1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #ifdef CONFIG_KEXEC_CORE
37 #include <linux/kexec.h>
38 #endif
39
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/pat.h>
78 #include <asm/cpu.h>
79
80 #ifdef CONFIG_ACPI
81 #include <linux/acpi.h>
82 #include <asm/acpi.h>
83 #include <acpi/pdc_intel.h>
84 #include <acpi/processor.h>
85 #include <xen/interface/platform.h>
86 #endif
87
88 #include "xen-ops.h"
89 #include "mmu.h"
90 #include "smp.h"
91 #include "multicalls.h"
92 #include "pmu.h"
93
94 EXPORT_SYMBOL_GPL(hypercall_page);
95
96 /*
97 * Pointer to the xen_vcpu_info structure or
98 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
99 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
100 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
101 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
102 * acknowledge pending events.
103 * Also more subtly it is used by the patched version of irq enable/disable
104 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
105 *
106 * The desire to be able to do those mask/unmask operations as a single
107 * instruction by using the per-cpu offset held in %gs is the real reason
108 * vcpu info is in a per-cpu pointer and the original reason for this
109 * hypercall.
110 *
111 */
112 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
113
114 /*
115 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
116 * hypercall. This can be used both in PV and PVHVM mode. The structure
117 * overrides the default per_cpu(xen_vcpu, cpu) value.
118 */
119 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
120
121 enum xen_domain_type xen_domain_type = XEN_NATIVE;
122 EXPORT_SYMBOL_GPL(xen_domain_type);
123
124 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
125 EXPORT_SYMBOL(machine_to_phys_mapping);
126 unsigned long machine_to_phys_nr;
127 EXPORT_SYMBOL(machine_to_phys_nr);
128
129 struct start_info *xen_start_info;
130 EXPORT_SYMBOL_GPL(xen_start_info);
131
132 struct shared_info xen_dummy_shared_info;
133
134 void *xen_initial_gdt;
135
136 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
137 __read_mostly int xen_have_vector_callback;
138 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
139
140 /*
141 * Point at some empty memory to start with. We map the real shared_info
142 * page as soon as fixmap is up and running.
143 */
144 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
145
146 /*
147 * Flag to determine whether vcpu info placement is available on all
148 * VCPUs. We assume it is to start with, and then set it to zero on
149 * the first failure. This is because it can succeed on some VCPUs
150 * and not others, since it can involve hypervisor memory allocation,
151 * or because the guest failed to guarantee all the appropriate
152 * constraints on all VCPUs (ie buffer can't cross a page boundary).
153 *
154 * Note that any particular CPU may be using a placed vcpu structure,
155 * but we can only optimise if the all are.
156 *
157 * 0: not available, 1: available
158 */
159 static int have_vcpu_info_placement = 1;
160
161 struct tls_descs {
162 struct desc_struct desc[3];
163 };
164
165 /*
166 * Updating the 3 TLS descriptors in the GDT on every task switch is
167 * surprisingly expensive so we avoid updating them if they haven't
168 * changed. Since Xen writes different descriptors than the one
169 * passed in the update_descriptor hypercall we keep shadow copies to
170 * compare against.
171 */
172 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
173
clamp_max_cpus(void)174 static void clamp_max_cpus(void)
175 {
176 #ifdef CONFIG_SMP
177 if (setup_max_cpus > MAX_VIRT_CPUS)
178 setup_max_cpus = MAX_VIRT_CPUS;
179 #endif
180 }
181
xen_vcpu_setup(int cpu)182 static void xen_vcpu_setup(int cpu)
183 {
184 struct vcpu_register_vcpu_info info;
185 int err;
186 struct vcpu_info *vcpup;
187
188 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
189
190 /*
191 * This path is called twice on PVHVM - first during bootup via
192 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
193 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
194 * As we can only do the VCPUOP_register_vcpu_info once lets
195 * not over-write its result.
196 *
197 * For PV it is called during restore (xen_vcpu_restore) and bootup
198 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
199 * use this function.
200 */
201 if (xen_hvm_domain()) {
202 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
203 return;
204 }
205 if (cpu < MAX_VIRT_CPUS)
206 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
207
208 if (!have_vcpu_info_placement) {
209 if (cpu >= MAX_VIRT_CPUS)
210 clamp_max_cpus();
211 return;
212 }
213
214 vcpup = &per_cpu(xen_vcpu_info, cpu);
215 info.mfn = arbitrary_virt_to_mfn(vcpup);
216 info.offset = offset_in_page(vcpup);
217
218 /* Check to see if the hypervisor will put the vcpu_info
219 structure where we want it, which allows direct access via
220 a percpu-variable.
221 N.B. This hypercall can _only_ be called once per CPU. Subsequent
222 calls will error out with -EINVAL. This is due to the fact that
223 hypervisor has no unregister variant and this hypercall does not
224 allow to over-write info.mfn and info.offset.
225 */
226 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
227
228 if (err) {
229 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
230 have_vcpu_info_placement = 0;
231 clamp_max_cpus();
232 } else {
233 /* This cpu is using the registered vcpu info, even if
234 later ones fail to. */
235 per_cpu(xen_vcpu, cpu) = vcpup;
236 }
237 }
238
239 /*
240 * On restore, set the vcpu placement up again.
241 * If it fails, then we're in a bad state, since
242 * we can't back out from using it...
243 */
xen_vcpu_restore(void)244 void xen_vcpu_restore(void)
245 {
246 int cpu;
247
248 for_each_possible_cpu(cpu) {
249 bool other_cpu = (cpu != smp_processor_id());
250 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
251
252 if (other_cpu && is_up &&
253 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
254 BUG();
255
256 xen_setup_runstate_info(cpu);
257
258 if (have_vcpu_info_placement)
259 xen_vcpu_setup(cpu);
260
261 if (other_cpu && is_up &&
262 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
263 BUG();
264 }
265 }
266
xen_banner(void)267 static void __init xen_banner(void)
268 {
269 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
270 struct xen_extraversion extra;
271 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
272
273 pr_info("Booting paravirtualized kernel %son %s\n",
274 xen_feature(XENFEAT_auto_translated_physmap) ?
275 "with PVH extensions " : "", pv_info.name);
276 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
277 version >> 16, version & 0xffff, extra.extraversion,
278 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
279 }
280 /* Check if running on Xen version (major, minor) or later */
281 bool
xen_running_on_version_or_later(unsigned int major,unsigned int minor)282 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
283 {
284 unsigned int version;
285
286 if (!xen_domain())
287 return false;
288
289 version = HYPERVISOR_xen_version(XENVER_version, NULL);
290 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
291 ((version >> 16) > major))
292 return true;
293 return false;
294 }
295
296 #define CPUID_THERM_POWER_LEAF 6
297 #define APERFMPERF_PRESENT 0
298
299 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
300 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
301
302 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
303 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
304 static __read_mostly unsigned int cpuid_leaf5_edx_val;
305
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)306 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
307 unsigned int *cx, unsigned int *dx)
308 {
309 unsigned maskebx = ~0;
310 unsigned maskecx = ~0;
311 unsigned maskedx = ~0;
312 unsigned setecx = 0;
313 /*
314 * Mask out inconvenient features, to try and disable as many
315 * unsupported kernel subsystems as possible.
