1 /*
2  * vivid-kthread-cap.h - video/vbi capture thread support functions.
3  *
4  * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  */
19 
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/font.h>
27 #include <linux/mutex.h>
28 #include <linux/videodev2.h>
29 #include <linux/kthread.h>
30 #include <linux/freezer.h>
31 #include <linux/random.h>
32 #include <linux/v4l2-dv-timings.h>
33 #include <asm/div64.h>
34 #include <media/videobuf2-vmalloc.h>
35 #include <media/v4l2-dv-timings.h>
36 #include <media/v4l2-ioctl.h>
37 #include <media/v4l2-fh.h>
38 #include <media/v4l2-event.h>
39 
40 #include "vivid-core.h"
41 #include "vivid-vid-common.h"
42 #include "vivid-vid-cap.h"
43 #include "vivid-vid-out.h"
44 #include "vivid-radio-common.h"
45 #include "vivid-radio-rx.h"
46 #include "vivid-radio-tx.h"
47 #include "vivid-sdr-cap.h"
48 #include "vivid-vbi-cap.h"
49 #include "vivid-vbi-out.h"
50 #include "vivid-osd.h"
51 #include "vivid-ctrls.h"
52 #include "vivid-kthread-cap.h"
53 
vivid_get_std_cap(const struct vivid_dev * dev)54 static inline v4l2_std_id vivid_get_std_cap(const struct vivid_dev *dev)
55 {
56 	if (vivid_is_sdtv_cap(dev))
57 		return dev->std_cap;
58 	return 0;
59 }
60 
copy_pix(struct vivid_dev * dev,int win_y,int win_x,u16 * cap,const u16 * osd)61 static void copy_pix(struct vivid_dev *dev, int win_y, int win_x,
62 			u16 *cap, const u16 *osd)
63 {
64 	u16 out;
65 	int left = dev->overlay_out_left;
66 	int top = dev->overlay_out_top;
67 	int fb_x = win_x + left;
68 	int fb_y = win_y + top;
69 	int i;
70 
71 	out = *cap;
72 	*cap = *osd;
73 	if (dev->bitmap_out) {
74 		const u8 *p = dev->bitmap_out;
75 		unsigned stride = (dev->compose_out.width + 7) / 8;
76 
77 		win_x -= dev->compose_out.left;
78 		win_y -= dev->compose_out.top;
79 		if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7))))
80 			return;
81 	}
82 
83 	for (i = 0; i < dev->clipcount_out; i++) {
84 		struct v4l2_rect *r = &dev->clips_out[i].c;
85 
86 		if (fb_y >= r->top && fb_y < r->top + r->height &&
87 		    fb_x >= r->left && fb_x < r->left + r->width)
88 			return;
89 	}
90 	if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_CHROMAKEY) &&
91 	    *osd != dev->chromakey_out)
92 		return;
93 	if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) &&
94 	    out == dev->chromakey_out)
95 		return;
96 	if (dev->fmt_cap->alpha_mask) {
97 		if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_GLOBAL_ALPHA) &&
98 		    dev->global_alpha_out)
99 			return;
100 		if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) &&
101 		    *cap & dev->fmt_cap->alpha_mask)
102 			return;
103 		if ((dev->fbuf_out_flags & V4L2_FBUF_FLAG_LOCAL_INV_ALPHA) &&
104 		    !(*cap & dev->fmt_cap->alpha_mask))
105 			return;
106 	}
107 	*cap = out;
108 }
109 
blend_line(struct vivid_dev * dev,unsigned y_offset,unsigned x_offset,u8 * vcapbuf,const u8 * vosdbuf,unsigned width,unsigned pixsize)110 static void blend_line(struct vivid_dev *dev, unsigned y_offset, unsigned x_offset,
111 		u8 *vcapbuf, const u8 *vosdbuf,
112 		unsigned width, unsigned pixsize)
113 {
114 	unsigned x;
115 
116 	for (x = 0; x < width; x++, vcapbuf += pixsize, vosdbuf += pixsize) {
117 		copy_pix(dev, y_offset, x_offset + x,
118 			 (u16 *)vcapbuf, (const u16 *)vosdbuf);
119 	}
120 }
121 
scale_line(const u8 * src,u8 * dst,unsigned srcw,unsigned dstw,unsigned twopixsize)122 static void scale_line(const u8 *src, u8 *dst, unsigned srcw, unsigned dstw, unsigned twopixsize)
123 {
124 	/* Coarse scaling with Bresenham */
125 	unsigned int_part;
126 	unsigned fract_part;
127 	unsigned src_x = 0;
128 	unsigned error = 0;
129 	unsigned x;
130 
131 	/*
132 	 * We always combine two pixels to prevent color bleed in the packed
133 	 * yuv case.
134 	 */
135 	srcw /= 2;
136 	dstw /= 2;
137 	int_part = srcw / dstw;
138 	fract_part = srcw % dstw;
139 	for (x = 0; x < dstw; x++, dst += twopixsize) {
140 		memcpy(dst, src + src_x * twopixsize, twopixsize);
141 		src_x += int_part;
142 		error += fract_part;
143 		if (error >= dstw) {
144 			error -= dstw;
145 			src_x++;
146 		}
147 	}
148 }
149 
150 /*
151  * Precalculate the rectangles needed to perform video looping:
152  *
153  * The nominal pipeline is that the video output buffer is cropped by
154  * crop_out, scaled to compose_out, overlaid with the output overlay,
155  * cropped on the capture side by crop_cap and scaled again to the video
156  * capture buffer using compose_cap.
