1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/watchdog.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20 
21 #include "perf_event.h"
22 
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
29 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
30 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
31 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
32 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
33 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
34 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
35 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
36 };
37 
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 	EVENT_CONSTRAINT_END
47 };
48 
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 	EVENT_CONSTRAINT_END
65 };
66 
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 	EVENT_CONSTRAINT_END
81 };
82 
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 	EVENT_EXTRA_END
89 };
90 
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 	EVENT_CONSTRAINT_END
101 };
102 
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 
118 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122 
123 	EVENT_CONSTRAINT_END
124 };
125 
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141 
142 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146 
147 	EVENT_CONSTRAINT_END
148 };
149 
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 	EVENT_EXTRA_END
157 };
158 
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161 	EVENT_CONSTRAINT_END
162 };
163 
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 	EVENT_CONSTRAINT_END
170 };
171 
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 	EVENT_CONSTRAINT_END
178 };
179 
180 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
181 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
182 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
183 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
184 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
185 	EVENT_EXTRA_END
186 };
187 
188 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
189 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
191 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
192 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193 	EVENT_EXTRA_END
194 };
195 
196 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
197 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
198 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
199 
200 struct attribute *nhm_events_attrs[] = {
201 	EVENT_PTR(mem_ld_nhm),
202 	NULL,
203 };
204 
205 struct attribute *snb_events_attrs[] = {
206 	EVENT_PTR(mem_ld_snb),
207 	EVENT_PTR(mem_st_snb),
208 	NULL,
209 };
210 
211 static struct event_constraint intel_hsw_event_constraints[] = {
212 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
213 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
214 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
215 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
216 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
217 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
218 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
219 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
220 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
221 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
222 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
223 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
224 
225 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
226 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
227 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
228 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
229 
230 	EVENT_CONSTRAINT_END
231 };
232 
233 struct event_constraint intel_bdw_event_constraints[] = {
234 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
235 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
236 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
237 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
238 	INTEL_EVENT_CONSTRAINT(0xa3, 0x4),	/* CYCLE_ACTIVITY.* */
239 	EVENT_CONSTRAINT_END
240 };
241 
intel_pmu_event_map(int hw_event)242 static u64 intel_pmu_event_map(int hw_event)
243 {
244 	return intel_perfmon_event_map[hw_event];
245 }
246 
247 #define SNB_DMND_DATA_RD	(1ULL << 0)
248 #define SNB_DMND_RFO		(1ULL << 1)
249 #define SNB_DMND_IFETCH		(1ULL << 2)
250 #define SNB_DMND_WB		(1ULL << 3)
251 #define SNB_PF_DATA_RD		(1ULL << 4)
252 #define SNB_PF_RFO		(1ULL << 5)
253 #define SNB_PF_IFETCH		(1ULL << 6)
254 #define SNB_LLC_DATA_RD		(1ULL << 7)
255 #define SNB_LLC_RFO		(1ULL << 8)
256 #define SNB_LLC_IFETCH		(1ULL << 9)
257 #define SNB_BUS_LOCKS		(1ULL << 10)
258 #define SNB_STRM_ST		(1ULL << 11)
259 #define SNB_OTHER		(1ULL << 15)
260 #define SNB_RESP_ANY		(1ULL << 16)
261 #define SNB_NO_SUPP		(1ULL << 17)
262 #define SNB_LLC_HITM		(1ULL << 18)
263 #define SNB_LLC_HITE		(1ULL << 19)
264 #define SNB_LLC_HITS		(1ULL << 20)
265 #define SNB_LLC_HITF		(1ULL << 21)
266 #define SNB_LOCAL		(1ULL << 22)
267 #define SNB_REMOTE		(0xffULL << 23)
268 #define SNB_SNP_NONE		(1ULL << 31)
269 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
270 #define SNB_SNP_MISS		(1ULL << 33)
271 #define SNB_NO_FWD		(1ULL << 34)
272 #define SNB_SNP_FWD		(1ULL << 35)
273 #define SNB_HITM		(1ULL << 36)
274 #define SNB_NON_DRAM		(1ULL << 37)
275 
276 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
277 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
278 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
279 
280 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
281 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
282 				 SNB_HITM)
283 
284 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
285 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
286 
287 #define SNB_L3_ACCESS		SNB_RESP_ANY
288 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
289 
290 static __initconst const u64 snb_hw_cache_extra_regs
291 				[PERF_COUNT_HW_CACHE_MAX]
292 				[PERF_COUNT_HW_CACHE_OP_MAX]
293 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
294 {
295  [ C(LL  ) ] = {
296 	[ C(OP_READ) ] = {
297 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
298 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
299 	},
300 	[ C(OP_WRITE) ] = {
301 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
302 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
303 	},
304 	[ C(OP_PREFETCH) ] = {
305 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
306 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
307 	},
308  },
309  [ C(NODE) ] = {
310 	[ C(OP_READ) ] = {
311 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
312 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
313 	},
314 	[ C(OP_WRITE) ] = {
315 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
316 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
317 	},
318 	[ C(OP_PREFETCH) ] = {
319 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
320 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
321 	},
322  },
323 };
324 
325 static __initconst const u64 snb_hw_cache_event_ids
326 				[PERF_COUNT_HW_CACHE_MAX]
327 				[PERF_COUNT_HW_CACHE_OP_MAX]
328 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
329 {
330  [ C(L1D) ] = {
331 	[ C(OP_READ) ] = {
332 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
333 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
334 	},
335 	[ C(OP_WRITE) ] = {
336 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
337 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
338 	},
339 	[ C(OP_PREFETCH) ] = {
340 		[ C(RESULT_ACCESS) ] = 0x0,
341 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
342 	},
343  },
344  [ C(L1I ) ] = {
345 	[ C(OP_READ) ] = {
346 		[ C(RESULT_ACCESS) ] = 0x0,
347 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
348 	},
349 	[ C(OP_WRITE) ] = {
350 		[ C(RESULT_ACCESS) ] = -1,
351 		[ C(RESULT_MISS)   ] = -1,
352 	},
353 	[ C(OP_PREFETCH) ] = {
354 		[ C(RESULT_ACCESS) ] = 0x0,
355 		[ C(RESULT_MISS)   ] = 0x0,
356 	},
357  },
358  [ C(LL  ) ] = {
359 	[ C(OP_READ) ] = {
360 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
361 		[ C(RESULT_ACCESS) ] = 0x01b7,
362 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
363 		[ C(RESULT_MISS)   ] = 0x01b7,
364 	},
365 	[ C(OP_WRITE) ] = {
366 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
367 		[ C(RESULT_ACCESS) ] = 0x01b7,
368 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
369 		[ C(RESULT_MISS)   ] = 0x01b7,
370 	},
371 	[ C(OP_PREFETCH) ] = {
372 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
373 		[ C(RESULT_ACCESS) ] = 0x01b7,
374 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
375 		[ C(RESULT_MISS)   ] = 0x01b7,
376 	},
377  },
378  [ C(DTLB) ] = {
379 	[ C(OP_READ) ] = {
380 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
381 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
382 	},
383 	[ C(OP_WRITE) ] = {
384 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
385 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
386 	},
387 	[ C(OP_PREFETCH) ] = {
388 		[ C(RESULT_ACCESS) ] = 0x0,
389 		[ C(RESULT_MISS)   ] = 0x0,
390 	},
391  },
392  [ C(ITLB) ] = {
393 	[ C(OP_READ) ] = {
394 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
395 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
396 	},
397 	[ C(OP_WRITE) ] = {
398 		[ C(RESULT_ACCESS) ] = -1,
399 		[ C(RESULT_MISS)   ] = -1,
400 	},
401 	[ C(OP_PREFETCH) ] = {
402 		[ C(RESULT_ACCESS) ] = -1,
403 		[ C(RESULT_MISS)   ] = -1,
404 	},
405  },
406  [ C(BPU ) ] = {
407 	[ C(OP_READ) ] = {
408 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
409 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
410 	},
411 	[ C(OP_WRITE) ] = {
412 		[ C(RESULT_ACCESS) ] = -1,
413 		[ C(RESULT_MISS)   ] = -1,
414 	},
415 	[ C(OP_PREFETCH) ] = {
416 		[ C(RESULT_ACCESS) ] = -1,
417 		[ C(RESULT_MISS)   ] = -1,
418 	},
419  },
420  [ C(NODE) ] = {
421 	[ C(OP_READ) ] = {
422 		[ C(RESULT_ACCESS) ] = 0x01b7,
423 		[ C(RESULT_MISS)   ] = 0x01b7,
424 	},
425 	[ C(OP_WRITE) ] = {
426 		[ C(RESULT_ACCESS) ] = 0x01b7,
427 		[ C(RESULT_MISS)   ] = 0x01b7,
428 	},
429 	[ C(OP_PREFETCH) ] = {
430 		[ C(RESULT_ACCESS) ] = 0x01b7,
431 		[ C(RESULT_MISS)   ] = 0x01b7,
432 	},
433  },
434 
435 };
436 
437 /*
438  * Notes on the events:
439  * - data reads do not include code reads (comparable to earlier tables)
440  * - data counts include speculative execution (except L1 write, dtlb, bpu)
441  * - remote node access includes remote memory, remote cache, remote mmio.
442  * - prefetches are not included in the counts because they are not
443  *   reliably counted.