316 */
317 switch (*ax) {
318 case 1:
319 maskecx = cpuid_leaf1_ecx_mask;
320 setecx = cpuid_leaf1_ecx_set_mask;
321 maskedx = cpuid_leaf1_edx_mask;
322 break;
323
324 case CPUID_MWAIT_LEAF:
325 /* Synthesize the values.. */
326 *ax = 0;
327 *bx = 0;
328 *cx = cpuid_leaf5_ecx_val;
329 *dx = cpuid_leaf5_edx_val;
330 return;
331
332 case CPUID_THERM_POWER_LEAF:
333 /* Disabling APERFMPERF for kernel usage */
334 maskecx = ~(1 << APERFMPERF_PRESENT);
335 break;
336
337 case 0xb:
338 /* Suppress extended topology stuff */
339 maskebx = 0;
340 break;
341 }
342
343 asm(XEN_EMULATE_PREFIX "cpuid"
344 : "=a" (*ax),
345 "=b" (*bx),
346 "=c" (*cx),
347 "=d" (*dx)
348 : "0" (*ax), "2" (*cx));
349
350 *bx &= maskebx;
351 *cx &= maskecx;
352 *cx |= setecx;
353 *dx &= maskedx;
354
355 }
356
xen_check_mwait(void)357 static bool __init xen_check_mwait(void)
358 {
359 #ifdef CONFIG_ACPI
360 struct xen_platform_op op = {
361 .cmd = XENPF_set_processor_pminfo,
362 .u.set_pminfo.id = -1,
363 .u.set_pminfo.type = XEN_PM_PDC,
364 };
365 uint32_t buf[3];
366 unsigned int ax, bx, cx, dx;
367 unsigned int mwait_mask;
368
369 /* We need to determine whether it is OK to expose the MWAIT
370 * capability to the kernel to harvest deeper than C3 states from ACPI
371 * _CST using the processor_harvest_xen.c module. For this to work, we
372 * need to gather the MWAIT_LEAF values (which the cstate.c code
373 * checks against). The hypervisor won't expose the MWAIT flag because
374 * it would break backwards compatibility; so we will find out directly
375 * from the hardware and hypercall.
376 */
377 if (!xen_initial_domain())
378 return false;
379
380 /*
381 * When running under platform earlier than Xen4.2, do not expose
382 * mwait, to avoid the risk of loading native acpi pad driver
383 */
384 if (!xen_running_on_version_or_later(4, 2))
385 return false;
386
387 ax = 1;
388 cx = 0;
389
390 native_cpuid(&ax, &bx, &cx, &dx);
391
392 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
393 (1 << (X86_FEATURE_MWAIT % 32));
394
395 if ((cx & mwait_mask) != mwait_mask)
396 return false;
397
398 /* We need to emulate the MWAIT_LEAF and for that we need both
399 * ecx and edx. The hypercall provides only partial information.
400 */
401
402 ax = CPUID_MWAIT_LEAF;
403 bx = 0;
404 cx = 0;
405 dx = 0;
406
407 native_cpuid(&ax, &bx, &cx, &dx);
408
409 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
410 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
411 */
412 buf[0] = ACPI_PDC_REVISION_ID;
413 buf[1] = 1;
414 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
415
416 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
417
418 if ((HYPERVISOR_dom0_op(&op) == 0) &&
419 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
420 cpuid_leaf5_ecx_val = cx;
421 cpuid_leaf5_edx_val = dx;
422 }
423 return true;
424 #else
425 return false;
426 #endif
427 }
xen_init_cpuid_mask(void)428 static void __init xen_init_cpuid_mask(void)
429 {
430 unsigned int ax, bx, cx, dx;
431 unsigned int xsave_mask;
432
433 cpuid_leaf1_edx_mask =
434 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
435 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
436
437 if (!xen_initial_domain())
438 cpuid_leaf1_edx_mask &=
439 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
440
441 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
442
443 ax = 1;
444 cx = 0;
445 cpuid(1, &ax, &bx, &cx, &dx);
446
447 xsave_mask =
448 (1 << (X86_FEATURE_XSAVE % 32)) |
449 (1 << (X86_FEATURE_OSXSAVE % 32));
450
451 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
452 if ((cx & xsave_mask) != xsave_mask)
453 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
454 if (xen_check_mwait())
455 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
456 }
457
xen_set_debugreg(int reg,unsigned long val)458 static void xen_set_debugreg(int reg, unsigned long val)
459 {
460 HYPERVISOR_set_debugreg(reg, val);
461 }
462
xen_get_debugreg(int reg)463 static unsigned long xen_get_debugreg(int reg)
464 {
465 return HYPERVISOR_get_debugreg(reg);
466 }
467
xen_end_context_switch(struct task_struct * next)468 static void xen_end_context_switch(struct task_struct *next)
469 {
470 xen_mc_flush();
471 paravirt_end_context_switch(next);
472 }
473
xen_store_tr(void)474 static unsigned long xen_store_tr(void)
475 {
476 return 0;
477 }
478
479 /*
480 * Set the page permissions for a particular virtual address. If the
481 * address is a vmalloc mapping (or other non-linear mapping), then
482 * find the linear mapping of the page and also set its protections to
483 * match.
484 */
set_aliased_prot(void * v,pgprot_t prot)485 static void set_aliased_prot(void *v, pgprot_t prot)
486 {
487 int level;
488 pte_t *ptep;
489 pte_t pte;
490 unsigned long pfn;
491 struct page *page;
492 unsigned char dummy;
493
494 ptep = lookup_address((unsigned long)v, &level);
495 BUG_ON(ptep == NULL);
496
497 pfn = pte_pfn(*ptep);
498 page = pfn_to_page(pfn);
499
500 pte = pfn_pte(pfn, prot);
501
502 /*
503 * Careful: update_va_mapping() will fail if the virtual address
504 * we're poking isn't populated in the page tables. We don't
505 * need to worry about the direct map (that's always in the page
506 * tables), but we need to be careful about vmap space. In
507 * particular, the top level page table can lazily propagate
508 * entries between processes, so if we've switched mms since we
509 * vmapped the target in the first place, we might not have the
510 * top-level page table entry populated.
511 *
512 * We disable preemption because we want the same mm active when
513 * we probe the target and when we issue the hypercall. We'll
514 * have the same nominal mm, but if we're a kernel thread, lazy
515 * mm dropping could change our pgd.
516 *
517 * Out of an abundance of caution, this uses __get_user() to fault
518 * in the target address just in case there's some obscure case
519 * in which the target address isn't readable.