157  *
158  * To keep things efficient we calculate the intersection of compose_out
159  * and crop_cap (since that's the only part of the video that will
160  * actually end up in the capture buffer), determine which part of the
161  * video output buffer that is and which part of the video capture buffer
162  * so we can scale the video straight from the output buffer to the capture
163  * buffer without any intermediate steps.
164  *
165  * If we need to deal with an output overlay, then there is no choice and
166  * that intermediate step still has to be taken. For the output overlay
167  * support we calculate the intersection of the framebuffer and the overlay
168  * window (which may be partially or wholly outside of the framebuffer
169  * itself) and the intersection of that with loop_vid_copy (i.e. the part of
170  * the actual looped video that will be overlaid). The result is calculated
171  * both in framebuffer coordinates (loop_fb_copy) and compose_out coordinates
172  * (loop_vid_overlay). Finally calculate the part of the capture buffer that
173  * will receive that overlaid video.
174  */
vivid_precalc_copy_rects(struct vivid_dev * dev)175 static void vivid_precalc_copy_rects(struct vivid_dev *dev)
176 {
177 	/* Framebuffer rectangle */
178 	struct v4l2_rect r_fb = {
179 		0, 0, dev->display_width, dev->display_height
180 	};
181 	/* Overlay window rectangle in framebuffer coordinates */
182 	struct v4l2_rect r_overlay = {
183 		dev->overlay_out_left, dev->overlay_out_top,
184 		dev->compose_out.width, dev->compose_out.height
185 	};
186 
187 	dev->loop_vid_copy = rect_intersect(&dev->crop_cap, &dev->compose_out);
188 
189 	dev->loop_vid_out = dev->loop_vid_copy;
190 	rect_scale(&dev->loop_vid_out, &dev->compose_out, &dev->crop_out);
191 	dev->loop_vid_out.left += dev->crop_out.left;
192 	dev->loop_vid_out.top += dev->crop_out.top;
193 
194 	dev->loop_vid_cap = dev->loop_vid_copy;
195 	rect_scale(&dev->loop_vid_cap, &dev->crop_cap, &dev->compose_cap);
196 
197 	dprintk(dev, 1,
198 		"loop_vid_copy: %dx%d@%dx%d loop_vid_out: %dx%d@%dx%d loop_vid_cap: %dx%d@%dx%d\n",
199 		dev->loop_vid_copy.width, dev->loop_vid_copy.height,
200 		dev->loop_vid_copy.left, dev->loop_vid_copy.top,
201 		dev->loop_vid_out.width, dev->loop_vid_out.height,
202 		dev->loop_vid_out.left, dev->loop_vid_out.top,
203 		dev->loop_vid_cap.width, dev->loop_vid_cap.height,
204 		dev->loop_vid_cap.left, dev->loop_vid_cap.top);
205 
206 	r_overlay = rect_intersect(&r_fb, &r_overlay);
207 
208 	/* shift r_overlay to the same origin as compose_out */
209 	r_overlay.left += dev->compose_out.left - dev->overlay_out_left;
210 	r_overlay.top += dev->compose_out.top - dev->overlay_out_top;
211 
212 	dev->loop_vid_overlay = rect_intersect(&r_overlay, &dev->loop_vid_copy);
213 	dev->loop_fb_copy = dev->loop_vid_overlay;
214 
215 	/* shift dev->loop_fb_copy back again to the fb origin */
216 	dev->loop_fb_copy.left -= dev->compose_out.left - dev->overlay_out_left;
217 	dev->loop_fb_copy.top -= dev->compose_out.top - dev->overlay_out_top;
218 
219 	dev->loop_vid_overlay_cap = dev->loop_vid_overlay;
220 	rect_scale(&dev->loop_vid_overlay_cap, &dev->crop_cap, &dev->compose_cap);
221 
222 	dprintk(dev, 1,
223 		"loop_fb_copy: %dx%d@%dx%d loop_vid_overlay: %dx%d@%dx%d loop_vid_overlay_cap: %dx%d@%dx%d\n",
224 		dev->loop_fb_copy.width, dev->loop_fb_copy.height,
225 		dev->loop_fb_copy.left, dev->loop_fb_copy.top,
226 		dev->loop_vid_overlay.width, dev->loop_vid_overlay.height,
227 		dev->loop_vid_overlay.left, dev->loop_vid_overlay.top,
228 		dev->loop_vid_overlay_cap.width, dev->loop_vid_overlay_cap.height,
229 		dev->loop_vid_overlay_cap.left, dev->loop_vid_overlay_cap.top);
230 }
231 
plane_vaddr(struct tpg_data * tpg,struct vivid_buffer * buf,unsigned p,unsigned bpl[TPG_MAX_PLANES],unsigned h)232 static void *plane_vaddr(struct tpg_data *tpg, struct vivid_buffer *buf,
233 			 unsigned p, unsigned bpl[TPG_MAX_PLANES], unsigned h)
234 {
235 	unsigned i;
