1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 
36 #ifdef CONFIG_KEXEC
37 #include <linux/kexec.h>
38 #endif
39 
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54 
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/pat.h>
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 
92 EXPORT_SYMBOL_GPL(hypercall_page);
93 
94 /*
95  * Pointer to the xen_vcpu_info structure or
96  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
97  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
98  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
99  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
100  * acknowledge pending events.
101  * Also more subtly it is used by the patched version of irq enable/disable
102  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
103  *
104  * The desire to be able to do those mask/unmask operations as a single
105  * instruction by using the per-cpu offset held in %gs is the real reason
106  * vcpu info is in a per-cpu pointer and the original reason for this
107  * hypercall.
108  *
109  */
110 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
111 
112 /*
113  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
114  * hypercall. This can be used both in PV and PVHVM mode. The structure
115  * overrides the default per_cpu(xen_vcpu, cpu) value.
116  */
117 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
118 
119 enum xen_domain_type xen_domain_type = XEN_NATIVE;
120 EXPORT_SYMBOL_GPL(xen_domain_type);
121 
122 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
123 EXPORT_SYMBOL(machine_to_phys_mapping);
124 unsigned long  machine_to_phys_nr;
125 EXPORT_SYMBOL(machine_to_phys_nr);
126 
127 struct start_info *xen_start_info;
128 EXPORT_SYMBOL_GPL(xen_start_info);
129 
130 struct shared_info xen_dummy_shared_info;
131 
132 void *xen_initial_gdt;
133 
134 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
135 __read_mostly int xen_have_vector_callback;
136 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
137 
138 /*
139  * Point at some empty memory to start with. We map the real shared_info
140  * page as soon as fixmap is up and running.
141  */
142 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
143 
144 /*
145  * Flag to determine whether vcpu info placement is available on all
146  * VCPUs.  We assume it is to start with, and then set it to zero on
147  * the first failure.  This is because it can succeed on some VCPUs
148  * and not others, since it can involve hypervisor memory allocation,
149  * or because the guest failed to guarantee all the appropriate
150  * constraints on all VCPUs (ie buffer can't cross a page boundary).
151  *
152  * Note that any particular CPU may be using a placed vcpu structure,
153  * but we can only optimise if the all are.
154  *
155  * 0: not available, 1: available
156  */
157 static int have_vcpu_info_placement = 1;
158 
159 struct tls_descs {
160 	struct desc_struct desc[3];
161 };
162 
163 /*
164  * Updating the 3 TLS descriptors in the GDT on every task switch is
165  * surprisingly expensive so we avoid updating them if they haven't
166  * changed.  Since Xen writes different descriptors than the one
167  * passed in the update_descriptor hypercall we keep shadow copies to
168  * compare against.
169  */
170 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
171 
clamp_max_cpus(void)172 static void clamp_max_cpus(void)
173 {
174 #ifdef CONFIG_SMP
175 	if (setup_max_cpus > MAX_VIRT_CPUS)
176 		setup_max_cpus = MAX_VIRT_CPUS;
177 #endif
178 }
179 
xen_vcpu_setup(int cpu)180 static void xen_vcpu_setup(int cpu)
181 {
182 	struct vcpu_register_vcpu_info info;
183 	int err;
184 	struct vcpu_info *vcpup;
185 
186 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
187 
188 	/*
189 	 * This path is called twice on PVHVM - first during bootup via
190 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
191 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
192 	 * As we can only do the VCPUOP_register_vcpu_info once lets
193 	 * not over-write its result.
194 	 *
195 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
196 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
197 	 * use this function.
198 	 */
199 	if (xen_hvm_domain()) {
200 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
201 			return;
202 	}
203 	if (cpu < MAX_VIRT_CPUS)
204 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
205 
206 	if (!have_vcpu_info_placement) {
207 		if (cpu >= MAX_VIRT_CPUS)
208 			clamp_max_cpus();
209 		return;
210 	}
211 
212 	vcpup = &per_cpu(xen_vcpu_info, cpu);
213 	info.mfn = arbitrary_virt_to_mfn(vcpup);
214 	info.offset = offset_in_page(vcpup);
215 
216 	/* Check to see if the hypervisor will put the vcpu_info
217 	   structure where we want it, which allows direct access via
218 	   a percpu-variable.
219 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
220 	   calls will error out with -EINVAL. This is due to the fact that
221 	   hypervisor has no unregister variant and this hypercall does not
222 	   allow to over-write info.mfn and info.offset.
223 	 */
224 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
225 
226 	if (err) {
227 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
228 		have_vcpu_info_placement = 0;
229 		clamp_max_cpus();
230 	} else {
231 		/* This cpu is using the registered vcpu info, even if
232 		   later ones fail to. */
233 		per_cpu(xen_vcpu, cpu) = vcpup;
234 	}
235 }
236 
237 /*
238  * On restore, set the vcpu placement up again.
239  * If it fails, then we're in a bad state, since
240  * we can't back out from using it...
241  */
xen_vcpu_restore(void)242 void xen_vcpu_restore(void)
243 {
244 	int cpu;
245 
246 	for_each_possible_cpu(cpu) {
247 		bool other_cpu = (cpu != smp_processor_id());
248 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
249 
250 		if (other_cpu && is_up &&
251 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
252 			BUG();
253 
254 		xen_setup_runstate_info(cpu);
255 
256 		if (have_vcpu_info_placement)
257 			xen_vcpu_setup(cpu);
258 
259 		if (other_cpu && is_up &&
260 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
261 			BUG();
262 	}
263 }
264 
xen_banner(void)265 static void __init xen_banner(void)
266 {
267 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
268 	struct xen_extraversion extra;
269 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
270 
271 	pr_info("Booting paravirtualized kernel %son %s\n",
272 		xen_feature(XENFEAT_auto_translated_physmap) ?
273 			"with PVH extensions " : "", pv_info.name);
274 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
275 	       version >> 16, version & 0xffff, extra.extraversion,
276 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
277 }
278 /* Check if running on Xen version (major, minor) or later */
279 bool
xen_running_on_version_or_later(unsigned int major,unsigned int minor)280 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
281 {
282 	unsigned int version;
283 
284 	if (!xen_domain())
285 		return false;
286 
287 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
288 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
289 		((version >> 16) > major))
290 		return true;
291 	return false;
292 }
293 
294 #define CPUID_THERM_POWER_LEAF 6
295 #define APERFMPERF_PRESENT 0
296 
297 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
298 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
299 
300 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
301 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
302 static __read_mostly unsigned int cpuid_leaf5_edx_val;
303 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)304 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
305 		      unsigned int *cx, unsigned int *dx)
306 {
307 	unsigned maskebx = ~0;
308 	unsigned maskecx = ~0;
309 	unsigned maskedx = ~0;
310 	unsigned setecx = 0;
311 	/*
312 	 * Mask out inconvenient features, to try and disable as many
313 	 * unsupported kernel subsystems as possible.
