269 		 * interval.
2270 		 */
2271 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2272 			largest_mps = 0;
2273 		else {
2274 			struct xhci_virt_ep *virt_ep;
2275 			struct list_head *ep_entry;
2276 
2277 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2278 			virt_ep = list_entry(ep_entry,
2279 					struct xhci_virt_ep, bw_endpoint_list);
2280 			/* Convert to blocks, rounding up */
2281 			largest_mps = DIV_ROUND_UP(
2282 					virt_ep->bw_info.max_packet_size,
2283 					block_size);
2284 		}
2285 		if (largest_mps > packet_size)
2286 			packet_size = largest_mps;
2287 
2288 		/* Use the larger overhead of this or the previous interval. */
2289 		interval_overhead = xhci_get_largest_overhead(
2290 				&bw_table->interval_bw[i]);
2291 		if (interval_overhead > overhead)
2292 			overhead = interval_overhead;
2293 
2294 		/* How many packets can we evenly distribute across
2295 		 * (1 << (i + 1)) possible scheduling opportunities?
2296 		 */
2297 		packets_transmitted = packets_remaining >> (i + 1);
2298 
2299 		/* Add in the bandwidth used for those scheduled packets */
2300 		bw_added = packets_transmitted * (overhead + packet_size);
2301 
2302 		/* How many packets do we have remaining to transmit? */
2303 		packets_remaining = packets_remaining % (1 << (i + 1));
2304 
2305 		/* What largest max packet size should those packets have? */
2306 		/* If we've transmitted all packets, don't carry over the
2307 		 * largest packet size.
2308 		 */
2309 		if (packets_remaining == 0) {
2310 			packet_size = 0;
2311 			overhead = 0;
2312 		} else if (packets_transmitted > 0) {
2313 			/* Otherwise if we do have remaining packets, and we've
2314 			 * scheduled some packets in this interval, take the
2315 			 * largest max packet size from endpoints with this
2316 			 * interval.
2317 			 */
2318 			packet_size = largest_mps;
2319 			overhead = interval_overhead;
2320 		}
2321 		/* Otherwise carry over packet_size and overhead from the last
2322 		 * time we had a remainder.
2323 		 */
2324 		bw_used += bw_added;
2325 		if (bw_used > max_bandwidth) {
2326 			xhci_warn(xhci, "Not enough bandwidth. "
2327 					"Proposed: %u, Max: %u\n",
2328 				bw_used, max_bandwidth);
2329 			return -ENOMEM;
2330 		}
2331 	}
2332 	/*
2333 	 * Ok, we know we have some packets left over after even-handedly
2334 	 * scheduling interval 15.  We don't know which microframes they will
2335 	 * fit into, so we over-schedule and say they will be scheduled every
2336 	 * microframe.
2337 	 */
2338 	if (packets_remaining > 0)
2339 		bw_used += overhead + packet_size;
2340 
2341 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2342 		unsigned int port_index = virt_dev->real_port - 1;
2343 
2344 		/* OK, we're manipulating a HS device attached to a
2345 		 * root port bandwidth domain.  Include the number of active TTs
2346 		 * in the bandwidth used.
2347 		 */
2348 		bw_used += TT_HS_OVERHEAD *
2349 			xhci->rh_bw[port_index].num_active_tts;
2350 	}
2351 
2352 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2353 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2354 		"Available: %u " "percent",
2355 		bw_used, max_bandwidth, bw_reserved,
2356 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2357 		max_bandwidth);
2358 
2359 	bw_used += bw_reserved;
2360 	if (bw_used > max_bandwidth) {
2361 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2362 				bw_used, max_bandwidth);
2363 		return -ENOMEM;
2364 	}
2365 
2366 	bw_table->bw_used = bw_used;
2367 	return 0;
2368 }
2369 
xhci_is_async_ep(unsigned int ep_type)2370 static bool xhci_is_async_ep(unsigned int ep_type)
2371 {
2372 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2373 					ep_type != ISOC_IN_EP &&
2374 					ep_type != INT_IN_EP);
2375 }
2376 
xhci_is_sync_in_ep(unsigned int ep_type)2377 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2378 {
2379 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2380 }
2381 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2382 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2383 {
2384 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2385 
2386 	if (ep_bw->ep_interval == 0)
2387 		return SS_OVERHEAD_BURST +
2388 			(ep_bw->mult * ep_bw->num_packets *
2389 					(SS_OVERHEAD + mps));
2390 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2391 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2392 				1 << ep_bw->ep_interval);
2393 
2394 }
2395 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2396 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2397 		struct xhci_bw_info *ep_bw,
2398 		struct xhci_interval_bw_table *bw_table,
2399 		struct usb_device *udev,
2400 		struct xhci_virt_ep *virt_ep,
2401 		struct xhci_tt_bw_info *tt_info)
2402 {
2403 	struct xhci_interval_bw	*interval_bw;
2404 	int normalized_interval;
2405 
2406 	if (xhci_is_async_ep(ep_bw->type))
2407 		return;
2408 
2409 	if (udev->speed == USB_SPEED_SUPER) {
2410 		if (xhci_is_sync_in_ep(ep_bw->type))
2411 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2412 				xhci_get_ss_bw_consumed(ep_bw);
2413 		else
2414 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2415 				xhci_get_ss_bw_consumed(ep_bw);
2416 		return;
2417 	}
2418 
2419 	/* SuperSpeed endpoints never get added to intervals in the table, so
2420 	 * this check is only valid for HS/FS/LS devices.
2421 	 */
2422 	if (list_empty(&virt_ep->bw_endpoint_list))
2423 		return;
2424 	/* For LS/FS devices, we need to translate the interval expressed in
2425 	 * microframes to frames.
2426 	 */
2427 	if (udev->speed == USB_SPEED_HIGH)
2428 		normalized_interval = ep_bw->ep_interval;
2429 	else
2430 		normalized_interval = ep_bw->ep_interval - 3;
2431 
2432 	if (normalized_interval == 0)
2433 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2434 	interval_bw = &bw_table->interval_bw[normalized_interval];
2435 	interval_bw->num_packets -= ep_bw->num_packets;
2436 	switch (udev->speed) {
2437 	case USB_SPEED_LOW:
2438 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2439 		break;
2440 	case USB_SPEED_FULL:
2441 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2442 		break;
2443 	case USB_SPEED_HIGH:
2444 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2445 		break;
2446 	case USB_SPEED_SUPER:
2447 	case USB_SPEED_UNKNOWN:
2448 	case USB_SPEED_WIRELESS:
2449 		/* Should never happen because only LS/FS/HS endpoints will get
2450 		 * added to the endpoint list.
2451 		 */
2452 		return;
2453 	}
2454 	if (tt_info)
2455 		tt_info->active_eps -= 1;
2456 	list_del_init(&virt_ep->bw_endpoint_list);
2457 }
2458 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2459 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2460 		struct xhci_bw_info *ep_bw,
2461 		struct xhci_interval_bw_table *bw_table,
2462 		struct usb_device *udev,
2463 		struct xhci_virt_ep *virt_ep,
2464 		struct xhci_tt_bw_info *tt_info)
2465 {
2466 	struct xhci_interval_bw	*interval_bw;
2467 	struct xhci_virt_ep *smaller_ep;
2468 	int normalized_interval;
2469 
2470 	if (xhci_is_async_ep(ep_bw->type))
2471 		return;
2472 
2473 	if (udev->speed == USB_SPEED_SUPER) {
2474 		if (xhci_is_sync_in_ep(ep_bw->type))
2475 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2476 				xhci_get_ss_bw_consumed(ep_bw);
2477 		else
2478 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2479 				xhci_get_ss_bw_consumed(ep_bw);
2480 		return;
2481 	}
2482 
2483 	/* For LS/FS devices, we need to translate the interval expressed in
2484 	 * microframes to frames.
2485 	 */
2486 	if (udev->speed == USB_SPEED_HIGH)
2487 		normalized_interval = ep_bw->ep_interval;
2488 	else
2489 		normalized_interval = ep_bw->ep_interval - 3;
2490 
2491 	if (normalized_interval == 0)
2492 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2493 	interval_bw = &bw_table->interval_bw[normalized_interval];
2494 	interval_bw->num_packets += ep_bw->num_packets;
2495 	switch (udev->speed) {
2496 	case USB_SPEED_LOW:
2497 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2498 		break;
2499 	case USB_SPEED_FULL:
2500 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2501 		break;
2502 	case USB_SPEED_HIGH:
2503 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2504 		break;
2505 	case USB_SPEED_SUPER:
2506 	case USB_SPEED_UNKNOWN:
2507 	case USB_SPEED_WIRELESS:
2508 		/* Should never happen because only LS/FS/HS endpoints will get
2509 		 * added to the endpoint list.
2510 		 */
2511 		return;
2512 	}
2513 
2514 	if (tt_info)
2515 		tt_info->active_eps += 1;
2516 	/* Insert the endpoint into the list, largest max packet size first. */
2517 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2518 			bw_endpoint_list) {
2519 		if (ep_bw->max_packet_size >=
2520 				smaller_ep->bw_info.max_packet_size) {
2521 			/* Add the new ep before the smaller endpoint */
2522 			list_add_tail(&virt_ep->bw_endpoint_list,
2523 					&smaller_ep->bw_endpoint_list);
2524 			return;
2525 		}
2526 	}
2527 	/* Add the new endpoint at the end of the list. */
2528 	list_add_tail(&virt_ep->bw_endpoint_list,
2529 			&interval_bw->endpoints);
2530 }
2531 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2532 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2533 		struct xhci_virt_device *virt_dev,
2534 		int old_active_eps)
2535 {
2536 	struct xhci_root_port_bw_info *rh_bw_info;
2537 	if (!virt_dev->tt_info)
2538 		return;
2539 
2540 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2541 	if (old_active_eps == 0 &&
2542 				virt_dev->tt_info->active_eps != 0) {
2543 		rh_bw_info->num_active_tts += 1;
2544 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2545 	} else if (old_active_eps != 0 &&
2546 				virt_dev->tt_info->active_eps == 0) {
2547 		rh_bw_info->num_active_tts -= 1;
2548 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2549 	}
2550 }
2551 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2552 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2553 		struct xhci_virt_device *virt_dev,
2554 		struct xhci_container_ctx *in_ctx)
2555 {
2556 	struct xhci_bw_info ep_bw_info[31];
2557 	int i;
2558 	struct xhci_input_control_ctx *ctrl_ctx;
2559 	int old_active_eps = 0;
2560 
2561 	if (virt_dev->tt_info)
2562 		old_active_eps = virt_dev->tt_info->active_eps;
2563 
2564 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2565 	if (!ctrl_ctx) {
2566 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2567 				__func__);
2568 		return -ENOMEM;
2569 	}
2570 
2571 	for (i = 0; i < 31; i++) {
2572 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2573 			continue;
2574 
2575 		/* Make a copy of the BW info in case we need to revert this */
2576 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2577 				sizeof(ep_bw_info[i]));
2578 		/* Drop the endpoint from the interval table if the endpoint is
2579 		 * being dropped or changed.