444  */
445 
446 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
447 #define HSW_DEMAND_RFO			BIT_ULL(1)
448 #define HSW_ANY_RESPONSE		BIT_ULL(16)
449 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
450 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
451 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
452 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
453 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
454 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
455 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
456 					 HSW_L3_MISS_REMOTE_HOP2P)
457 #define HSW_SNOOP_NONE			BIT_ULL(31)
458 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
459 #define HSW_SNOOP_MISS			BIT_ULL(33)
460 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
461 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
462 #define HSW_SNOOP_HITM			BIT_ULL(36)
463 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
464 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
465 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
466 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
467 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
468 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
469 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
470 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
471 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
472 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
473 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
474 
475 #define BDW_L3_MISS_LOCAL		BIT(26)
476 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
477 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
478 					 HSW_L3_MISS_REMOTE_HOP2P)
479 
480 
481 static __initconst const u64 hsw_hw_cache_event_ids
482 				[PERF_COUNT_HW_CACHE_MAX]
483 				[PERF_COUNT_HW_CACHE_OP_MAX]
484 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
485 {
486  [ C(L1D ) ] = {
487 	[ C(OP_READ) ] = {
488 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
489 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
490 	},
491 	[ C(OP_WRITE) ] = {
492 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
493 		[ C(RESULT_MISS)   ] = 0x0,
494 	},
495 	[ C(OP_PREFETCH) ] = {
496 		[ C(RESULT_ACCESS) ] = 0x0,
497 		[ C(RESULT_MISS)   ] = 0x0,
498 	},
499  },
500  [ C(L1I ) ] = {
501 	[ C(OP_READ) ] = {
502 		[ C(RESULT_ACCESS) ] = 0x0,
503 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
504 	},
505 	[ C(OP_WRITE) ] = {
506 		[ C(RESULT_ACCESS) ] = -1,
507 		[ C(RESULT_MISS)   ] = -1,
508 	},
509 	[ C(OP_PREFETCH) ] = {
510 		[ C(RESULT_ACCESS) ] = 0x0,
511 		[ C(RESULT_MISS)   ] = 0x0,
512 	},
513  },
514  [ C(LL  ) ] = {
515 	[ C(OP_READ) ] = {
516 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
517 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
518 	},
519 	[ C(OP_WRITE) ] = {
520 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
521 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
522 	},
523 	[ C(OP_PREFETCH) ] = {
524 		[ C(RESULT_ACCESS) ] = 0x0,
525 		[ C(RESULT_MISS)   ] = 0x0,
526 	},
527  },
528  [ C(DTLB) ] = {
529 	[ C(OP_READ) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
531 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
532 	},
533 	[ C(OP_WRITE) ] = {
534 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
535 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
536 	},
537 	[ C(OP_PREFETCH) ] = {
538 		[ C(RESULT_ACCESS) ] = 0x0,
539 		[ C(RESULT_MISS)   ] = 0x0,
540 	},
541  },
542  [ C(ITLB) ] = {
543 	[ C(OP_READ) ] = {
544 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
545 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
546 	},
547 	[ C(OP_WRITE) ] = {
548 		[ C(RESULT_ACCESS) ] = -1,
549 		[ C(RESULT_MISS)   ] = -1,
550 	},
551 	[ C(OP_PREFETCH) ] = {
552 		[ C(RESULT_ACCESS) ] = -1,
553 		[ C(RESULT_MISS)   ] = -1,
554 	},
555  },
556  [ C(BPU ) ] = {
557 	[ C(OP_READ) ] = {
558 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
559 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
560 	},
561 	[ C(OP_WRITE) ] = {
562 		[ C(RESULT_ACCESS) ] = -1,
563 		[ C(RESULT_MISS)   ] = -1,
564 	},
565 	[ C(OP_PREFETCH) ] = {
566 		[ C(RESULT_ACCESS) ] = -1,
567 		[ C(RESULT_MISS)   ] = -1,
568 	},
569  },
570  [ C(NODE) ] = {
571 	[ C(OP_READ) ] = {
572 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
573 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
574 	},
575 	[ C(OP_WRITE) ] = {
576 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
577 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
578 	},
579 	[ C(OP_PREFETCH) ] = {
580 		[ C(RESULT_ACCESS) ] = 0x0,
581 		[ C(RESULT_MISS)   ] = 0x0,
582 	},
583  },
584 };
585 
586 static __initconst const u64 hsw_hw_cache_extra_regs
587 				[PERF_COUNT_HW_CACHE_MAX]
588 				[PERF_COUNT_HW_CACHE_OP_MAX]
589 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
590 {
591  [ C(LL  ) ] = {
592 	[ C(OP_READ) ] = {
593 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
594 				       HSW_LLC_ACCESS,
595 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
596 				       HSW_L3_MISS|HSW_ANY_SNOOP,
597 	},
598 	[ C(OP_WRITE) ] = {
599 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
600 				       HSW_LLC_ACCESS,
601 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
602 				       HSW_L3_MISS|HSW_ANY_SNOOP,
603 	},
604 	[ C(OP_PREFETCH) ] = {
605 		[ C(RESULT_ACCESS) ] = 0x0,
606 		[ C(RESULT_MISS)   ] = 0x0,
607 	},
608  },
609  [ C(NODE) ] = {
610 	[ C(OP_READ) ] = {
611 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
612 				       HSW_L3_MISS_LOCAL_DRAM|
613 				       HSW_SNOOP_DRAM,
614 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
615 				       HSW_L3_MISS_REMOTE|
616 				       HSW_SNOOP_DRAM,
617 	},
618 	[ C(OP_WRITE) ] = {
619 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
620 				       HSW_L3_MISS_LOCAL_DRAM|
621 				       HSW_SNOOP_DRAM,
622 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
623 				       HSW_L3_MISS_REMOTE|
624 				       HSW_SNOOP_DRAM,
625 	},
626 	[ C(OP_PREFETCH) ] = {
627 		[ C(RESULT_ACCESS) ] = 0x0,
628 		[ C(RESULT_MISS)   ] = 0x0,
629 	},
630  },
631 };
632 
633 static __initconst const u64 westmere_hw_cache_event_ids
634 				[PERF_COUNT_HW_CACHE_MAX]
635 				[PERF_COUNT_HW_CACHE_OP_MAX]
636 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
637 {
638  [ C(L1D) ] = {
639 	[ C(OP_READ) ] = {
640 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
641 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
642 	},
643 	[ C(OP_WRITE) ] = {
644 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
645 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
646 	},
647 	[ C(OP_PREFETCH) ] = {
648 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
649 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
650 	},
651  },
652  [ C(L1I ) ] = {
653 	[ C(OP_READ) ] = {
654 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
655 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
656 	},
657 	[ C(OP_WRITE) ] = {
658 		[ C(RESULT_ACCESS) ] = -1,
659 		[ C(RESULT_MISS)   ] = -1,
660 	},
661 	[ C(OP_PREFETCH) ] = {
662 		[ C(RESULT_ACCESS) ] = 0x0,
663 		[ C(RESULT_MISS)   ] = 0x0,
664 	},
665  },
666  [ C(LL  ) ] = {
667 	[ C(OP_READ) ] = {
668 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
669 		[ C(RESULT_ACCESS) ] = 0x01b7,
670 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
671 		[ C(RESULT_MISS)   ] = 0x01b7,
672 	},
673 	/*
674 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
675 	 * on RFO.
676 	 */
677 	[ C(OP_WRITE) ] = {
678 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
679 		[ C(RESULT_ACCESS) ] = 0x01b7,
680 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
681 		[ C(RESULT_MISS)   ] = 0x01b7,
682 	},
683 	[ C(OP_PREFETCH) ] = {
684 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
685 		[ C(RESULT_ACCESS) ] = 0x01b7,
686 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
687 		[ C(RESULT_MISS)   ] = 0x01b7,
688 	},
689  },
690  [ C(DTLB) ] = {
691 	[ C(OP_READ) ] = {
692 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
693 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
694 	},
695 	[ C(OP_WRITE) ] = {
696 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
697 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
698 	},
699 	[ C(OP_PREFETCH) ] = {
700 		[ C(RESULT_ACCESS) ] = 0x0,
701 		[ C(RESULT_MISS)   ] = 0x0,
702 	},
703  },
704  [ C(ITLB) ] = {
705 	[ C(OP_READ) ] = {
706 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
707 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
708 	},
709 	[ C(OP_WRITE) ] = {
710 		[ C(RESULT_ACCESS) ] = -1,
711 		[ C(RESULT_MISS)   ] = -1,
712 	},
713 	[ C(OP_PREFETCH) ] = {
714 		[ C(RESULT_ACCESS) ] = -1,
715 		[ C(RESULT_MISS)   ] = -1,
716 	},
717  },
718  [ C(BPU ) ] = {
719 	[ C(OP_READ) ] = {
720 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
721 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
722 	},
723 	[ C(OP_WRITE) ] = {
724 		[ C(RESULT_ACCESS) ] = -1,
725 		[ C(RESULT_MISS)   ] = -1,
726 	},
727 	[ C(OP_PREFETCH) ] = {
728 		[ C(RESULT_ACCESS) ] = -1,
729 		[ C(RESULT_MISS)   ] = -1,
730 	},
731  },
732  [ C(NODE) ] = {
733 	[ C(OP_READ) ] = {
734 		[ C(RESULT_ACCESS) ] = 0x01b7,
735 		[ C(RESULT_MISS)   ] = 0x01b7,
736 	},
737 	[ C(OP_WRITE) ] = {
738 		[ C(RESULT_ACCESS) ] = 0x01b7,
739 		[ C(RESULT_MISS)   ] = 0x01b7,
740 	},
741 	[ C(OP_PREFETCH) ] = {
742 		[ C(RESULT_ACCESS) ] = 0x01b7,
743 		[ C(RESULT_MISS)   ] = 0x01b7,
744 	},
745  },
746 };
747 
748 /*
749  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
750  * See IA32 SDM Vol 3B 30.6.1.3
751  */
752 
753 #define NHM_DMND_DATA_RD	(1 << 0)
754 #define NHM_DMND_RFO		(1 << 1)
755 #define NHM_DMND_IFETCH		(1 << 2)
756 #define NHM_DMND_WB		(1 << 3)
757 #define NHM_PF_DATA_RD		(1 << 4)
758 #define NHM_PF_DATA_RFO		(1 << 5)
759 #define NHM_PF_IFETCH		(1 << 6)
760 #define NHM_OFFCORE_OTHER	(1 << 7)
761 #define NHM_UNCORE_HIT		(1 << 8)
762 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
763 #define NHM_OTHER_CORE_HITM	(1 << 10)
764         			/* reserved */
765 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
766 #define NHM_REMOTE_DRAM		(1 << 13)
767 #define NHM_LOCAL_DRAM		(1 << 14)
768 #define NHM_NON_DRAM		(1 << 15)
769 
770 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
771 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
772 
773 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
774 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
775 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
776 
777 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
778 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
779 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
780 
781 static __initconst const u64 nehalem_hw_cache_extra_regs
782 				[PERF_COUNT_HW_CACHE_MAX]
783 				[PERF_COUNT_HW_CACHE_OP_MAX]
784 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
785 {
786  [ C(LL  ) ] = {
787 	[ C(OP_READ) ] = {
788 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
789 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
790 	},
791 	[ C(OP_WRITE) ] = {
792 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
793 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
794 	},
795 	[ C(OP_PREFETCH) ] = {
796 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
797 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
798 	},
799  },
800  [ C(NODE) ] = {
801 	[ C(OP_READ) ] = {
802 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
803 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
804 	},
805 	[ C(OP_WRITE) ] = {
806 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
807 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
808 	},
809 	[ C(OP_PREFETCH) ] = {
810 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
811 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
812 	},
813  },
814 };
815 
816 static __initconst const u64 nehalem_hw_cache_event_ids
817 				[PERF_COUNT_HW_CACHE_MAX]
818 				[PERF_COUNT_HW_CACHE_OP_MAX]
819 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 {
821  [ C(L1D) ] = {
822 	[ C(OP_READ) ] = {
823 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
824 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
825 	},
826 	[ C(OP_WRITE) ] = {
827 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
828 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
829 	},
830 	[ C(OP_PREFETCH) ] = {
831 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
832 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
833 	},
834  },
835  [ C(L1I ) ] = {
836 	[ C(OP_READ) ] = {
837 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
838 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
839 	},
840 	[ C(OP_WRITE) ] = {
841 		[ C(RESULT_ACCESS) ] = -1,
842 		[ C(RESULT_MISS)   ] = -1,
843 	},
844 	[ C(OP_PREFETCH) ] = {
845 		[ C(RESULT_ACCESS) ] = 0x0,
846 		[ C(RESULT_MISS)   ] = 0x0,
847 	},
848  },
849  [ C(LL  ) ] = {
850 	[ C(OP_READ) ] = {
851 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852 		[ C(RESULT_ACCESS) ] = 0x01b7,
853 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854 		[ C(RESULT_MISS)   ] = 0x01b7,
855 	},
856 	/*
857 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
858 	 * on RFO.