520 */
521
522 preempt_disable();
523
524 pagefault_disable(); /* Avoid warnings due to being atomic. */
525 __get_user(dummy, (unsigned char __user __force *)v);
526 pagefault_enable();
527
528 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
529 BUG();
530
531 if (!PageHighMem(page)) {
532 void *av = __va(PFN_PHYS(pfn));
533
534 if (av != v)
535 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
536 BUG();
537 } else
538 kmap_flush_unused();
539
540 preempt_enable();
541 }
542
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)543 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
544 {
545 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
546 int i;
547
548 /*
549 * We need to mark the all aliases of the LDT pages RO. We
550 * don't need to call vm_flush_aliases(), though, since that's
551 * only responsible for flushing aliases out the TLBs, not the
552 * page tables, and Xen will flush the TLB for us if needed.
553 *
554 * To avoid confusing future readers: none of this is necessary
555 * to load the LDT. The hypervisor only checks this when the
556 * LDT is faulted in due to subsequent descriptor access.
557 */
558
559 for(i = 0; i < entries; i += entries_per_page)
560 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
561 }
562
xen_free_ldt(struct desc_struct * ldt,unsigned entries)563 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
564 {
565 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
566 int i;
567
568 for(i = 0; i < entries; i += entries_per_page)
569 set_aliased_prot(ldt + i, PAGE_KERNEL);
570 }
571
xen_set_ldt(const void * addr,unsigned entries)572 static void xen_set_ldt(const void *addr, unsigned entries)
573 {
574 struct mmuext_op *op;
575 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
576
577 trace_xen_cpu_set_ldt(addr, entries);
578
579 op = mcs.args;
580 op->cmd = MMUEXT_SET_LDT;
581 op->arg1.linear_addr = (unsigned long)addr;
582 op->arg2.nr_ents = entries;
583
584 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
585
586 xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588
xen_load_gdt(const struct desc_ptr * dtr)589 static void xen_load_gdt(const struct desc_ptr *dtr)
590 {
591 unsigned long va = dtr->address;
592 unsigned int size = dtr->size + 1;
593 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
594 unsigned long frames[pages];
595 int f;
596
597 /*
598 * A GDT can be up to 64k in size, which corresponds to 8192
599 * 8-byte entries, or 16 4k pages..
600 */
601
602 BUG_ON(size > 65536);
603 BUG_ON(va & ~PAGE_MASK);
604
605 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
606 int level;
607 pte_t *ptep;
608 unsigned long pfn, mfn;
609 void *virt;
610
611 /*
612 * The GDT is per-cpu and is in the percpu data area.
613 * That can be virtually mapped, so we need to do a
614 * page-walk to get the underlying MFN for the
615 * hypercall. The page can also be in the kernel's
616 * linear range, so we need to RO that mapping too.
617 */
618 ptep = lookup_address(va, &level);
619 BUG_ON(ptep == NULL);
620
621 pfn = pte_pfn(*ptep);
622 mfn = pfn_to_mfn(pfn);
623 virt = __va(PFN_PHYS(pfn));
624
625 frames[f] = mfn;
626
627 make_lowmem_page_readonly((void *)va);
628 make_lowmem_page_readonly(virt);
629 }
630
631 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
632 BUG();
633 }
634
635 /*
636 * load_gdt for early boot, when the gdt is only mapped once
637 */
xen_load_gdt_boot(const struct desc_ptr * dtr)638 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
639 {
640 unsigned long va = dtr->address;
641 unsigned int size = dtr->size + 1;
642 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
643 unsigned long frames[pages];
644 int f;
645
646 /*
647 * A GDT can be up to 64k in size, which corresponds to 8192
648 * 8-byte entries, or 16 4k pages..
649 */
650
651 BUG_ON(size > 65536);
652 BUG_ON(va & ~PAGE_MASK);
653
654 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
655 pte_t pte;
656 unsigned long pfn, mfn;
657
658 pfn = virt_to_pfn(va);
659 mfn = pfn_to_mfn(pfn);
660
661 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
662
663 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
664 BUG();
665
666 frames[f] = mfn;
667 }
668
669 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
670 BUG();
671 }
672
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)673 static inline bool desc_equal(const struct desc_struct *d1,
674 const struct desc_struct *d2)
675 {
676 return d1->a == d2->a && d1->b == d2->b;
677 }
678
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)679 static void load_TLS_descriptor(struct thread_struct *t,
680 unsigned int cpu, unsigned int i)
681 {
682 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
683 struct desc_struct *gdt;
684 xmaddr_t maddr;
685 struct multicall_space mc;
686
687 if (desc_equal(shadow, &t->tls_array[i]))
688 return;
689
690 *shadow = t->tls_array[i];
691
692 gdt = get_cpu_gdt_table(cpu);
693 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
694 mc = __xen_mc_entry(0);
695
696 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
697 }
698
xen_load_tls(struct thread_struct * t,unsigned int cpu)699 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
700 {
701 /*
702 * XXX sleazy hack: If we're being called in a lazy-cpu zone
703 * and lazy gs handling is enabled, it means we're in a
704 * context switch, and %gs has just been saved. This means we
705 * can zero it out to prevent faults on exit from the
706 * hypervisor if the next process has no %gs. Either way, it
707 * has been saved, and the new value will get loaded properly.
708 * This will go away as soon as Xen has been modified to not
709 * save/restore %gs for normal hypercalls.
710 *
711 * On x86_64, this hack is not used for %gs, because gs points
712 * to KERNEL_GS_BASE (and uses it for PDA references), so we
713 * must not zero %gs on x86_64
714 *
715 * For x86_64, we need to zero %fs, otherwise we may get an
716 * exception between the new %fs descriptor being loaded and
717 * %fs being effectively cleared at __switch_to().
718 */
719 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
720 #ifdef CONFIG_X86_32
721 lazy_load_gs(0);
722 #else
723 loadsegment(fs, 0);
724 #endif
725 }
726
727 xen_mc_batch();
728
729 load_TLS_descriptor(t, cpu, 0);
730 load_TLS_descriptor(t, cpu, 1);
731 load_TLS_descriptor(t, cpu, 2);
732
733 xen_mc_issue(PARAVIRT_LAZY_CPU);
734 }
735
736 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)737 static void xen_load_gs_index(unsigned int idx)
738 {
739 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
740 BUG();
741 }
742 #endif
743
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)744 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
745 const void *ptr)
746 {
747 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
748 u64 entry = *(u64 *)ptr;
749
750 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
751
752 preempt_disable();
753
754 xen_mc_flush();
755 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
756 BUG();
757
758 preempt_enable();
759 }
760
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)761 static int cvt_gate_to_trap(int vector, const gate_desc *val,
762 struct trap_info *info)
763 {
764 unsigned long addr;
765
766 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
767 return 0;
768
769 info->vector = vector;
770
771 addr = gate_offset(*val);
772 #ifdef CONFIG_X86_64
773 /*
774 * Look for known traps using IST, and substitute them
775 * appropriately. The debugger ones are the only ones we care
776 * about. Xen will handle faults like double_fault,
777 * so we should never see them. Warn if
778 * there's an unexpected IST-using fault handler.