314 	 */
315 	switch (*ax) {
316 	case 1:
317 		maskecx = cpuid_leaf1_ecx_mask;
318 		setecx = cpuid_leaf1_ecx_set_mask;
319 		maskedx = cpuid_leaf1_edx_mask;
320 		break;
321 
322 	case CPUID_MWAIT_LEAF:
323 		/* Synthesize the values.. */
324 		*ax = 0;
325 		*bx = 0;
326 		*cx = cpuid_leaf5_ecx_val;
327 		*dx = cpuid_leaf5_edx_val;
328 		return;
329 
330 	case CPUID_THERM_POWER_LEAF:
331 		/* Disabling APERFMPERF for kernel usage */
332 		maskecx = ~(1 << APERFMPERF_PRESENT);
333 		break;
334 
335 	case 0xb:
336 		/* Suppress extended topology stuff */
337 		maskebx = 0;
338 		break;
339 	}
340 
341 	asm(XEN_EMULATE_PREFIX "cpuid"
342 		: "=a" (*ax),
343 		  "=b" (*bx),
344 		  "=c" (*cx),
345 		  "=d" (*dx)
346 		: "0" (*ax), "2" (*cx));
347 
348 	*bx &= maskebx;
349 	*cx &= maskecx;
350 	*cx |= setecx;
351 	*dx &= maskedx;
352 
353 }
354 
xen_check_mwait(void)355 static bool __init xen_check_mwait(void)
356 {
357 #ifdef CONFIG_ACPI
358 	struct xen_platform_op op = {
359 		.cmd			= XENPF_set_processor_pminfo,
360 		.u.set_pminfo.id	= -1,
361 		.u.set_pminfo.type	= XEN_PM_PDC,
362 	};
363 	uint32_t buf[3];
364 	unsigned int ax, bx, cx, dx;
365 	unsigned int mwait_mask;
366 
367 	/* We need to determine whether it is OK to expose the MWAIT
368 	 * capability to the kernel to harvest deeper than C3 states from ACPI
369 	 * _CST using the processor_harvest_xen.c module. For this to work, we
370 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
371 	 * checks against). The hypervisor won't expose the MWAIT flag because
372 	 * it would break backwards compatibility; so we will find out directly
373 	 * from the hardware and hypercall.
374 	 */
375 	if (!xen_initial_domain())
376 		return false;
377 
378 	/*
379 	 * When running under platform earlier than Xen4.2, do not expose
380 	 * mwait, to avoid the risk of loading native acpi pad driver
381 	 */
382 	if (!xen_running_on_version_or_later(4, 2))
383 		return false;
384 
385 	ax = 1;
386 	cx = 0;
387 
388 	native_cpuid(&ax, &bx, &cx, &dx);
389 
390 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
391 		     (1 << (X86_FEATURE_MWAIT % 32));
392 
393 	if ((cx & mwait_mask) != mwait_mask)
394 		return false;
395 
396 	/* We need to emulate the MWAIT_LEAF and for that we need both
397 	 * ecx and edx. The hypercall provides only partial information.
398 	 */
399 
400 	ax = CPUID_MWAIT_LEAF;
401 	bx = 0;
402 	cx = 0;
403 	dx = 0;
404 
405 	native_cpuid(&ax, &bx, &cx, &dx);
406 
407 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
408 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
409 	 */
410 	buf[0] = ACPI_PDC_REVISION_ID;
411 	buf[1] = 1;
412 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
413 
414 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
415 
416 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
417 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
418 		cpuid_leaf5_ecx_val = cx;
419 		cpuid_leaf5_edx_val = dx;
420 	}
421 	return true;
422 #else
423 	return false;
424 #endif
425 }
xen_init_cpuid_mask(void)426 static void __init xen_init_cpuid_mask(void)
427 {
428 	unsigned int ax, bx, cx, dx;
429 	unsigned int xsave_mask;
430 
431 	cpuid_leaf1_edx_mask =
432 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
433 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
434 
435 	if (!xen_initial_domain())
436 		cpuid_leaf1_edx_mask &=
437 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
438 
439 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
440 
441 	ax = 1;
442 	cx = 0;
443 	cpuid(1, &ax, &bx, &cx, &dx);
444 
445 	xsave_mask =
446 		(1 << (X86_FEATURE_XSAVE % 32)) |
447 		(1 << (X86_FEATURE_OSXSAVE % 32));
448 
449 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
450 	if ((cx & xsave_mask) != xsave_mask)
451 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
452 	if (xen_check_mwait())
453 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
454 }
455 
xen_set_debugreg(int reg,unsigned long val)456 static void xen_set_debugreg(int reg, unsigned long val)
457 {
458 	HYPERVISOR_set_debugreg(reg, val);
459 }
460 
xen_get_debugreg(int reg)461 static unsigned long xen_get_debugreg(int reg)
462 {
463 	return HYPERVISOR_get_debugreg(reg);
464 }
465 
xen_end_context_switch(struct task_struct * next)466 static void xen_end_context_switch(struct task_struct *next)
467 {
468 	xen_mc_flush();
469 	paravirt_end_context_switch(next);
470 }
471 
xen_store_tr(void)472 static unsigned long xen_store_tr(void)
473 {
474 	return 0;
475 }
476 
477 /*
478  * Set the page permissions for a particular virtual address.  If the
479  * address is a vmalloc mapping (or other non-linear mapping), then
480  * find the linear mapping of the page and also set its protections to
481  * match.
482  */
set_aliased_prot(void * v,pgprot_t prot)483 static void set_aliased_prot(void *v, pgprot_t prot)
484 {
485 	int level;
486 	pte_t *ptep;
487 	pte_t pte;
488 	unsigned long pfn;
489 	struct page *page;
490 	unsigned char dummy;
491 
492 	ptep = lookup_address((unsigned long)v, &level);
493 	BUG_ON(ptep == NULL);
494 
495 	pfn = pte_pfn(*ptep);
496 	page = pfn_to_page(pfn);
497 
498 	pte = pfn_pte(pfn, prot);
499 
500 	/*
501 	 * Careful: update_va_mapping() will fail if the virtual address
502 	 * we're poking isn't populated in the page tables.  We don't
503 	 * need to worry about the direct map (that's always in the page
504 	 * tables), but we need to be careful about vmap space.  In
505 	 * particular, the top level page table can lazily propagate
506 	 * entries between processes, so if we've switched mms since we
507 	 * vmapped the target in the first place, we might not have the
508 	 * top-level page table entry populated.
509 	 *
510 	 * We disable preemption because we want the same mm active when
511 	 * we probe the target and when we issue the hypercall.  We'll
512 	 * have the same nominal mm, but if we're a kernel thread, lazy
513 	 * mm dropping could change our pgd.
514 	 *
515 	 * Out of an abundance of caution, this uses __get_user() to fault
516 	 * in the target address just in case there's some obscure case
517 	 * in which the target address isn't readable.