859 	 */
860 	[ C(OP_WRITE) ] = {
861 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
862 		[ C(RESULT_ACCESS) ] = 0x01b7,
863 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
864 		[ C(RESULT_MISS)   ] = 0x01b7,
865 	},
866 	[ C(OP_PREFETCH) ] = {
867 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
868 		[ C(RESULT_ACCESS) ] = 0x01b7,
869 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
870 		[ C(RESULT_MISS)   ] = 0x01b7,
871 	},
872  },
873  [ C(DTLB) ] = {
874 	[ C(OP_READ) ] = {
875 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
876 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
877 	},
878 	[ C(OP_WRITE) ] = {
879 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
880 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
881 	},
882 	[ C(OP_PREFETCH) ] = {
883 		[ C(RESULT_ACCESS) ] = 0x0,
884 		[ C(RESULT_MISS)   ] = 0x0,
885 	},
886  },
887  [ C(ITLB) ] = {
888 	[ C(OP_READ) ] = {
889 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
890 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
891 	},
892 	[ C(OP_WRITE) ] = {
893 		[ C(RESULT_ACCESS) ] = -1,
894 		[ C(RESULT_MISS)   ] = -1,
895 	},
896 	[ C(OP_PREFETCH) ] = {
897 		[ C(RESULT_ACCESS) ] = -1,
898 		[ C(RESULT_MISS)   ] = -1,
899 	},
900  },
901  [ C(BPU ) ] = {
902 	[ C(OP_READ) ] = {
903 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
904 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
905 	},
906 	[ C(OP_WRITE) ] = {
907 		[ C(RESULT_ACCESS) ] = -1,
908 		[ C(RESULT_MISS)   ] = -1,
909 	},
910 	[ C(OP_PREFETCH) ] = {
911 		[ C(RESULT_ACCESS) ] = -1,
912 		[ C(RESULT_MISS)   ] = -1,
913 	},
914  },
915  [ C(NODE) ] = {
916 	[ C(OP_READ) ] = {
917 		[ C(RESULT_ACCESS) ] = 0x01b7,
918 		[ C(RESULT_MISS)   ] = 0x01b7,
919 	},
920 	[ C(OP_WRITE) ] = {
921 		[ C(RESULT_ACCESS) ] = 0x01b7,
922 		[ C(RESULT_MISS)   ] = 0x01b7,
923 	},
924 	[ C(OP_PREFETCH) ] = {
925 		[ C(RESULT_ACCESS) ] = 0x01b7,
926 		[ C(RESULT_MISS)   ] = 0x01b7,
927 	},
928  },
929 };
930 
931 static __initconst const u64 core2_hw_cache_event_ids
932 				[PERF_COUNT_HW_CACHE_MAX]
933 				[PERF_COUNT_HW_CACHE_OP_MAX]
934 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
935 {
936  [ C(L1D) ] = {
937 	[ C(OP_READ) ] = {
938 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
939 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
940 	},
941 	[ C(OP_WRITE) ] = {
942 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
943 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
944 	},
945 	[ C(OP_PREFETCH) ] = {
946 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
947 		[ C(RESULT_MISS)   ] = 0,
948 	},
949  },
950  [ C(L1I ) ] = {
951 	[ C(OP_READ) ] = {
952 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
953 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
954 	},
955 	[ C(OP_WRITE) ] = {
956 		[ C(RESULT_ACCESS) ] = -1,
957 		[ C(RESULT_MISS)   ] = -1,
958 	},
959 	[ C(OP_PREFETCH) ] = {
960 		[ C(RESULT_ACCESS) ] = 0,
961 		[ C(RESULT_MISS)   ] = 0,
962 	},
963  },
964  [ C(LL  ) ] = {
965 	[ C(OP_READ) ] = {
966 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
967 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
968 	},
969 	[ C(OP_WRITE) ] = {
970 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
971 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
972 	},
973 	[ C(OP_PREFETCH) ] = {
974 		[ C(RESULT_ACCESS) ] = 0,
975 		[ C(RESULT_MISS)   ] = 0,
976 	},
977  },
978  [ C(DTLB) ] = {
979 	[ C(OP_READ) ] = {
980 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
981 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
982 	},
983 	[ C(OP_WRITE) ] = {
984 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
985 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
986 	},
987 	[ C(OP_PREFETCH) ] = {
988 		[ C(RESULT_ACCESS) ] = 0,
989 		[ C(RESULT_MISS)   ] = 0,
990 	},
991  },
992  [ C(ITLB) ] = {
993 	[ C(OP_READ) ] = {
994 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
995 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
996 	},
997 	[ C(OP_WRITE) ] = {
998 		[ C(RESULT_ACCESS) ] = -1,
999 		[ C(RESULT_MISS)   ] = -1,
1000 	},
1001 	[ C(OP_PREFETCH) ] = {
1002 		[ C(RESULT_ACCESS) ] = -1,
1003 		[ C(RESULT_MISS)   ] = -1,
1004 	},
1005  },
1006  [ C(BPU ) ] = {
1007 	[ C(OP_READ) ] = {
1008 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1009 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1010 	},
1011 	[ C(OP_WRITE) ] = {
1012 		[ C(RESULT_ACCESS) ] = -1,
1013 		[ C(RESULT_MISS)   ] = -1,
1014 	},
1015 	[ C(OP_PREFETCH) ] = {
1016 		[ C(RESULT_ACCESS) ] = -1,
1017 		[ C(RESULT_MISS)   ] = -1,
1018 	},
1019  },
1020 };
1021 
1022 static __initconst const u64 atom_hw_cache_event_ids
1023 				[PERF_COUNT_HW_CACHE_MAX]
1024 				[PERF_COUNT_HW_CACHE_OP_MAX]
1025 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1026 {
1027  [ C(L1D) ] = {
1028 	[ C(OP_READ) ] = {
1029 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1030 		[ C(RESULT_MISS)   ] = 0,
1031 	},
1032 	[ C(OP_WRITE) ] = {
1033 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1034 		[ C(RESULT_MISS)   ] = 0,
1035 	},
1036 	[ C(OP_PREFETCH) ] = {
1037 		[ C(RESULT_ACCESS) ] = 0x0,
1038 		[ C(RESULT_MISS)   ] = 0,
1039 	},
1040  },
1041  [ C(L1I ) ] = {
1042 	[ C(OP_READ) ] = {
1043 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1044 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1045 	},
1046 	[ C(OP_WRITE) ] = {
1047 		[ C(RESULT_ACCESS) ] = -1,
1048 		[ C(RESULT_MISS)   ] = -1,
1049 	},
1050 	[ C(OP_PREFETCH) ] = {
1051 		[ C(RESULT_ACCESS) ] = 0,
1052 		[ C(RESULT_MISS)   ] = 0,
1053 	},
1054  },
1055  [ C(LL  ) ] = {
1056 	[ C(OP_READ) ] = {
1057 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1058 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1059 	},
1060 	[ C(OP_WRITE) ] = {
1061 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1062 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1063 	},
1064 	[ C(OP_PREFETCH) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0,
1066 		[ C(RESULT_MISS)   ] = 0,
1067 	},
1068  },
1069  [ C(DTLB) ] = {
1070 	[ C(OP_READ) ] = {
1071 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1072 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1073 	},
1074 	[ C(OP_WRITE) ] = {
1075 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1076 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1077 	},
1078 	[ C(OP_PREFETCH) ] = {
1079 		[ C(RESULT_ACCESS) ] = 0,
1080 		[ C(RESULT_MISS)   ] = 0,
1081 	},
1082  },
1083  [ C(ITLB) ] = {
1084 	[ C(OP_READ) ] = {
1085 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1086 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1087 	},
1088 	[ C(OP_WRITE) ] = {
1089 		[ C(RESULT_ACCESS) ] = -1,
1090 		[ C(RESULT_MISS)   ] = -1,
1091 	},
1092 	[ C(OP_PREFETCH) ] = {
1093 		[ C(RESULT_ACCESS) ] = -1,
1094 		[ C(RESULT_MISS)   ] = -1,
1095 	},
1096  },
1097  [ C(BPU ) ] = {
1098 	[ C(OP_READ) ] = {
1099 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1100 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1101 	},
1102 	[ C(OP_WRITE) ] = {
1103 		[ C(RESULT_ACCESS) ] = -1,
1104 		[ C(RESULT_MISS)   ] = -1,
1105 	},
1106 	[ C(OP_PREFETCH) ] = {
1107 		[ C(RESULT_ACCESS) ] = -1,
1108 		[ C(RESULT_MISS)   ] = -1,
1109 	},
1110  },
1111 };
1112 
1113 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1114 {
1115 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1116 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1117 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1118 	EVENT_EXTRA_END
1119 };
1120 
1121 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1122 #define SLM_DMND_WRITE		SNB_DMND_RFO
1123 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1124 
1125 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1126 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1127 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1128 
1129 static __initconst const u64 slm_hw_cache_extra_regs
1130 				[PERF_COUNT_HW_CACHE_MAX]
1131 				[PERF_COUNT_HW_CACHE_OP_MAX]
1132 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1133 {
1134  [ C(LL  ) ] = {
1135 	[ C(OP_READ) ] = {
1136 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1137 		[ C(RESULT_MISS)   ] = 0,
1138 	},
1139 	[ C(OP_WRITE) ] = {
1140 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1141 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1142 	},
1143 	[ C(OP_PREFETCH) ] = {
1144 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1145 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1146 	},
1147  },
1148 };
1149 
1150 static __initconst const u64 slm_hw_cache_event_ids
1151 				[PERF_COUNT_HW_CACHE_MAX]
1152 				[PERF_COUNT_HW_CACHE_OP_MAX]
1153 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1154 {
1155  [ C(L1D) ] = {
1156 	[ C(OP_READ) ] = {
1157 		[ C(RESULT_ACCESS) ] = 0,
1158 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1159 	},
1160 	[ C(OP_WRITE) ] = {
1161 		[ C(RESULT_ACCESS) ] = 0,
1162 		[ C(RESULT_MISS)   ] = 0,
1163 	},
1164 	[ C(OP_PREFETCH) ] = {
1165 		[ C(RESULT_ACCESS) ] = 0,
1166 		[ C(RESULT_MISS)   ] = 0,
1167 	},
1168  },
1169  [ C(L1I ) ] = {
1170 	[ C(OP_READ) ] = {
1171 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1172 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1173 	},
1174 	[ C(OP_WRITE) ] = {
1175 		[ C(RESULT_ACCESS) ] = -1,
1176 		[ C(RESULT_MISS)   ] = -1,
1177 	},
1178 	[ C(OP_PREFETCH) ] = {
1179 		[ C(RESULT_ACCESS) ] = 0,
1180 		[ C(RESULT_MISS)   ] = 0,
1181 	},
1182  },
1183  [ C(LL  ) ] = {
1184 	[ C(OP_READ) ] = {
1185 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1186 		[ C(RESULT_ACCESS) ] = 0x01b7,
1187 		[ C(RESULT_MISS)   ] = 0,
1188 	},
1189 	[ C(OP_WRITE) ] = {
1190 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1191 		[ C(RESULT_ACCESS) ] = 0x01b7,
1192 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1193 		[ C(RESULT_MISS)   ] = 0x01b7,
1194 	},
1195 	[ C(OP_PREFETCH) ] = {
1196 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1197 		[ C(RESULT_ACCESS) ] = 0x01b7,
1198 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1199 		[ C(RESULT_MISS)   ] = 0x01b7,
1200 	},
1201  },
1202  [ C(DTLB) ] = {
1203 	[ C(OP_READ) ] = {
1204 		[ C(RESULT_ACCESS) ] = 0,
1205 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1206 	},
1207 	[ C(OP_WRITE) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0,
1209 		[ C(RESULT_MISS)   ] = 0,
1210 	},
1211 	[ C(OP_PREFETCH) ] = {
1212 		[ C(RESULT_ACCESS) ] = 0,
1213 		[ C(RESULT_MISS)   ] = 0,
1214 	},
1215  },
1216  [ C(ITLB) ] = {
1217 	[ C(OP_READ) ] = {
1218 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1219 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1220 	},
1221 	[ C(OP_WRITE) ] = {
1222 		[ C(RESULT_ACCESS) ] = -1,
1223 		[ C(RESULT_MISS)   ] = -1,
1224 	},
1225 	[ C(OP_PREFETCH) ] = {
1226 		[ C(RESULT_ACCESS) ] = -1,
1227 		[ C(RESULT_MISS)   ] = -1,
1228 	},
1229  },
1230  [ C(BPU ) ] = {
1231 	[ C(OP_READ) ] = {
1232 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1233 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1234 	},
1235 	[ C(OP_WRITE) ] = {
1236 		[ C(RESULT_ACCESS) ] = -1,
1237 		[ C(RESULT_MISS)   ] = -1,
1238 	},
1239 	[ C(OP_PREFETCH) ] = {
1240 		[ C(RESULT_ACCESS) ] = -1,
1241 		[ C(RESULT_MISS)   ] = -1,
1242 	},
1243  },
1244 };
1245 
1246 /*
1247  * Use from PMIs where the LBRs are already disabled.
1248  */
__intel_pmu_disable_all(void)1249 static void __intel_pmu_disable_all(void)
1250 {
1251 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1252 
1253 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1254 
1255 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1256 		intel_pmu_disable_bts();
1257 	else
1258 		intel_bts_disable_local();
1259 
1260 	intel_pmu_pebs_disable_all();
1261 }
1262 
intel_pmu_disable_all(void)1263 static void intel_pmu_disable_all(void)
1264 {
1265 	__intel_pmu_disable_all();
1266 	intel_pmu_lbr_disable_all();
1267 }
1268 
__intel_pmu_enable_all(int added,bool pmi)1269 static void __intel_pmu_enable_all(int added, bool pmi)
1270 {
1271 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1272 
1273 	intel_pmu_pebs_enable_all();
1274 	intel_pmu_lbr_enable_all(pmi);
1275 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1276 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1277 
1278 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1279 		struct perf_event *event =
1280 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1281 
1282 		if (WARN_ON_ONCE(!event))
1283 			return;
1284 
1285 		intel_pmu_enable_bts(event->hw.config);
1286 	} else
1287 		intel_bts_enable_local();
1288 }
1289 
intel_pmu_enable_all(int added)1290 static void intel_pmu_enable_all(int added)
1291 {
1292 	__intel_pmu_enable_all(added, false);
1293 }
1294 
1295 /*
1296  * Workaround for:
1297  *   Intel Errata AAK100 (model 26)
1298  *   Intel Errata AAP53  (model 30)
1299  *   Intel Errata BD53   (model 44)
1300  *
1301  * The official story:
1302  *   These chips need to be 'reset' when adding counters by programming the
1303  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1304  *   in sequence on the same PMC or on different PMCs.
1305  *
1306  * In practise it appears some of these events do in fact count, and
1307  * we need to programm all 4 events.
1308  */
intel_pmu_nhm_workaround(void)1309 static void intel_pmu_nhm_workaround(void)
1310 {
1311 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1312 	static const unsigned long nhm_magic[4] = {
1313 		0x4300B5,
1314 		0x4300D2,
1315 		0x4300B1,
1316 		0x4300B1
1317 	};
1318 	struct perf_event *event;
1319 	int i;
1320 
1321 	/*
1322 	 * The Errata requires below steps:
1323 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1324 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1325 	 *    the corresponding PMCx;
1326 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1327 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1328 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1329 	 */
1330 
1331 	/*
1332 	 * The real steps we choose are a little different from above.
1333 	 * A) To reduce MSR operations, we don't run step 1) as they
1334 	 *    are already cleared before this function is called;
1335 	 * B) Call x86_perf_event_update to save PMCx before configuring
1336 	 *    PERFEVTSELx with magic number;
1337 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1338 	 *    not used currently.