779 */
780 if (addr == (unsigned long)debug)
781 addr = (unsigned long)xen_debug;
782 else if (addr == (unsigned long)int3)
783 addr = (unsigned long)xen_int3;
784 else if (addr == (unsigned long)stack_segment)
785 addr = (unsigned long)xen_stack_segment;
786 else if (addr == (unsigned long)double_fault) {
787 /* Don't need to handle these */
788 return 0;
789 #ifdef CONFIG_X86_MCE
790 } else if (addr == (unsigned long)machine_check) {
791 /*
792 * when xen hypervisor inject vMCE to guest,
793 * use native mce handler to handle it
794 */
795 ;
796 #endif
797 } else if (addr == (unsigned long)nmi)
798 /*
799 * Use the native version as well.
800 */
801 ;
802 else {
803 /* Some other trap using IST? */
804 if (WARN_ON(val->ist != 0))
805 return 0;
806 }
807 #endif /* CONFIG_X86_64 */
808 info->address = addr;
809
810 info->cs = gate_segment(*val);
811 info->flags = val->dpl;
812 /* interrupt gates clear IF */
813 if (val->type == GATE_INTERRUPT)
814 info->flags |= 1 << 2;
815
816 return 1;
817 }
818
819 /* Locations of each CPU's IDT */
820 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
821
822 /* Set an IDT entry. If the entry is part of the current IDT, then
823 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)824 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
825 {
826 unsigned long p = (unsigned long)&dt[entrynum];
827 unsigned long start, end;
828
829 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
830
831 preempt_disable();
832
833 start = __this_cpu_read(idt_desc.address);
834 end = start + __this_cpu_read(idt_desc.size) + 1;
835
836 xen_mc_flush();
837
838 native_write_idt_entry(dt, entrynum, g);
839
840 if (p >= start && (p + 8) <= end) {
841 struct trap_info info[2];
842
843 info[1].address = 0;
844
845 if (cvt_gate_to_trap(entrynum, g, &info[0]))
846 if (HYPERVISOR_set_trap_table(info))
847 BUG();
848 }
849
850 preempt_enable();
851 }
852
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps)853 static void xen_convert_trap_info(const struct desc_ptr *desc,
854 struct trap_info *traps)
855 {
856 unsigned in, out, count;
857
858 count = (desc->size+1) / sizeof(gate_desc);
859 BUG_ON(count > 256);
860
861 for (in = out = 0; in < count; in++) {
862 gate_desc *entry = (gate_desc*)(desc->address) + in;
863
864 if (cvt_gate_to_trap(in, entry, &traps[out]))
865 out++;
866 }
867 traps[out].address = 0;
868 }
869
xen_copy_trap_info(struct trap_info * traps)870 void xen_copy_trap_info(struct trap_info *traps)
871 {
872 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
873
874 xen_convert_trap_info(desc, traps);
875 }
876
877 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
878 hold a spinlock to protect the static traps[] array (static because
879 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)880 static void xen_load_idt(const struct desc_ptr *desc)
881 {
882 static DEFINE_SPINLOCK(lock);
883 static struct trap_info traps[257];
884
885 trace_xen_cpu_load_idt(desc);
886
887 spin_lock(&lock);
888
889 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
890
891 xen_convert_trap_info(desc, traps);
892
893 xen_mc_flush();
894 if (HYPERVISOR_set_trap_table(traps))
895 BUG();
896
897 spin_unlock(&lock);
898 }
899
900 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
901 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)902 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
903 const void *desc, int type)
904 {
905 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
906
907 preempt_disable();
908
909 switch (type) {
910 case DESC_LDT:
911 case DESC_TSS:
912 /* ignore */
913 break;
914
915 default: {
916 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
917
918 xen_mc_flush();
919 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
920 BUG();
921 }
922
923 }
924
925 preempt_enable();
926 }
927
928 /*
929 * Version of write_gdt_entry for use at early boot-time needed to
930 * update an entry as simply as possible.
931 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)932 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
933 const void *desc, int type)
934 {
935 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
936
937 switch (type) {
938 case DESC_LDT:
939 case DESC_TSS:
940 /* ignore */
941 break;
942
943 default: {
944 xmaddr_t maddr = virt_to_machine(&dt[entry]);
945
946 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
947 dt[entry] = *(struct desc_struct *)desc;
948 }
949
950 }
951 }
952
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)953 static void xen_load_sp0(struct tss_struct *tss,
954 struct thread_struct *thread)
955 {
956 struct multicall_space mcs;
957
958 mcs = xen_mc_entry(0);
959 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
960 xen_mc_issue(PARAVIRT_LAZY_CPU);
961 tss->x86_tss.sp0 = thread->sp0;
962 }
963
xen_set_iopl_mask(unsigned mask)964 void xen_set_iopl_mask(unsigned mask)
965 {
966 struct physdev_set_iopl set_iopl;
967
968 /* Force the change at ring 0. */
969 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
970 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
971 }
972
xen_io_delay(void)973 static void xen_io_delay(void)
974 {
975 }
976
xen_clts(void)977 static void xen_clts(void)
978 {
979 struct multicall_space mcs;
980
981 mcs = xen_mc_entry(0);
982
983 MULTI_fpu_taskswitch(mcs.mc, 0);
984
985 xen_mc_issue(PARAVIRT_LAZY_CPU);
986 }
987
988 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
989
xen_read_cr0(void)990 static unsigned long xen_read_cr0(void)
991 {
992 unsigned long cr0 = this_cpu_read(xen_cr0_value);
993
994 if (unlikely(cr0 == 0)) {
995 cr0 = native_read_cr0();
996 this_cpu_write(xen_cr0_value, cr0);
997 }
998
999 return cr0;
1000 }
1001
xen_write_cr0(unsigned long cr0)1002 static void xen_write_cr0(unsigned long cr0)
1003 {
1004 struct multicall_space mcs;
1005
1006 this_cpu_write(xen_cr0_value, cr0);
1007
1008 /* Only pay attention to cr0.TS; everything else is
1009 ignored. */
1010 mcs = xen_mc_entry(0);
1011
1012 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1013
1014 xen_mc_issue(PARAVIRT_LAZY_CPU);
1015 }
1016
xen_write_cr4(unsigned long cr4)1017 static void xen_write_cr4(unsigned long cr4)
1018 {
1019 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1020
1021 native_write_cr4(cr4);
1022 }
1023 #ifdef CONFIG_X86_64
xen_read_cr8(void)1024 static inline unsigned long xen_read_cr8(void)
1025 {
1026 return 0;
1027 }
xen_write_cr8(unsigned long val)1028 static inline void xen_write_cr8(unsigned long val)
1029 {
1030 BUG_ON(val);