236 	void *vbuf;
237 
238 	if (p == 0 || tpg_g_buffers(tpg) > 1)
239 		return vb2_plane_vaddr(&buf->vb, p);
240 	vbuf = vb2_plane_vaddr(&buf->vb, 0);
241 	for (i = 0; i < p; i++)
242 		vbuf += bpl[i] * h / tpg->vdownsampling[i];
243 	return vbuf;
244 }
245 
vivid_copy_buffer(struct vivid_dev * dev,unsigned p,u8 * vcapbuf,struct vivid_buffer * vid_cap_buf)246 static int vivid_copy_buffer(struct vivid_dev *dev, unsigned p, u8 *vcapbuf,
247 		struct vivid_buffer *vid_cap_buf)
248 {
249 	bool blank = dev->must_blank[vid_cap_buf->vb.v4l2_buf.index];
250 	struct tpg_data *tpg = &dev->tpg;
251 	struct vivid_buffer *vid_out_buf = NULL;
252 	unsigned vdiv = dev->fmt_out->vdownsampling[p];
253 	unsigned twopixsize = tpg_g_twopixelsize(tpg, p);
254 	unsigned img_width = tpg_hdiv(tpg, p, dev->compose_cap.width);
255 	unsigned img_height = dev->compose_cap.height;
256 	unsigned stride_cap = tpg->bytesperline[p];
257 	unsigned stride_out = dev->bytesperline_out[p];
258 	unsigned stride_osd = dev->display_byte_stride;
259 	unsigned hmax = (img_height * tpg->perc_fill) / 100;
260 	u8 *voutbuf;
261 	u8 *vosdbuf = NULL;
262 	unsigned y;
263 	bool blend = dev->bitmap_out || dev->clipcount_out || dev->fbuf_out_flags;
264 	/* Coarse scaling with Bresenham */
265 	unsigned vid_out_int_part;
266 	unsigned vid_out_fract_part;
267 	unsigned vid_out_y = 0;
268 	unsigned vid_out_error = 0;
269 	unsigned vid_overlay_int_part = 0;
270 	unsigned vid_overlay_fract_part = 0;
271 	unsigned vid_overlay_y = 0;
272 	unsigned vid_overlay_error = 0;
273 	unsigned vid_cap_left = tpg_hdiv(tpg, p, dev->loop_vid_cap.left);
274 	unsigned vid_cap_right;
275 	bool quick;
276 
277 	vid_out_int_part = dev->loop_vid_out.height / dev->loop_vid_cap.height;
278 	vid_out_fract_part = dev->loop_vid_out.height % dev->loop_vid_cap.height;
279 
280 	if (!list_empty(&dev->vid_out_active))
281 		vid_out_buf = list_entry(dev->vid_out_active.next,
282 					 struct vivid_buffer, list);
283 	if (vid_out_buf == NULL)
284 		return -ENODATA;
285 
286 	vid_cap_buf->vb.v4l2_buf.field = vid_out_buf->vb.v4l2_buf.field;
287 
288 	voutbuf = plane_vaddr(tpg, vid_out_buf, p,
289 			      dev->bytesperline_out, dev->fmt_out_rect.height);
290 	if (p < dev->fmt_out->buffers)
291 		voutbuf += vid_out_buf->vb.v4l2_planes[p].data_offset;
292 	voutbuf += tpg_hdiv(tpg, p, dev->loop_vid_out.left) +
293 		(dev->loop_vid_out.top / vdiv) * stride_out;
294 	vcapbuf += tpg_hdiv(tpg, p, dev->compose_cap.left) +
295 		(dev->compose_cap.top / vdiv) * stride_cap;
296 
297 	if (dev->loop_vid_copy.width == 0 || dev->loop_vid_copy.height == 0) {
298 		/*
299 		 * If there is nothing to copy, then just fill the capture window
300 		 * with black.
301 		 */
302 		for (y = 0; y < hmax / vdiv; y++, vcapbuf += stride_cap)
303 			memcpy(vcapbuf, tpg->black_line[p], img_width);
304 		return 0;
305 	}
306 
307 	if (dev->overlay_out_enabled &&
308 	    dev->loop_vid_overlay.width && dev->loop_vid_overlay.height) {
309 		vosdbuf = dev->video_vbase;
310 		vosdbuf += (dev->loop_fb_copy.left * twopixsize) / 2 +
311 			   dev->loop_fb_copy.top * stride_osd;
312 		vid_overlay_int_part = dev->loop_vid_overlay.height /
313 				       dev->loop_vid_overlay_cap.height;
314 		vid_overlay_fract_part = dev->loop_vid_overlay.height %
315 					 dev->loop_vid_overlay_cap.height;
316 	}
317 
318 	vid_cap_right = tpg_hdiv(tpg, p, dev->loop_vid_cap.left + dev->loop_vid_cap.width);
319 	/* quick is true if no video scaling is needed */
320 	quick = dev->loop_vid_out.width == dev->loop_vid_cap.width;
321 
322 	dev->cur_scaled_line = dev->loop_vid_out.height;
323 	for (y = 0; y < hmax; y += vdiv, vcapbuf += stride_cap) {
324 		/* osdline is true if this line requires overlay blending */
325 		bool osdline = vosdbuf && y >= dev->loop_vid_overlay_cap.top &&
326 			  y < dev->loop_vid_overlay_cap.top + dev->loop_vid_overlay_cap.height;
327 
328 		/*
329 		 * If this line of the capture buffer doesn't get any video, then
330 		 * just fill with black.