1339 	 * D) Call x86_perf_event_set_period to restore PMCx;
1340 	 */
1341 
1342 	/* We always operate 4 pairs of PERF Counters */
1343 	for (i = 0; i < 4; i++) {
1344 		event = cpuc->events[i];
1345 		if (event)
1346 			x86_perf_event_update(event);
1347 	}
1348 
1349 	for (i = 0; i < 4; i++) {
1350 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1351 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1352 	}
1353 
1354 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1355 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1356 
1357 	for (i = 0; i < 4; i++) {
1358 		event = cpuc->events[i];
1359 
1360 		if (event) {
1361 			x86_perf_event_set_period(event);
1362 			__x86_pmu_enable_event(&event->hw,
1363 					ARCH_PERFMON_EVENTSEL_ENABLE);
1364 		} else
1365 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1366 	}
1367 }
1368 
intel_pmu_nhm_enable_all(int added)1369 static void intel_pmu_nhm_enable_all(int added)
1370 {
1371 	if (added)
1372 		intel_pmu_nhm_workaround();
1373 	intel_pmu_enable_all(added);
1374 }
1375 
intel_pmu_get_status(void)1376 static inline u64 intel_pmu_get_status(void)
1377 {
1378 	u64 status;
1379 
1380 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1381 
1382 	return status;
1383 }
1384 
intel_pmu_ack_status(u64 ack)1385 static inline void intel_pmu_ack_status(u64 ack)
1386 {
1387 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1388 }
1389 
intel_pmu_disable_fixed(struct hw_perf_event * hwc)1390 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1391 {
1392 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1393 	u64 ctrl_val, mask;
1394 
1395 	mask = 0xfULL << (idx * 4);
1396 
1397 	rdmsrl(hwc->config_base, ctrl_val);
1398 	ctrl_val &= ~mask;
1399 	wrmsrl(hwc->config_base, ctrl_val);
1400 }
1401 
event_is_checkpointed(struct perf_event * event)1402 static inline bool event_is_checkpointed(struct perf_event *event)
1403 {
1404 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1405 }
1406 
intel_pmu_disable_event(struct perf_event * event)1407 static void intel_pmu_disable_event(struct perf_event *event)
1408 {
1409 	struct hw_perf_event *hwc = &event->hw;
1410 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1411 
1412 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1413 		intel_pmu_disable_bts();
1414 		intel_pmu_drain_bts_buffer();
1415 		return;
1416 	}
1417 
1418 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1419 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1420 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1421 
1422 	/*
1423 	 * must disable before any actual event
1424 	 * because any event may be combined with LBR
1425 	 */
1426 	if (needs_branch_stack(event))
1427 		intel_pmu_lbr_disable(event);
1428 
1429 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1430 		intel_pmu_disable_fixed(hwc);
1431 		return;
1432 	}
1433 
1434 	x86_pmu_disable_event(event);
1435 
1436 	if (unlikely(event->attr.precise_ip))
1437 		intel_pmu_pebs_disable(event);
1438 }
1439 
intel_pmu_enable_fixed(struct hw_perf_event * hwc)1440 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1441 {
1442 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1443 	u64 ctrl_val, bits, mask;
1444 
1445 	/*
1446 	 * Enable IRQ generation (0x8),
1447 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1448 	 * if requested:
1449 	 */
1450 	bits = 0x8ULL;
1451 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1452 		bits |= 0x2;
1453 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1454 		bits |= 0x1;
1455 
1456 	/*
1457 	 * ANY bit is supported in v3 and up
1458 	 */
1459 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1460 		bits |= 0x4;
1461 
1462 	bits <<= (idx * 4);
1463 	mask = 0xfULL << (idx * 4);
1464 
1465 	rdmsrl(hwc->config_base, ctrl_val);
1466 	ctrl_val &= ~mask;
1467 	ctrl_val |= bits;
1468 	wrmsrl(hwc->config_base, ctrl_val);
1469 }
1470 
intel_pmu_enable_event(struct perf_event * event)1471 static void intel_pmu_enable_event(struct perf_event *event)
1472 {
1473 	struct hw_perf_event *hwc = &event->hw;
1474 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1475 
1476 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1477 		if (!__this_cpu_read(cpu_hw_events.enabled))
1478 			return;
1479 
1480 		intel_pmu_enable_bts(hwc->config);
1481 		return;
1482 	}
1483 	/*
1484 	 * must enabled before any actual event
1485 	 * because any event may be combined with LBR
1486 	 */
1487 	if (needs_branch_stack(event))
1488 		intel_pmu_lbr_enable(event);
1489 
1490 	if (event->attr.exclude_host)
1491 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1492 	if (event->attr.exclude_guest)
1493 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1494 
1495 	if (unlikely(event_is_checkpointed(event)))
1496 		cpuc->intel_cp_status |= (1ull << hwc->idx);
1497 
1498 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1499 		intel_pmu_enable_fixed(hwc);
1500 		return;
1501 	}
1502 
1503 	if (unlikely(event->attr.precise_ip))
1504 		intel_pmu_pebs_enable(event);
1505 
1506 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1507 }
1508 
1509 /*
1510  * Save and restart an expired event. Called by NMI contexts,
1511  * so it has to be careful about preempting normal event ops:
1512  */
intel_pmu_save_and_restart(struct perf_event * event)1513 int intel_pmu_save_and_restart(struct perf_event *event)
1514 {
1515 	x86_perf_event_update(event);
1516 	/*
1517 	 * For a checkpointed counter always reset back to 0.  This
1518 	 * avoids a situation where the counter overflows, aborts the
1519 	 * transaction and is then set back to shortly before the
1520 	 * overflow, and overflows and aborts again.
1521 	 */
1522 	if (unlikely(event_is_checkpointed(event))) {
1523 		/* No race with NMIs because the counter should not be armed */
1524 		wrmsrl(event->hw.event_base, 0);
1525 		local64_set(&event->hw.prev_count, 0);
1526 	}
1527 	return x86_perf_event_set_period(event);
1528 }
1529 
intel_pmu_reset(void)1530 static void intel_pmu_reset(void)
1531 {
1532 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1533 	unsigned long flags;
1534 	int idx;
1535 
1536 	if (!x86_pmu.num_counters)
1537 		return;
1538 
1539 	local_irq_save(flags);
1540 
1541 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1542 
1543 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1544 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1545 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1546 	}
1547 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1548 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1549 
1550 	if (ds)
1551 		ds->bts_index = ds->bts_buffer_base;
1552 
1553 	/* Ack all overflows and disable fixed counters */
1554 	if (x86_pmu.version >= 2) {
1555 		intel_pmu_ack_status(intel_pmu_get_status());
1556 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1557 	}
1558 
1559 	/* Reset LBRs and LBR freezing */
1560 	if (x86_pmu.lbr_nr) {
1561 		update_debugctlmsr(get_debugctlmsr() &
1562 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1563 	}
1564 
1565 	local_irq_restore(flags);
1566 }
1567 
1568 /*
1569  * This handler is triggered by the local APIC, so the APIC IRQ handling
1570  * rules apply:
1571  */
intel_pmu_handle_irq(struct pt_regs * regs)1572 static int intel_pmu_handle_irq(struct pt_regs *regs)
1573 {
1574 	struct perf_sample_data data;
1575 	struct cpu_hw_events *cpuc;
1576 	int bit, loops;
1577 	u64 status;
1578 	int handled;
1579 
1580 	cpuc = this_cpu_ptr(&cpu_hw_events);
1581 
1582 	/*
1583 	 * No known reason to not always do late ACK,
1584 	 * but just in case do it opt-in.
1585 	 */
1586 	if (!x86_pmu.late_ack)
1587 		apic_write(APIC_LVTPC, APIC_DM_NMI);
1588 	__intel_pmu_disable_all();
1589 	handled = intel_pmu_drain_bts_buffer();
1590 	handled += intel_bts_interrupt();
1591 	status = intel_pmu_get_status();
1592 	if (!status)
1593 		goto done;
1594 
1595 	loops = 0;
1596 again:
1597 	intel_pmu_ack_status(status);
1598 	if (++loops > 100) {
1599 		static bool warned = false;
1600 		if (!warned) {
1601 			WARN(1, "perfevents: irq loop stuck!\n");
1602 			perf_event_print_debug();
1603 			warned = true;
1604 		}
1605 		intel_pmu_reset();
1606 		goto done;
1607 	}
1608 
1609 	inc_irq_stat(apic_perf_irqs);
1610 
1611 	intel_pmu_lbr_read();
1612 
1613 	/*
1614 	 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1615 	 * and clear the bit.
1616 	 */
1617 	if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1618 		if (!status)
1619 			goto done;
1620 	}
1621 
1622 	/*
1623 	 * PEBS overflow sets bit 62 in the global status register
1624 	 */
1625 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1626 		handled++;
1627 		x86_pmu.drain_pebs(regs);
1628 	}
1629 
1630 	/*
1631 	 * Intel PT
1632 	 */
1633 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1634 		handled++;
1635 		intel_pt_interrupt();
1636 	}
1637 
1638 	/*
1639 	 * Checkpointed counters can lead to 'spurious' PMIs because the
1640 	 * rollback caused by the PMI will have cleared the overflow status
1641 	 * bit. Therefore always force probe these counters.
1642 	 */
1643 	status |= cpuc->intel_cp_status;
1644 
1645 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1646 		struct perf_event *event = cpuc->events[bit];
1647 
1648 		handled++;
1649 
1650 		if (!test_bit(bit, cpuc->active_mask))
1651 			continue;
1652 
1653 		if (!intel_pmu_save_and_restart(event))
1654 			continue;
1655 
1656 		perf_sample_data_init(&data, 0, event->hw.last_period);
1657 
1658 		if (has_branch_stack(event))
1659 			data.br_stack = &cpuc->lbr_stack;
1660 
1661 		if (perf_event_overflow(event, &data, regs))
1662 			x86_pmu_stop(event, 0);
1663 	}
1664 
1665 	/*
1666 	 * Repeat if there is more work to be done:
1667 	 */
1668 	status = intel_pmu_get_status();
1669 	if (status)
1670 		goto again;
1671 
1672 done:
1673 	__intel_pmu_enable_all(0, true);
1674 	/*
1675 	 * Only unmask the NMI after the overflow counters
1676 	 * have been reset. This avoids spurious NMIs on
1677 	 * Haswell CPUs.
1678 	 */
1679 	if (x86_pmu.late_ack)
1680 		apic_write(APIC_LVTPC, APIC_DM_NMI);
1681 	return handled;
1682 }
1683 
1684 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)1685 intel_bts_constraints(struct perf_event *event)
1686 {
1687 	struct hw_perf_event *hwc = &event->hw;
1688 	unsigned int hw_event, bts_event;
1689 
1690 	if (event->attr.freq)
1691 		return NULL;
1692 
1693 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1694 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1695 
1696 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1697 		return &bts_constraint;
1698 
1699 	return NULL;
1700 }
1701 
intel_alt_er(int idx)1702 static int intel_alt_er(int idx)
1703 {
1704 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1705 		return idx;
1706 
1707 	if (idx == EXTRA_REG_RSP_0)
1708 		return EXTRA_REG_RSP_1;
1709 
1710 	if (idx == EXTRA_REG_RSP_1)
1711 		return EXTRA_REG_RSP_0;
1712 
1713 	return idx;
1714 }
1715 
intel_fixup_er(struct perf_event * event,int idx)1716 static void intel_fixup_er(struct perf_event *event, int idx)
1717 {
1718 	event->hw.extra_reg.idx = idx;
1719 
1720 	if (idx == EXTRA_REG_RSP_0) {
1721 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1722 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1723 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1724 	} else if (idx == EXTRA_REG_RSP_1) {
1725 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1726 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1727 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1728 	}
1729 }
1730 
1731 /*
1732  * manage allocation of shared extra msr for certain events
1733  *
1734  * sharing can be:
1735  * per-cpu: to be shared between the various events on a single PMU
1736  * per-core: per-cpu + shared by HT threads
1737  */
1738 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)1739 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1740 				   struct perf_event *event,
1741 				   struct hw_perf_event_extra *reg)
1742 {
1743 	struct event_constraint *c = &emptyconstraint;
1744 	struct er_account *era;
1745 	unsigned long flags;
1746 	int idx = reg->idx;
1747 
1748 	/*
1749 	 * reg->alloc can be set due to existing state, so for fake cpuc we
1750 	 * need to ignore this, otherwise we might fail to allocate proper fake
1751 	 * state for this extra reg constraint. Also see the comment below.
1752 	 */
1753 	if (reg->alloc && !cpuc->is_fake)
1754 		return NULL; /* call x86_get_event_constraint() */
1755 
1756 again:
1757 	era = &cpuc->shared_regs->regs[idx];
1758 	/*
1759 	 * we use spin_lock_irqsave() to avoid lockdep issues when
1760 	 * passing a fake cpuc
1761 	 */
1762 	raw_spin_lock_irqsave(&era->lock, flags);
1763 
1764 	if (!atomic_read(&era->ref) || era->config == reg->config) {
1765 
1766 		/*
1767 		 * If its a fake cpuc -- as per validate_{group,event}() we
1768 		 * shouldn't touch event state and we can avoid doing so
1769 		 * since both will only call get_event_constraints() once
1770 		 * on each event, this avoids the need for reg->alloc.