2580 		 */
2581 		if (EP_IS_DROPPED(ctrl_ctx, i))
2582 			xhci_drop_ep_from_interval_table(xhci,
2583 					&virt_dev->eps[i].bw_info,
2584 					virt_dev->bw_table,
2585 					virt_dev->udev,
2586 					&virt_dev->eps[i],
2587 					virt_dev->tt_info);
2588 	}
2589 	/* Overwrite the information stored in the endpoints' bw_info */
2590 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2591 	for (i = 0; i < 31; i++) {
2592 		/* Add any changed or added endpoints to the interval table */
2593 		if (EP_IS_ADDED(ctrl_ctx, i))
2594 			xhci_add_ep_to_interval_table(xhci,
2595 					&virt_dev->eps[i].bw_info,
2596 					virt_dev->bw_table,
2597 					virt_dev->udev,
2598 					&virt_dev->eps[i],
2599 					virt_dev->tt_info);
2600 	}
2601 
2602 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2603 		/* Ok, this fits in the bandwidth we have.
2604 		 * Update the number of active TTs.
2605 		 */
2606 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2607 		return 0;
2608 	}
2609 
2610 	/* We don't have enough bandwidth for this, revert the stored info. */
2611 	for (i = 0; i < 31; i++) {
2612 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2613 			continue;
2614 
2615 		/* Drop the new copies of any added or changed endpoints from
2616 		 * the interval table.
2617 		 */
2618 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2619 			xhci_drop_ep_from_interval_table(xhci,
2620 					&virt_dev->eps[i].bw_info,
2621 					virt_dev->bw_table,
2622 					virt_dev->udev,
2623 					&virt_dev->eps[i],
2624 					virt_dev->tt_info);
2625 		}
2626 		/* Revert the endpoint back to its old information */
2627 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2628 				sizeof(ep_bw_info[i]));
2629 		/* Add any changed or dropped endpoints back into the table */
2630 		if (EP_IS_DROPPED(ctrl_ctx, i))
2631 			xhci_add_ep_to_interval_table(xhci,
2632 					&virt_dev->eps[i].bw_info,
2633 					virt_dev->bw_table,
2634 					virt_dev->udev,
2635 					&virt_dev->eps[i],
2636 					virt_dev->tt_info);
2637 	}
2638 	return -ENOMEM;
2639 }
2640 
2641 
2642 /* Issue a configure endpoint command or evaluate context command
2643  * and wait for it to finish.
2644  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2645 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2646 		struct usb_device *udev,
2647 		struct xhci_command *command,
2648 		bool ctx_change, bool must_succeed)
2649 {
2650 	int ret;
2651 	unsigned long flags;
2652 	struct xhci_input_control_ctx *ctrl_ctx;
2653 	struct xhci_virt_device *virt_dev;
2654 
2655 	if (!command)
2656 		return -EINVAL;
2657 
2658 	spin_lock_irqsave(&xhci->lock, flags);
2659 	virt_dev = xhci->devs[udev->slot_id];
2660 
2661 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2662 	if (!ctrl_ctx) {
2663 		spin_unlock_irqrestore(&xhci->lock, flags);
2664 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665 				__func__);
2666 		return -ENOMEM;
2667 	}
2668 
2669 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2670 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2671 		spin_unlock_irqrestore(&xhci->lock, flags);
2672 		xhci_warn(xhci, "Not enough host resources, "
2673 				"active endpoint contexts = %u\n",
2674 				xhci->num_active_eps);
2675 		return -ENOMEM;
2676 	}
2677 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2678 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2679 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2680 			xhci_free_host_resources(xhci, ctrl_ctx);
2681 		spin_unlock_irqrestore(&xhci->lock, flags);
2682 		xhci_warn(xhci, "Not enough bandwidth\n");
2683 		return -ENOMEM;
2684 	}
2685 
2686 	if (!ctx_change)
2687 		ret = xhci_queue_configure_endpoint(xhci, command,
2688 				command->in_ctx->dma,
2689 				udev->slot_id, must_succeed);
2690 	else
2691 		ret = xhci_queue_evaluate_context(xhci, command,
2692 				command->in_ctx->dma,
2693 				udev->slot_id, must_succeed);
2694 	if (ret < 0) {
2695 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2696 			xhci_free_host_resources(xhci, ctrl_ctx);
2697 		spin_unlock_irqrestore(&xhci->lock, flags);
2698 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2699 				"FIXME allocate a new ring segment");
2700 		return -ENOMEM;
2701 	}
2702 	xhci_ring_cmd_db(xhci);
2703 	spin_unlock_irqrestore(&xhci->lock, flags);
2704 
2705 	/* Wait for the configure endpoint command to complete */
2706 	wait_for_completion(command->completion);
2707 
2708 	if (!ctx_change)
2709 		ret = xhci_configure_endpoint_result(xhci, udev,
2710 						     &command->status);
2711 	else
2712 		ret = xhci_evaluate_context_result(xhci, udev,
2713 						   &command->status);
2714 
2715 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2716 		spin_lock_irqsave(&xhci->lock, flags);
2717 		/* If the command failed, remove the reserved resources.
2718 		 * Otherwise, clean up the estimate to include dropped eps.
2719 		 */
2720 		if (ret)
2721 			xhci_free_host_resources(xhci, ctrl_ctx);
2722 		else
2723 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2724 		spin_unlock_irqrestore(&xhci->lock, flags);
2725 	}
2726 	return ret;
2727 }
2728 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2729 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2730 	struct xhci_virt_device *vdev, int i)
2731 {
2732 	struct xhci_virt_ep *ep = &vdev->eps[i];
2733 
2734 	if (ep->ep_state & EP_HAS_STREAMS) {
2735 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2736 				xhci_get_endpoint_address(i));
2737 		xhci_free_stream_info(xhci, ep->stream_info);
2738 		ep->stream_info = NULL;
2739 		ep->ep_state &= ~EP_HAS_STREAMS;
2740 	}
2741 }
2742 
2743 /* Called after one or more calls to xhci_add_endpoint() or
2744  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2745  * to call xhci_reset_bandwidth().
2746  *
2747  * Since we are in the middle of changing either configuration or
2748  * installing a new alt setting, the USB core won't allow URBs to be
2749  * enqueued for any endpoint on the old config or interface.  Nothing
2750  * else should be touching the xhci->devs[slot_id] structure, so we
2751  * don't need to take the xhci->lock for manipulating that.
2752  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2753 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2754 {
2755 	int i;
2756 	int ret = 0;
2757 	struct xhci_hcd *xhci;
2758 	struct xhci_virt_device	*virt_dev;
2759 	struct xhci_input_control_ctx *ctrl_ctx;
2760 	struct xhci_slot_ctx *slot_ctx;
2761 	struct xhci_command *command;
2762 
2763 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2764 	if (ret <= 0)
2765 		return ret;
2766 	xhci = hcd_to_xhci(hcd);
2767 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2768 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2769 		return -ENODEV;
2770 
2771 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2772 	virt_dev = xhci->devs[udev->slot_id];
2773 
2774 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2775 	if (!command)
2776 		return -ENOMEM;
2777 
2778 	command->in_ctx = virt_dev->in_ctx;
2779 
2780 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2781 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2782 	if (!ctrl_ctx) {
2783 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2784 				__func__);
2785 		ret = -ENOMEM;
2786 		goto command_cleanup;
2787 	}
2788 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2789 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2790 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2791 
2792 	/* Don't issue the command if there's no endpoints to update. */
2793 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2794 	    ctrl_ctx->drop_flags == 0) {
2795 		ret = 0;
2796 		goto command_cleanup;
2797 	}
2798 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2799 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2800 	for (i = 31; i >= 1; i--) {
2801 		__le32 le32 = cpu_to_le32(BIT(i));
2802 
2803 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2804 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2805 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2806 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2807 			break;
2808 		}
2809 	}
2810 	xhci_dbg(xhci, "New Input Control Context:\n");
2811 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2812 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2813 
2814 	ret = xhci_configure_endpoint(xhci, udev, command,
2815 			false, false);
2816 	if (ret)
2817 		/* Callee should call reset_bandwidth() */
2818 		goto command_cleanup;
2819 
2820 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2821 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2822 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823 
2824 	/* Free any rings that were dropped, but not changed. */
2825 	for (i = 1; i < 31; ++i) {
2826 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2827 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2828 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2829 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2830 		}
2831 	}
2832 	xhci_zero_in_ctx(xhci, virt_dev);
2833 	/*
2834 	 * Install any rings for completely new endpoints or changed endpoints,
2835 	 * and free or cache any old rings from changed endpoints.
2836 	 */
2837 	for (i = 1; i < 31; ++i) {
2838 		if (!virt_dev->eps[i].new_ring)
2839 			continue;
2840 		/* Only cache or free the old ring if it exists.
2841 		 * It may not if this is the first add of an endpoint.
2842 		 */
2843 		if (virt_dev->eps[i].ring) {
2844 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2845 		}
2846 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2847 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2848 		virt_dev->eps[i].new_ring = NULL;
2849 	}
2850 command_cleanup:
2851 	kfree(command->completion);
2852 	kfree(command);
2853 
2854 	return ret;
2855 }
2856 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2857 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2858 {
2859 	struct xhci_hcd *xhci;
2860 	struct xhci_virt_device	*virt_dev;
2861 	int i, ret;
2862 
2863 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2864 	if (ret <= 0)
2865 		return;
2866 	xhci = hcd_to_xhci(hcd);
2867 
2868 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2869 	virt_dev = xhci->devs[udev->slot_id];
2870 	/* Free any rings allocated for added endpoints */
2871 	for (i = 0; i < 31; ++i) {
2872 		if (virt_dev->eps[i].new_ring) {
2873 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2874 			virt_dev->eps[i].new_ring = NULL;
2875 		}
2876 	}
2877 	xhci_zero_in_ctx(xhci, virt_dev);
2878 }
2879 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2880 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2881 		struct xhci_container_ctx *in_ctx,
2882 		struct xhci_container_ctx *out_ctx,
2883 		struct xhci_input_control_ctx *ctrl_ctx,
2884 		u32 add_flags, u32 drop_flags)
2885 {
2886 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2887 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2888 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2889 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2890 
2891 	xhci_dbg(xhci, "Input Context:\n");
2892 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2893 }
2894 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2895 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2896 		unsigned int slot_id, unsigned int ep_index,
2897 		struct xhci_dequeue_state *deq_state)
2898 {
2899 	struct xhci_input_control_ctx *ctrl_ctx;
2900 	struct xhci_container_ctx *in_ctx;
2901 	struct xhci_ep_ctx *ep_ctx;
2902 	u32 added_ctxs;
2903 	dma_addr_t addr;
2904 
2905 	in_ctx = xhci->devs[slot_id]->in_ctx;
2906 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2907 	if (!ctrl_ctx) {
2908 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2909 				__func__);
2910 		return;
2911 	}
2912 
2913 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2914 			xhci->devs[slot_id]->out_ctx, ep_index);
2915 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2916 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2917 			deq_state->new_deq_ptr);
2918 	if (addr == 0) {
2919 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2920 				"reset ep command\n");
2921 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2922 				deq_state->new_deq_seg,
2923 				deq_state->new_deq_ptr);
2924 		return;
2925 	}
2926 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2927 
2928 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2929 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2930 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2931 			added_ctxs, added_ctxs);
2932 }
2933 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int ep_index,struct xhci_td * td)2934 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2935 			unsigned int ep_index, struct xhci_td *td)
2936 {
2937 	struct xhci_dequeue_state deq_state;
2938 	struct xhci_virt_ep *ep;
2939 	struct usb_device *udev = td->urb->dev;
2940 
2941 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2942 			"Cleaning up stalled endpoint ring");
2943 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2944 	/* We need to move the HW's dequeue pointer past this TD,
2945 	 * or it will attempt to resend it on the next doorbell ring.