1031 }
1032 #endif
1033
xen_read_msr_safe(unsigned int msr,int * err)1034 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1035 {
1036 u64 val;
1037
1038 if (pmu_msr_read(msr, &val, err))
1039 return val;
1040
1041 val = native_read_msr_safe(msr, err);
1042 switch (msr) {
1043 case MSR_IA32_APICBASE:
1044 #ifdef CONFIG_X86_X2APIC
1045 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1046 #endif
1047 val &= ~X2APIC_ENABLE;
1048 break;
1049 }
1050 return val;
1051 }
1052
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)1053 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1054 {
1055 int ret;
1056
1057 ret = 0;
1058
1059 switch (msr) {
1060 #ifdef CONFIG_X86_64
1061 unsigned which;
1062 u64 base;
1063
1064 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1065 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1066 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1067
1068 set:
1069 base = ((u64)high << 32) | low;
1070 if (HYPERVISOR_set_segment_base(which, base) != 0)
1071 ret = -EIO;
1072 break;
1073 #endif
1074
1075 case MSR_STAR:
1076 case MSR_CSTAR:
1077 case MSR_LSTAR:
1078 case MSR_SYSCALL_MASK:
1079 case MSR_IA32_SYSENTER_CS:
1080 case MSR_IA32_SYSENTER_ESP:
1081 case MSR_IA32_SYSENTER_EIP:
1082 /* Fast syscall setup is all done in hypercalls, so
1083 these are all ignored. Stub them out here to stop
1084 Xen console noise. */
1085 break;
1086
1087 default:
1088 if (!pmu_msr_write(msr, low, high, &ret))
1089 ret = native_write_msr_safe(msr, low, high);
1090 }
1091
1092 return ret;
1093 }
1094
xen_setup_shared_info(void)1095 void xen_setup_shared_info(void)
1096 {
1097 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1098 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1099 xen_start_info->shared_info);
1100
1101 HYPERVISOR_shared_info =
1102 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1103 } else
1104 HYPERVISOR_shared_info =
1105 (struct shared_info *)__va(xen_start_info->shared_info);
1106
1107 #ifndef CONFIG_SMP
1108 /* In UP this is as good a place as any to set up shared info */
1109 xen_setup_vcpu_info_placement();
1110 #endif
1111
1112 xen_setup_mfn_list_list();
1113 }
1114
1115 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1116 void xen_setup_vcpu_info_placement(void)
1117 {
1118 int cpu;
1119
1120 for_each_possible_cpu(cpu)
1121 xen_vcpu_setup(cpu);
1122
1123 /* xen_vcpu_setup managed to place the vcpu_info within the
1124 * percpu area for all cpus, so make use of it. Note that for
1125 * PVH we want to use native IRQ mechanism. */
1126 if (have_vcpu_info_placement && !xen_pvh_domain()) {
1127 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1128 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1129 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1130 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1131 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1132 }
1133 }
1134
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)1135 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1136 unsigned long addr, unsigned len)
1137 {
1138 char *start, *end, *reloc;
1139 unsigned ret;
1140
1141 start = end = reloc = NULL;
1142
1143 #define SITE(op, x) \
1144 case PARAVIRT_PATCH(op.x): \
1145 if (have_vcpu_info_placement) { \
1146 start = (char *)xen_##x##_direct; \
1147 end = xen_##x##_direct_end; \
1148 reloc = xen_##x##_direct_reloc; \
1149 } \
1150 goto patch_site
1151
1152 switch (type) {
1153 SITE(pv_irq_ops, irq_enable);
1154 SITE(pv_irq_ops, irq_disable);
1155 SITE(pv_irq_ops, save_fl);
1156 SITE(pv_irq_ops, restore_fl);
1157 #undef SITE
1158
1159 patch_site:
1160 if (start == NULL || (end-start) > len)
1161 goto default_patch;
1162
1163 ret = paravirt_patch_insns(insnbuf, len, start, end);
1164
1165 /* Note: because reloc is assigned from something that
1166 appears to be an array, gcc assumes it's non-null,
1167 but doesn't know its relationship with start and
1168 end. */
1169 if (reloc > start && reloc < end) {
1170 int reloc_off = reloc - start;
1171 long *relocp = (long *)(insnbuf + reloc_off);
1172 long delta = start - (char *)addr;
1173
1174 *relocp += delta;
1175 }
1176 break;
1177
1178 default_patch:
1179 default:
1180 ret = paravirt_patch_default(type, clobbers, insnbuf,
1181 addr, len);
1182 break;
1183 }
1184
1185 return ret;
1186 }
1187
1188 static const struct pv_info xen_info __initconst = {
1189 .paravirt_enabled = 1,
1190 .shared_kernel_pmd = 0,
1191
1192 #ifdef CONFIG_X86_64
1193 .extra_user_64bit_cs = FLAT_USER_CS64,
1194 #endif
1195 .features = 0,
1196 .name = "Xen",
1197 };
1198
1199 static const struct pv_init_ops xen_init_ops __initconst = {
1200 .patch = xen_patch,
1201 };
1202
1203 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1204 .cpuid = xen_cpuid,
1205
1206 .set_debugreg = xen_set_debugreg,
1207 .get_debugreg = xen_get_debugreg,
1208
1209 .clts = xen_clts,
1210
1211 .read_cr0 = xen_read_cr0,
1212 .write_cr0 = xen_write_cr0,
1213
1214 .read_cr4 = native_read_cr4,
1215 .read_cr4_safe = native_read_cr4_safe,
1216 .write_cr4 = xen_write_cr4,
1217
1218 #ifdef CONFIG_X86_64
1219 .read_cr8 = xen_read_cr8,
1220 .write_cr8 = xen_write_cr8,
1221 #endif
1222
1223 .wbinvd = native_wbinvd,
1224
1225 .read_msr = xen_read_msr_safe,
1226 .write_msr = xen_write_msr_safe,
1227
1228 .read_pmc = xen_read_pmc,
1229
1230 .iret = xen_iret,
1231 #ifdef CONFIG_X86_64
1232 .usergs_sysret32 = xen_sysret32,
1233 .usergs_sysret64 = xen_sysret64,
1234 #else
1235 .irq_enable_sysexit = xen_sysexit,
1236 #endif
1237
1238 .load_tr_desc = paravirt_nop,
1239 .set_ldt = xen_set_ldt,
1240 .load_gdt = xen_load_gdt,
1241 .load_idt = xen_load_idt,
1242 .load_tls = xen_load_tls,
1243 #ifdef CONFIG_X86_64
1244 .load_gs_index = xen_load_gs_index,
1245 #endif
1246
1247 .alloc_ldt = xen_alloc_ldt,
1248 .free_ldt = xen_free_ldt,
1249
1250 .store_idt = native_store_idt,
1251 .store_tr = xen_store_tr,
1252
1253 .write_ldt_entry = xen_write_ldt_entry,
1254 .write_gdt_entry = xen_write_gdt_entry,
1255 .write_idt_entry = xen_write_idt_entry,
1256 .load_sp0 = xen_load_sp0,
1257
1258 .set_iopl_mask = xen_set_iopl_mask,
1259 .io_delay = xen_io_delay,
1260
1261 /* Xen takes care of %gs when switching to usermode for us */
1262 .swapgs = paravirt_nop,
1263
1264 .start_context_switch = paravirt_start_context_switch,
1265 .end_context_switch = xen_end_context_switch,
1266 };
1267
1268 static const struct pv_apic_ops xen_apic_ops __initconst = {
1269 #ifdef CONFIG_X86_LOCAL_APIC
1270 .startup_ipi_hook = paravirt_nop,