1771 		 *
1772 		 * Not doing the ER fixup will only result in era->reg being
1773 		 * wrong, but since we won't actually try and program hardware
1774 		 * this isn't a problem either.
1775 		 */
1776 		if (!cpuc->is_fake) {
1777 			if (idx != reg->idx)
1778 				intel_fixup_er(event, idx);
1779 
1780 			/*
1781 			 * x86_schedule_events() can call get_event_constraints()
1782 			 * multiple times on events in the case of incremental
1783 			 * scheduling(). reg->alloc ensures we only do the ER
1784 			 * allocation once.
1785 			 */
1786 			reg->alloc = 1;
1787 		}
1788 
1789 		/* lock in msr value */
1790 		era->config = reg->config;
1791 		era->reg = reg->reg;
1792 
1793 		/* one more user */
1794 		atomic_inc(&era->ref);
1795 
1796 		/*
1797 		 * need to call x86_get_event_constraint()
1798 		 * to check if associated event has constraints
1799 		 */
1800 		c = NULL;
1801 	} else {
1802 		idx = intel_alt_er(idx);
1803 		if (idx != reg->idx) {
1804 			raw_spin_unlock_irqrestore(&era->lock, flags);
1805 			goto again;
1806 		}
1807 	}
1808 	raw_spin_unlock_irqrestore(&era->lock, flags);
1809 
1810 	return c;
1811 }
1812 
1813 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)1814 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1815 				   struct hw_perf_event_extra *reg)
1816 {
1817 	struct er_account *era;
1818 
1819 	/*
1820 	 * Only put constraint if extra reg was actually allocated. Also takes
1821 	 * care of event which do not use an extra shared reg.
1822 	 *
1823 	 * Also, if this is a fake cpuc we shouldn't touch any event state
1824 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1825 	 * either since it'll be thrown out.
1826 	 */
1827 	if (!reg->alloc || cpuc->is_fake)
1828 		return;
1829 
1830 	era = &cpuc->shared_regs->regs[reg->idx];
1831 
1832 	/* one fewer user */
1833 	atomic_dec(&era->ref);
1834 
1835 	/* allocate again next time */
1836 	reg->alloc = 0;
1837 }
1838 
1839 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)1840 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1841 			      struct perf_event *event)
1842 {
1843 	struct event_constraint *c = NULL, *d;
1844 	struct hw_perf_event_extra *xreg, *breg;
1845 
1846 	xreg = &event->hw.extra_reg;
1847 	if (xreg->idx != EXTRA_REG_NONE) {
1848 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1849 		if (c == &emptyconstraint)
1850 			return c;
1851 	}
1852 	breg = &event->hw.branch_reg;
1853 	if (breg->idx != EXTRA_REG_NONE) {
1854 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1855 		if (d == &emptyconstraint) {
1856 			__intel_shared_reg_put_constraints(cpuc, xreg);
1857 			c = d;
1858 		}
1859 	}
1860 	return c;
1861 }
1862 
1863 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1864 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1865 			  struct perf_event *event)
1866 {
1867 	struct event_constraint *c;
1868 
1869 	if (x86_pmu.event_constraints) {
1870 		for_each_event_constraint(c, x86_pmu.event_constraints) {
1871 			if ((event->hw.config & c->cmask) == c->code) {
1872 				event->hw.flags |= c->flags;
1873 				return c;
1874 			}
1875 		}
1876 	}
1877 
1878 	return &unconstrained;
1879 }
1880 
1881 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1882 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1883 			    struct perf_event *event)
1884 {
1885 	struct event_constraint *c;
1886 
1887 	c = intel_bts_constraints(event);
1888 	if (c)
1889 		return c;
1890 
1891 	c = intel_shared_regs_constraints(cpuc, event);
1892 	if (c)
1893 		return c;
1894 
1895 	c = intel_pebs_constraints(event);
1896 	if (c)
1897 		return c;
1898 
1899 	return x86_get_event_constraints(cpuc, idx, event);
1900 }
1901 
1902 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)1903 intel_start_scheduling(struct cpu_hw_events *cpuc)
1904 {
1905 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1906 	struct intel_excl_states *xl, *xlo;
1907 	int tid = cpuc->excl_thread_id;
1908 	int o_tid = 1 - tid; /* sibling thread */
1909 
1910 	/*
1911 	 * nothing needed if in group validation mode
1912 	 */
1913 	if (cpuc->is_fake || !is_ht_workaround_enabled())
1914 		return;
1915 
1916 	/*
1917 	 * no exclusion needed
1918 	 */
1919 	if (!excl_cntrs)
1920 		return;
1921 
1922 	xlo = &excl_cntrs->states[o_tid];
1923 	xl = &excl_cntrs->states[tid];
1924 
1925 	xl->sched_started = true;
1926 	/*
1927 	 * lock shared state until we are done scheduling
1928 	 * in stop_event_scheduling()
1929 	 * makes scheduling appear as a transaction
1930 	 */
1931 	WARN_ON_ONCE(!irqs_disabled());
1932 	raw_spin_lock(&excl_cntrs->lock);
1933 
1934 	/*
1935 	 * save initial state of sibling thread
1936 	 */
1937 	memcpy(xlo->init_state, xlo->state, sizeof(xlo->init_state));
1938 }
1939 
1940 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)1941 intel_stop_scheduling(struct cpu_hw_events *cpuc)
1942 {
1943 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1944 	struct intel_excl_states *xl, *xlo;
1945 	int tid = cpuc->excl_thread_id;
1946 	int o_tid = 1 - tid; /* sibling thread */
1947 
1948 	/*
1949 	 * nothing needed if in group validation mode
1950 	 */
1951 	if (cpuc->is_fake || !is_ht_workaround_enabled())
1952 		return;
1953 	/*
1954 	 * no exclusion needed
1955 	 */
1956 	if (!excl_cntrs)
1957 		return;
1958 
1959 	xlo = &excl_cntrs->states[o_tid];
1960 	xl = &excl_cntrs->states[tid];
1961 
1962 	/*
1963 	 * make new sibling thread state visible
1964 	 */
1965 	memcpy(xlo->state, xlo->init_state, sizeof(xlo->state));
1966 
1967 	xl->sched_started = false;
1968 	/*
1969 	 * release shared state lock (acquired in intel_start_scheduling())
1970 	 */
1971 	raw_spin_unlock(&excl_cntrs->lock);
1972 }
1973 
1974 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)1975 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
1976 			   int idx, struct event_constraint *c)
1977 {
1978 	struct event_constraint *cx;
1979 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
1980 	struct intel_excl_states *xl, *xlo;
1981 	int is_excl, i;
1982 	int tid = cpuc->excl_thread_id;
1983 	int o_tid = 1 - tid; /* alternate */
1984 
1985 	/*
1986 	 * validating a group does not require
1987 	 * enforcing cross-thread  exclusion
1988 	 */
1989 	if (cpuc->is_fake || !is_ht_workaround_enabled())
1990 		return c;
1991 
1992 	/*
1993 	 * no exclusion needed
1994 	 */
1995 	if (!excl_cntrs)
1996 		return c;
1997 	/*
1998 	 * event requires exclusive counter access
1999 	 * across HT threads
2000 	 */
2001 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2002 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2003 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2004 		if (!cpuc->n_excl++)
2005 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2006 	}
2007 
2008 	/*
2009 	 * xl = state of current HT
2010 	 * xlo = state of sibling HT
2011 	 */
2012 	xl = &excl_cntrs->states[tid];
2013 	xlo = &excl_cntrs->states[o_tid];
2014 
2015 	cx = c;
2016 
2017 	/*
2018 	 * because we modify the constraint, we need
2019 	 * to make a copy. Static constraints come
2020 	 * from static const tables.
2021 	 *
2022 	 * only needed when constraint has not yet
2023 	 * been cloned (marked dynamic)
2024 	 */
2025 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2026 
2027 		/* sanity check */
2028 		if (idx < 0)
2029 			return &emptyconstraint;
2030 
2031 		/*
2032 		 * grab pre-allocated constraint entry
2033 		 */
2034 		cx = &cpuc->constraint_list[idx];
2035 
2036 		/*
2037 		 * initialize dynamic constraint
2038 		 * with static constraint
2039 		 */
2040 		memcpy(cx, c, sizeof(*cx));
2041 
2042 		/*
2043 		 * mark constraint as dynamic, so we
2044 		 * can free it later on
2045 		 */
2046 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2047 	}
2048 
2049 	/*
2050 	 * From here on, the constraint is dynamic.
2051 	 * Either it was just allocated above, or it
2052 	 * was allocated during a earlier invocation
2053 	 * of this function
2054 	 */
2055 
2056 	/*
2057 	 * Modify static constraint with current dynamic
2058 	 * state of thread
2059 	 *
2060 	 * EXCLUSIVE: sibling counter measuring exclusive event
2061 	 * SHARED   : sibling counter measuring non-exclusive event
2062 	 * UNUSED   : sibling counter unused
2063 	 */
2064 	for_each_set_bit(i, cx->idxmsk, X86_PMC_IDX_MAX) {
2065 		/*
2066 		 * exclusive event in sibling counter
2067 		 * our corresponding counter cannot be used
2068 		 * regardless of our event
2069 		 */
2070 		if (xl->state[i] == INTEL_EXCL_EXCLUSIVE)
2071 			__clear_bit(i, cx->idxmsk);
2072 		/*
2073 		 * if measuring an exclusive event, sibling
2074 		 * measuring non-exclusive, then counter cannot
2075 		 * be used
2076 		 */
2077 		if (is_excl && xl->state[i] == INTEL_EXCL_SHARED)
2078 			__clear_bit(i, cx->idxmsk);
2079 	}
2080 
2081 	/*
2082 	 * recompute actual bit weight for scheduling algorithm
2083 	 */
2084 	cx->weight = hweight64(cx->idxmsk64);
2085 
2086 	/*
2087 	 * if we return an empty mask, then switch
2088 	 * back to static empty constraint to avoid
2089 	 * the cost of freeing later on
2090 	 */
2091 	if (cx->weight == 0)
2092 		cx = &emptyconstraint;
2093 
2094 	return cx;
2095 }
2096 
2097 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2098 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2099 			    struct perf_event *event)
2100 {
2101 	struct event_constraint *c1 = NULL;
2102 	struct event_constraint *c2;
2103 
2104 	if (idx >= 0) /* fake does < 0 */
2105 		c1 = cpuc->event_constraint[idx];
2106 
2107 	/*
2108 	 * first time only
2109 	 * - static constraint: no change across incremental scheduling calls
2110 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2111 	 */
2112 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2113 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2114 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2115 		c1->weight = c2->weight;
2116 		c2 = c1;
2117 	}
2118 
2119 	if (cpuc->excl_cntrs)
2120 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2121 
2122 	return c2;
2123 }
2124 
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2125 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2126 		struct perf_event *event)
2127 {
2128 	struct hw_perf_event *hwc = &event->hw;
2129 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2130 	struct intel_excl_states *xlo, *xl;
2131 	unsigned long flags = 0; /* keep compiler happy */
2132 	int tid = cpuc->excl_thread_id;
2133 	int o_tid = 1 - tid;
2134 
2135 	/*
2136 	 * nothing needed if in group validation mode
2137 	 */
2138 	if (cpuc->is_fake)
2139 		return;
2140 
2141 	WARN_ON_ONCE(!excl_cntrs);
2142 
2143 	if (!excl_cntrs)
2144 		return;
2145 
2146 	xl = &excl_cntrs->states[tid];
2147 	xlo = &excl_cntrs->states[o_tid];
2148 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2149 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2150 		if (!--cpuc->n_excl)
2151 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2152 	}
2153 
2154 	/*
2155 	 * put_constraint may be called from x86_schedule_events()
2156 	 * which already has the lock held so here make locking
2157 	 * conditional
2158 	 */
2159 	if (!xl->sched_started)
2160 		raw_spin_lock_irqsave(&excl_cntrs->lock, flags);
2161 
2162 	/*
2163 	 * if event was actually assigned, then mark the
2164 	 * counter state as unused now
2165 	 */
2166 	if (hwc->idx >= 0)
2167 		xlo->state[hwc->idx] = INTEL_EXCL_UNUSED;
2168 
2169 	if (!xl->sched_started)
2170 		raw_spin_unlock_irqrestore(&excl_cntrs->lock, flags);
2171 }
2172 
2173 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2174 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2175 					struct perf_event *event)
2176 {
2177 	struct hw_perf_event_extra *reg;
2178 
2179 	reg = &event->hw.extra_reg;
2180 	if (reg->idx != EXTRA_REG_NONE)
2181 		__intel_shared_reg_put_constraints(cpuc, reg);
2182 
2183 	reg = &event->hw.branch_reg;
2184 	if (reg->idx != EXTRA_REG_NONE)
2185 		__intel_shared_reg_put_constraints(cpuc, reg);
2186 }
2187 
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2188 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2189 					struct perf_event *event)
2190 {
2191 	intel_put_shared_regs_event_constraints(cpuc, event);
2192 
2193 	/*
2194 	 * is PMU has exclusive counter restrictions, then
2195 	 * all events are subject to and must call the
2196 	 * put_excl_constraints() routine
2197 	 */
2198 	if (cpuc->excl_cntrs)
2199 		intel_put_excl_constraints(cpuc, event);
2200 }
2201 
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2202 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2203 {
2204 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2205 	struct event_constraint *c = cpuc->event_constraint[idx];
2206 	struct intel_excl_states *xlo, *xl;
2207 	int tid = cpuc->excl_thread_id;
2208 	int o_tid = 1 - tid;
2209 	int is_excl;
2210 
2211 	if (cpuc->is_fake || !c)
2212 		return;
2213 
2214 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2215 
2216 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2217 		return;
2218 
2219 	WARN_ON_ONCE(!excl_cntrs);
2220 
2221 	if (!excl_cntrs)
2222 		return;
2223 
2224 	xl = &excl_cntrs->states[tid];
2225 	xlo = &excl_cntrs->states[o_tid];
2226 
2227 	WARN_ON_ONCE(!raw_spin_is_locked(&excl_cntrs->lock));
2228 
2229 	if (cntr >= 0) {
2230 		if (is_excl)
2231 			xlo->init_state[cntr] = INTEL_EXCL_EXCLUSIVE;
2232 		else
2233 			xlo->init_state[cntr] = INTEL_EXCL_SHARED;
2234 	}
2235 }
2236 
intel_pebs_aliases_core2(struct perf_event * event)2237 static void intel_pebs_aliases_core2(struct perf_event *event)
2238 {
2239 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2240 		/*
2241 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2242 		 * (0x003c) so that we can use it with PEBS.