2946 	 */
2947 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2948 			ep_index, ep->stopped_stream, td, &deq_state);
2949 
2950 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2951 		return;
2952 
2953 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2954 	 * issue a configure endpoint command later.
2955 	 */
2956 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2957 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2958 				"Queueing new dequeue state");
2959 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2960 				ep_index, ep->stopped_stream, &deq_state);
2961 	} else {
2962 		/* Better hope no one uses the input context between now and the
2963 		 * reset endpoint completion!
2964 		 * XXX: No idea how this hardware will react when stream rings
2965 		 * are enabled.
2966 		 */
2967 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2968 				"Setting up input context for "
2969 				"configure endpoint command");
2970 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2971 				ep_index, &deq_state);
2972 	}
2973 }
2974 
2975 /* Called when clearing halted device. The core should have sent the control
2976  * message to clear the device halt condition. The host side of the halt should
2977  * already be cleared with a reset endpoint command issued when the STALL tx
2978  * event was received.
2979  *
2980  * Context: in_interrupt
2981  */
2982 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2983 void xhci_endpoint_reset(struct usb_hcd *hcd,
2984 		struct usb_host_endpoint *ep)
2985 {
2986 	struct xhci_hcd *xhci;
2987 
2988 	xhci = hcd_to_xhci(hcd);
2989 
2990 	/*
2991 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2992 	 * The Reset Endpoint Command may only be issued to endpoints in the
2993 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2994 	 * Number of an endpoint that isn't in the Halted state, then software
2995 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2996 	 * for the target endpoint. that is in the Stopped state.
2997 	 */
2998 
2999 	/* For now just print debug to follow the situation */
3000 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3001 		 ep->desc.bEndpointAddress);
3002 }
3003 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3004 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3005 		struct usb_device *udev, struct usb_host_endpoint *ep,
3006 		unsigned int slot_id)
3007 {
3008 	int ret;
3009 	unsigned int ep_index;
3010 	unsigned int ep_state;
3011 
3012 	if (!ep)
3013 		return -EINVAL;
3014 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3015 	if (ret <= 0)
3016 		return -EINVAL;
3017 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3018 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3019 				" descriptor for ep 0x%x does not support streams\n",
3020 				ep->desc.bEndpointAddress);
3021 		return -EINVAL;
3022 	}
3023 
3024 	ep_index = xhci_get_endpoint_index(&ep->desc);
3025 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3026 	if (ep_state & EP_HAS_STREAMS ||
3027 			ep_state & EP_GETTING_STREAMS) {
3028 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3029 				"already has streams set up.\n",
3030 				ep->desc.bEndpointAddress);
3031 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3032 				"dynamic stream context array reallocation.\n");
3033 		return -EINVAL;
3034 	}
3035 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3036 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3037 				"endpoint 0x%x; URBs are pending.\n",
3038 				ep->desc.bEndpointAddress);
3039 		return -EINVAL;
3040 	}
3041 	return 0;
3042 }
3043 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3044 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3045 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3046 {
3047 	unsigned int max_streams;
3048 
3049 	/* The stream context array size must be a power of two */
3050 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3051 	/*
3052 	 * Find out how many primary stream array entries the host controller
3053 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3054 	 * level page entries), but that's an optional feature for xHCI host
3055 	 * controllers. xHCs must support at least 4 stream IDs.
3056 	 */
3057 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3058 	if (*num_stream_ctxs > max_streams) {
3059 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3060 				max_streams);
3061 		*num_stream_ctxs = max_streams;
3062 		*num_streams = max_streams;
3063 	}
3064 }
3065 
3066 /* Returns an error code if one of the endpoint already has streams.
3067  * This does not change any data structures, it only checks and gathers
3068  * information.
3069  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3070 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3071 		struct usb_device *udev,
3072 		struct usb_host_endpoint **eps, unsigned int num_eps,
3073 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3074 {
3075 	unsigned int max_streams;
3076 	unsigned int endpoint_flag;
3077 	int i;
3078 	int ret;
3079 
3080 	for (i = 0; i < num_eps; i++) {
3081 		ret = xhci_check_streams_endpoint(xhci, udev,
3082 				eps[i], udev->slot_id);
3083 		if (ret < 0)
3084 			return ret;
3085 
3086 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3087 		if (max_streams < (*num_streams - 1)) {
3088 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3089 					eps[i]->desc.bEndpointAddress,
3090 					max_streams);
3091 			*num_streams = max_streams+1;
3092 		}
3093 
3094 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3095 		if (*changed_ep_bitmask & endpoint_flag)
3096 			return -EINVAL;
3097 		*changed_ep_bitmask |= endpoint_flag;
3098 	}
3099 	return 0;
3100 }
3101 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3102 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3103 		struct usb_device *udev,
3104 		struct usb_host_endpoint **eps, unsigned int num_eps)
3105 {
3106 	u32 changed_ep_bitmask = 0;
3107 	unsigned int slot_id;
3108 	unsigned int ep_index;
3109 	unsigned int ep_state;
3110 	int i;
3111 
3112 	slot_id = udev->slot_id;
3113 	if (!xhci->devs[slot_id])
3114 		return 0;
3115 
3116 	for (i = 0; i < num_eps; i++) {
3117 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3118 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3119 		/* Are streams already being freed for the endpoint? */
3120 		if (ep_state & EP_GETTING_NO_STREAMS) {
3121 			xhci_warn(xhci, "WARN Can't disable streams for "
3122 					"endpoint 0x%x, "
3123 					"streams are being disabled already\n",
3124 					eps[i]->desc.bEndpointAddress);
3125 			return 0;
3126 		}
3127 		/* Are there actually any streams to free? */
3128 		if (!(ep_state & EP_HAS_STREAMS) &&
3129 				!(ep_state & EP_GETTING_STREAMS)) {
3130 			xhci_warn(xhci, "WARN Can't disable streams for "
3131 					"endpoint 0x%x, "
3132 					"streams are already disabled!\n",
3133 					eps[i]->desc.bEndpointAddress);
3134 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3135 					"with non-streams endpoint\n");
3136 			return 0;
3137 		}
3138 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3139 	}
3140 	return changed_ep_bitmask;
3141 }
3142 
3143 /*
3144  * The USB device drivers use this function (though the HCD interface in USB
3145  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3146  * coordinate mass storage command queueing across multiple endpoints (basically
3147  * a stream ID == a task ID).
3148  *
3149  * Setting up streams involves allocating the same size stream context array
3150  * for each endpoint and issuing a configure endpoint command for all endpoints.
3151  *
3152  * Don't allow the call to succeed if one endpoint only supports one stream
3153  * (which means it doesn't support streams at all).
3154  *
3155  * Drivers may get less stream IDs than they asked for, if the host controller
3156  * hardware or endpoints claim they can't support the number of requested
3157  * stream IDs.
3158  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3159 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3160 		struct usb_host_endpoint **eps, unsigned int num_eps,
3161 		unsigned int num_streams, gfp_t mem_flags)
3162 {
3163 	int i, ret;
3164 	struct xhci_hcd *xhci;
3165 	struct xhci_virt_device *vdev;
3166 	struct xhci_command *config_cmd;
3167 	struct xhci_input_control_ctx *ctrl_ctx;
3168 	unsigned int ep_index;
3169 	unsigned int num_stream_ctxs;
3170 	unsigned long flags;
3171 	u32 changed_ep_bitmask = 0;
3172 
3173 	if (!eps)
3174 		return -EINVAL;
3175 
3176 	/* Add one to the number of streams requested to account for
3177 	 * stream 0 that is reserved for xHCI usage.
3178 	 */
3179 	num_streams += 1;
3180 	xhci = hcd_to_xhci(hcd);
3181 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3182 			num_streams);
3183 
3184 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3185 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3186 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3187 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3188 		return -ENOSYS;
3189 	}
3190 
3191 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3192 	if (!config_cmd) {
3193 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3194 		return -ENOMEM;
3195 	}
3196 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3197 	if (!ctrl_ctx) {
3198 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3199 				__func__);
3200 		xhci_free_command(xhci, config_cmd);
3201 		return -ENOMEM;
3202 	}
3203 
3204 	/* Check to make sure all endpoints are not already configured for
3205 	 * streams.  While we're at it, find the maximum number of streams that
3206 	 * all the endpoints will support and check for duplicate endpoints.
3207 	 */
3208 	spin_lock_irqsave(&xhci->lock, flags);
3209 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3210 			num_eps, &num_streams, &changed_ep_bitmask);
3211 	if (ret < 0) {
3212 		xhci_free_command(xhci, config_cmd);
3213 		spin_unlock_irqrestore(&xhci->lock, flags);
3214 		return ret;
3215 	}
3216 	if (num_streams <= 1) {
3217 		xhci_warn(xhci, "WARN: endpoints can't handle "
3218 				"more than one stream.\n");
3219 		xhci_free_command(xhci, config_cmd);
3220 		spin_unlock_irqrestore(&xhci->lock, flags);
3221 		return -EINVAL;
3222 	}
3223 	vdev = xhci->devs[udev->slot_id];
3224 	/* Mark each endpoint as being in transition, so
3225 	 * xhci_urb_enqueue() will reject all URBs.
3226 	 */
3227 	for (i = 0; i < num_eps; i++) {
3228 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3230 	}
3231 	spin_unlock_irqrestore(&xhci->lock, flags);
3232 
3233 	/* Setup internal data structures and allocate HW data structures for
3234 	 * streams (but don't install the HW structures in the input context
3235 	 * until we're sure all memory allocation succeeded).
3236 	 */
3237 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3238 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3239 			num_stream_ctxs, num_streams);
3240 
3241 	for (i = 0; i < num_eps; i++) {
3242 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3244 				num_stream_ctxs,
3245 				num_streams, mem_flags);
3246 		if (!vdev->eps[ep_index].stream_info)
3247 			goto cleanup;
3248 		/* Set maxPstreams in endpoint context and update deq ptr to
3249 		 * point to stream context array. FIXME
3250 		 */
3251 	}
3252 
3253 	/* Set up the input context for a configure endpoint command. */
3254 	for (i = 0; i < num_eps; i++) {
3255 		struct xhci_ep_ctx *ep_ctx;
3256 
3257 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3258 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3259 
3260 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3261 				vdev->out_ctx, ep_index);
3262 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3263 				vdev->eps[ep_index].stream_info);
3264 	}
3265 	/* Tell the HW to drop its old copy of the endpoint context info
3266 	 * and add the updated copy from the input context.
3267 	 */
3268 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3269 			vdev->out_ctx, ctrl_ctx,
3270 			changed_ep_bitmask, changed_ep_bitmask);
3271 
3272 	/* Issue and wait for the configure endpoint command */
3273 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3274 			false, false);
3275 
3276 	/* xHC rejected the configure endpoint command for some reason, so we
3277 	 * leave the old ring intact and free our internal streams data
3278 	 * structure.