518 	 */
519 
520 	preempt_disable();
521 
522 	pagefault_disable();	/* Avoid warnings due to being atomic. */
523 	__get_user(dummy, (unsigned char __user __force *)v);
524 	pagefault_enable();
525 
526 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
527 		BUG();
528 
529 	if (!PageHighMem(page)) {
530 		void *av = __va(PFN_PHYS(pfn));
531 
532 		if (av != v)
533 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
534 				BUG();
535 	} else
536 		kmap_flush_unused();
537 
538 	preempt_enable();
539 }
540 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)541 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
542 {
543 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
544 	int i;
545 
546 	/*
547 	 * We need to mark the all aliases of the LDT pages RO.  We
548 	 * don't need to call vm_flush_aliases(), though, since that's
549 	 * only responsible for flushing aliases out the TLBs, not the
550 	 * page tables, and Xen will flush the TLB for us if needed.
551 	 *
552 	 * To avoid confusing future readers: none of this is necessary
553 	 * to load the LDT.  The hypervisor only checks this when the
554 	 * LDT is faulted in due to subsequent descriptor access.
555 	 */
556 
557 	for(i = 0; i < entries; i += entries_per_page)
558 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
559 }
560 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)561 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
562 {
563 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
564 	int i;
565 
566 	for(i = 0; i < entries; i += entries_per_page)
567 		set_aliased_prot(ldt + i, PAGE_KERNEL);
568 }
569 
xen_set_ldt(const void * addr,unsigned entries)570 static void xen_set_ldt(const void *addr, unsigned entries)
571 {
572 	struct mmuext_op *op;
573 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
574 
575 	trace_xen_cpu_set_ldt(addr, entries);
576 
577 	op = mcs.args;
578 	op->cmd = MMUEXT_SET_LDT;
579 	op->arg1.linear_addr = (unsigned long)addr;
580 	op->arg2.nr_ents = entries;
581 
582 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
583 
584 	xen_mc_issue(PARAVIRT_LAZY_CPU);
585 }
586 
xen_load_gdt(const struct desc_ptr * dtr)587 static void xen_load_gdt(const struct desc_ptr *dtr)
588 {
589 	unsigned long va = dtr->address;
590 	unsigned int size = dtr->size + 1;
591 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
592 	unsigned long frames[pages];
593 	int f;
594 
595 	/*
596 	 * A GDT can be up to 64k in size, which corresponds to 8192
597 	 * 8-byte entries, or 16 4k pages..
598 	 */
599 
600 	BUG_ON(size > 65536);
601 	BUG_ON(va & ~PAGE_MASK);
602 
603 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
604 		int level;
605 		pte_t *ptep;
606 		unsigned long pfn, mfn;
607 		void *virt;
608 
609 		/*
610 		 * The GDT is per-cpu and is in the percpu data area.
611 		 * That can be virtually mapped, so we need to do a
612 		 * page-walk to get the underlying MFN for the
613 		 * hypercall.  The page can also be in the kernel's
614 		 * linear range, so we need to RO that mapping too.
615 		 */
616 		ptep = lookup_address(va, &level);
617 		BUG_ON(ptep == NULL);
618 
619 		pfn = pte_pfn(*ptep);
620 		mfn = pfn_to_mfn(pfn);
621 		virt = __va(PFN_PHYS(pfn));
622 
623 		frames[f] = mfn;
624 
625 		make_lowmem_page_readonly((void *)va);
626 		make_lowmem_page_readonly(virt);
627 	}
628 
629 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
630 		BUG();
631 }
632 
633 /*
634  * load_gdt for early boot, when the gdt is only mapped once
635  */
xen_load_gdt_boot(const struct desc_ptr * dtr)636 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
637 {
638 	unsigned long va = dtr->address;
639 	unsigned int size = dtr->size + 1;
640 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
641 	unsigned long frames[pages];
642 	int f;
643 
644 	/*
645 	 * A GDT can be up to 64k in size, which corresponds to 8192
646 	 * 8-byte entries, or 16 4k pages..
647 	 */
648 
649 	BUG_ON(size > 65536);
650 	BUG_ON(va & ~PAGE_MASK);
651 
652 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
653 		pte_t pte;
654 		unsigned long pfn, mfn;
655 
656 		pfn = virt_to_pfn(va);
657 		mfn = pfn_to_mfn(pfn);
658 
659 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
660 
661 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
662 			BUG();
663 
664 		frames[f] = mfn;
665 	}
666 
667 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
668 		BUG();
669 }
670 
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)671 static inline bool desc_equal(const struct desc_struct *d1,
672 			      const struct desc_struct *d2)
673 {
674 	return d1->a == d2->a && d1->b == d2->b;
675 }
676 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)677 static void load_TLS_descriptor(struct thread_struct *t,
678 				unsigned int cpu, unsigned int i)
679 {
680 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
681 	struct desc_struct *gdt;
682 	xmaddr_t maddr;
683 	struct multicall_space mc;
684 
685 	if (desc_equal(shadow, &t->tls_array[i]))
686 		return;
687 
688 	*shadow = t->tls_array[i];
689 
690 	gdt = get_cpu_gdt_table(cpu);
691 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
692 	mc = __xen_mc_entry(0);
693 
694 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
695 }
696 
xen_load_tls(struct thread_struct * t,unsigned int cpu)697 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
698 {
699 	/*
700 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
701 	 * and lazy gs handling is enabled, it means we're in a
702 	 * context switch, and %gs has just been saved.  This means we
703 	 * can zero it out to prevent faults on exit from the
704 	 * hypervisor if the next process has no %gs.  Either way, it
705 	 * has been saved, and the new value will get loaded properly.
706 	 * This will go away as soon as Xen has been modified to not
707 	 * save/restore %gs for normal hypercalls.
708 	 *
709 	 * On x86_64, this hack is not used for %gs, because gs points
710 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
711 	 * must not zero %gs on x86_64
712 	 *
713 	 * For x86_64, we need to zero %fs, otherwise we may get an
714 	 * exception between the new %fs descriptor being loaded and
715 	 * %fs being effectively cleared at __switch_to().
716 	 */
717 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
718 #ifdef CONFIG_X86_32
719 		lazy_load_gs(0);
720 #else
721 		loadsegment(fs, 0);
722 #endif
723 	}
724 
725 	xen_mc_batch();
726 
727 	load_TLS_descriptor(t, cpu, 0);
728 	load_TLS_descriptor(t, cpu, 1);
729 	load_TLS_descriptor(t, cpu, 2);
730 
731 	xen_mc_issue(PARAVIRT_LAZY_CPU);
732 }
733 
734 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)735 static void xen_load_gs_index(unsigned int idx)
736 {
737 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
738 		BUG();
739 }
740 #endif
741 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)742 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
743 				const void *ptr)
744 {
745 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
746 	u64 entry = *(u64 *)ptr;
747 
748 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
749 
750 	preempt_disable();
751 
752 	xen_mc_flush();
753 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
754 		BUG();
755 
756 	preempt_enable();
757 }
758 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)759 static int cvt_gate_to_trap(int vector, const gate_desc *val,
760 			    struct trap_info *info)
761 {
762 	unsigned long addr;
763 
764 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
765 		return 0;
766 
767 	info->vector = vector;
768 
769 	addr = gate_offset(*val);
770 #ifdef CONFIG_X86_64
771 	/*
772 	 * Look for known traps using IST, and substitute them
773 	 * appropriately.  The debugger ones are the only ones we care
774 	 * about.  Xen will handle faults like double_fault,
775 	 * so we should never see them.  Warn if
776 	 * there's an unexpected IST-using fault handler.