2243 		 *
2244 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2245 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2246 		 * (0x00c0), which is a PEBS capable event, to get the same
2247 		 * count.
2248 		 *
2249 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2250 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2251 		 * larger than the maximum number of instructions that can be
2252 		 * retired per cycle (4) and then inverting the condition, we
2253 		 * count all cycles that retire 16 or less instructions, which
2254 		 * is every cycle.
2255 		 *
2256 		 * Thereby we gain a PEBS capable cycle counter.
2257 		 */
2258 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2259 
2260 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2261 		event->hw.config = alt_config;
2262 	}
2263 }
2264 
intel_pebs_aliases_snb(struct perf_event * event)2265 static void intel_pebs_aliases_snb(struct perf_event *event)
2266 {
2267 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2268 		/*
2269 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2270 		 * (0x003c) so that we can use it with PEBS.
2271 		 *
2272 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2273 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2274 		 * (0x01c2), which is a PEBS capable event, to get the same
2275 		 * count.
2276 		 *
2277 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2278 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2279 		 * larger than the maximum number of micro-ops that can be
2280 		 * retired per cycle (4) and then inverting the condition, we
2281 		 * count all cycles that retire 16 or less micro-ops, which
2282 		 * is every cycle.
2283 		 *
2284 		 * Thereby we gain a PEBS capable cycle counter.
2285 		 */
2286 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2287 
2288 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2289 		event->hw.config = alt_config;
2290 	}
2291 }
2292 
intel_pmu_hw_config(struct perf_event * event)2293 static int intel_pmu_hw_config(struct perf_event *event)
2294 {
2295 	int ret = x86_pmu_hw_config(event);
2296 
2297 	if (ret)
2298 		return ret;
2299 
2300 	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
2301 		x86_pmu.pebs_aliases(event);
2302 
2303 	if (needs_branch_stack(event)) {
2304 		ret = intel_pmu_setup_lbr_filter(event);
2305 		if (ret)
2306 			return ret;
2307 
2308 		/*
2309 		 * BTS is set up earlier in this path, so don't account twice
2310 		 */
2311 		if (!intel_pmu_has_bts(event)) {
2312 			/* disallow lbr if conflicting events are present */
2313 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2314 				return -EBUSY;
2315 
2316 			event->destroy = hw_perf_lbr_event_destroy;
2317 		}
2318 	}
2319 
2320 	if (event->attr.type != PERF_TYPE_RAW)
2321 		return 0;
2322 
2323 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2324 		return 0;
2325 
2326 	if (x86_pmu.version < 3)
2327 		return -EINVAL;
2328 
2329 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2330 		return -EACCES;
2331 
2332 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2333 
2334 	return 0;
2335 }
2336 
perf_guest_get_msrs(int * nr)2337 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2338 {
2339 	if (x86_pmu.guest_get_msrs)
2340 		return x86_pmu.guest_get_msrs(nr);
2341 	*nr = 0;
2342 	return NULL;
2343 }
2344 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2345 
intel_guest_get_msrs(int * nr)2346 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2347 {
2348 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2349 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2350 
2351 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2352 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2353 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2354 	/*
2355 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2356 	 * on a guest entry since PEBS memory write can overshoot guest entry
2357 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2358 	 */
2359 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2360 	arr[1].host = cpuc->pebs_enabled;
2361 	arr[1].guest = 0;
2362 
2363 	*nr = 2;
2364 	return arr;
2365 }
2366 
core_guest_get_msrs(int * nr)2367 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2368 {
2369 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2370 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2371 	int idx;
2372 
2373 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2374 		struct perf_event *event = cpuc->events[idx];
2375 
2376 		arr[idx].msr = x86_pmu_config_addr(idx);
2377 		arr[idx].host = arr[idx].guest = 0;
2378 
2379 		if (!test_bit(idx, cpuc->active_mask))
2380 			continue;
2381 
2382 		arr[idx].host = arr[idx].guest =
2383 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2384 
2385 		if (event->attr.exclude_host)
2386 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2387 		else if (event->attr.exclude_guest)
2388 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2389 	}
2390 
2391 	*nr = x86_pmu.num_counters;
2392 	return arr;
2393 }
2394 
core_pmu_enable_event(struct perf_event * event)2395 static void core_pmu_enable_event(struct perf_event *event)
2396 {
2397 	if (!event->attr.exclude_host)
2398 		x86_pmu_enable_event(event);
2399 }
2400 
core_pmu_enable_all(int added)2401 static void core_pmu_enable_all(int added)
2402 {
2403 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2404 	int idx;
2405 
2406 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2407 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2408 
2409 		if (!test_bit(idx, cpuc->active_mask) ||
2410 				cpuc->events[idx]->attr.exclude_host)
2411 			continue;
2412 
2413 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2414 	}
2415 }
2416 
hsw_hw_config(struct perf_event * event)2417 static int hsw_hw_config(struct perf_event *event)
2418 {
2419 	int ret = intel_pmu_hw_config(event);
2420 
2421 	if (ret)
2422 		return ret;
2423 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2424 		return 0;
2425 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2426 
2427 	/*
2428 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2429 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2430 	 * this combination.
2431 	 */
2432 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2433 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2434 	      event->attr.precise_ip > 0))
2435 		return -EOPNOTSUPP;
2436 
2437 	if (event_is_checkpointed(event)) {
2438 		/*
2439 		 * Sampling of checkpointed events can cause situations where
2440 		 * the CPU constantly aborts because of a overflow, which is
2441 		 * then checkpointed back and ignored. Forbid checkpointing
2442 		 * for sampling.
2443 		 *
2444 		 * But still allow a long sampling period, so that perf stat
2445 		 * from KVM works.
2446 		 */
2447 		if (event->attr.sample_period > 0 &&
2448 		    event->attr.sample_period < 0x7fffffff)
2449 			return -EOPNOTSUPP;
2450 	}
2451 	return 0;
2452 }
2453 
2454 static struct event_constraint counter2_constraint =
2455 			EVENT_CONSTRAINT(0, 0x4, 0);
2456 
2457 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2458 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2459 			  struct perf_event *event)
2460 {
2461 	struct event_constraint *c;
2462 
2463 	c = intel_get_event_constraints(cpuc, idx, event);
2464 
2465 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2466 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2467 		if (c->idxmsk64 & (1U << 2))
2468 			return &counter2_constraint;
2469 		return &emptyconstraint;
2470 	}
2471 
2472 	return c;
2473 }
2474 
2475 /*
2476  * Broadwell:
2477  *
2478  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2479  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2480  * the two to enforce a minimum period of 128 (the smallest value that has bits
2481  * 0-5 cleared and >= 100).
2482  *
2483  * Because of how the code in x86_perf_event_set_period() works, the truncation
2484  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2485  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2486  *
2487  * Therefore the effective (average) period matches the requested period,
2488  * despite coarser hardware granularity.
2489  */
bdw_limit_period(struct perf_event * event,unsigned left)2490 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2491 {
2492 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2493 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
2494 		if (left < 128)
2495 			left = 128;
2496 		left &= ~0x3fu;
2497 	}
2498 	return left;
2499 }
2500 
2501 PMU_FORMAT_ATTR(event,	"config:0-7"	);
2502 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
2503 PMU_FORMAT_ATTR(edge,	"config:18"	);
2504 PMU_FORMAT_ATTR(pc,	"config:19"	);
2505 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
2506 PMU_FORMAT_ATTR(inv,	"config:23"	);
2507 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2508 PMU_FORMAT_ATTR(in_tx,  "config:32");
2509 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2510 
2511 static struct attribute *intel_arch_formats_attr[] = {
2512 	&format_attr_event.attr,
2513 	&format_attr_umask.attr,
2514 	&format_attr_edge.attr,
2515 	&format_attr_pc.attr,
2516 	&format_attr_inv.attr,
2517 	&format_attr_cmask.attr,
2518 	NULL,
2519 };
2520 
intel_event_sysfs_show(char * page,u64 config)2521 ssize_t intel_event_sysfs_show(char *page, u64 config)
2522 {
2523 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2524 
2525 	return x86_event_sysfs_show(page, config, event);
2526 }
2527 
allocate_shared_regs(int cpu)2528 struct intel_shared_regs *allocate_shared_regs(int cpu)
2529 {
2530 	struct intel_shared_regs *regs;
2531 	int i;
2532 
2533 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
2534 			    GFP_KERNEL, cpu_to_node(cpu));
2535 	if (regs) {
2536 		/*
2537 		 * initialize the locks to keep lockdep happy
2538 		 */
2539 		for (i = 0; i < EXTRA_REG_MAX; i++)
2540 			raw_spin_lock_init(&regs->regs[i].lock);
2541 
2542 		regs->core_id = -1;
2543 	}
2544 	return regs;
2545 }
2546 
allocate_excl_cntrs(int cpu)2547 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2548 {
2549 	struct intel_excl_cntrs *c;
2550 	int i;
2551 
2552 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2553 			 GFP_KERNEL, cpu_to_node(cpu));
2554 	if (c) {
2555 		raw_spin_lock_init(&c->lock);
2556 		for (i = 0; i < X86_PMC_IDX_MAX; i++) {
2557 			c->states[0].state[i] = INTEL_EXCL_UNUSED;
2558 			c->states[0].init_state[i] = INTEL_EXCL_UNUSED;
2559 
2560 			c->states[1].state[i] = INTEL_EXCL_UNUSED;
2561 			c->states[1].init_state[i] = INTEL_EXCL_UNUSED;
2562 		}
2563 		c->core_id = -1;
2564 	}
2565 	return c;
2566 }
2567 
intel_pmu_cpu_prepare(int cpu)2568 static int intel_pmu_cpu_prepare(int cpu)
2569 {
2570 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2571 
2572 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2573 		cpuc->shared_regs = allocate_shared_regs(cpu);
2574 		if (!cpuc->shared_regs)
2575 			return NOTIFY_BAD;
2576 	}
2577 
2578 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2579 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2580 
2581 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2582 		if (!cpuc->constraint_list)
2583 			return NOTIFY_BAD;
2584 
2585 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2586 		if (!cpuc->excl_cntrs) {
2587 			kfree(cpuc->constraint_list);
2588 			kfree(cpuc->shared_regs);
2589 			return NOTIFY_BAD;
2590 		}
2591 		cpuc->excl_thread_id = 0;
2592 	}
2593 
2594 	return NOTIFY_OK;
2595 }
2596 
intel_pmu_cpu_starting(int cpu)2597 static void intel_pmu_cpu_starting(int cpu)
2598 {
2599 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2600 	int core_id = topology_core_id(cpu);
2601 	int i;
2602 
2603 	init_debug_store_on_cpu(cpu);
2604 	/*
2605 	 * Deal with CPUs that don't clear their LBRs on power-up.