3279 	 */
3280 	if (ret < 0)
3281 		goto cleanup;
3282 
3283 	spin_lock_irqsave(&xhci->lock, flags);
3284 	for (i = 0; i < num_eps; i++) {
3285 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3287 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3288 			 udev->slot_id, ep_index);
3289 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3290 	}
3291 	xhci_free_command(xhci, config_cmd);
3292 	spin_unlock_irqrestore(&xhci->lock, flags);
3293 
3294 	/* Subtract 1 for stream 0, which drivers can't use */
3295 	return num_streams - 1;
3296 
3297 cleanup:
3298 	/* If it didn't work, free the streams! */
3299 	for (i = 0; i < num_eps; i++) {
3300 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3301 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3302 		vdev->eps[ep_index].stream_info = NULL;
3303 		/* FIXME Unset maxPstreams in endpoint context and
3304 		 * update deq ptr to point to normal string ring.
3305 		 */
3306 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3307 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3308 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3309 	}
3310 	xhci_free_command(xhci, config_cmd);
3311 	return -ENOMEM;
3312 }
3313 
3314 /* Transition the endpoint from using streams to being a "normal" endpoint
3315  * without streams.
3316  *
3317  * Modify the endpoint context state, submit a configure endpoint command,
3318  * and free all endpoint rings for streams if that completes successfully.
3319  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3320 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3321 		struct usb_host_endpoint **eps, unsigned int num_eps,
3322 		gfp_t mem_flags)
3323 {
3324 	int i, ret;
3325 	struct xhci_hcd *xhci;
3326 	struct xhci_virt_device *vdev;
3327 	struct xhci_command *command;
3328 	struct xhci_input_control_ctx *ctrl_ctx;
3329 	unsigned int ep_index;
3330 	unsigned long flags;
3331 	u32 changed_ep_bitmask;
3332 
3333 	xhci = hcd_to_xhci(hcd);
3334 	vdev = xhci->devs[udev->slot_id];
3335 
3336 	/* Set up a configure endpoint command to remove the streams rings */
3337 	spin_lock_irqsave(&xhci->lock, flags);
3338 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3339 			udev, eps, num_eps);
3340 	if (changed_ep_bitmask == 0) {
3341 		spin_unlock_irqrestore(&xhci->lock, flags);
3342 		return -EINVAL;
3343 	}
3344 
3345 	/* Use the xhci_command structure from the first endpoint.  We may have
3346 	 * allocated too many, but the driver may call xhci_free_streams() for
3347 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3348 	 */
3349 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3350 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3351 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3352 	if (!ctrl_ctx) {
3353 		spin_unlock_irqrestore(&xhci->lock, flags);
3354 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3355 				__func__);
3356 		return -EINVAL;
3357 	}
3358 
3359 	for (i = 0; i < num_eps; i++) {
3360 		struct xhci_ep_ctx *ep_ctx;
3361 
3362 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3364 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3365 			EP_GETTING_NO_STREAMS;
3366 
3367 		xhci_endpoint_copy(xhci, command->in_ctx,
3368 				vdev->out_ctx, ep_index);
3369 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3370 				&vdev->eps[ep_index]);
3371 	}
3372 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3373 			vdev->out_ctx, ctrl_ctx,
3374 			changed_ep_bitmask, changed_ep_bitmask);
3375 	spin_unlock_irqrestore(&xhci->lock, flags);
3376 
3377 	/* Issue and wait for the configure endpoint command,
3378 	 * which must succeed.
3379 	 */
3380 	ret = xhci_configure_endpoint(xhci, udev, command,
3381 			false, true);
3382 
3383 	/* xHC rejected the configure endpoint command for some reason, so we
3384 	 * leave the streams rings intact.
3385 	 */
3386 	if (ret < 0)
3387 		return ret;
3388 
3389 	spin_lock_irqsave(&xhci->lock, flags);
3390 	for (i = 0; i < num_eps; i++) {
3391 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3392 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3393 		vdev->eps[ep_index].stream_info = NULL;
3394 		/* FIXME Unset maxPstreams in endpoint context and
3395 		 * update deq ptr to point to normal string ring.
3396 		 */
3397 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3398 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3399 	}
3400 	spin_unlock_irqrestore(&xhci->lock, flags);
3401 
3402 	return 0;
3403 }
3404 
3405 /*
3406  * Deletes endpoint resources for endpoints that were active before a Reset
3407  * Device command, or a Disable Slot command.  The Reset Device command leaves
3408  * the control endpoint intact, whereas the Disable Slot command deletes it.
3409  *
3410  * Must be called with xhci->lock held.
3411  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3412 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3413 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3414 {
3415 	int i;
3416 	unsigned int num_dropped_eps = 0;
3417 	unsigned int drop_flags = 0;
3418 
3419 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3420 		if (virt_dev->eps[i].ring) {
3421 			drop_flags |= 1 << i;
3422 			num_dropped_eps++;
3423 		}
3424 	}
3425 	xhci->num_active_eps -= num_dropped_eps;
3426 	if (num_dropped_eps)
3427 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3428 				"Dropped %u ep ctxs, flags = 0x%x, "
3429 				"%u now active.",
3430 				num_dropped_eps, drop_flags,
3431 				xhci->num_active_eps);
3432 }
3433 
3434 /*
3435  * This submits a Reset Device Command, which will set the device state to 0,
3436  * set the device address to 0, and disable all the endpoints except the default
3437  * control endpoint.  The USB core should come back and call
3438  * xhci_address_device(), and then re-set up the configuration.  If this is
3439  * called because of a usb_reset_and_verify_device(), then the old alternate
3440  * settings will be re-installed through the normal bandwidth allocation
3441  * functions.
3442  *
3443  * Wait for the Reset Device command to finish.  Remove all structures
3444  * associated with the endpoints that were disabled.  Clear the input device
3445  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3446  *
3447  * If the virt_dev to be reset does not exist or does not match the udev,
3448  * it means the device is lost, possibly due to the xHC restore error and
3449  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3450  * re-allocate the device.
3451  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3452 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3453 {
3454 	int ret, i;
3455 	unsigned long flags;
3456 	struct xhci_hcd *xhci;
3457 	unsigned int slot_id;
3458 	struct xhci_virt_device *virt_dev;
3459 	struct xhci_command *reset_device_cmd;
3460 	int last_freed_endpoint;
3461 	struct xhci_slot_ctx *slot_ctx;
3462 	int old_active_eps = 0;
3463 
3464 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3465 	if (ret <= 0)
3466 		return ret;
3467 	xhci = hcd_to_xhci(hcd);
3468 	slot_id = udev->slot_id;
3469 	virt_dev = xhci->devs[slot_id];
3470 	if (!virt_dev) {
3471 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3472 				"not exist. Re-allocate the device\n", slot_id);
3473 		ret = xhci_alloc_dev(hcd, udev);
3474 		if (ret == 1)
3475 			return 0;
3476 		else
3477 			return -EINVAL;
3478 	}
3479 
3480 	if (virt_dev->tt_info)
3481 		old_active_eps = virt_dev->tt_info->active_eps;
3482 
3483 	if (virt_dev->udev != udev) {
3484 		/* If the virt_dev and the udev does not match, this virt_dev
3485 		 * may belong to another udev.
3486 		 * Re-allocate the device.
3487 		 */
3488 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3489 				"not match the udev. Re-allocate the device\n",
3490 				slot_id);
3491 		ret = xhci_alloc_dev(hcd, udev);
3492 		if (ret == 1)
3493 			return 0;
3494 		else
3495 			return -EINVAL;
3496 	}
3497 
3498 	/* If device is not setup, there is no point in resetting it */
3499 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3500 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3501 						SLOT_STATE_DISABLED)
3502 		return 0;
3503 
3504 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3505 	/* Allocate the command structure that holds the struct completion.
3506 	 * Assume we're in process context, since the normal device reset
3507 	 * process has to wait for the device anyway.  Storage devices are
3508 	 * reset as part of error handling, so use GFP_NOIO instead of
3509 	 * GFP_KERNEL.
3510 	 */
3511 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3512 	if (!reset_device_cmd) {
3513 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3514 		return -ENOMEM;
3515 	}
3516 
3517 	/* Attempt to submit the Reset Device command to the command ring */
3518 	spin_lock_irqsave(&xhci->lock, flags);
3519 
3520 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3521 	if (ret) {
3522 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3523 		spin_unlock_irqrestore(&xhci->lock, flags);
3524 		goto command_cleanup;
3525 	}
3526 	xhci_ring_cmd_db(xhci);
3527 	spin_unlock_irqrestore(&xhci->lock, flags);
3528 
3529 	/* Wait for the Reset Device command to finish */
3530 	wait_for_completion(reset_device_cmd->completion);
3531 
3532 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3533 	 * unless we tried to reset a slot ID that wasn't enabled,
3534 	 * or the device wasn't in the addressed or configured state.
3535 	 */
3536 	ret = reset_device_cmd->status;
3537 	switch (ret) {
3538 	case COMP_CMD_ABORT:
3539 	case COMP_CMD_STOP:
3540 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3541 		ret = -ETIME;
3542 		goto command_cleanup;
3543 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3544 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3545 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3546 				slot_id,
3547 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3548 		xhci_dbg(xhci, "Not freeing device rings.\n");
3549 		/* Don't treat this as an error.  May change my mind later. */
3550 		ret = 0;
3551 		goto command_cleanup;
3552 	case COMP_SUCCESS:
3553 		xhci_dbg(xhci, "Successful reset device command.\n");
3554 		break;
3555 	default:
3556 		if (xhci_is_vendor_info_code(xhci, ret))
3557 			break;
3558 		xhci_warn(xhci, "Unknown completion code %u for "
3559 				"reset device command.\n", ret);
3560 		ret = -EINVAL;
3561 		goto command_cleanup;
3562 	}
3563 
3564 	/* Free up host controller endpoint resources */
3565 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3566 		spin_lock_irqsave(&xhci->lock, flags);
3567 		/* Don't delete the default control endpoint resources */
3568 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3569 		spin_unlock_irqrestore(&xhci->lock, flags);
3570 	}
3571 
3572 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3573 	last_freed_endpoint = 1;
3574 	for (i = 1; i < 31; ++i) {
3575 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3576 
3577 		if (ep->ep_state & EP_HAS_STREAMS) {
3578 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3579 					xhci_get_endpoint_address(i));
3580 			xhci_free_stream_info(xhci, ep->stream_info);
3581 			ep->stream_info = NULL;
3582 			ep->ep_state &= ~EP_HAS_STREAMS;
3583 		}
3584 
3585 		if (ep->ring) {
3586 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3587 			last_freed_endpoint = i;
3588 		}
3589 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3590 			xhci_drop_ep_from_interval_table(xhci,
3591 					&virt_dev->eps[i].bw_info,
3592 					virt_dev->bw_table,
3593 					udev,
3594 					&virt_dev->eps[i],
3595 					virt_dev->tt_info);
3596 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3597 	}
3598 	/* If necessary, update the number of active TTs on this root port */
3599 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3600 
3601 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3602 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3603 	ret = 0;
3604 
3605 command_cleanup:
3606 	xhci_free_command(xhci, reset_device_cmd);
3607 	return ret;
3608 }
3609 
3610 /*
3611  * At this point, the struct usb_device is about to go away, the device has
3612  * disconnected, and all traffic has been stopped and the endpoints have been
3613  * disabled.  Free any HC data structures associated with that device.