331 		 */
332 		if (y < dev->loop_vid_cap.top ||
333 		    y >= dev->loop_vid_cap.top + dev->loop_vid_cap.height) {
334 			memcpy(vcapbuf, tpg->black_line[p], img_width);
335 			continue;
336 		}
337 
338 		/* fill the left border with black */
339 		if (dev->loop_vid_cap.left)
340 			memcpy(vcapbuf, tpg->black_line[p], vid_cap_left);
341 
342 		/* fill the right border with black */
343 		if (vid_cap_right < img_width)
344 			memcpy(vcapbuf + vid_cap_right, tpg->black_line[p],
345 				img_width - vid_cap_right);
346 
347 		if (quick && !osdline) {
348 			memcpy(vcapbuf + vid_cap_left,
349 			       voutbuf + vid_out_y * stride_out,
350 			       tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
351 			goto update_vid_out_y;
352 		}
353 		if (dev->cur_scaled_line == vid_out_y) {
354 			memcpy(vcapbuf + vid_cap_left, dev->scaled_line,
355 			       tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
356 			goto update_vid_out_y;
357 		}
358 		if (!osdline) {
359 			scale_line(voutbuf + vid_out_y * stride_out, dev->scaled_line,
360 				tpg_hdiv(tpg, p, dev->loop_vid_out.width),
361 				tpg_hdiv(tpg, p, dev->loop_vid_cap.width),
362 				tpg_g_twopixelsize(tpg, p));
363 		} else {
364 			/*
365 			 * Offset in bytes within loop_vid_copy to the start of the
366 			 * loop_vid_overlay rectangle.
367 			 */
368 			unsigned offset =
369 				((dev->loop_vid_overlay.left - dev->loop_vid_copy.left) *
370 				 twopixsize) / 2;
371 			u8 *osd = vosdbuf + vid_overlay_y * stride_osd;
372 
373 			scale_line(voutbuf + vid_out_y * stride_out, dev->blended_line,
374 				dev->loop_vid_out.width, dev->loop_vid_copy.width,
375 				tpg_g_twopixelsize(tpg, p));
376 			if (blend)
377 				blend_line(dev, vid_overlay_y + dev->loop_vid_overlay.top,
378 					   dev->loop_vid_overlay.left,
379 					   dev->blended_line + offset, osd,
380 					   dev->loop_vid_overlay.width, twopixsize / 2);
381 			else
382 				memcpy(dev->blended_line + offset,
383 				       osd, (dev->loop_vid_overlay.width * twopixsize) / 2);
384 			scale_line(dev->blended_line, dev->scaled_line,
385 					dev->loop_vid_copy.width, dev->loop_vid_cap.width,
386 					tpg_g_twopixelsize(tpg, p));
387 		}
388 		dev->cur_scaled_line = vid_out_y;
389 		memcpy(vcapbuf + vid_cap_left, dev->scaled_line,
390 		       tpg_hdiv(tpg, p, dev->loop_vid_cap.width));
391 
392 update_vid_out_y:
393 		if (osdline) {
394 			vid_overlay_y += vid_overlay_int_part;
395 			vid_overlay_error += vid_overlay_fract_part;
396 			if (vid_overlay_error >= dev->loop_vid_overlay_cap.height) {
397 				vid_overlay_error -= dev->loop_vid_overlay_cap.height;
398 				vid_overlay_y++;
399 			}
400 		}
401 		vid_out_y += vid_out_int_part;
402 		vid_out_error += vid_out_fract_part;
403 		if (vid_out_error >= dev->loop_vid_cap.height / vdiv) {
404 			vid_out_error -= dev->loop_vid_cap.height / vdiv;
405 			vid_out_y++;
406 		}
407 	}
408 
409 	if (!blank)
410 		return 0;
411 	for (; y < img_height; y += vdiv, vcapbuf += stride_cap)
412 		memcpy(vcapbuf, tpg->contrast_line[p], img_width);
413 	return 0;
414 }
415 
vivid_fillbuff(struct vivid_dev * dev,struct vivid_buffer * buf)416 static void vivid_fillbuff(struct vivid_dev *dev, struct vivid_buffer *buf)
417 {
418 	struct tpg_data *tpg = &dev->tpg;
419 	unsigned factor = V4L2_FIELD_HAS_T_OR_B(dev->field_cap) ? 2 : 1;
420 	unsigned line_height = 16 / factor;
421 	bool is_tv = vivid_is_sdtv_cap(dev);
422 	bool is_60hz = is_tv && (dev->std_cap & V4L2_STD_525_60);
423 	unsigned p;
424 	int line = 1;
425 	u8 *basep[TPG_MAX_PLANES][2];
426 	unsigned ms;
427 	char str[100];
428 	s32 gain;
429 	bool is_loop = false;
430 
431 	if (dev->loop_video && dev->can_loop_video &&
432 	    ((vivid_is_svid_cap(dev) && !VIVID_INVALID_SIGNAL(dev->std_signal_mode)) ||
433 	     (vivid_is_hdmi_cap(dev) && !VIVID_INVALID_SIGNAL(dev->dv_timings_signal_mode))))
434 		is_loop = true;
435 
436 	buf->vb.v4l2_buf.sequence = dev->vid_cap_seq_count;
437 	/*
438 	 * Take the timestamp now if the timestamp source is set to
439 	 * "Start of Exposure".
440 	 */
441 	if (dev->tstamp_src_is_soe)
442 		v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp);
443 	if (dev->field_cap == V4L2_FIELD_ALTERNATE) {
444 		/*
445 		 * 60 Hz standards start with the bottom field, 50 Hz standards
446 		 * with the top field. So if the 0-based seq_count is even,
447 		 * then the field is TOP for 50 Hz and BOTTOM for 60 Hz
448 		 * standards.