777 	 */
778 	if (addr == (unsigned long)debug)
779 		addr = (unsigned long)xen_debug;
780 	else if (addr == (unsigned long)int3)
781 		addr = (unsigned long)xen_int3;
782 	else if (addr == (unsigned long)stack_segment)
783 		addr = (unsigned long)xen_stack_segment;
784 	else if (addr == (unsigned long)double_fault) {
785 		/* Don't need to handle these */
786 		return 0;
787 #ifdef CONFIG_X86_MCE
788 	} else if (addr == (unsigned long)machine_check) {
789 		/*
790 		 * when xen hypervisor inject vMCE to guest,
791 		 * use native mce handler to handle it
792 		 */
793 		;
794 #endif
795 	} else if (addr == (unsigned long)nmi)
796 		/*
797 		 * Use the native version as well.
798 		 */
799 		;
800 	else {
801 		/* Some other trap using IST? */
802 		if (WARN_ON(val->ist != 0))
803 			return 0;
804 	}
805 #endif	/* CONFIG_X86_64 */
806 	info->address = addr;
807 
808 	info->cs = gate_segment(*val);
809 	info->flags = val->dpl;
810 	/* interrupt gates clear IF */
811 	if (val->type == GATE_INTERRUPT)
812 		info->flags |= 1 << 2;
813 
814 	return 1;
815 }
816 
817 /* Locations of each CPU's IDT */
818 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
819 
820 /* Set an IDT entry.  If the entry is part of the current IDT, then
821    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)822 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
823 {
824 	unsigned long p = (unsigned long)&dt[entrynum];
825 	unsigned long start, end;
826 
827 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
828 
829 	preempt_disable();
830 
831 	start = __this_cpu_read(idt_desc.address);
832 	end = start + __this_cpu_read(idt_desc.size) + 1;
833 
834 	xen_mc_flush();
835 
836 	native_write_idt_entry(dt, entrynum, g);
837 
838 	if (p >= start && (p + 8) <= end) {
839 		struct trap_info info[2];
840 
841 		info[1].address = 0;
842 
843 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
844 			if (HYPERVISOR_set_trap_table(info))
845 				BUG();
846 	}
847 
848 	preempt_enable();
849 }
850 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps)851 static void xen_convert_trap_info(const struct desc_ptr *desc,
852 				  struct trap_info *traps)
853 {
854 	unsigned in, out, count;
855 
856 	count = (desc->size+1) / sizeof(gate_desc);
857 	BUG_ON(count > 256);
858 
859 	for (in = out = 0; in < count; in++) {
860 		gate_desc *entry = (gate_desc*)(desc->address) + in;
861 
862 		if (cvt_gate_to_trap(in, entry, &traps[out]))
863 			out++;
864 	}
865 	traps[out].address = 0;
866 }
867 
xen_copy_trap_info(struct trap_info * traps)868 void xen_copy_trap_info(struct trap_info *traps)
869 {
870 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
871 
872 	xen_convert_trap_info(desc, traps);
873 }
874 
875 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
876    hold a spinlock to protect the static traps[] array (static because
877    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)878 static void xen_load_idt(const struct desc_ptr *desc)
879 {
880 	static DEFINE_SPINLOCK(lock);
881 	static struct trap_info traps[257];
882 
883 	trace_xen_cpu_load_idt(desc);
884 
885 	spin_lock(&lock);
886 
887 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
888 
889 	xen_convert_trap_info(desc, traps);
890 
891 	xen_mc_flush();
892 	if (HYPERVISOR_set_trap_table(traps))
893 		BUG();
894 
895 	spin_unlock(&lock);
896 }
897 
898 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
899    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)900 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
901 				const void *desc, int type)
902 {
903 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
904 
905 	preempt_disable();
906 
907 	switch (type) {
908 	case DESC_LDT:
909 	case DESC_TSS:
910 		/* ignore */
911 		break;
912 
913 	default: {
914 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
915 
916 		xen_mc_flush();
917 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
918 			BUG();
919 	}
920 
921 	}
922 
923 	preempt_enable();
924 }
925 
926 /*
927  * Version of write_gdt_entry for use at early boot-time needed to
928  * update an entry as simply as possible.
929  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)930 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
931 					    const void *desc, int type)
932 {
933 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
934 
935 	switch (type) {
936 	case DESC_LDT:
937 	case DESC_TSS:
938 		/* ignore */
939 		break;
940 
941 	default: {
942 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
943 
944 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
945 			dt[entry] = *(struct desc_struct *)desc;
946 	}
947 
948 	}
949 }
950 
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)951 static void xen_load_sp0(struct tss_struct *tss,
952 			 struct thread_struct *thread)
953 {
954 	struct multicall_space mcs;
955 
956 	mcs = xen_mc_entry(0);
957 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
958 	xen_mc_issue(PARAVIRT_LAZY_CPU);
959 	tss->x86_tss.sp0 = thread->sp0;
960 }
961 
xen_set_iopl_mask(unsigned mask)962 void xen_set_iopl_mask(unsigned mask)
963 {
964 	struct physdev_set_iopl set_iopl;
965 
966 	/* Force the change at ring 0. */
967 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
968 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
969 }
970 
xen_io_delay(void)971 static void xen_io_delay(void)
972 {
973 }
974 
xen_clts(void)975 static void xen_clts(void)
976 {
977 	struct multicall_space mcs;
978 
979 	mcs = xen_mc_entry(0);
980 
981 	MULTI_fpu_taskswitch(mcs.mc, 0);
982 
983 	xen_mc_issue(PARAVIRT_LAZY_CPU);
984 }
985 
986 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
987 
xen_read_cr0(void)988 static unsigned long xen_read_cr0(void)
989 {
990 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
991 
992 	if (unlikely(cr0 == 0)) {
993 		cr0 = native_read_cr0();
994 		this_cpu_write(xen_cr0_value, cr0);
995 	}
996 
997 	return cr0;
998 }
999 
xen_write_cr0(unsigned long cr0)1000 static void xen_write_cr0(unsigned long cr0)
1001 {
1002 	struct multicall_space mcs;
1003 
1004 	this_cpu_write(xen_cr0_value, cr0);
1005 
1006 	/* Only pay attention to cr0.TS; everything else is
1007 	   ignored. */
1008 	mcs = xen_mc_entry(0);
1009 
1010 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1011 
1012 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1013 }
1014 
xen_write_cr4(unsigned long cr4)1015 static void xen_write_cr4(unsigned long cr4)