3614  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3615 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3616 {
3617 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3618 	struct xhci_virt_device *virt_dev;
3619 	unsigned long flags;
3620 	u32 state;
3621 	int i, ret;
3622 	struct xhci_command *command;
3623 
3624 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3625 	if (!command)
3626 		return;
3627 
3628 #ifndef CONFIG_USB_DEFAULT_PERSIST
3629 	/*
3630 	 * We called pm_runtime_get_noresume when the device was attached.
3631 	 * Decrement the counter here to allow controller to runtime suspend
3632 	 * if no devices remain.
3633 	 */
3634 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3635 		pm_runtime_put_noidle(hcd->self.controller);
3636 #endif
3637 
3638 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3639 	/* If the host is halted due to driver unload, we still need to free the
3640 	 * device.
3641 	 */
3642 	if (ret <= 0 && ret != -ENODEV) {
3643 		kfree(command);
3644 		return;
3645 	}
3646 
3647 	virt_dev = xhci->devs[udev->slot_id];
3648 
3649 	/* Stop any wayward timer functions (which may grab the lock) */
3650 	for (i = 0; i < 31; ++i) {
3651 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3652 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3653 	}
3654 
3655 	spin_lock_irqsave(&xhci->lock, flags);
3656 	/* Don't disable the slot if the host controller is dead. */
3657 	state = readl(&xhci->op_regs->status);
3658 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3659 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3660 		xhci_free_virt_device(xhci, udev->slot_id);
3661 		spin_unlock_irqrestore(&xhci->lock, flags);
3662 		kfree(command);
3663 		return;
3664 	}
3665 
3666 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3667 				    udev->slot_id)) {
3668 		spin_unlock_irqrestore(&xhci->lock, flags);
3669 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3670 		return;
3671 	}
3672 	xhci_ring_cmd_db(xhci);
3673 	spin_unlock_irqrestore(&xhci->lock, flags);
3674 
3675 	/*
3676 	 * Event command completion handler will free any data structures
3677 	 * associated with the slot.  XXX Can free sleep?
3678 	 */
3679 }
3680 
3681 /*
3682  * Checks if we have enough host controller resources for the default control
3683  * endpoint.
3684  *
3685  * Must be called with xhci->lock held.
3686  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3687 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3688 {
3689 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3690 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3691 				"Not enough ep ctxs: "
3692 				"%u active, need to add 1, limit is %u.",
3693 				xhci->num_active_eps, xhci->limit_active_eps);
3694 		return -ENOMEM;
3695 	}
3696 	xhci->num_active_eps += 1;
3697 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3698 			"Adding 1 ep ctx, %u now active.",
3699 			xhci->num_active_eps);
3700 	return 0;
3701 }
3702 
3703 
3704 /*
3705  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3706  * timed out, or allocating memory failed.  Returns 1 on success.
3707  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3708 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3709 {
3710 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3711 	unsigned long flags;
3712 	int ret, slot_id;
3713 	struct xhci_command *command;
3714 
3715 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3716 	if (!command)
3717 		return 0;
3718 
3719 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3720 	mutex_lock(&xhci->mutex);
3721 	spin_lock_irqsave(&xhci->lock, flags);
3722 	command->completion = &xhci->addr_dev;
3723 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3724 	if (ret) {
3725 		spin_unlock_irqrestore(&xhci->lock, flags);
3726 		mutex_unlock(&xhci->mutex);
3727 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3728 		kfree(command);
3729 		return 0;
3730 	}
3731 	xhci_ring_cmd_db(xhci);
3732 	spin_unlock_irqrestore(&xhci->lock, flags);
3733 
3734 	wait_for_completion(command->completion);
3735 	slot_id = xhci->slot_id;
3736 	mutex_unlock(&xhci->mutex);
3737 
3738 	if (!slot_id || command->status != COMP_SUCCESS) {
3739 		xhci_err(xhci, "Error while assigning device slot ID\n");
3740 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3741 				HCS_MAX_SLOTS(
3742 					readl(&xhci->cap_regs->hcs_params1)));
3743 		kfree(command);
3744 		return 0;
3745 	}
3746 
3747 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3748 		spin_lock_irqsave(&xhci->lock, flags);
3749 		ret = xhci_reserve_host_control_ep_resources(xhci);
3750 		if (ret) {
3751 			spin_unlock_irqrestore(&xhci->lock, flags);
3752 			xhci_warn(xhci, "Not enough host resources, "
3753 					"active endpoint contexts = %u\n",
3754 					xhci->num_active_eps);
3755 			goto disable_slot;
3756 		}
3757 		spin_unlock_irqrestore(&xhci->lock, flags);
3758 	}
3759 	/* Use GFP_NOIO, since this function can be called from
3760 	 * xhci_discover_or_reset_device(), which may be called as part of
3761 	 * mass storage driver error handling.
3762 	 */
3763 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3764 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3765 		goto disable_slot;
3766 	}
3767 	udev->slot_id = slot_id;
3768 
3769 #ifndef CONFIG_USB_DEFAULT_PERSIST
3770 	/*
3771 	 * If resetting upon resume, we can't put the controller into runtime
3772 	 * suspend if there is a device attached.
3773 	 */
3774 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3775 		pm_runtime_get_noresume(hcd->self.controller);
3776 #endif
3777 
3778 
3779 	kfree(command);
3780 	/* Is this a LS or FS device under a HS hub? */
3781 	/* Hub or peripherial? */
3782 	return 1;
3783 
3784 disable_slot:
3785 	/* Disable slot, if we can do it without mem alloc */
3786 	spin_lock_irqsave(&xhci->lock, flags);
3787 	command->completion = NULL;
3788 	command->status = 0;
3789 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3790 				     udev->slot_id))
3791 		xhci_ring_cmd_db(xhci);
3792 	spin_unlock_irqrestore(&xhci->lock, flags);
3793 	return 0;
3794 }
3795 
3796 /*
3797  * Issue an Address Device command and optionally send a corresponding
3798  * SetAddress request to the device.
3799  * We should be protected by the usb_address0_mutex in hub_wq's hub_port_init,
3800  * so we should only issue and wait on one address command at the same time.
3801  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)3802 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3803 			     enum xhci_setup_dev setup)
3804 {
3805 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3806 	unsigned long flags;
3807 	struct xhci_virt_device *virt_dev;
3808 	int ret = 0;
3809 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3810 	struct xhci_slot_ctx *slot_ctx;
3811 	struct xhci_input_control_ctx *ctrl_ctx;
3812 	u64 temp_64;
3813 	struct xhci_command *command = NULL;
3814 
3815 	mutex_lock(&xhci->mutex);
3816 
3817 	if (xhci->xhc_state)	/* dying, removing or halted */
3818 		goto out;
3819 
3820 	if (!udev->slot_id) {
3821 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3822 				"Bad Slot ID %d", udev->slot_id);
3823 		ret = -EINVAL;
3824 		goto out;
3825 	}
3826 
3827 	virt_dev = xhci->devs[udev->slot_id];
3828 
3829 	if (WARN_ON(!virt_dev)) {
3830 		/*
3831 		 * In plug/unplug torture test with an NEC controller,
3832 		 * a zero-dereference was observed once due to virt_dev = 0.
3833 		 * Print useful debug rather than crash if it is observed again!
3834 		 */
3835 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3836 			udev->slot_id);
3837 		ret = -EINVAL;
3838 		goto out;
3839 	}
3840 
3841 	if (setup == SETUP_CONTEXT_ONLY) {
3842 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3843 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3844 		    SLOT_STATE_DEFAULT) {
3845 			xhci_dbg(xhci, "Slot already in default state\n");
3846 			goto out;
3847 		}
3848 	}
3849 
3850 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3851 	if (!command) {
3852 		ret = -ENOMEM;
3853 		goto out;
3854 	}
3855 
3856 	command->in_ctx = virt_dev->in_ctx;
3857 	command->completion = &xhci->addr_dev;
3858 
3859 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3860 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3861 	if (!ctrl_ctx) {
3862 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3863 				__func__);
3864 		ret = -EINVAL;
3865 		goto out;
3866 	}
3867 	/*
3868 	 * If this is the first Set Address since device plug-in or
3869 	 * virt_device realloaction after a resume with an xHCI power loss,
3870 	 * then set up the slot context.
3871 	 */
3872 	if (!slot_ctx->dev_info)
3873 		xhci_setup_addressable_virt_dev(xhci, udev);
3874 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3875 	else
3876 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3877 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3878 	ctrl_ctx->drop_flags = 0;
3879 
3880 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3881 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3882 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3883 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3884 
3885 	spin_lock_irqsave(&xhci->lock, flags);
3886 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3887 					udev->slot_id, setup);
3888 	if (ret) {
3889 		spin_unlock_irqrestore(&xhci->lock, flags);
3890 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3891 				"FIXME: allocate a command ring segment");
3892 		goto out;
3893 	}
3894 	xhci_ring_cmd_db(xhci);
3895 	spin_unlock_irqrestore(&xhci->lock, flags);
3896 
3897 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3898 	wait_for_completion(command->completion);
3899 
3900 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3901 	 * the SetAddress() "recovery interval" required by USB and aborting the
3902 	 * command on a timeout.
3903 	 */
3904 	switch (command->status) {
3905 	case COMP_CMD_ABORT:
3906 	case COMP_CMD_STOP:
3907 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3908 		ret = -ETIME;
3909 		break;
3910 	case COMP_CTX_STATE:
3911 	case COMP_EBADSLT:
3912 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3913 			 act, udev->slot_id);
3914 		ret = -EINVAL;
3915 		break;
3916 	case COMP_TX_ERR:
3917 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3918 		ret = -EPROTO;
3919 		break;
3920 	case COMP_DEV_ERR:
3921 		dev_warn(&udev->dev,
3922 			 "ERROR: Incompatible device for setup %s command\n", act);
3923 		ret = -ENODEV;
3924 		break;
3925 	case COMP_SUCCESS:
3926 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927 			       "Successful setup %s command", act);
3928 		break;
3929 	default:
3930 		xhci_err(xhci,
3931 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3932 			 act, command->status);
3933 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3934 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3935 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3936 		ret = -EINVAL;
3937 		break;
3938 	}
3939 	if (ret)
3940 		goto out;
3941 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3942 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3943 			"Op regs DCBAA ptr = %#016llx", temp_64);
3944 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3945 		"Slot ID %d dcbaa entry @%p = %#016llx",
3946 		udev->slot_id,
3947 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3948 		(unsigned long long)
3949 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3950 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951 			"Output Context DMA address = %#08llx",
3952 			(unsigned long long)virt_dev->out_ctx->dma);
3953 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3954 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3955 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3956 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3957 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3958 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3959 	/*
3960 	 * USB core uses address 1 for the roothubs, so we add one to the
3961 	 * address given back to us by the HC.