449 		 */
450 		buf->vb.v4l2_buf.field = ((dev->vid_cap_seq_count & 1) ^ is_60hz) ?
451 			V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
452 		/*
453 		 * The sequence counter counts frames, not fields. So divide
454 		 * by two.
455 		 */
456 		buf->vb.v4l2_buf.sequence /= 2;
457 	} else {
458 		buf->vb.v4l2_buf.field = dev->field_cap;
459 	}
460 	tpg_s_field(tpg, buf->vb.v4l2_buf.field,
461 		    dev->field_cap == V4L2_FIELD_ALTERNATE);
462 	tpg_s_perc_fill_blank(tpg, dev->must_blank[buf->vb.v4l2_buf.index]);
463 
464 	vivid_precalc_copy_rects(dev);
465 
466 	for (p = 0; p < tpg_g_planes(tpg); p++) {
467 		void *vbuf = plane_vaddr(tpg, buf, p,
468 					 tpg->bytesperline, tpg->buf_height);
469 
470 		/*
471 		 * The first plane of a multiplanar format has a non-zero
472 		 * data_offset. This helps testing whether the application
473 		 * correctly supports non-zero data offsets.
474 		 */
475 		if (p < tpg_g_buffers(tpg) && dev->fmt_cap->data_offset[p]) {
476 			memset(vbuf, dev->fmt_cap->data_offset[p] & 0xff,
477 			       dev->fmt_cap->data_offset[p]);
478 			vbuf += dev->fmt_cap->data_offset[p];
479 		}
480 		tpg_calc_text_basep(tpg, basep, p, vbuf);
481 		if (!is_loop || vivid_copy_buffer(dev, p, vbuf, buf))
482 			tpg_fill_plane_buffer(tpg, vivid_get_std_cap(dev), p, vbuf);
483 	}
484 	dev->must_blank[buf->vb.v4l2_buf.index] = false;
485 
486 	/* Updates stream time, only update at the start of a new frame. */
487 	if (dev->field_cap != V4L2_FIELD_ALTERNATE || (buf->vb.v4l2_buf.sequence & 1) == 0)
488 		dev->ms_vid_cap = jiffies_to_msecs(jiffies - dev->jiffies_vid_cap);
489 
490 	ms = dev->ms_vid_cap;
491 	if (dev->osd_mode <= 1) {
492 		snprintf(str, sizeof(str), " %02d:%02d:%02d:%03d %u%s",
493 				(ms / (60 * 60 * 1000)) % 24,
494 				(ms / (60 * 1000)) % 60,
495 				(ms / 1000) % 60,
496 				ms % 1000,
497 				buf->vb.v4l2_buf.sequence,
498 				(dev->field_cap == V4L2_FIELD_ALTERNATE) ?
499 					(buf->vb.v4l2_buf.field == V4L2_FIELD_TOP ?
500 					 " top" : " bottom") : "");
501 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
502 	}
503 	if (dev->osd_mode == 0) {
504 		snprintf(str, sizeof(str), " %dx%d, input %d ",
505 				dev->src_rect.width, dev->src_rect.height, dev->input);
506 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
507 
508 		gain = v4l2_ctrl_g_ctrl(dev->gain);
509 		mutex_lock(dev->ctrl_hdl_user_vid.lock);
510 		snprintf(str, sizeof(str),
511 			" brightness %3d, contrast %3d, saturation %3d, hue %d ",
512 			dev->brightness->cur.val,
513 			dev->contrast->cur.val,
514 			dev->saturation->cur.val,
515 			dev->hue->cur.val);
516 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
517 		snprintf(str, sizeof(str),
518 			" autogain %d, gain %3d, alpha 0x%02x ",
519 			dev->autogain->cur.val, gain, dev->alpha->cur.val);
520 		mutex_unlock(dev->ctrl_hdl_user_vid.lock);
521 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
522 		mutex_lock(dev->ctrl_hdl_user_aud.lock);
523 		snprintf(str, sizeof(str),
524 			" volume %3d, mute %d ",
525 			dev->volume->cur.val, dev->mute->cur.val);
526 		mutex_unlock(dev->ctrl_hdl_user_aud.lock);
527 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
528 		mutex_lock(dev->ctrl_hdl_user_gen.lock);
529 		snprintf(str, sizeof(str), " int32 %d, int64 %lld, bitmask %08x ",
530 			dev->int32->cur.val,
531 			*dev->int64->p_cur.p_s64,
532 			dev->bitmask->cur.val);
533 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
534 		snprintf(str, sizeof(str), " boolean %d, menu %s, string \"%s\" ",
535 			dev->boolean->cur.val,
536 			dev->menu->qmenu[dev->menu->cur.val],
537 			dev->string->p_cur.p_char);
538 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
539 		snprintf(str, sizeof(str), " integer_menu %lld, value %d ",
540 			dev->int_menu->qmenu_int[dev->int_menu->cur.val],
541 			dev->int_menu->cur.val);
542 		mutex_unlock(dev->ctrl_hdl_user_gen.lock);
543 		tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
544 		if (dev->button_pressed) {
545 			dev->button_pressed--;
546 			snprintf(str, sizeof(str), " button pressed!");
547 			tpg_gen_text(tpg, basep, line++ * line_height, 16, str);
548 		}
549 	}
550 
551 	/*
552 	 * If "End of Frame" is specified at the timestamp source, then take
553 	 * the timestamp now.