1016 {
1017 	cr4 &= ~X86_CR4_PGE;
1018 	cr4 &= ~X86_CR4_PSE;
1019 
1020 	native_write_cr4(cr4);
1021 }
1022 #ifdef CONFIG_X86_64
xen_read_cr8(void)1023 static inline unsigned long xen_read_cr8(void)
1024 {
1025 	return 0;
1026 }
xen_write_cr8(unsigned long val)1027 static inline void xen_write_cr8(unsigned long val)
1028 {
1029 	BUG_ON(val);
1030 }
1031 #endif
1032 
xen_read_msr_safe(unsigned int msr,int * err)1033 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1034 {
1035 	u64 val;
1036 
1037 	val = native_read_msr_safe(msr, err);
1038 	switch (msr) {
1039 	case MSR_IA32_APICBASE:
1040 #ifdef CONFIG_X86_X2APIC
1041 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1042 #endif
1043 			val &= ~X2APIC_ENABLE;
1044 		break;
1045 	}
1046 	return val;
1047 }
1048 
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)1049 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1050 {
1051 	int ret;
1052 
1053 	ret = 0;
1054 
1055 	switch (msr) {
1056 #ifdef CONFIG_X86_64
1057 		unsigned which;
1058 		u64 base;
1059 
1060 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1061 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1062 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1063 
1064 	set:
1065 		base = ((u64)high << 32) | low;
1066 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1067 			ret = -EIO;
1068 		break;
1069 #endif
1070 
1071 	case MSR_STAR:
1072 	case MSR_CSTAR:
1073 	case MSR_LSTAR:
1074 	case MSR_SYSCALL_MASK:
1075 	case MSR_IA32_SYSENTER_CS:
1076 	case MSR_IA32_SYSENTER_ESP:
1077 	case MSR_IA32_SYSENTER_EIP:
1078 		/* Fast syscall setup is all done in hypercalls, so
1079 		   these are all ignored.  Stub them out here to stop
1080 		   Xen console noise. */
1081 
1082 	default:
1083 		ret = native_write_msr_safe(msr, low, high);
1084 	}
1085 
1086 	return ret;
1087 }
1088 
xen_setup_shared_info(void)1089 void xen_setup_shared_info(void)
1090 {
1091 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1092 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1093 			   xen_start_info->shared_info);
1094 
1095 		HYPERVISOR_shared_info =
1096 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1097 	} else
1098 		HYPERVISOR_shared_info =
1099 			(struct shared_info *)__va(xen_start_info->shared_info);
1100 
1101 #ifndef CONFIG_SMP
1102 	/* In UP this is as good a place as any to set up shared info */
1103 	xen_setup_vcpu_info_placement();
1104 #endif
1105 
1106 	xen_setup_mfn_list_list();
1107 }
1108 
1109 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1110 void xen_setup_vcpu_info_placement(void)
1111 {
1112 	int cpu;
1113 
1114 	for_each_possible_cpu(cpu)
1115 		xen_vcpu_setup(cpu);
1116 
1117 	/* xen_vcpu_setup managed to place the vcpu_info within the
1118 	 * percpu area for all cpus, so make use of it. Note that for
1119 	 * PVH we want to use native IRQ mechanism. */
1120 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1121 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1122 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1123 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1124 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1125 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1126 	}
1127 }
1128 
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)1129 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1130 			  unsigned long addr, unsigned len)
1131 {
1132 	char *start, *end, *reloc;
1133 	unsigned ret;
1134 
1135 	start = end = reloc = NULL;
1136 
1137 #define SITE(op, x)							\
1138 	case PARAVIRT_PATCH(op.x):					\
1139 	if (have_vcpu_info_placement) {					\
1140 		start = (char *)xen_##x##_direct;			\
1141 		end = xen_##x##_direct_end;				\
1142 		reloc = xen_##x##_direct_reloc;				\
1143 	}								\
1144 	goto patch_site
1145 
1146 	switch (type) {
1147 		SITE(pv_irq_ops, irq_enable);
1148 		SITE(pv_irq_ops, irq_disable);
1149 		SITE(pv_irq_ops, save_fl);
1150 		SITE(pv_irq_ops, restore_fl);
1151 #undef SITE
1152 
1153 	patch_site:
1154 		if (start == NULL || (end-start) > len)
1155 			goto default_patch;
1156 
1157 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1158 
1159 		/* Note: because reloc is assigned from something that
1160 		   appears to be an array, gcc assumes it's non-null,
1161 		   but doesn't know its relationship with start and
1162 		   end. */
1163 		if (reloc > start && reloc < end) {
1164 			int reloc_off = reloc - start;
1165 			long *relocp = (long *)(insnbuf + reloc_off);
1166 			long delta = start - (char *)addr;
1167 
1168 			*relocp += delta;
1169 		}
1170 		break;
1171 
1172 	default_patch:
1173 	default:
1174 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1175 					     addr, len);
1176 		break;
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 static const struct pv_info xen_info __initconst = {
1183 	.paravirt_enabled = 1,
1184 	.shared_kernel_pmd = 0,
1185 
1186 #ifdef CONFIG_X86_64
1187 	.extra_user_64bit_cs = FLAT_USER_CS64,
1188 #endif
1189 
1190 	.name = "Xen",
1191 };
1192 
1193 static const struct pv_init_ops xen_init_ops __initconst = {
1194 	.patch = xen_patch,
1195 };
1196 
1197 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1198 	.cpuid = xen_cpuid,
1199 
1200 	.set_debugreg = xen_set_debugreg,
1201 	.get_debugreg = xen_get_debugreg,
1202 
1203 	.clts = xen_clts,
1204 
1205 	.read_cr0 = xen_read_cr0,
1206 	.write_cr0 = xen_write_cr0,
1207 
1208 	.read_cr4 = native_read_cr4,
1209 	.read_cr4_safe = native_read_cr4_safe,
1210 	.write_cr4 = xen_write_cr4,
1211 
1212 #ifdef CONFIG_X86_64
1213 	.read_cr8 = xen_read_cr8,
1214 	.write_cr8 = xen_write_cr8,
1215 #endif
1216 
1217 	.wbinvd = native_wbinvd,
1218 
1219 	.read_msr = xen_read_msr_safe,
1220 	.write_msr = xen_write_msr_safe,
1221 
1222 	.read_tsc = native_read_tsc,
1223 	.read_pmc = native_read_pmc,
1224 
1225 	.read_tscp = native_read_tscp,
1226 
1227 	.iret = xen_iret,
1228 	.irq_enable_sysexit = xen_sysexit,
1229 #ifdef CONFIG_X86_64
1230 	.usergs_sysret32 = xen_sysret32,
1231 	.usergs_sysret64 = xen_sysret64,
1232 #endif
1233 
1234 	.load_tr_desc = paravirt_nop,
1235 	.set_ldt = xen_set_ldt,
1236 	.load_gdt = xen_load_gdt,
1237 	.load_idt = xen_load_idt,
1238 	.load_tls = xen_load_tls,
1239 #ifdef CONFIG_X86_64
1240 	.load_gs_index = xen_load_gs_index,
1241 #endif
1242 
1243 	.alloc_ldt = xen_alloc_ldt,
1244 	.free_ldt = xen_free_ldt,
1245 
1246 	.store_idt = native_store_idt,