3962 	 */
3963 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3964 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3965 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3966 	/* Zero the input context control for later use */
3967 	ctrl_ctx->add_flags = 0;
3968 	ctrl_ctx->drop_flags = 0;
3969 
3970 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3971 		       "Internal device address = %d",
3972 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3973 out:
3974 	mutex_unlock(&xhci->mutex);
3975 	kfree(command);
3976 	return ret;
3977 }
3978 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3979 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3980 {
3981 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3982 }
3983 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)3984 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3985 {
3986 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3987 }
3988 
3989 /*
3990  * Transfer the port index into real index in the HW port status
3991  * registers. Caculate offset between the port's PORTSC register
3992  * and port status base. Divide the number of per port register
3993  * to get the real index. The raw port number bases 1.
3994  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)3995 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3996 {
3997 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3998 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3999 	__le32 __iomem *addr;
4000 	int raw_port;
4001 
4002 	if (hcd->speed != HCD_USB3)
4003 		addr = xhci->usb2_ports[port1 - 1];
4004 	else
4005 		addr = xhci->usb3_ports[port1 - 1];
4006 
4007 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4008 	return raw_port;
4009 }
4010 
4011 /*
4012  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4013  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4014  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4015 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4016 			struct usb_device *udev, u16 max_exit_latency)
4017 {
4018 	struct xhci_virt_device *virt_dev;
4019 	struct xhci_command *command;
4020 	struct xhci_input_control_ctx *ctrl_ctx;
4021 	struct xhci_slot_ctx *slot_ctx;
4022 	unsigned long flags;
4023 	int ret;
4024 
4025 	spin_lock_irqsave(&xhci->lock, flags);
4026 
4027 	virt_dev = xhci->devs[udev->slot_id];
4028 
4029 	/*
4030 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4031 	 * xHC was re-initialized. Exit latency will be set later after
4032 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4033 	 */
4034 
4035 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4036 		spin_unlock_irqrestore(&xhci->lock, flags);
4037 		return 0;
4038 	}
4039 
4040 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4041 	command = xhci->lpm_command;
4042 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4043 	if (!ctrl_ctx) {
4044 		spin_unlock_irqrestore(&xhci->lock, flags);
4045 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4046 				__func__);
4047 		return -ENOMEM;
4048 	}
4049 
4050 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4051 	spin_unlock_irqrestore(&xhci->lock, flags);
4052 
4053 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4054 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4055 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4056 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4057 	slot_ctx->dev_state = 0;
4058 
4059 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4060 			"Set up evaluate context for LPM MEL change.");
4061 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4062 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4063 
4064 	/* Issue and wait for the evaluate context command. */
4065 	ret = xhci_configure_endpoint(xhci, udev, command,
4066 			true, true);
4067 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4068 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4069 
4070 	if (!ret) {
4071 		spin_lock_irqsave(&xhci->lock, flags);
4072 		virt_dev->current_mel = max_exit_latency;
4073 		spin_unlock_irqrestore(&xhci->lock, flags);
4074 	}
4075 	return ret;
4076 }
4077 
4078 #ifdef CONFIG_PM
4079 
4080 /* BESL to HIRD Encoding array for USB2 LPM */
4081 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4082 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4083 
4084 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4085 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4086 					struct usb_device *udev)
4087 {
4088 	int u2del, besl, besl_host;
4089 	int besl_device = 0;
4090 	u32 field;
4091 
4092 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4093 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4094 
4095 	if (field & USB_BESL_SUPPORT) {
4096 		for (besl_host = 0; besl_host < 16; besl_host++) {
4097 			if (xhci_besl_encoding[besl_host] >= u2del)
4098 				break;
4099 		}
4100 		/* Use baseline BESL value as default */
4101 		if (field & USB_BESL_BASELINE_VALID)
4102 			besl_device = USB_GET_BESL_BASELINE(field);
4103 		else if (field & USB_BESL_DEEP_VALID)
4104 			besl_device = USB_GET_BESL_DEEP(field);
4105 	} else {
4106 		if (u2del <= 50)
4107 			besl_host = 0;
4108 		else
4109 			besl_host = (u2del - 51) / 75 + 1;
4110 	}
4111 
4112 	besl = besl_host + besl_device;
4113 	if (besl > 15)
4114 		besl = 15;
4115 
4116 	return besl;
4117 }
4118 
4119 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4120 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4121 {
4122 	u32 field;
4123 	int l1;
4124 	int besld = 0;
4125 	int hirdm = 0;
4126 
4127 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4128 
4129 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4130 	l1 = udev->l1_params.timeout / 256;
4131 
4132 	/* device has preferred BESLD */
4133 	if (field & USB_BESL_DEEP_VALID) {
4134 		besld = USB_GET_BESL_DEEP(field);
4135 		hirdm = 1;
4136 	}
4137 
4138 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4139 }
4140 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4141 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4142 			struct usb_device *udev, int enable)
4143 {
4144 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4145 	__le32 __iomem	**port_array;
4146 	__le32 __iomem	*pm_addr, *hlpm_addr;
4147 	u32		pm_val, hlpm_val, field;
4148 	unsigned int	port_num;
4149 	unsigned long	flags;
4150 	int		hird, exit_latency;
4151 	int		ret;
4152 
4153 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4154 			!udev->lpm_capable)
4155 		return -EPERM;
4156 
4157 	if (!udev->parent || udev->parent->parent ||
4158 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4159 		return -EPERM;
4160 
4161 	if (udev->usb2_hw_lpm_capable != 1)
4162 		return -EPERM;
4163 
4164 	spin_lock_irqsave(&xhci->lock, flags);
4165 
4166 	port_array = xhci->usb2_ports;
4167 	port_num = udev->portnum - 1;
4168 	pm_addr = port_array[port_num] + PORTPMSC;
4169 	pm_val = readl(pm_addr);
4170 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4171 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4172 
4173 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4174 			enable ? "enable" : "disable", port_num + 1);
4175 
4176 	if (enable) {
4177 		/* Host supports BESL timeout instead of HIRD */
4178 		if (udev->usb2_hw_lpm_besl_capable) {
4179 			/* if device doesn't have a preferred BESL value use a
4180 			 * default one which works with mixed HIRD and BESL
4181 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4182 			 */
4183 			if ((field & USB_BESL_SUPPORT) &&
4184 			    (field & USB_BESL_BASELINE_VALID))
4185 				hird = USB_GET_BESL_BASELINE(field);
4186 			else
4187 				hird = udev->l1_params.besl;
4188 
4189 			exit_latency = xhci_besl_encoding[hird];
4190 			spin_unlock_irqrestore(&xhci->lock, flags);
4191 
4192 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4193 			 * input context for link powermanagement evaluate
4194 			 * context commands. It is protected by hcd->bandwidth
4195 			 * mutex and is shared by all devices. We need to set
4196 			 * the max ext latency in USB 2 BESL LPM as well, so
4197 			 * use the same mutex and xhci_change_max_exit_latency()
4198 			 */
4199 			mutex_lock(hcd->bandwidth_mutex);
4200 			ret = xhci_change_max_exit_latency(xhci, udev,
4201 							   exit_latency);
4202 			mutex_unlock(hcd->bandwidth_mutex);
4203 
4204 			if (ret < 0)
4205 				return ret;
4206 			spin_lock_irqsave(&xhci->lock, flags);
4207 
4208 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4209 			writel(hlpm_val, hlpm_addr);
4210 			/* flush write */
4211 			readl(hlpm_addr);
4212 		} else {
4213 			hird = xhci_calculate_hird_besl(xhci, udev);
4214 		}
4215 
4216 		pm_val &= ~PORT_HIRD_MASK;
4217 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4218 		writel(pm_val, pm_addr);
4219 		pm_val = readl(pm_addr);
4220 		pm_val |= PORT_HLE;
4221 		writel(pm_val, pm_addr);
4222 		/* flush write */
4223 		readl(pm_addr);
4224 	} else {
4225 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4226 		writel(pm_val, pm_addr);
4227 		/* flush write */
4228 		readl(pm_addr);
4229 		if (udev->usb2_hw_lpm_besl_capable) {
4230 			spin_unlock_irqrestore(&xhci->lock, flags);
4231 			mutex_lock(hcd->bandwidth_mutex);
4232 			xhci_change_max_exit_latency(xhci, udev, 0);
4233 			mutex_unlock(hcd->bandwidth_mutex);
4234 			return 0;
4235 		}
4236 	}
4237 
4238 	spin_unlock_irqrestore(&xhci->lock, flags);
4239 	return 0;
4240 }
4241 
4242 /* check if a usb2 port supports a given extened capability protocol
4243  * only USB2 ports extended protocol capability values are cached.
4244  * Return 1 if capability is supported
4245  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4246 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4247 					   unsigned capability)
4248 {
4249 	u32 port_offset, port_count;
4250 	int i;
4251 
4252 	for (i = 0; i < xhci->num_ext_caps; i++) {
4253 		if (xhci->ext_caps[i] & capability) {
4254 			/* port offsets starts at 1 */
4255 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4256 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4257 			if (port >= port_offset &&
4258 			    port < port_offset + port_count)
4259 				return 1;
4260 		}
4261 	}
4262 	return 0;
4263 }
4264 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4265 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4266 {
4267 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4268 	int		portnum = udev->portnum - 1;
4269 
4270 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4271 			!udev->lpm_capable)
4272 		return 0;
4273 
4274 	/* we only support lpm for non-hub device connected to root hub yet */
4275 	if (!udev->parent || udev->parent->parent ||
4276 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4277 		return 0;
4278 
4279 	if (xhci->hw_lpm_support == 1 &&
4280 			xhci_check_usb2_port_capability(
4281 				xhci, portnum, XHCI_HLC)) {
4282 		udev->usb2_hw_lpm_capable = 1;
4283 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4284 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4285 		if (xhci_check_usb2_port_capability(xhci, portnum,
4286 					XHCI_BLC))
4287 			udev->usb2_hw_lpm_besl_capable = 1;
4288 	}
4289 
4290 	return 0;
4291 }
4292 
4293 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4294 
4295 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4296 static unsigned long long xhci_service_interval_to_ns(
4297 		struct usb_endpoint_descriptor *desc)
4298 {
4299 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4300 }
4301 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4302 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4303 		enum usb3_link_state state)
4304 {
4305 	unsigned long long sel;
4306 	unsigned long long pel;
4307 	unsigned int max_sel_pel;
4308 	char *state_name;
4309 
4310 	switch (state) {
4311 	case USB3_LPM_U1:
4312 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4313 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4314 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4315 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4316 		state_name = "U1";
4317 		break;
4318 	case USB3_LPM_U2:
4319 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4320 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4321 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4322 		state_name = "U2";
4323 		break;
4324 	default:
4325 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4326 				__func__);
4327 		return USB3_LPM_DISABLED;
4328 	}
4329 
4330 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4331 		return USB3_LPM_DEVICE_INITIATED;
4332 
4333 	if (sel > max_sel_pel)
4334 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4335 				"due to long SEL %llu ms\n",
4336 				state_name, sel);
4337 	else
4338 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4339 				"due to long PEL %llu ms\n",
4340 				state_name, pel);
4341 	return USB3_LPM_DISABLED;
4342 }
4343 
4344 /* The U1 timeout should be the maximum of the following values:
4345  *  - For control endpoints, U1 system exit latency (SEL) * 3
4346  *  - For bulk endpoints, U1 SEL * 5
4347  *  - For interrupt endpoints:
4348  *    - Notification EPs, U1 SEL * 3
4349  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4350  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4351  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4352 static unsigned long long xhci_calculate_intel_u1_timeout(
4353 		struct usb_device *udev,
4354 		struct usb_endpoint_descriptor *desc)
4355 {
4356 	unsigned long long timeout_ns;
4357 	int ep_type;
4358 	int intr_type;
4359 
4360 	ep_type = usb_endpoint_type(desc);
4361 	switch (ep_type) {
4362 	case USB_ENDPOINT_XFER_CONTROL:
4363 		timeout_ns = udev->u1_params.sel * 3;
4364 		break;
4365 	case USB_ENDPOINT_XFER_BULK:
4366 		timeout_ns = udev->u1_params.sel * 5;
4367 		break;
4368 	case USB_ENDPOINT_XFER_INT:
4369 		intr_type = usb_endpoint_interrupt_type(desc);
4370 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4371 			timeout_ns = udev->u1_params.sel * 3;
4372 			break;
4373 		}
4374 		/* Otherwise the calculation is the same as isoc eps */
4375 	case USB_ENDPOINT_XFER_ISOC:
4376 		timeout_ns = xhci_service_interval_to_ns(desc);
4377 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4378 		if (timeout_ns < udev->u1_params.sel * 2)
4379 			timeout_ns = udev->u1_params.sel * 2;
4380 		break;
4381 	default:
4382 		return 0;
4383 	}
4384 
4385 	return timeout_ns;
4386 }
4387 
4388 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4389 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4390 		struct usb_device *udev,
4391 		struct usb_endpoint_descriptor *desc)
4392 {
4393 	unsigned long long timeout_ns;
4394 
4395 	if (xhci->quirks & XHCI_INTEL_HOST)
4396 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4397 	else
4398 		timeout_ns = udev->u1_params.sel;
4399 
4400 	/* The U1 timeout is encoded in 1us intervals.