554 	 */
555 	if (!dev->tstamp_src_is_soe)
556 		v4l2_get_timestamp(&buf->vb.v4l2_buf.timestamp);
557 	buf->vb.v4l2_buf.timestamp.tv_sec += dev->time_wrap_offset;
558 }
559 
560 /*
561  * Return true if this pixel coordinate is a valid video pixel.
562  */
valid_pix(struct vivid_dev * dev,int win_y,int win_x,int fb_y,int fb_x)563 static bool valid_pix(struct vivid_dev *dev, int win_y, int win_x, int fb_y, int fb_x)
564 {
565 	int i;
566 
567 	if (dev->bitmap_cap) {
568 		/*
569 		 * Only if the corresponding bit in the bitmap is set can
570 		 * the video pixel be shown. Coordinates are relative to
571 		 * the overlay window set by VIDIOC_S_FMT.
572 		 */
573 		const u8 *p = dev->bitmap_cap;
574 		unsigned stride = (dev->compose_cap.width + 7) / 8;
575 
576 		if (!(p[stride * win_y + win_x / 8] & (1 << (win_x & 7))))
577 			return false;
578 	}
579 
580 	for (i = 0; i < dev->clipcount_cap; i++) {
581 		/*
582 		 * Only if the framebuffer coordinate is not in any of the
583 		 * clip rectangles will be video pixel be shown.
584 		 */
585 		struct v4l2_rect *r = &dev->clips_cap[i].c;
586 
587 		if (fb_y >= r->top && fb_y < r->top + r->height &&
588 		    fb_x >= r->left && fb_x < r->left + r->width)
589 			return false;
590 	}
591 	return true;
592 }
593 
594 /*
595  * Draw the image into the overlay buffer.
596  * Note that the combination of overlay and multiplanar is not supported.
597  */
vivid_overlay(struct vivid_dev * dev,struct vivid_buffer * buf)598 static void vivid_overlay(struct vivid_dev *dev, struct vivid_buffer *buf)
599 {
600 	struct tpg_data *tpg = &dev->tpg;
601 	unsigned pixsize = tpg_g_twopixelsize(tpg, 0) / 2;
602 	void *vbase = dev->fb_vbase_cap;
603 	void *vbuf = vb2_plane_vaddr(&buf->vb, 0);
604 	unsigned img_width = dev->compose_cap.width;
605 	unsigned img_height = dev->compose_cap.height;
606 	unsigned stride = tpg->bytesperline[0];
607 	/* if quick is true, then valid_pix() doesn't have to be called */
608 	bool quick = dev->bitmap_cap == NULL && dev->clipcount_cap == 0;
609 	int x, y, w, out_x = 0;
610 
611 	/*
612 	 * Overlay support is only supported for formats that have a twopixelsize
613 	 * that's >= 2. Warn and bail out if that's not the case.
614 	 */
615 	if (WARN_ON(pixsize == 0))
616 		return;
617 	if ((dev->overlay_cap_field == V4L2_FIELD_TOP ||
618 	     dev->overlay_cap_field == V4L2_FIELD_BOTTOM) &&
619 	    dev->overlay_cap_field != buf->vb.v4l2_buf.field)
620 		return;
621 
622 	vbuf += dev->compose_cap.left * pixsize + dev->compose_cap.top * stride;
623 	x = dev->overlay_cap_left;
624 	w = img_width;
625 	if (x < 0) {
626 		out_x = -x;
627 		w = w - out_x;
628 		x = 0;
629 	} else {
630 		w = dev->fb_cap.fmt.width - x;
631 		if (w > img_width)
632 			w = img_width;
633 	}
634 	if (w <= 0)
635 		return;
636 	if (dev->overlay_cap_top >= 0)
637 		vbase += dev->overlay_cap_top * dev->fb_cap.fmt.bytesperline;
638 	for (y = dev->overlay_cap_top;
639 	     y < dev->overlay_cap_top + (int)img_height;
640 	     y++, vbuf += stride) {
641 		int px;
642 
643 		if (y < 0 || y > dev->fb_cap.fmt.height)
644 			continue;
645 		if (quick) {
646 			memcpy(vbase + x * pixsize,
647 			       vbuf + out_x * pixsize, w * pixsize);
648 			vbase += dev->fb_cap.fmt.bytesperline;
649 			continue;
650 		}
651 		for (px = 0; px < w; px++) {
652 			if (!valid_pix(dev, y - dev->overlay_cap_top,
653 				       px + out_x, y, px + x))
654 				continue;
655 			memcpy(vbase + (px + x) * pixsize,
656 			       vbuf + (px + out_x) * pixsize,
657 			       pixsize);
658 		}
659 		vbase += dev->fb_cap.fmt.bytesperline;
660 	}
661 }
662 
vivid_thread_vid_cap_tick(struct vivid_dev * dev,int dropped_bufs)663 static void vivid_thread_vid_cap_tick(struct vivid_dev *dev, int dropped_bufs)
664 {
665 	struct vivid_buffer *vid_cap_buf = NULL;
666 	struct vivid_buffer *vbi_cap_buf = NULL;
667 
668 	dprintk(dev, 1, "Video Capture Thread Tick\n");
669 
670 	while (dropped_bufs-- > 1)