1247 	.store_tr = xen_store_tr,
1248 
1249 	.write_ldt_entry = xen_write_ldt_entry,
1250 	.write_gdt_entry = xen_write_gdt_entry,
1251 	.write_idt_entry = xen_write_idt_entry,
1252 	.load_sp0 = xen_load_sp0,
1253 
1254 	.set_iopl_mask = xen_set_iopl_mask,
1255 	.io_delay = xen_io_delay,
1256 
1257 	/* Xen takes care of %gs when switching to usermode for us */
1258 	.swapgs = paravirt_nop,
1259 
1260 	.start_context_switch = paravirt_start_context_switch,
1261 	.end_context_switch = xen_end_context_switch,
1262 };
1263 
1264 static const struct pv_apic_ops xen_apic_ops __initconst = {
1265 #ifdef CONFIG_X86_LOCAL_APIC
1266 	.startup_ipi_hook = paravirt_nop,
1267 #endif
1268 };
1269 
xen_reboot(int reason)1270 static void xen_reboot(int reason)
1271 {
1272 	struct sched_shutdown r = { .reason = reason };
1273 
1274 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1275 		BUG();
1276 }
1277 
xen_restart(char * msg)1278 static void xen_restart(char *msg)
1279 {
1280 	xen_reboot(SHUTDOWN_reboot);
1281 }
1282 
xen_emergency_restart(void)1283 static void xen_emergency_restart(void)
1284 {
1285 	xen_reboot(SHUTDOWN_reboot);
1286 }
1287 
xen_machine_halt(void)1288 static void xen_machine_halt(void)
1289 {
1290 	xen_reboot(SHUTDOWN_poweroff);
1291 }
1292 
xen_machine_power_off(void)1293 static void xen_machine_power_off(void)
1294 {
1295 	if (pm_power_off)
1296 		pm_power_off();
1297 	xen_reboot(SHUTDOWN_poweroff);
1298 }
1299 
xen_crash_shutdown(struct pt_regs * regs)1300 static void xen_crash_shutdown(struct pt_regs *regs)
1301 {
1302 	xen_reboot(SHUTDOWN_crash);
1303 }
1304 
1305 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1306 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1307 {
1308 	xen_reboot(SHUTDOWN_crash);
1309 	return NOTIFY_DONE;
1310 }
1311 
1312 static struct notifier_block xen_panic_block = {
1313 	.notifier_call= xen_panic_event,
1314 	.priority = INT_MIN
1315 };
1316 
xen_panic_handler_init(void)1317 int xen_panic_handler_init(void)
1318 {
1319 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1320 	return 0;
1321 }
1322 
1323 static const struct machine_ops xen_machine_ops __initconst = {
1324 	.restart = xen_restart,
1325 	.halt = xen_machine_halt,
1326 	.power_off = xen_machine_power_off,
1327 	.shutdown = xen_machine_halt,
1328 	.crash_shutdown = xen_crash_shutdown,
1329 	.emergency_restart = xen_emergency_restart,
1330 };
1331 
xen_get_nmi_reason(void)1332 static unsigned char xen_get_nmi_reason(void)
1333 {
1334 	unsigned char reason = 0;
1335 
1336 	/* Construct a value which looks like it came from port 0x61. */
1337 	if (test_bit(_XEN_NMIREASON_io_error,
1338 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1339 		reason |= NMI_REASON_IOCHK;
1340 	if (test_bit(_XEN_NMIREASON_pci_serr,
1341 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1342 		reason |= NMI_REASON_SERR;
1343 
1344 	return reason;
1345 }
1346 
xen_boot_params_init_edd(void)1347 static void __init xen_boot_params_init_edd(void)
1348 {
1349 #if IS_ENABLED(CONFIG_EDD)
1350 	struct xen_platform_op op;
1351 	struct edd_info *edd_info;
1352 	u32 *mbr_signature;
1353 	unsigned nr;
1354 	int ret;
1355 
1356 	edd_info = boot_params.eddbuf;
1357 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1358 
1359 	op.cmd = XENPF_firmware_info;
1360 
1361 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1362 	for (nr = 0; nr < EDDMAXNR; nr++) {
1363 		struct edd_info *info = edd_info + nr;
1364 
1365 		op.u.firmware_info.index = nr;
1366 		info->params.length = sizeof(info->params);
1367 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1368 				     &info->params);
1369 		ret = HYPERVISOR_dom0_op(&op);
1370 		if (ret)
1371 			break;
1372 
1373 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1374 		C(device);
1375 		C(version);
1376 		C(interface_support);
1377 		C(legacy_max_cylinder);
1378 		C(legacy_max_head);
1379 		C(legacy_sectors_per_track);
1380 #undef C
1381 	}
1382 	boot_params.eddbuf_entries = nr;
1383 
1384 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1385 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1386 		op.u.firmware_info.index = nr;
1387 		ret = HYPERVISOR_dom0_op(&op);
1388 		if (ret)
1389 			break;
1390 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1391 	}
1392 	boot_params.edd_mbr_sig_buf_entries = nr;
1393 #endif
1394 }
1395 
1396 /*
1397  * Set up the GDT and segment registers for -fstack-protector.  Until
1398  * we do this, we have to be careful not to call any stack-protected
1399  * function, which is most of the kernel.
1400  *
1401  * Note, that it is __ref because the only caller of this after init
1402  * is PVH which is not going to use xen_load_gdt_boot or other
1403  * __init functions.
1404  */
xen_setup_gdt(int cpu)1405 static void __ref xen_setup_gdt(int cpu)
1406 {
1407 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1408 #ifdef CONFIG_X86_64
1409 		unsigned long dummy;
1410 
1411 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1412 		switch_to_new_gdt(cpu); /* GDT and GS set */
1413 
1414 		/* We are switching of the Xen provided GDT to our HVM mode
1415 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1416 		 * and we are jumping to reload it.
1417 		 */
1418 		asm volatile ("pushq %0\n"
1419 			      "leaq 1f(%%rip),%0\n"
1420 			      "pushq %0\n"
1421 			      "lretq\n"
1422 			      "1:\n"
1423 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1424 
1425 		/*
1426 		 * While not needed, we also set the %es, %ds, and %fs
1427 		 * to zero. We don't care about %ss as it is NULL.
1428 		 * Strictly speaking this is not needed as Xen zeros those
1429 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1430 		 *
1431 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1432 		 * (for BSP).
1433 		 */
1434 		loadsegment(es, 0);
1435 		loadsegment(ds, 0);
1436 		loadsegment(fs, 0);
1437 #else
1438 		/* PVH: TODO Implement. */
1439 		BUG();
1440 #endif
1441 		return; /* PVH does not need any PV GDT ops. */
1442 	}
1443 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1444 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1445 
1446 	setup_stack_canary_segment(0);
1447 	switch_to_new_gdt(0);
1448 
1449 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1450 	pv_cpu_ops.load_gdt = xen_load_gdt;
1451 }
1452 
1453 #ifdef CONFIG_XEN_PVH
1454 /*
1455  * A PV guest starts with default flags that are not set for PVH, set them
1456  * here asap.