4401 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4402 	 */
4403 	if (timeout_ns == USB3_LPM_DISABLED)
4404 		timeout_ns = 1;
4405 	else
4406 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4407 
4408 	/* If the necessary timeout value is bigger than what we can set in the
4409 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4410 	 */
4411 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4412 		return timeout_ns;
4413 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4414 			"due to long timeout %llu ms\n", timeout_ns);
4415 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4416 }
4417 
4418 /* The U2 timeout should be the maximum of:
4419  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4420  *  - largest bInterval of any active periodic endpoint (to avoid going
4421  *    into lower power link states between intervals).
4422  *  - the U2 Exit Latency of the device
4423  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4424 static unsigned long long xhci_calculate_intel_u2_timeout(
4425 		struct usb_device *udev,
4426 		struct usb_endpoint_descriptor *desc)
4427 {
4428 	unsigned long long timeout_ns;
4429 	unsigned long long u2_del_ns;
4430 
4431 	timeout_ns = 10 * 1000 * 1000;
4432 
4433 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4434 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4435 		timeout_ns = xhci_service_interval_to_ns(desc);
4436 
4437 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4438 	if (u2_del_ns > timeout_ns)
4439 		timeout_ns = u2_del_ns;
4440 
4441 	return timeout_ns;
4442 }
4443 
4444 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4445 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4446 		struct usb_device *udev,
4447 		struct usb_endpoint_descriptor *desc)
4448 {
4449 	unsigned long long timeout_ns;
4450 
4451 	if (xhci->quirks & XHCI_INTEL_HOST)
4452 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4453 	else
4454 		timeout_ns = udev->u2_params.sel;
4455 
4456 	/* The U2 timeout is encoded in 256us intervals */
4457 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4458 	/* If the necessary timeout value is bigger than what we can set in the
4459 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4460 	 */
4461 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4462 		return timeout_ns;
4463 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4464 			"due to long timeout %llu ms\n", timeout_ns);
4465 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4466 }
4467 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4468 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4469 		struct usb_device *udev,
4470 		struct usb_endpoint_descriptor *desc,
4471 		enum usb3_link_state state,
4472 		u16 *timeout)
4473 {
4474 	if (state == USB3_LPM_U1)
4475 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4476 	else if (state == USB3_LPM_U2)
4477 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4478 
4479 	return USB3_LPM_DISABLED;
4480 }
4481 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4482 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4483 		struct usb_device *udev,
4484 		struct usb_endpoint_descriptor *desc,
4485 		enum usb3_link_state state,
4486 		u16 *timeout)
4487 {
4488 	u16 alt_timeout;
4489 
4490 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4491 		desc, state, timeout);
4492 
4493 	/* If we found we can't enable hub-initiated LPM, or
4494 	 * the U1 or U2 exit latency was too high to allow
4495 	 * device-initiated LPM as well, just stop searching.
4496 	 */
4497 	if (alt_timeout == USB3_LPM_DISABLED ||
4498 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4499 		*timeout = alt_timeout;
4500 		return -E2BIG;
4501 	}
4502 	if (alt_timeout > *timeout)
4503 		*timeout = alt_timeout;
4504 	return 0;
4505 }
4506 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4507 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4508 		struct usb_device *udev,
4509 		struct usb_host_interface *alt,
4510 		enum usb3_link_state state,
4511 		u16 *timeout)
4512 {
4513 	int j;
4514 
4515 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4516 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4517 					&alt->endpoint[j].desc, state, timeout))
4518 			return -E2BIG;
4519 		continue;
4520 	}
4521 	return 0;
4522 }
4523 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4524 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4525 		enum usb3_link_state state)
4526 {
4527 	struct usb_device *parent;
4528 	unsigned int num_hubs;
4529 
4530 	if (state == USB3_LPM_U2)
4531 		return 0;
4532 
4533 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4534 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4535 			parent = parent->parent)
4536 		num_hubs++;
4537 
4538 	if (num_hubs < 2)
4539 		return 0;
4540 
4541 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4542 			" below second-tier hub.\n");
4543 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4544 			"to decrease power consumption.\n");
4545 	return -E2BIG;
4546 }
4547 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4548 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4549 		struct usb_device *udev,
4550 		enum usb3_link_state state)
4551 {
4552 	if (xhci->quirks & XHCI_INTEL_HOST)
4553 		return xhci_check_intel_tier_policy(udev, state);
4554 	else
4555 		return 0;
4556 }
4557 
4558 /* Returns the U1 or U2 timeout that should be enabled.
4559  * If the tier check or timeout setting functions return with a non-zero exit
4560  * code, that means the timeout value has been finalized and we shouldn't look
4561  * at any more endpoints.
4562  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4563 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4564 			struct usb_device *udev, enum usb3_link_state state)
4565 {
4566 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4567 	struct usb_host_config *config;
4568 	char *state_name;
4569 	int i;
4570 	u16 timeout = USB3_LPM_DISABLED;
4571 
4572 	if (state == USB3_LPM_U1)
4573 		state_name = "U1";
4574 	else if (state == USB3_LPM_U2)
4575 		state_name = "U2";
4576 	else {
4577 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4578 				state);
4579 		return timeout;
4580 	}
4581 
4582 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4583 		return timeout;
4584 
4585 	/* Gather some information about the currently installed configuration
4586 	 * and alternate interface settings.
4587 	 */
4588 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4589 			state, &timeout))
4590 		return timeout;
4591 
4592 	config = udev->actconfig;
4593 	if (!config)
4594 		return timeout;
4595 
4596 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4597 		struct usb_driver *driver;
4598 		struct usb_interface *intf = config->interface[i];
4599 
4600 		if (!intf)
4601 			continue;
4602 
4603 		/* Check if any currently bound drivers want hub-initiated LPM
4604 		 * disabled.
4605 		 */
4606 		if (intf->dev.driver) {
4607 			driver = to_usb_driver(intf->dev.driver);
4608 			if (driver && driver->disable_hub_initiated_lpm) {
4609 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4610 						"at request of driver %s\n",
4611 						state_name, driver->name);
4612 				return xhci_get_timeout_no_hub_lpm(udev, state);
4613 			}
4614 		}
4615 
4616 		/* Not sure how this could happen... */
4617 		if (!intf->cur_altsetting)
4618 			continue;
4619 
4620 		if (xhci_update_timeout_for_interface(xhci, udev,
4621 					intf->cur_altsetting,
4622 					state, &timeout))
4623 			return timeout;
4624 	}
4625 	return timeout;
4626 }
4627 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4628 static int calculate_max_exit_latency(struct usb_device *udev,
4629 		enum usb3_link_state state_changed,
4630 		u16 hub_encoded_timeout)
4631 {
4632 	unsigned long long u1_mel_us = 0;
4633 	unsigned long long u2_mel_us = 0;
4634 	unsigned long long mel_us = 0;
4635 	bool disabling_u1;
4636 	bool disabling_u2;
4637 	bool enabling_u1;
4638 	bool enabling_u2;
4639 
4640 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4641 			hub_encoded_timeout == USB3_LPM_DISABLED);
4642 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4643 			hub_encoded_timeout == USB3_LPM_DISABLED);
4644 
4645 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4646 			hub_encoded_timeout != USB3_LPM_DISABLED);
4647 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4648 			hub_encoded_timeout != USB3_LPM_DISABLED);
4649 
4650 	/* If U1 was already enabled and we're not disabling it,
4651 	 * or we're going to enable U1, account for the U1 max exit latency.
4652 	 */
4653 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4654 			enabling_u1)
4655 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4656 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4657 			enabling_u2)
4658 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4659 
4660 	if (u1_mel_us > u2_mel_us)
4661 		mel_us = u1_mel_us;
4662 	else
4663 		mel_us = u2_mel_us;
4664 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4665 	if (mel_us > MAX_EXIT) {
4666 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4667 				"is too big.\n", mel_us);
4668 		return -E2BIG;
4669 	}
4670 	return mel_us;
4671 }
4672 
4673 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4674 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4675 			struct usb_device *udev, enum usb3_link_state state)
4676 {
4677 	struct xhci_hcd	*xhci;
4678 	u16 hub_encoded_timeout;
4679 	int mel;
4680 	int ret;
4681 
4682 	xhci = hcd_to_xhci(hcd);
4683 	/* The LPM timeout values are pretty host-controller specific, so don't
4684 	 * enable hub-initiated timeouts unless the vendor has provided
4685 	 * information about their timeout algorithm.