671 		tpg_update_mv_count(&dev->tpg,
672 				dev->field_cap == V4L2_FIELD_NONE ||
673 				dev->field_cap == V4L2_FIELD_ALTERNATE);
674 
675 	/* Drop a certain percentage of buffers. */
676 	if (dev->perc_dropped_buffers &&
677 	    prandom_u32_max(100) < dev->perc_dropped_buffers)
678 		goto update_mv;
679 
680 	spin_lock(&dev->slock);
681 	if (!list_empty(&dev->vid_cap_active)) {
682 		vid_cap_buf = list_entry(dev->vid_cap_active.next, struct vivid_buffer, list);
683 		list_del(&vid_cap_buf->list);
684 	}
685 	if (!list_empty(&dev->vbi_cap_active)) {
686 		if (dev->field_cap != V4L2_FIELD_ALTERNATE ||
687 		    (dev->vbi_cap_seq_count & 1)) {
688 			vbi_cap_buf = list_entry(dev->vbi_cap_active.next,
689 						 struct vivid_buffer, list);
690 			list_del(&vbi_cap_buf->list);
691 		}
692 	}
693 	spin_unlock(&dev->slock);
694 
695 	if (!vid_cap_buf && !vbi_cap_buf)
696 		goto update_mv;
697 
698 	if (vid_cap_buf) {
699 		/* Fill buffer */
700 		vivid_fillbuff(dev, vid_cap_buf);
701 		dprintk(dev, 1, "filled buffer %d\n",
702 			vid_cap_buf->vb.v4l2_buf.index);
703 
704 		/* Handle overlay */
705 		if (dev->overlay_cap_owner && dev->fb_cap.base &&
706 				dev->fb_cap.fmt.pixelformat == dev->fmt_cap->fourcc)
707 			vivid_overlay(dev, vid_cap_buf);
708 
709 		vb2_buffer_done(&vid_cap_buf->vb, dev->dqbuf_error ?
710 				VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
711 		dprintk(dev, 2, "vid_cap buffer %d done\n",
712 				vid_cap_buf->vb.v4l2_buf.index);
713 	}
714 
715 	if (vbi_cap_buf) {
716 		if (dev->stream_sliced_vbi_cap)
717 			vivid_sliced_vbi_cap_process(dev, vbi_cap_buf);
718 		else
719 			vivid_raw_vbi_cap_process(dev, vbi_cap_buf);
720 		vb2_buffer_done(&vbi_cap_buf->vb, dev->dqbuf_error ?
721 				VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
722 		dprintk(dev, 2, "vbi_cap %d done\n",
723 				vbi_cap_buf->vb.v4l2_buf.index);
724 	}
725 	dev->dqbuf_error = false;
726 
727 update_mv:
728 	/* Update the test pattern movement counters */
729 	tpg_update_mv_count(&dev->tpg, dev->field_cap == V4L2_FIELD_NONE ||
730 				       dev->field_cap == V4L2_FIELD_ALTERNATE);
731 }
732 
vivid_thread_vid_cap(void * data)733 static int vivid_thread_vid_cap(void *data)
734 {
735 	struct vivid_dev *dev = data;
736 	u64 numerators_since_start;
737 	u64 buffers_since_start;
738 	u64 next_jiffies_since_start;
739 	unsigned long jiffies_since_start;
740 	unsigned long cur_jiffies;
741 	unsigned wait_jiffies;
742 	unsigned numerator;
743 	unsigned denominator;
744 	int dropped_bufs;
745 
746 	dprintk(dev, 1, "Video Capture Thread Start\n");
747 
748 	set_freezable();
749 
750 	/* Resets frame counters */
751 	dev->cap_seq_offset = 0;
752 	dev->cap_seq_count = 0;
753 	dev->cap_seq_resync = false;
754 	dev->jiffies_vid_cap = jiffies;
755 
756 	for (;;) {
757 		try_to_freeze();
758 		if (kthread_should_stop())
759 			break;
760 
761 		mutex_lock(&dev->mutex);
762 		cur_jiffies = jiffies;
763 		if (dev->cap_seq_resync) {
764 			dev->jiffies_vid_cap = cur_jiffies;
765 			dev->cap_seq_offset = dev->cap_seq_count + 1;
766 			dev->cap_seq_count = 0;
767 			dev->cap_seq_resync = false;
768 		}
769 		numerator = dev->timeperframe_vid_cap.numerator;
770 		denominator = dev->timeperframe_vid_cap.denominator;
771 
772 		if (dev->field_cap == V4L2_FIELD_ALTERNATE)
773 			denominator *= 2;
774 
775 		/* Calculate the number of jiffies since we started streaming */
776 		jiffies_since_start = cur_jiffies - dev->jiffies_vid_cap;
777 		/* Get the number of buffers streamed since the start */
778 		buffers_since_start = (u64)jiffies_since_start * denominator +
779 				      (HZ * numerator) / 2;
780 		do_div(buffers_since_start, HZ * numerator);
781 
782 		/*
783 		 * After more than 0xf0000000 (rounded down to a multiple of
784 		 * 'jiffies-per-day' to ease jiffies_to_msecs calculation)
785 		 * jiffies have passed since we started streaming reset the
786 		 * counters and keep track of the sequence offset.