1457  */
xen_pvh_set_cr_flags(int cpu)1458 static void xen_pvh_set_cr_flags(int cpu)
1459 {
1460 
1461 	/* Some of these are setup in 'secondary_startup_64'. The others:
1462 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1463 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1464 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1465 
1466 	if (!cpu)
1467 		return;
1468 	/*
1469 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1470 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu_init.
1471 	*/
1472 	if (cpu_has_pse)
1473 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1474 
1475 	if (cpu_has_pge)
1476 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1477 }
1478 
1479 /*
1480  * Note, that it is ref - because the only caller of this after init
1481  * is PVH which is not going to use xen_load_gdt_boot or other
1482  * __init functions.
1483  */
xen_pvh_secondary_vcpu_init(int cpu)1484 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1485 {
1486 	xen_setup_gdt(cpu);
1487 	xen_pvh_set_cr_flags(cpu);
1488 }
1489 
xen_pvh_early_guest_init(void)1490 static void __init xen_pvh_early_guest_init(void)
1491 {
1492 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1493 		return;
1494 
1495 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1496 		return;
1497 
1498 	xen_have_vector_callback = 1;
1499 
1500 	xen_pvh_early_cpu_init(0, false);
1501 	xen_pvh_set_cr_flags(0);
1502 
1503 #ifdef CONFIG_X86_32
1504 	BUG(); /* PVH: Implement proper support. */
1505 #endif
1506 }
1507 #endif    /* CONFIG_XEN_PVH */
1508 
1509 /* First C function to be called on Xen boot */
xen_start_kernel(void)1510 asmlinkage __visible void __init xen_start_kernel(void)
1511 {
1512 	struct physdev_set_iopl set_iopl;
1513 	unsigned long initrd_start = 0;
1514 	int rc;
1515 
1516 	if (!xen_start_info)
1517 		return;
1518 
1519 	xen_domain_type = XEN_PV_DOMAIN;
1520 
1521 	xen_setup_features();
1522 #ifdef CONFIG_XEN_PVH
1523 	xen_pvh_early_guest_init();
1524 #endif
1525 	xen_setup_machphys_mapping();
1526 
1527 	/* Install Xen paravirt ops */
1528 	pv_info = xen_info;
1529 	pv_init_ops = xen_init_ops;
1530 	pv_apic_ops = xen_apic_ops;
1531 	if (!xen_pvh_domain()) {
1532 		pv_cpu_ops = xen_cpu_ops;
1533 
1534 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1535 	}
1536 
1537 	if (xen_feature(XENFEAT_auto_translated_physmap))
1538 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1539 	else
1540 		x86_init.resources.memory_setup = xen_memory_setup;
1541 	x86_init.oem.arch_setup = xen_arch_setup;
1542 	x86_init.oem.banner = xen_banner;
1543 
1544 	xen_init_time_ops();
1545 
1546 	/*
1547 	 * Set up some pagetable state before starting to set any ptes.
1548 	 */
1549 
1550 	xen_init_mmu_ops();
1551 
1552 	/* Prevent unwanted bits from being set in PTEs. */
1553 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1554 
1555 	/*
1556 	 * Prevent page tables from being allocated in highmem, even
1557 	 * if CONFIG_HIGHPTE is enabled.
1558 	 */
1559 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1560 
1561 	/* Work out if we support NX */
1562 	x86_configure_nx();
1563 
1564 	/* Get mfn list */
1565 	xen_build_dynamic_phys_to_machine();
1566 
1567 	/*
1568 	 * Set up kernel GDT and segment registers, mainly so that
1569 	 * -fstack-protector code can be executed.
1570 	 */
1571 	xen_setup_gdt(0);
1572 
1573 	xen_init_irq_ops();
1574 	xen_init_cpuid_mask();
1575 
1576 #ifdef CONFIG_X86_LOCAL_APIC
1577 	/*
1578 	 * set up the basic apic ops.
1579 	 */
1580 	xen_init_apic();
1581 #endif
1582 
1583 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1584 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1585 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1586 	}
1587 
1588 	machine_ops = xen_machine_ops;
1589 
1590 	/*
1591 	 * The only reliable way to retain the initial address of the
1592 	 * percpu gdt_page is to remember it here, so we can go and
1593 	 * mark it RW later, when the initial percpu area is freed.
1594 	 */
1595 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1596 
1597 	xen_smp_init();
1598 
1599 #ifdef CONFIG_ACPI_NUMA
1600 	/*
1601 	 * The pages we from Xen are not related to machine pages, so
1602 	 * any NUMA information the kernel tries to get from ACPI will
1603 	 * be meaningless.  Prevent it from trying.
1604 	 */
1605 	acpi_numa = -1;
1606 #endif
1607 	/* Don't do the full vcpu_info placement stuff until we have a
1608 	   possible map and a non-dummy shared_info. */
1609 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1610 
1611 	local_irq_disable();
1612 	early_boot_irqs_disabled = true;
1613 
1614 	xen_raw_console_write("mapping kernel into physical memory\n");
1615 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1616 
1617 	/*
1618 	 * Modify the cache mode translation tables to match Xen's PAT
1619 	 * configuration.
1620 	 */
1621 
1622 	pat_init_cache_modes();
1623 
1624 	/* keep using Xen gdt for now; no urgent need to change it */
1625 
1626 #ifdef CONFIG_X86_32
1627 	pv_info.kernel_rpl = 1;
1628 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1629 		pv_info.kernel_rpl = 0;
1630 #else
1631 	pv_info.kernel_rpl = 0;
1632 #endif
1633 	/* set the limit of our address space */
1634 	xen_reserve_top();
1635 
1636 	/* PVH: runs at default kernel iopl of 0 */
1637 	if (!xen_pvh_domain()) {
1638 		/*
1639 		 * We used to do this in xen_arch_setup, but that is too late
1640 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1641 		 * early_amd_init which pokes 0xcf8 port.