2606 	 */
2607 	intel_pmu_lbr_reset();
2608 
2609 	cpuc->lbr_sel = NULL;
2610 
2611 	if (!cpuc->shared_regs)
2612 		return;
2613 
2614 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2615 		void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2616 
2617 		for_each_cpu(i, topology_thread_cpumask(cpu)) {
2618 			struct intel_shared_regs *pc;
2619 
2620 			pc = per_cpu(cpu_hw_events, i).shared_regs;
2621 			if (pc && pc->core_id == core_id) {
2622 				*onln = cpuc->shared_regs;
2623 				cpuc->shared_regs = pc;
2624 				break;
2625 			}
2626 		}
2627 		cpuc->shared_regs->core_id = core_id;
2628 		cpuc->shared_regs->refcnt++;
2629 	}
2630 
2631 	if (x86_pmu.lbr_sel_map)
2632 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2633 
2634 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2635 		for_each_cpu(i, topology_thread_cpumask(cpu)) {
2636 			struct intel_excl_cntrs *c;
2637 
2638 			c = per_cpu(cpu_hw_events, i).excl_cntrs;
2639 			if (c && c->core_id == core_id) {
2640 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2641 				cpuc->excl_cntrs = c;
2642 				cpuc->excl_thread_id = 1;
2643 				break;
2644 			}
2645 		}
2646 		cpuc->excl_cntrs->core_id = core_id;
2647 		cpuc->excl_cntrs->refcnt++;
2648 	}
2649 }
2650 
free_excl_cntrs(int cpu)2651 static void free_excl_cntrs(int cpu)
2652 {
2653 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2654 	struct intel_excl_cntrs *c;
2655 
2656 	c = cpuc->excl_cntrs;
2657 	if (c) {
2658 		if (c->core_id == -1 || --c->refcnt == 0)
2659 			kfree(c);
2660 		cpuc->excl_cntrs = NULL;
2661 		kfree(cpuc->constraint_list);
2662 		cpuc->constraint_list = NULL;
2663 	}
2664 }
2665 
intel_pmu_cpu_dying(int cpu)2666 static void intel_pmu_cpu_dying(int cpu)
2667 {
2668 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2669 	struct intel_shared_regs *pc;
2670 
2671 	pc = cpuc->shared_regs;
2672 	if (pc) {
2673 		if (pc->core_id == -1 || --pc->refcnt == 0)
2674 			kfree(pc);
2675 		cpuc->shared_regs = NULL;
2676 	}
2677 
2678 	free_excl_cntrs(cpu);
2679 
2680 	fini_debug_store_on_cpu(cpu);
2681 }
2682 
2683 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2684 
2685 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2686 
2687 static struct attribute *intel_arch3_formats_attr[] = {
2688 	&format_attr_event.attr,
2689 	&format_attr_umask.attr,
2690 	&format_attr_edge.attr,
2691 	&format_attr_pc.attr,
2692 	&format_attr_any.attr,
2693 	&format_attr_inv.attr,
2694 	&format_attr_cmask.attr,
2695 	&format_attr_in_tx.attr,
2696 	&format_attr_in_tx_cp.attr,
2697 
2698 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2699 	&format_attr_ldlat.attr, /* PEBS load latency */
2700 	NULL,
2701 };
2702 
2703 static __initconst const struct x86_pmu core_pmu = {
2704 	.name			= "core",
2705 	.handle_irq		= x86_pmu_handle_irq,
2706 	.disable_all		= x86_pmu_disable_all,
2707 	.enable_all		= core_pmu_enable_all,
2708 	.enable			= core_pmu_enable_event,
2709 	.disable		= x86_pmu_disable_event,
2710 	.hw_config		= x86_pmu_hw_config,
2711 	.schedule_events	= x86_schedule_events,
2712 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
2713 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2714 	.event_map		= intel_pmu_event_map,
2715 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2716 	.apic			= 1,
2717 	/*
2718 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
2719 	 * so we install an artificial 1<<31 period regardless of
2720 	 * the generic event period:
2721 	 */
2722 	.max_period		= (1ULL<<31) - 1,
2723 	.get_event_constraints	= intel_get_event_constraints,
2724 	.put_event_constraints	= intel_put_event_constraints,
2725 	.event_constraints	= intel_core_event_constraints,
2726 	.guest_get_msrs		= core_guest_get_msrs,
2727 	.format_attrs		= intel_arch_formats_attr,
2728 	.events_sysfs_show	= intel_event_sysfs_show,
2729 
2730 	/*
2731 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2732 	 * together with PMU version 1 and thus be using core_pmu with
2733 	 * shared_regs. We need following callbacks here to allocate
2734 	 * it properly.
2735 	 */
2736 	.cpu_prepare		= intel_pmu_cpu_prepare,
2737 	.cpu_starting		= intel_pmu_cpu_starting,
2738 	.cpu_dying		= intel_pmu_cpu_dying,
2739 };
2740 
2741 static __initconst const struct x86_pmu intel_pmu = {
2742 	.name			= "Intel",
2743 	.handle_irq		= intel_pmu_handle_irq,
2744 	.disable_all		= intel_pmu_disable_all,
2745 	.enable_all		= intel_pmu_enable_all,
2746 	.enable			= intel_pmu_enable_event,
2747 	.disable		= intel_pmu_disable_event,
2748 	.hw_config		= intel_pmu_hw_config,
2749 	.schedule_events	= x86_schedule_events,
2750 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
2751 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2752 	.event_map		= intel_pmu_event_map,
2753 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2754 	.apic			= 1,
2755 	/*
2756 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
2757 	 * so we install an artificial 1<<31 period regardless of
2758 	 * the generic event period:
2759 	 */
2760 	.max_period		= (1ULL << 31) - 1,
2761 	.get_event_constraints	= intel_get_event_constraints,
2762 	.put_event_constraints	= intel_put_event_constraints,
2763 	.pebs_aliases		= intel_pebs_aliases_core2,
2764 
2765 	.format_attrs		= intel_arch3_formats_attr,
2766 	.events_sysfs_show	= intel_event_sysfs_show,
2767 
2768 	.cpu_prepare		= intel_pmu_cpu_prepare,
2769 	.cpu_starting		= intel_pmu_cpu_starting,
2770 	.cpu_dying		= intel_pmu_cpu_dying,
2771 	.guest_get_msrs		= intel_guest_get_msrs,
2772 	.sched_task		= intel_pmu_lbr_sched_task,
2773 };
2774 
intel_clovertown_quirk(void)2775 static __init void intel_clovertown_quirk(void)
2776 {
2777 	/*
2778 	 * PEBS is unreliable due to:
2779 	 *
2780 	 *   AJ67  - PEBS may experience CPL leaks
2781 	 *   AJ68  - PEBS PMI may be delayed by one event
2782 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2783 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2784 	 *
2785 	 * AJ67 could be worked around by restricting the OS/USR flags.
2786 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2787 	 *
2788 	 * AJ106 could possibly be worked around by not allowing LBR
2789 	 *       usage from PEBS, including the fixup.
2790 	 * AJ68  could possibly be worked around by always programming
2791 	 *	 a pebs_event_reset[0] value and coping with the lost events.
2792 	 *
2793 	 * But taken together it might just make sense to not enable PEBS on
2794 	 * these chips.
2795 	 */
2796 	pr_warn("PEBS disabled due to CPU errata\n");
2797 	x86_pmu.pebs = 0;
2798 	x86_pmu.pebs_constraints = NULL;
2799 }
2800 
intel_snb_pebs_broken(int cpu)2801 static int intel_snb_pebs_broken(int cpu)
2802 {
2803 	u32 rev = UINT_MAX; /* default to broken for unknown models */
2804 
2805 	switch (cpu_data(cpu).x86_model) {
2806 	case 42: /* SNB */
2807 		rev = 0x28;
2808 		break;
2809 
2810 	case 45: /* SNB-EP */
2811 		switch (cpu_data(cpu).x86_mask) {
2812 		case 6: rev = 0x618; break;
2813 		case 7: rev = 0x70c; break;
2814 		}
2815 	}
2816 
2817 	return (cpu_data(cpu).microcode < rev);
2818 }
2819 
intel_snb_check_microcode(void)2820 static void intel_snb_check_microcode(void)
2821 {
2822 	int pebs_broken = 0;
2823 	int cpu;
2824 
2825 	get_online_cpus();
2826 	for_each_online_cpu(cpu) {
2827 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2828 			break;
2829 	}
2830 	put_online_cpus();
2831 
2832 	if (pebs_broken == x86_pmu.pebs_broken)
2833 		return;
2834 
2835 	/*
2836 	 * Serialized by the microcode lock..
2837 	 */
2838 	if (x86_pmu.pebs_broken) {
2839 		pr_info("PEBS enabled due to microcode update\n");
2840 		x86_pmu.pebs_broken = 0;
2841 	} else {
2842 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2843 		x86_pmu.pebs_broken = 1;
2844 	}
2845 }
2846 
2847 /*
2848  * Under certain circumstances, access certain MSR may cause #GP.
2849  * The function tests if the input MSR can be safely accessed.
2850  */
check_msr(unsigned long msr,u64 mask)2851 static bool check_msr(unsigned long msr, u64 mask)
2852 {
2853 	u64 val_old, val_new, val_tmp;
2854 
2855 	/*
2856 	 * Read the current value, change it and read it back to see if it
2857 	 * matches, this is needed to detect certain hardware emulators
2858 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2859 	 */
2860 	if (rdmsrl_safe(msr, &val_old))
2861 		return false;
2862 
2863 	/*
2864 	 * Only change the bits which can be updated by wrmsrl.
2865 	 */
2866 	val_tmp = val_old ^ mask;
2867 	if (wrmsrl_safe(msr, val_tmp) ||
2868 	    rdmsrl_safe(msr, &val_new))
2869 		return false;
2870 
2871 	if (val_new != val_tmp)
2872 		return false;
2873 
2874 	/* Here it's sure that the MSR can be safely accessed.
2875 	 * Restore the old value and return.
2876 	 */
2877 	wrmsrl(msr, val_old);
2878 
2879 	return true;
2880 }
2881 
intel_sandybridge_quirk(void)2882 static __init void intel_sandybridge_quirk(void)
2883 {
2884 	x86_pmu.check_microcode = intel_snb_check_microcode;
2885 	intel_snb_check_microcode();
2886 }
2887 
2888 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2889 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2890 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2891 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2892 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2893 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2894 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2895 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2896 };
2897 
intel_arch_events_quirk(void)2898 static __init void intel_arch_events_quirk(void)
2899 {
2900 	int bit;
2901 
2902 	/* disable event that reported as not presend by cpuid */
2903 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2904 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2905 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
2906 			intel_arch_events_map[bit].name);
2907 	}
2908 }
2909 
intel_nehalem_quirk(void)2910 static __init void intel_nehalem_quirk(void)
2911 {
2912 	union cpuid10_ebx ebx;
2913 
2914 	ebx.full = x86_pmu.events_maskl;
2915 	if (ebx.split.no_branch_misses_retired) {
2916 		/*
2917 		 * Erratum AAJ80 detected, we work it around by using
2918 		 * the BR_MISP_EXEC.ANY event. This will over-count
2919 		 * branch-misses, but it's still much better than the
2920 		 * architectural event which is often completely bogus:
2921 		 */
2922 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2923 		ebx.split.no_branch_misses_retired = 0;
2924 		x86_pmu.events_maskl = ebx.full;
2925 		pr_info("CPU erratum AAJ80 worked around\n");
2926 	}
2927 }
2928 
2929 /*
2930  * enable software workaround for errata:
2931  * SNB: BJ122
2932  * IVB: BV98
2933  * HSW: HSD29
2934  *
2935  * Only needed when HT is enabled. However detecting
2936  * if HT is enabled is difficult (model specific). So instead,
2937  * we enable the workaround in the early boot, and verify if
2938  * it is needed in a later initcall phase once we have valid
2939  * topology information to check if HT is actually enabled
2940  */
intel_ht_bug(void)2941 static __init void intel_ht_bug(void)
2942 {
2943 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
2944 
2945 	x86_pmu.commit_scheduling = intel_commit_scheduling;
2946 	x86_pmu.start_scheduling = intel_start_scheduling;
2947 	x86_pmu.stop_scheduling = intel_stop_scheduling;
2948 }
2949 
2950 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
2951 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
2952 
2953 /* Haswell special events */
2954 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
2955 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
2956 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
2957 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
2958 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
2959 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
2960 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
2961 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
2962 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
2963 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
2964 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
2965 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
2966 
2967 static struct attribute *hsw_events_attrs[] = {
2968 	EVENT_PTR(tx_start),
2969 	EVENT_PTR(tx_commit),
2970 	EVENT_PTR(tx_abort),
2971 	EVENT_PTR(tx_capacity),
2972 	EVENT_PTR(tx_conflict),
2973 	EVENT_PTR(el_start),
2974 	EVENT_PTR(el_commit),
2975 	EVENT_PTR(el_abort),
2976 	EVENT_PTR(el_capacity),
2977 	EVENT_PTR(el_conflict),
2978 	EVENT_PTR(cycles_t),
2979 	EVENT_PTR(cycles_ct),
2980 	EVENT_PTR(mem_ld_hsw),
2981 	EVENT_PTR(mem_st_hsw),
2982 	NULL
2983 };
2984 
intel_pmu_init(void)2985 __init int intel_pmu_init(void)
2986 {
2987 	union cpuid10_edx edx;
2988 	union cpuid10_eax eax;
2989 	union cpuid10_ebx ebx;
2990 	struct event_constraint *c;
2991 	unsigned int unused;
2992 	struct extra_reg *er;
2993 	int version, i;
2994 
2995 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2996 		switch (boot_cpu_data.x86) {
2997 		case 0x6:
2998 			return p6_pmu_init();
2999 		case 0xb:
3000 			return knc_pmu_init();
3001 		case 0xf:
3002 			return p4_pmu_init();
3003 		}
3004 		return -ENODEV;
3005 	}
3006 
3007 	/*
3008 	 * Check whether the Architectural PerfMon supports
3009 	 * Branch Misses Retired hw_event or not.