1271 #endif
1272 };
1273
xen_reboot(int reason)1274 static void xen_reboot(int reason)
1275 {
1276 struct sched_shutdown r = { .reason = reason };
1277 int cpu;
1278
1279 for_each_online_cpu(cpu)
1280 xen_pmu_finish(cpu);
1281
1282 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1283 BUG();
1284 }
1285
xen_restart(char * msg)1286 static void xen_restart(char *msg)
1287 {
1288 xen_reboot(SHUTDOWN_reboot);
1289 }
1290
xen_emergency_restart(void)1291 static void xen_emergency_restart(void)
1292 {
1293 xen_reboot(SHUTDOWN_reboot);
1294 }
1295
xen_machine_halt(void)1296 static void xen_machine_halt(void)
1297 {
1298 xen_reboot(SHUTDOWN_poweroff);
1299 }
1300
xen_machine_power_off(void)1301 static void xen_machine_power_off(void)
1302 {
1303 if (pm_power_off)
1304 pm_power_off();
1305 xen_reboot(SHUTDOWN_poweroff);
1306 }
1307
xen_crash_shutdown(struct pt_regs * regs)1308 static void xen_crash_shutdown(struct pt_regs *regs)
1309 {
1310 xen_reboot(SHUTDOWN_crash);
1311 }
1312
1313 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1314 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1315 {
1316 xen_reboot(SHUTDOWN_crash);
1317 return NOTIFY_DONE;
1318 }
1319
1320 static struct notifier_block xen_panic_block = {
1321 .notifier_call= xen_panic_event,
1322 .priority = INT_MIN
1323 };
1324
xen_panic_handler_init(void)1325 int xen_panic_handler_init(void)
1326 {
1327 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1328 return 0;
1329 }
1330
1331 static const struct machine_ops xen_machine_ops __initconst = {
1332 .restart = xen_restart,
1333 .halt = xen_machine_halt,
1334 .power_off = xen_machine_power_off,
1335 .shutdown = xen_machine_halt,
1336 .crash_shutdown = xen_crash_shutdown,
1337 .emergency_restart = xen_emergency_restart,
1338 };
1339
xen_get_nmi_reason(void)1340 static unsigned char xen_get_nmi_reason(void)
1341 {
1342 unsigned char reason = 0;
1343
1344 /* Construct a value which looks like it came from port 0x61. */
1345 if (test_bit(_XEN_NMIREASON_io_error,
1346 &HYPERVISOR_shared_info->arch.nmi_reason))
1347 reason |= NMI_REASON_IOCHK;
1348 if (test_bit(_XEN_NMIREASON_pci_serr,
1349 &HYPERVISOR_shared_info->arch.nmi_reason))
1350 reason |= NMI_REASON_SERR;
1351
1352 return reason;
1353 }
1354
xen_boot_params_init_edd(void)1355 static void __init xen_boot_params_init_edd(void)
1356 {
1357 #if IS_ENABLED(CONFIG_EDD)
1358 struct xen_platform_op op;
1359 struct edd_info *edd_info;
1360 u32 *mbr_signature;
1361 unsigned nr;
1362 int ret;
1363
1364 edd_info = boot_params.eddbuf;
1365 mbr_signature = boot_params.edd_mbr_sig_buffer;
1366
1367 op.cmd = XENPF_firmware_info;
1368
1369 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1370 for (nr = 0; nr < EDDMAXNR; nr++) {
1371 struct edd_info *info = edd_info + nr;
1372
1373 op.u.firmware_info.index = nr;
1374 info->params.length = sizeof(info->params);
1375 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1376 &info->params);
1377 ret = HYPERVISOR_dom0_op(&op);
1378 if (ret)
1379 break;
1380
1381 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1382 C(device);
1383 C(version);
1384 C(interface_support);
1385 C(legacy_max_cylinder);
1386 C(legacy_max_head);
1387 C(legacy_sectors_per_track);
1388 #undef C
1389 }
1390 boot_params.eddbuf_entries = nr;
1391
1392 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1393 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1394 op.u.firmware_info.index = nr;
1395 ret = HYPERVISOR_dom0_op(&op);
1396 if (ret)
1397 break;
1398 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1399 }
1400 boot_params.edd_mbr_sig_buf_entries = nr;
1401 #endif
1402 }
1403
1404 /*
1405 * Set up the GDT and segment registers for -fstack-protector. Until
1406 * we do this, we have to be careful not to call any stack-protected
1407 * function, which is most of the kernel.
1408 *
1409 * Note, that it is __ref because the only caller of this after init
1410 * is PVH which is not going to use xen_load_gdt_boot or other
1411 * __init functions.
1412 */
xen_setup_gdt(int cpu)1413 static void __ref xen_setup_gdt(int cpu)
1414 {
1415 if (xen_feature(XENFEAT_auto_translated_physmap)) {
1416 #ifdef CONFIG_X86_64
1417 unsigned long dummy;
1418
1419 load_percpu_segment(cpu); /* We need to access per-cpu area */
1420 switch_to_new_gdt(cpu); /* GDT and GS set */
1421
1422 /* We are switching of the Xen provided GDT to our HVM mode
1423 * GDT. The new GDT has __KERNEL_CS with CS.L = 1
1424 * and we are jumping to reload it.
1425 */
1426 asm volatile ("pushq %0\n"
1427 "leaq 1f(%%rip),%0\n"
1428 "pushq %0\n"
1429 "lretq\n"
1430 "1:\n"
1431 : "=&r" (dummy) : "0" (__KERNEL_CS));
1432
1433 /*
1434 * While not needed, we also set the %es, %ds, and %fs
1435 * to zero. We don't care about %ss as it is NULL.
1436 * Strictly speaking this is not needed as Xen zeros those
1437 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1438 *
1439 * Linux zeros them in cpu_init() and in secondary_startup_64
1440 * (for BSP).
1441 */
1442 loadsegment(es, 0);
1443 loadsegment(ds, 0);
1444 loadsegment(fs, 0);
1445 #else
1446 /* PVH: TODO Implement. */
1447 BUG();
1448 #endif
1449 return; /* PVH does not need any PV GDT ops. */
1450 }
1451 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1452 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1453
1454 setup_stack_canary_segment(0);
1455 switch_to_new_gdt(0);
1456
1457 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1458 pv_cpu_ops.load_gdt = xen_load_gdt;
1459 }
1460
1461 #ifdef CONFIG_XEN_PVH
1462 /*
1463 * A PV guest starts with default flags that are not set for PVH, set them
1464 * here asap.
1465 */
xen_pvh_set_cr_flags(int cpu)1466 static void xen_pvh_set_cr_flags(int cpu)
1467 {
1468
1469 /* Some of these are setup in 'secondary_startup_64'. The others:
1470 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1471 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1472 write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1473
1474 if (!cpu)
1475 return;
1476 /*
1477 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1478 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1479 */
1480 if (cpu_has_pse)
1481 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1482
1483 if (cpu_has_pge)
1484 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1485 }
1486
1487 /*
1488 * Note, that it is ref - because the only caller of this after init
1489 * is PVH which is not going to use xen_load_gdt_boot or other
1490 * __init functions.