787 		 */
788 		if (jiffies_since_start > JIFFIES_RESYNC) {
789 			dev->jiffies_vid_cap = cur_jiffies;
790 			dev->cap_seq_offset = buffers_since_start;
791 			buffers_since_start = 0;
792 		}
793 		dropped_bufs = buffers_since_start + dev->cap_seq_offset - dev->cap_seq_count;
794 		dev->cap_seq_count = buffers_since_start + dev->cap_seq_offset;
795 		dev->vid_cap_seq_count = dev->cap_seq_count - dev->vid_cap_seq_start;
796 		dev->vbi_cap_seq_count = dev->cap_seq_count - dev->vbi_cap_seq_start;
797 
798 		vivid_thread_vid_cap_tick(dev, dropped_bufs);
799 
800 		/*
801 		 * Calculate the number of 'numerators' streamed since we started,
802 		 * including the current buffer.
803 		 */
804 		numerators_since_start = ++buffers_since_start * numerator;
805 
806 		/* And the number of jiffies since we started */
807 		jiffies_since_start = jiffies - dev->jiffies_vid_cap;
808 
809 		mutex_unlock(&dev->mutex);
810 
811 		/*
812 		 * Calculate when that next buffer is supposed to start
813 		 * in jiffies since we started streaming.
814 		 */
815 		next_jiffies_since_start = numerators_since_start * HZ +
816 					   denominator / 2;
817 		do_div(next_jiffies_since_start, denominator);
818 		/* If it is in the past, then just schedule asap */
819 		if (next_jiffies_since_start < jiffies_since_start)
820 			next_jiffies_since_start = jiffies_since_start;
821 
822 		wait_jiffies = next_jiffies_since_start - jiffies_since_start;
823 		schedule_timeout_interruptible(wait_jiffies ? wait_jiffies : 1);
824 	}
825 	dprintk(dev, 1, "Video Capture Thread End\n");
826 	return 0;
827 }
828 
vivid_grab_controls(struct vivid_dev * dev,bool grab)829 static void vivid_grab_controls(struct vivid_dev *dev, bool grab)
830 {
831 	v4l2_ctrl_grab(dev->ctrl_has_crop_cap, grab);
832 	v4l2_ctrl_grab(dev->ctrl_has_compose_cap, grab);
833 	v4l2_ctrl_grab(dev->ctrl_has_scaler_cap, grab);
834 }
835 
vivid_start_generating_vid_cap(struct vivid_dev * dev,bool * pstreaming)836 int vivid_start_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming)
837 {
838 	dprintk(dev, 1, "%s\n", __func__);
839 
840 	if (dev->kthread_vid_cap) {
841 		u32 seq_count = dev->cap_seq_count + dev->seq_wrap * 128;
842 
843 		if (pstreaming == &dev->vid_cap_streaming)
844 			dev->vid_cap_seq_start = seq_count;
845 		else
846 			dev->vbi_cap_seq_start = seq_count;
847 		*pstreaming = true;
848 		return 0;
849 	}
850 
851 	/* Resets frame counters */
852 	tpg_init_mv_count(&dev->tpg);
853 
854 	dev->vid_cap_seq_start = dev->seq_wrap * 128;
855 	dev->vbi_cap_seq_start = dev->seq_wrap * 128;
856 
857 	dev->kthread_vid_cap = kthread_run(vivid_thread_vid_cap, dev,
858 			"%s-vid-cap", dev->v4l2_dev.name);
859 
860 	if (IS_ERR(dev->kthread_vid_cap)) {
861 		v4l2_err(&dev->v4l2_dev, "kernel_thread() failed\n");
862 		return PTR_ERR(dev->kthread_vid_cap);
863 	}
864 	*pstreaming = true;
865 	vivid_grab_controls(dev, true);
866 
867 	dprintk(dev, 1, "returning from %s\n", __func__);
868 	return 0;
869 }
870 
vivid_stop_generating_vid_cap(struct vivid_dev * dev,bool * pstreaming)871 void vivid_stop_generating_vid_cap(struct vivid_dev *dev, bool *pstreaming)
872 {
873 	dprintk(dev, 1, "%s\n", __func__);
874 
875 	if (dev->kthread_vid_cap == NULL)
876 		return;
877 
878 	*pstreaming = false;
879 	if (pstreaming == &dev->vid_cap_streaming) {
880 		/* Release all active buffers */
881 		while (!list_empty(&dev->vid_cap_active)) {
882 			struct vivid_buffer *buf;
883 
884 			buf = list_entry(dev->vid_cap_active.next,
885 					 struct vivid_buffer, list);
886 			list_del(&buf->list);
887 			vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
888 			dprintk(dev, 2, "vid_cap buffer %d done\n",
889 				buf->vb.v4l2_buf.index);
890 		}
891 	}
892 
893 	if (pstreaming == &dev->vbi_cap_streaming) {
894 		while (!list_empty(&dev->vbi_cap_active)) {
895 			struct vivid_buffer *buf;
896 
897 			buf = list_entry(dev->vbi_cap_active.next,
898 					 struct vivid_buffer, list);
899 			list_del(&buf->list);
900 			vb2_buffer_done(&buf->vb, VB2_BUF_STATE_ERROR);
901 			dprintk(dev, 2, "vbi_cap buffer %d done\n",
902 				buf->vb.v4l2_buf.index);
903 		}
904 	}
905 
906 	if (dev->vid_cap_streaming || dev->vbi_cap_streaming)
907 		return;
908 
909 	/* shutdown control thread */
910 	vivid_grab_controls(dev, false);
911 	mutex_unlock(&dev->mutex);
912 	kthread_stop(dev->kthread_vid_cap);
913 	dev->kthread_vid_cap = NULL;
914 	mutex_lock(&dev->mutex);
915 }
916