4686 	 */
4687 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4688 			!xhci->devs[udev->slot_id])
4689 		return USB3_LPM_DISABLED;
4690 
4691 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4692 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4693 	if (mel < 0) {
4694 		/* Max Exit Latency is too big, disable LPM. */
4695 		hub_encoded_timeout = USB3_LPM_DISABLED;
4696 		mel = 0;
4697 	}
4698 
4699 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4700 	if (ret)
4701 		return ret;
4702 	return hub_encoded_timeout;
4703 }
4704 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4705 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4706 			struct usb_device *udev, enum usb3_link_state state)
4707 {
4708 	struct xhci_hcd	*xhci;
4709 	u16 mel;
4710 	int ret;
4711 
4712 	xhci = hcd_to_xhci(hcd);
4713 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4714 			!xhci->devs[udev->slot_id])
4715 		return 0;
4716 
4717 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4718 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4719 	if (ret)
4720 		return ret;
4721 	return 0;
4722 }
4723 #else /* CONFIG_PM */
4724 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4725 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4726 				struct usb_device *udev, int enable)
4727 {
4728 	return 0;
4729 }
4730 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4731 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4732 {
4733 	return 0;
4734 }
4735 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4736 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4737 			struct usb_device *udev, enum usb3_link_state state)
4738 {
4739 	return USB3_LPM_DISABLED;
4740 }
4741 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4742 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4743 			struct usb_device *udev, enum usb3_link_state state)
4744 {
4745 	return 0;
4746 }
4747 #endif	/* CONFIG_PM */
4748 
4749 /*-------------------------------------------------------------------------*/
4750 
4751 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4752  * internal data structures for the device.
4753  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4754 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4755 			struct usb_tt *tt, gfp_t mem_flags)
4756 {
4757 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4758 	struct xhci_virt_device *vdev;
4759 	struct xhci_command *config_cmd;
4760 	struct xhci_input_control_ctx *ctrl_ctx;
4761 	struct xhci_slot_ctx *slot_ctx;
4762 	unsigned long flags;
4763 	unsigned think_time;
4764 	int ret;
4765 
4766 	/* Ignore root hubs */
4767 	if (!hdev->parent)
4768 		return 0;
4769 
4770 	vdev = xhci->devs[hdev->slot_id];
4771 	if (!vdev) {
4772 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4773 		return -EINVAL;
4774 	}
4775 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4776 	if (!config_cmd) {
4777 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4778 		return -ENOMEM;
4779 	}
4780 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4781 	if (!ctrl_ctx) {
4782 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4783 				__func__);
4784 		xhci_free_command(xhci, config_cmd);
4785 		return -ENOMEM;
4786 	}
4787 
4788 	spin_lock_irqsave(&xhci->lock, flags);
4789 	if (hdev->speed == USB_SPEED_HIGH &&
4790 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4791 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4792 		xhci_free_command(xhci, config_cmd);
4793 		spin_unlock_irqrestore(&xhci->lock, flags);
4794 		return -ENOMEM;
4795 	}
4796 
4797 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4798 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4799 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4800 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4801 	/*
4802 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4803 	 * but it may be already set to 1 when setup an xHCI virtual
4804 	 * device, so clear it anyway.
4805 	 */
4806 	if (tt->multi)
4807 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4808 	else if (hdev->speed == USB_SPEED_FULL)
4809 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4810 
4811 	if (xhci->hci_version > 0x95) {
4812 		xhci_dbg(xhci, "xHCI version %x needs hub "
4813 				"TT think time and number of ports\n",
4814 				(unsigned int) xhci->hci_version);
4815 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4816 		/* Set TT think time - convert from ns to FS bit times.
4817 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4818 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4819 		 *
4820 		 * xHCI 1.0: this field shall be 0 if the device is not a
4821 		 * High-spped hub.
4822 		 */
4823 		think_time = tt->think_time;
4824 		if (think_time != 0)
4825 			think_time = (think_time / 666) - 1;
4826 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4827 			slot_ctx->tt_info |=
4828 				cpu_to_le32(TT_THINK_TIME(think_time));
4829 	} else {
4830 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4831 				"TT think time or number of ports\n",
4832 				(unsigned int) xhci->hci_version);
4833 	}
4834 	slot_ctx->dev_state = 0;
4835 	spin_unlock_irqrestore(&xhci->lock, flags);
4836 
4837 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4838 			(xhci->hci_version > 0x95) ?
4839 			"configure endpoint" : "evaluate context");
4840 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4841 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4842 
4843 	/* Issue and wait for the configure endpoint or
4844 	 * evaluate context command.
4845 	 */
4846 	if (xhci->hci_version > 0x95)
4847 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4848 				false, false);
4849 	else
4850 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4851 				true, false);
4852 
4853 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4854 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4855 
4856 	xhci_free_command(xhci, config_cmd);
4857 	return ret;
4858 }
4859 
xhci_get_frame(struct usb_hcd * hcd)4860 int xhci_get_frame(struct usb_hcd *hcd)
4861 {
4862 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4863 	/* EHCI mods by the periodic size.  Why? */
4864 	return readl(&xhci->run_regs->microframe_index) >> 3;
4865 }
4866 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4867 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4868 {
4869 	struct xhci_hcd		*xhci;
4870 	struct device		*dev = hcd->self.controller;
4871 	int			retval;
4872 
4873 	/* Accept arbitrarily long scatter-gather lists */
4874 	hcd->self.sg_tablesize = ~0;
4875 
4876 	/* support to build packet from discontinuous buffers */
4877 	hcd->self.no_sg_constraint = 1;
4878 
4879 	/* XHCI controllers don't stop the ep queue on short packets :| */
4880 	hcd->self.no_stop_on_short = 1;
4881 
4882 	if (usb_hcd_is_primary_hcd(hcd)) {
4883 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4884 		if (!xhci)
4885 			return -ENOMEM;
4886 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4887 		xhci->main_hcd = hcd;
4888 		/* Mark the first roothub as being USB 2.0.
4889 		 * The xHCI driver will register the USB 3.0 roothub.
4890 		 */
4891 		hcd->speed = HCD_USB2;
4892 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4893 		/*
4894 		 * USB 2.0 roothub under xHCI has an integrated TT,
4895 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4896 		 * companion controller.
4897 		 */
4898 		hcd->has_tt = 1;
4899 	} else {
4900 		/* xHCI private pointer was set in xhci_pci_probe for the second
4901 		 * registered roothub.
4902 		 */
4903 		return 0;
4904 	}
4905 
4906 	mutex_init(&xhci->mutex);
4907 	xhci->cap_regs = hcd->regs;
4908 	xhci->op_regs = hcd->regs +
4909 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4910 	xhci->run_regs = hcd->regs +
4911 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4912 	/* Cache read-only capability registers */
4913 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4914 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4915 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4916 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4917 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4918 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4919 	xhci_print_registers(xhci);
4920 
4921 	xhci->quirks = quirks;
4922 
4923 	get_quirks(dev, xhci);
4924 
4925 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4926 	 * success event after a short transfer. This quirk will ignore such
4927 	 * spurious event.
4928 	 */
4929 	if (xhci->hci_version > 0x96)
4930 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4931 
4932 	/* Make sure the HC is halted. */
4933 	retval = xhci_halt(xhci);
4934 	if (retval)
4935 		goto error;
4936 
4937 	xhci_dbg(xhci, "Resetting HCD\n");
4938 	/* Reset the internal HC memory state and registers. */
4939 	retval = xhci_reset(xhci);
4940 	if (retval)
4941 		goto error;
4942 	xhci_dbg(xhci, "Reset complete\n");
4943 
4944 	/*
4945 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4946 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4947 	 * address memory pointers actually. So, this driver clears the AC64
4948 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4949 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4950 	 */
4951 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4952 		xhci->hcc_params &= ~BIT(0);
4953 
4954 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4955 	 * if xHC supports 64-bit addressing */
4956 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4957 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4958 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4959 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4960 	}
4961 
4962 	xhci_dbg(xhci, "Calling HCD init\n");
4963 	/* Initialize HCD and host controller data structures. */
4964 	retval = xhci_init(hcd);
4965 	if (retval)
4966 		goto error;
4967 	xhci_dbg(xhci, "Called HCD init\n");
4968 
4969 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4970 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4971 
4972 	return 0;
4973 error:
4974 	kfree(xhci);
4975 	return retval;
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4978 
4979 static const struct hc_driver xhci_hc_driver = {
4980 	.description =		"xhci-hcd",
4981 	.product_desc =		"xHCI Host Controller",
4982 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
4983 
4984 	/*
4985 	 * generic hardware linkage
4986 	 */
4987 	.irq =			xhci_irq,
4988 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4989 
4990 	/*
4991 	 * basic lifecycle operations
4992 	 */
4993 	.reset =		NULL, /* set in xhci_init_driver() */
4994 	.start =		xhci_run,
4995 	.stop =			xhci_stop,
4996 	.shutdown =		xhci_shutdown,
4997 
4998 	/*
4999 	 * managing i/o requests and associated device resources
5000 	 */
5001 	.urb_enqueue =		xhci_urb_enqueue,
5002 	.urb_dequeue =		xhci_urb_dequeue,
5003 	.alloc_dev =		xhci_alloc_dev,
5004 	.free_dev =		xhci_free_dev,
5005 	.alloc_streams =	xhci_alloc_streams,
5006 	.free_streams =		xhci_free_streams,
5007 	.add_endpoint =		xhci_add_endpoint,
5008 	.drop_endpoint =	xhci_drop_endpoint,
5009 	.endpoint_reset =	xhci_endpoint_reset,
5010 	.check_bandwidth =	xhci_check_bandwidth,
5011 	.reset_bandwidth =	xhci_reset_bandwidth,
5012 	.address_device =	xhci_address_device,
5013 	.enable_device =	xhci_enable_device,
5014 	.update_hub_device =	xhci_update_hub_device,
5015 	.reset_device =		xhci_discover_or_reset_device,
5016 
5017 	/*
5018 	 * scheduling support
5019 	 */
5020 	.get_frame_number =	xhci_get_frame,
5021 
5022 	/*
5023 	 * root hub support
5024 	 */
5025 	.hub_control =		xhci_hub_control,
5026 	.hub_status_data =	xhci_hub_status_data,
5027 	.bus_suspend =		xhci_bus_suspend,
5028 	.bus_resume =		xhci_bus_resume,
5029 
5030 	/*
5031 	 * call back when device connected and addressed
5032 	 */
5033 	.update_device =        xhci_update_device,
5034 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5035 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5036 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5037 	.find_raw_port_number =	xhci_find_raw_port_number,
5038 };
5039 
xhci_init_driver(struct hc_driver * drv,int (* setup_fn)(struct usb_hcd *))5040 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
5041 {
5042 	BUG_ON(!setup_fn);
5043 	*drv = xhci_hc_driver;
5044 	drv->reset = setup_fn;
5045 }
5046 EXPORT_SYMBOL_GPL(xhci_init_driver);
5047 
5048 MODULE_DESCRIPTION(DRIVER_DESC);
5049 MODULE_AUTHOR(DRIVER_AUTHOR);
5050 MODULE_LICENSE("GPL");
5051 
xhci_hcd_init(void)5052 static int __init xhci_hcd_init(void)
5053 {
5054 	/*
5055 	 * Check the compiler generated sizes of structures that must be laid
5056 	 * out in specific ways for hardware access.
5057 	 */
5058 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5059 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5060 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5061 	/* xhci_device_control has eight fields, and also
5062 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5063 	 */
5064 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5065 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5066 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5067 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
5068 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5069 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5070 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5071 
5072 	if (usb_disabled())
5073 		return -ENODEV;
5074 
5075 	return 0;
5076 }
5077 
5078 /*
5079  * If an init function is provided, an exit function must also be provided
5080  * to allow module unload.
5081  */
xhci_hcd_fini(void)5082 static void __exit xhci_hcd_fini(void) { }
5083 
5084 module_init(xhci_hcd_init);
5085 module_exit(xhci_hcd_fini);
5086