1491 */
xen_pvh_secondary_vcpu_init(int cpu)1492 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1493 {
1494 xen_setup_gdt(cpu);
1495 xen_pvh_set_cr_flags(cpu);
1496 }
1497
xen_pvh_early_guest_init(void)1498 static void __init xen_pvh_early_guest_init(void)
1499 {
1500 if (!xen_feature(XENFEAT_auto_translated_physmap))
1501 return;
1502
1503 if (!xen_feature(XENFEAT_hvm_callback_vector))
1504 return;
1505
1506 xen_have_vector_callback = 1;
1507
1508 xen_pvh_early_cpu_init(0, false);
1509 xen_pvh_set_cr_flags(0);
1510
1511 #ifdef CONFIG_X86_32
1512 BUG(); /* PVH: Implement proper support. */
1513 #endif
1514 }
1515 #endif /* CONFIG_XEN_PVH */
1516
1517 /* First C function to be called on Xen boot */
xen_start_kernel(void)1518 asmlinkage __visible void __init xen_start_kernel(void)
1519 {
1520 struct physdev_set_iopl set_iopl;
1521 unsigned long initrd_start = 0;
1522 u64 pat;
1523 int rc;
1524
1525 if (!xen_start_info)
1526 return;
1527
1528 xen_domain_type = XEN_PV_DOMAIN;
1529
1530 xen_setup_features();
1531 #ifdef CONFIG_XEN_PVH
1532 xen_pvh_early_guest_init();
1533 #endif
1534 xen_setup_machphys_mapping();
1535
1536 /* Install Xen paravirt ops */
1537 pv_info = xen_info;
1538 if (xen_initial_domain())
1539 pv_info.features |= PV_SUPPORTED_RTC;
1540 pv_init_ops = xen_init_ops;
1541 pv_apic_ops = xen_apic_ops;
1542 if (!xen_pvh_domain()) {
1543 pv_cpu_ops = xen_cpu_ops;
1544
1545 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1546 }
1547
1548 if (xen_feature(XENFEAT_auto_translated_physmap))
1549 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1550 else
1551 x86_init.resources.memory_setup = xen_memory_setup;
1552 x86_init.oem.arch_setup = xen_arch_setup;
1553 x86_init.oem.banner = xen_banner;
1554
1555 xen_init_time_ops();
1556
1557 /*
1558 * Set up some pagetable state before starting to set any ptes.
1559 */
1560
1561 xen_init_mmu_ops();
1562
1563 /* Prevent unwanted bits from being set in PTEs. */
1564 __supported_pte_mask &= ~_PAGE_GLOBAL;
1565
1566 /*
1567 * Prevent page tables from being allocated in highmem, even
1568 * if CONFIG_HIGHPTE is enabled.
1569 */
1570 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1571
1572 /* Work out if we support NX */
1573 x86_configure_nx();
1574
1575 /* Get mfn list */
1576 xen_build_dynamic_phys_to_machine();
1577
1578 /*
1579 * Set up kernel GDT and segment registers, mainly so that
1580 * -fstack-protector code can be executed.
1581 */
1582 xen_setup_gdt(0);
1583
1584 xen_init_irq_ops();
1585 xen_init_cpuid_mask();
1586
1587 #ifdef CONFIG_X86_LOCAL_APIC
1588 /*
1589 * set up the basic apic ops.
1590 */
1591 xen_init_apic();
1592 #endif
1593
1594 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1595 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1596 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1597 }
1598
1599 machine_ops = xen_machine_ops;
1600
1601 /*
1602 * The only reliable way to retain the initial address of the
1603 * percpu gdt_page is to remember it here, so we can go and
1604 * mark it RW later, when the initial percpu area is freed.
1605 */
1606 xen_initial_gdt = &per_cpu(gdt_page, 0);
1607
1608 xen_smp_init();
1609
1610 #ifdef CONFIG_ACPI_NUMA
1611 /*
1612 * The pages we from Xen are not related to machine pages, so
1613 * any NUMA information the kernel tries to get from ACPI will
1614 * be meaningless. Prevent it from trying.
1615 */
1616 acpi_numa = -1;
1617 #endif
1618 /* Don't do the full vcpu_info placement stuff until we have a
1619 possible map and a non-dummy shared_info. */
1620 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1621
1622 local_irq_disable();
1623 early_boot_irqs_disabled = true;
1624
1625 xen_raw_console_write("mapping kernel into physical memory\n");
1626 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1627 xen_start_info->nr_pages);
1628 xen_reserve_special_pages();
1629
1630 /*
1631 * Modify the cache mode translation tables to match Xen's PAT
1632 * configuration.
1633 */
1634 rdmsrl(MSR_IA32_CR_PAT, pat);
1635 pat_init_cache_modes(pat);
1636
1637 /* keep using Xen gdt for now; no urgent need to change it */
1638
1639 #ifdef CONFIG_X86_32
1640 pv_info.kernel_rpl = 1;
1641 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1642 pv_info.kernel_rpl = 0;
1643 #else
1644 pv_info.kernel_rpl = 0;
1645 #endif
1646 /* set the limit of our address space */
1647 xen_reserve_top();
1648
1649 /* PVH: runs at default kernel iopl of 0 */
1650 if (!xen_pvh_domain()) {
1651 /*
1652 * We used to do this in xen_arch_setup, but that is too late
1653 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1654 * early_amd_init which pokes 0xcf8 port.