1642 		 */
1643 		set_iopl.iopl = 1;
1644 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1645 		if (rc != 0)
1646 			xen_raw_printk("physdev_op failed %d\n", rc);
1647 	}
1648 
1649 #ifdef CONFIG_X86_32
1650 	/* set up basic CPUID stuff */
1651 	cpu_detect(&new_cpu_data);
1652 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1653 	new_cpu_data.wp_works_ok = 1;
1654 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1655 #endif
1656 
1657 	if (xen_start_info->mod_start) {
1658 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1659 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1660 	    else
1661 		initrd_start = __pa(xen_start_info->mod_start);
1662 	}
1663 
1664 	/* Poke various useful things into boot_params */
1665 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1666 	boot_params.hdr.ramdisk_image = initrd_start;
1667 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1668 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1669 
1670 	if (!xen_initial_domain()) {
1671 		add_preferred_console("xenboot", 0, NULL);
1672 		add_preferred_console("tty", 0, NULL);
1673 		add_preferred_console("hvc", 0, NULL);
1674 		if (pci_xen)
1675 			x86_init.pci.arch_init = pci_xen_init;
1676 	} else {
1677 		const struct dom0_vga_console_info *info =
1678 			(void *)((char *)xen_start_info +
1679 				 xen_start_info->console.dom0.info_off);
1680 		struct xen_platform_op op = {
1681 			.cmd = XENPF_firmware_info,
1682 			.interface_version = XENPF_INTERFACE_VERSION,
1683 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1684 		};
1685 
1686 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1687 		xen_start_info->console.domU.mfn = 0;
1688 		xen_start_info->console.domU.evtchn = 0;
1689 
1690 		if (HYPERVISOR_dom0_op(&op) == 0)
1691 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1692 
1693 		/* Make sure ACS will be enabled */
1694 		pci_request_acs();
1695 
1696 		xen_acpi_sleep_register();
1697 
1698 		/* Avoid searching for BIOS MP tables */
1699 		x86_init.mpparse.find_smp_config = x86_init_noop;
1700 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1701 
1702 		xen_boot_params_init_edd();
1703 	}
1704 #ifdef CONFIG_PCI
1705 	/* PCI BIOS service won't work from a PV guest. */
1706 	pci_probe &= ~PCI_PROBE_BIOS;
1707 #endif
1708 	xen_raw_console_write("about to get started...\n");
1709 
1710 	xen_setup_runstate_info(0);
1711 
1712 	xen_efi_init();
1713 
1714 	/* Start the world */
1715 #ifdef CONFIG_X86_32
1716 	i386_start_kernel();
1717 #else
1718 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1719 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1720 #endif
1721 }
1722 
xen_hvm_init_shared_info(void)1723 void __ref xen_hvm_init_shared_info(void)
1724 {
1725 	int cpu;
1726 	struct xen_add_to_physmap xatp;
1727 	static struct shared_info *shared_info_page = 0;
1728 
1729 	if (!shared_info_page)
1730 		shared_info_page = (struct shared_info *)
1731 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1732 	xatp.domid = DOMID_SELF;
1733 	xatp.idx = 0;
1734 	xatp.space = XENMAPSPACE_shared_info;
1735 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1736 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1737 		BUG();
1738 
1739 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1740 
1741 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1742 	 * page, we use it in the event channel upcall and in some pvclock
1743 	 * related functions. We don't need the vcpu_info placement
1744 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1745 	 * HVM.
1746 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1747 	 * online but xen_hvm_init_shared_info is run at resume time too and
1748 	 * in that case multiple vcpus might be online. */
1749 	for_each_online_cpu(cpu) {
1750 		/* Leave it to be NULL. */
1751 		if (cpu >= MAX_VIRT_CPUS)
1752 			continue;
1753 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1754 	}
1755 }
1756 
1757 #ifdef CONFIG_XEN_PVHVM
init_hvm_pv_info(void)1758 static void __init init_hvm_pv_info(void)
1759 {
1760 	int major, minor;
1761 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1762 	u64 pfn;
1763 
1764 	base = xen_cpuid_base();
1765 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1766 
1767 	major = eax >> 16;
1768 	minor = eax & 0xffff;
1769 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1770 
1771 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1772 
1773 	pfn = __pa(hypercall_page);
1774 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1775 
1776 	xen_setup_features();
1777 
1778 	pv_info.name = "Xen HVM";
1779 
1780 	xen_domain_type = XEN_HVM_DOMAIN;
1781 }
1782 
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1783 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1784 			      void *hcpu)
1785 {
1786 	int cpu = (long)hcpu;
1787 	switch (action) {
1788 	case CPU_UP_PREPARE:
1789 		xen_vcpu_setup(cpu);
1790 		if (xen_have_vector_callback) {
1791 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1792 				xen_setup_timer(cpu);
1793 		}
1794 		break;
1795 	default:
1796 		break;
1797 	}
1798 	return NOTIFY_OK;
1799 }
1800 
1801 static struct notifier_block xen_hvm_cpu_notifier = {
1802 	.notifier_call	= xen_hvm_cpu_notify,
1803 };
1804 
1805 #ifdef CONFIG_KEXEC
xen_hvm_shutdown(void)1806 static void xen_hvm_shutdown(void)
1807 {
1808 	native_machine_shutdown();
1809 	if (kexec_in_progress)
1810 		xen_reboot(SHUTDOWN_soft_reset);
1811 }
1812 
xen_hvm_crash_shutdown(struct pt_regs * regs)1813 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1814 {
1815 	native_machine_crash_shutdown(regs);
1816 	xen_reboot(SHUTDOWN_soft_reset);
1817 }
1818 #endif
1819 
xen_hvm_guest_init(void)1820 static void __init xen_hvm_guest_init(void)
1821 {
1822 	if (xen_pv_domain())
1823 		return;
1824 
1825 	init_hvm_pv_info();
1826 
1827 	xen_hvm_init_shared_info();
1828 
1829 	xen_panic_handler_init();
1830 
1831 	if (xen_feature(XENFEAT_hvm_callback_vector))
1832 		xen_have_vector_callback = 1;
1833 	xen_hvm_smp_init();
1834 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1835 	xen_unplug_emulated_devices();
1836 	x86_init.irqs.intr_init = xen_init_IRQ;
1837 	xen_hvm_init_time_ops();
1838 	xen_hvm_init_mmu_ops();
1839 #ifdef CONFIG_KEXEC
1840 	machine_ops.shutdown = xen_hvm_shutdown;
1841 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1842 #endif
1843 }
1844 #endif
1845 
1846 static bool xen_nopv = false;
xen_parse_nopv(char * arg)1847 static __init int xen_parse_nopv(char *arg)
1848 {
1849        xen_nopv = true;
1850        return 0;
1851 }
1852 early_param("xen_nopv", xen_parse_nopv);
1853 
xen_platform(void)1854 static uint32_t __init xen_platform(void)
1855 {
1856 	if (xen_nopv)
1857 		return 0;
1858 
1859 	return xen_cpuid_base();
1860 }
1861 
xen_hvm_need_lapic(void)1862 bool xen_hvm_need_lapic(void)
1863 {
1864 	if (xen_nopv)
1865 		return false;
1866 	if (xen_pv_domain())
1867 		return false;
1868 	if (!xen_hvm_domain())
1869 		return false;
1870 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1871 		return false;
1872 	return true;
1873 }
1874 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1875 
xen_set_cpu_features(struct cpuinfo_x86 * c)1876 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1877 {
1878 	if (xen_pv_domain())
1879 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1880 }
1881 
1882 const struct hypervisor_x86 x86_hyper_xen = {
1883 	.name			= "Xen",
1884 	.detect			= xen_platform,
1885 #ifdef CONFIG_XEN_PVHVM
1886 	.init_platform		= xen_hvm_guest_init,
1887 #endif
1888 	.x2apic_available	= xen_x2apic_para_available,
1889 	.set_cpu_features       = xen_set_cpu_features,
1890 };
1891 EXPORT_SYMBOL(x86_hyper_xen);
1892