3010 	 */
3011 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3012 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3013 		return -ENODEV;
3014 
3015 	version = eax.split.version_id;
3016 	if (version < 2)
3017 		x86_pmu = core_pmu;
3018 	else
3019 		x86_pmu = intel_pmu;
3020 
3021 	x86_pmu.version			= version;
3022 	x86_pmu.num_counters		= eax.split.num_counters;
3023 	x86_pmu.cntval_bits		= eax.split.bit_width;
3024 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3025 
3026 	x86_pmu.events_maskl		= ebx.full;
3027 	x86_pmu.events_mask_len		= eax.split.mask_length;
3028 
3029 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3030 
3031 	/*
3032 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3033 	 * assume at least 3 events:
3034 	 */
3035 	if (version > 1)
3036 		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3037 
3038 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3039 		u64 capabilities;
3040 
3041 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3042 		x86_pmu.intel_cap.capabilities = capabilities;
3043 	}
3044 
3045 	intel_ds_init();
3046 
3047 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3048 
3049 	/*
3050 	 * Install the hw-cache-events table:
3051 	 */
3052 	switch (boot_cpu_data.x86_model) {
3053 	case 14: /* 65nm Core "Yonah" */
3054 		pr_cont("Core events, ");
3055 		break;
3056 
3057 	case 15: /* 65nm Core2 "Merom"          */
3058 		x86_add_quirk(intel_clovertown_quirk);
3059 	case 22: /* 65nm Core2 "Merom-L"        */
3060 	case 23: /* 45nm Core2 "Penryn"         */
3061 	case 29: /* 45nm Core2 "Dunnington (MP) */
3062 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3063 		       sizeof(hw_cache_event_ids));
3064 
3065 		intel_pmu_lbr_init_core();
3066 
3067 		x86_pmu.event_constraints = intel_core2_event_constraints;
3068 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3069 		pr_cont("Core2 events, ");
3070 		break;
3071 
3072 	case 30: /* 45nm Nehalem    */
3073 	case 26: /* 45nm Nehalem-EP */
3074 	case 46: /* 45nm Nehalem-EX */
3075 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3076 		       sizeof(hw_cache_event_ids));
3077 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3078 		       sizeof(hw_cache_extra_regs));
3079 
3080 		intel_pmu_lbr_init_nhm();
3081 
3082 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3083 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3084 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3085 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3086 
3087 		x86_pmu.cpu_events = nhm_events_attrs;
3088 
3089 		/* UOPS_ISSUED.STALLED_CYCLES */
3090 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3091 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3092 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3093 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3094 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3095 
3096 		x86_add_quirk(intel_nehalem_quirk);
3097 
3098 		pr_cont("Nehalem events, ");
3099 		break;
3100 
3101 	case 28: /* 45nm Atom "Pineview"   */
3102 	case 38: /* 45nm Atom "Lincroft"   */
3103 	case 39: /* 32nm Atom "Penwell"    */
3104 	case 53: /* 32nm Atom "Cloverview" */
3105 	case 54: /* 32nm Atom "Cedarview"  */
3106 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3107 		       sizeof(hw_cache_event_ids));
3108 
3109 		intel_pmu_lbr_init_atom();
3110 
3111 		x86_pmu.event_constraints = intel_gen_event_constraints;
3112 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3113 		pr_cont("Atom events, ");
3114 		break;
3115 
3116 	case 55: /* 22nm Atom "Silvermont"                */
3117 	case 76: /* 14nm Atom "Airmont"                   */
3118 	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3119 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3120 			sizeof(hw_cache_event_ids));
3121 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3122 		       sizeof(hw_cache_extra_regs));
3123 
3124 		intel_pmu_lbr_init_atom();
3125 
3126 		x86_pmu.event_constraints = intel_slm_event_constraints;
3127 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3128 		x86_pmu.extra_regs = intel_slm_extra_regs;
3129 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3130 		pr_cont("Silvermont events, ");
3131 		break;
3132 
3133 	case 37: /* 32nm Westmere    */
3134 	case 44: /* 32nm Westmere-EP */
3135 	case 47: /* 32nm Westmere-EX */
3136 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3137 		       sizeof(hw_cache_event_ids));
3138 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3139 		       sizeof(hw_cache_extra_regs));
3140 
3141 		intel_pmu_lbr_init_nhm();
3142 
3143 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3144 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3145 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3146 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3147 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3148 
3149 		x86_pmu.cpu_events = nhm_events_attrs;
3150 
3151 		/* UOPS_ISSUED.STALLED_CYCLES */
3152 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3153 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3154 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3155 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3156 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3157 
3158 		pr_cont("Westmere events, ");
3159 		break;
3160 
3161 	case 42: /* 32nm SandyBridge         */
3162 	case 45: /* 32nm SandyBridge-E/EN/EP */
3163 		x86_add_quirk(intel_sandybridge_quirk);
3164 		x86_add_quirk(intel_ht_bug);
3165 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3166 		       sizeof(hw_cache_event_ids));
3167 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3168 		       sizeof(hw_cache_extra_regs));
3169 
3170 		intel_pmu_lbr_init_snb();
3171 
3172 		x86_pmu.event_constraints = intel_snb_event_constraints;
3173 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3174 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3175 		if (boot_cpu_data.x86_model == 45)
3176 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3177 		else
3178 			x86_pmu.extra_regs = intel_snb_extra_regs;
3179 
3180 
3181 		/* all extra regs are per-cpu when HT is on */
3182 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3183 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3184 
3185 		x86_pmu.cpu_events = snb_events_attrs;
3186 
3187 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3188 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3189 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3190 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3191 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3192 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3193 
3194 		pr_cont("SandyBridge events, ");
3195 		break;
3196 
3197 	case 58: /* 22nm IvyBridge       */
3198 	case 62: /* 22nm IvyBridge-EP/EX */
3199 		x86_add_quirk(intel_ht_bug);
3200 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3201 		       sizeof(hw_cache_event_ids));
3202 		/* dTLB-load-misses on IVB is different than SNB */
3203 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3204 
3205 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3206 		       sizeof(hw_cache_extra_regs));
3207 
3208 		intel_pmu_lbr_init_snb();
3209 
3210 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3211 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3212 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3213 		if (boot_cpu_data.x86_model == 62)
3214 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3215 		else
3216 			x86_pmu.extra_regs = intel_snb_extra_regs;
3217 		/* all extra regs are per-cpu when HT is on */
3218 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3219 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3220 
3221 		x86_pmu.cpu_events = snb_events_attrs;
3222 
3223 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3224 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3225 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3226 
3227 		pr_cont("IvyBridge events, ");
3228 		break;
3229 
3230 
3231 	case 60: /* 22nm Haswell Core */
3232 	case 63: /* 22nm Haswell Server */
3233 	case 69: /* 22nm Haswell ULT */
3234 	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3235 		x86_add_quirk(intel_ht_bug);
3236 		x86_pmu.late_ack = true;
3237 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3238 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3239 
3240 		intel_pmu_lbr_init_hsw();
3241 
3242 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3243 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3244 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3245 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3246 		/* all extra regs are per-cpu when HT is on */
3247 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3248 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3249 
3250 		x86_pmu.hw_config = hsw_hw_config;
3251 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3252 		x86_pmu.cpu_events = hsw_events_attrs;
3253 		x86_pmu.lbr_double_abort = true;
3254 		pr_cont("Haswell events, ");
3255 		break;
3256 
3257 	case 61: /* 14nm Broadwell Core-M */
3258 	case 86: /* 14nm Broadwell Xeon D */
3259 	case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3260 	case 79: /* 14nm Broadwell Server */
3261 		x86_pmu.late_ack = true;
3262 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3263 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3264 
3265 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3266 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3267 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3268 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3269 									  HSW_SNOOP_DRAM;
3270 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3271 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3272 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3273 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3274 
3275 		intel_pmu_lbr_init_hsw();
3276 
3277 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3278 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3279 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3280 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3281 		/* all extra regs are per-cpu when HT is on */
3282 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3283 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3284 
3285 		x86_pmu.hw_config = hsw_hw_config;
3286 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3287 		x86_pmu.cpu_events = hsw_events_attrs;
3288 		x86_pmu.limit_period = bdw_limit_period;
3289 		pr_cont("Broadwell events, ");
3290 		break;
3291 
3292 	default:
3293 		switch (x86_pmu.version) {
3294 		case 1:
3295 			x86_pmu.event_constraints = intel_v1_event_constraints;
3296 			pr_cont("generic architected perfmon v1, ");
3297 			break;
3298 		default:
3299 			/*
3300 			 * default constraints for v2 and up
3301 			 */
3302 			x86_pmu.event_constraints = intel_gen_event_constraints;
3303 			pr_cont("generic architected perfmon, ");
3304 			break;
3305 		}
3306 	}
3307 
3308 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3309 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3310 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3311 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3312 	}
3313 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3314 
3315 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3316 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3317 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3318 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3319 	}
3320 
3321 	x86_pmu.intel_ctrl |=
3322 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3323 
3324 	if (x86_pmu.event_constraints) {
3325 		/*
3326 		 * event on fixed counter2 (REF_CYCLES) only works on this
3327 		 * counter, so do not extend mask to generic counters
3328 		 */
3329 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3330 			if (c->cmask == FIXED_EVENT_FLAGS
3331 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3332 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3333 			}
3334 			c->idxmsk64 &=
3335 				~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3336 			c->weight = hweight64(c->idxmsk64);
3337 		}
3338 	}
3339 
3340 	/*
3341 	 * Access LBR MSR may cause #GP under certain circumstances.
3342 	 * E.g. KVM doesn't support LBR MSR
3343 	 * Check all LBT MSR here.
3344 	 * Disable LBR access if any LBR MSRs can not be accessed.
3345 	 */
3346 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3347 		x86_pmu.lbr_nr = 0;
3348 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
3349 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3350 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3351 			x86_pmu.lbr_nr = 0;
3352 	}
3353 
3354 	/*
3355 	 * Access extra MSR may cause #GP under certain circumstances.
3356 	 * E.g. KVM doesn't support offcore event
3357 	 * Check all extra_regs here.
3358 	 */
3359 	if (x86_pmu.extra_regs) {
3360 		for (er = x86_pmu.extra_regs; er->msr; er++) {
3361 			er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
3362 			/* Disable LBR select mapping */
3363 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3364 				x86_pmu.lbr_sel_map = NULL;
3365 		}
3366 	}
3367 
3368 	/* Support full width counters using alternative MSR range */
3369 	if (x86_pmu.intel_cap.full_width_write) {
3370 		x86_pmu.max_period = x86_pmu.cntval_mask;
3371 		x86_pmu.perfctr = MSR_IA32_PMC0;
3372 		pr_cont("full-width counters, ");
3373 	}
3374 
3375 	return 0;
3376 }
3377 
3378 /*
3379  * HT bug: phase 2 init
3380  * Called once we have valid topology information to check
3381  * whether or not HT is enabled
3382  * If HT is off, then we disable the workaround
3383  */
fixup_ht_bug(void)3384 static __init int fixup_ht_bug(void)
3385 {
3386 	int cpu = smp_processor_id();
3387 	int w, c;
3388 	/*
3389 	 * problem not present on this CPU model, nothing to do
3390 	 */
3391 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3392 		return 0;
3393 
3394 	w = cpumask_weight(topology_thread_cpumask(cpu));
3395 	if (w > 1) {
3396 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3397 		return 0;
3398 	}
3399 
3400 	watchdog_nmi_disable_all();
3401 
3402 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3403 
3404 	x86_pmu.commit_scheduling = NULL;
3405 	x86_pmu.start_scheduling = NULL;
3406 	x86_pmu.stop_scheduling = NULL;
3407 
3408 	watchdog_nmi_enable_all();
3409 
3410 	get_online_cpus();
3411 
3412 	for_each_online_cpu(c) {
3413 		free_excl_cntrs(c);
3414 	}
3415 
3416 	put_online_cpus();
3417 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3418 	return 0;
3419 }
3420 subsys_initcall(fixup_ht_bug)
3421