1655 */
1656 set_iopl.iopl = 1;
1657 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1658 if (rc != 0)
1659 xen_raw_printk("physdev_op failed %d\n", rc);
1660 }
1661
1662 #ifdef CONFIG_X86_32
1663 /* set up basic CPUID stuff */
1664 cpu_detect(&new_cpu_data);
1665 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1666 new_cpu_data.wp_works_ok = 1;
1667 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1668 #endif
1669
1670 if (xen_start_info->mod_start) {
1671 if (xen_start_info->flags & SIF_MOD_START_PFN)
1672 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1673 else
1674 initrd_start = __pa(xen_start_info->mod_start);
1675 }
1676
1677 /* Poke various useful things into boot_params */
1678 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1679 boot_params.hdr.ramdisk_image = initrd_start;
1680 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1681 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1682
1683 if (!xen_initial_domain()) {
1684 add_preferred_console("xenboot", 0, NULL);
1685 add_preferred_console("tty", 0, NULL);
1686 add_preferred_console("hvc", 0, NULL);
1687 if (pci_xen)
1688 x86_init.pci.arch_init = pci_xen_init;
1689 } else {
1690 const struct dom0_vga_console_info *info =
1691 (void *)((char *)xen_start_info +
1692 xen_start_info->console.dom0.info_off);
1693 struct xen_platform_op op = {
1694 .cmd = XENPF_firmware_info,
1695 .interface_version = XENPF_INTERFACE_VERSION,
1696 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1697 };
1698
1699 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1700 xen_start_info->console.domU.mfn = 0;
1701 xen_start_info->console.domU.evtchn = 0;
1702
1703 if (HYPERVISOR_dom0_op(&op) == 0)
1704 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1705
1706 /* Make sure ACS will be enabled */
1707 pci_request_acs();
1708
1709 xen_acpi_sleep_register();
1710
1711 /* Avoid searching for BIOS MP tables */
1712 x86_init.mpparse.find_smp_config = x86_init_noop;
1713 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1714
1715 xen_boot_params_init_edd();
1716 }
1717 #ifdef CONFIG_PCI
1718 /* PCI BIOS service won't work from a PV guest. */
1719 pci_probe &= ~PCI_PROBE_BIOS;
1720 #endif
1721 xen_raw_console_write("about to get started...\n");
1722
1723 xen_setup_runstate_info(0);
1724
1725 xen_efi_init();
1726
1727 /* Start the world */
1728 #ifdef CONFIG_X86_32
1729 i386_start_kernel();
1730 #else
1731 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1732 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1733 #endif
1734 }
1735
xen_hvm_init_shared_info(void)1736 void __ref xen_hvm_init_shared_info(void)
1737 {
1738 int cpu;
1739 struct xen_add_to_physmap xatp;
1740 static struct shared_info *shared_info_page = 0;
1741
1742 if (!shared_info_page)
1743 shared_info_page = (struct shared_info *)
1744 extend_brk(PAGE_SIZE, PAGE_SIZE);
1745 xatp.domid = DOMID_SELF;
1746 xatp.idx = 0;
1747 xatp.space = XENMAPSPACE_shared_info;
1748 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1749 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1750 BUG();
1751
1752 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1753
1754 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1755 * page, we use it in the event channel upcall and in some pvclock
1756 * related functions. We don't need the vcpu_info placement
1757 * optimizations because we don't use any pv_mmu or pv_irq op on
1758 * HVM.
1759 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1760 * online but xen_hvm_init_shared_info is run at resume time too and
1761 * in that case multiple vcpus might be online. */
1762 for_each_online_cpu(cpu) {
1763 /* Leave it to be NULL. */
1764 if (cpu >= MAX_VIRT_CPUS)
1765 continue;
1766 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1767 }
1768 }
1769
1770 #ifdef CONFIG_XEN_PVHVM
init_hvm_pv_info(void)1771 static void __init init_hvm_pv_info(void)
1772 {
1773 int major, minor;
1774 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1775 u64 pfn;
1776
1777 base = xen_cpuid_base();
1778 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1779
1780 major = eax >> 16;
1781 minor = eax & 0xffff;
1782 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1783
1784 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1785
1786 pfn = __pa(hypercall_page);
1787 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1788
1789 xen_setup_features();
1790
1791 pv_info.name = "Xen HVM";
1792
1793 xen_domain_type = XEN_HVM_DOMAIN;
1794 }
1795
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1796 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1797 void *hcpu)
1798 {
1799 int cpu = (long)hcpu;
1800 switch (action) {
1801 case CPU_UP_PREPARE:
1802 xen_vcpu_setup(cpu);
1803 if (xen_have_vector_callback) {
1804 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1805 xen_setup_timer(cpu);
1806 }
1807 break;
1808 default:
1809 break;
1810 }
1811 return NOTIFY_OK;
1812 }
1813
1814 static struct notifier_block xen_hvm_cpu_notifier = {
1815 .notifier_call = xen_hvm_cpu_notify,
1816 };
1817
1818 #ifdef CONFIG_KEXEC_CORE
xen_hvm_shutdown(void)1819 static void xen_hvm_shutdown(void)
1820 {
1821 native_machine_shutdown();
1822 if (kexec_in_progress)
1823 xen_reboot(SHUTDOWN_soft_reset);
1824 }
1825
xen_hvm_crash_shutdown(struct pt_regs * regs)1826 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1827 {
1828 native_machine_crash_shutdown(regs);
1829 xen_reboot(SHUTDOWN_soft_reset);
1830 }
1831 #endif
1832
xen_hvm_guest_init(void)1833 static void __init xen_hvm_guest_init(void)
1834 {
1835 if (xen_pv_domain())
1836 return;
1837
1838 init_hvm_pv_info();
1839
1840 xen_hvm_init_shared_info();
1841
1842 xen_panic_handler_init();
1843
1844 if (xen_feature(XENFEAT_hvm_callback_vector))
1845 xen_have_vector_callback = 1;
1846 xen_hvm_smp_init();
1847 register_cpu_notifier(&xen_hvm_cpu_notifier);
1848 xen_unplug_emulated_devices();
1849 x86_init.irqs.intr_init = xen_init_IRQ;
1850 xen_hvm_init_time_ops();
1851 xen_hvm_init_mmu_ops();
1852 #ifdef CONFIG_KEXEC_CORE
1853 machine_ops.shutdown = xen_hvm_shutdown;
1854 machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1855 #endif
1856 }
1857 #endif
1858
1859 static bool xen_nopv = false;
xen_parse_nopv(char * arg)1860 static __init int xen_parse_nopv(char *arg)
1861 {
1862 xen_nopv = true;
1863 return 0;
1864 }
1865 early_param("xen_nopv", xen_parse_nopv);
1866
xen_platform(void)1867 static uint32_t __init xen_platform(void)
1868 {
1869 if (xen_nopv)
1870 return 0;
1871
1872 return xen_cpuid_base();
1873 }
1874
xen_hvm_need_lapic(void)1875 bool xen_hvm_need_lapic(void)
1876 {
1877 if (xen_nopv)
1878 return false;
1879 if (xen_pv_domain())
1880 return false;
1881 if (!xen_hvm_domain())
1882 return false;
1883 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1884 return false;
1885 return true;
1886 }
1887 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1888
xen_set_cpu_features(struct cpuinfo_x86 * c)1889 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1890 {
1891 if (xen_pv_domain()) {
1892 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1893 set_cpu_cap(c, X86_FEATURE_XENPV);
1894 }
1895 }
1896
1897 const struct hypervisor_x86 x86_hyper_xen = {
1898 .name = "Xen",
1899 .detect = xen_platform,
1900 #ifdef CONFIG_XEN_PVHVM
1901 .init_platform = xen_hvm_guest_init,
1902 #endif
1903 .x2apic_available = xen_x2apic_para_available,
1904 .set_cpu_features = xen_set_cpu_features,
1905 };
1906 EXPORT_SYMBOL(x86_hyper_xen);
1907
1908 #ifdef CONFIG_HOTPLUG_CPU
xen_arch_register_cpu(int num)1909 void xen_arch_register_cpu(int num)
1910 {
1911 arch_register_cpu(num);
1912 }
1913 EXPORT_SYMBOL(xen_arch_register_cpu);
1914
xen_arch_unregister_cpu(int num)1915 void xen_arch_unregister_cpu(int num)
1916 {
1917 arch_unregister_cpu(num);
1918 }
1919 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1920 #endif
1921