1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  *   PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 
18 /*
19  * This is necessary to get the definition of PGTABLE_RANGE which we
20  * need for various slices related matters. Note that this isn't the
21  * complete pgtable.h but only a portion of it.
22  */
23 #include <asm/pgtable-ppc64.h>
24 #include <asm/bug.h>
25 #include <asm/processor.h>
26 
27 /*
28  * SLB
29  */
30 
31 #define SLB_NUM_BOLTED		3
32 #define SLB_CACHE_ENTRIES	8
33 #define SLB_MIN_SIZE		32
34 
35 /* Bits in the SLB ESID word */
36 #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
37 
38 /* Bits in the SLB VSID word */
39 #define SLB_VSID_SHIFT		12
40 #define SLB_VSID_SHIFT_1T	24
41 #define SLB_VSID_SSIZE_SHIFT	62
42 #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
43 #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
44 #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
45 #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
46 #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
47 #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
48 #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
49 #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
50 #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
51 #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
52 #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
53 #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
54 #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
55 #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
56 
57 #define SLB_VSID_KERNEL		(SLB_VSID_KP)
58 #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
59 
60 #define SLBIE_C			(0x08000000)
61 #define SLBIE_SSIZE_SHIFT	25
62 
63 /*
64  * Hash table
65  */
66 
67 #define HPTES_PER_GROUP 8
68 
69 #define HPTE_V_SSIZE_SHIFT	62
70 #define HPTE_V_AVPN_SHIFT	7
71 #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
72 #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
73 #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
74 #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
75 #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
76 #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
77 #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
78 #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
79 
80 #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
81 #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
82 #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
83 #define HPTE_R_RPN_SHIFT	12
84 #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
85 #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
86 #define HPTE_R_N		ASM_CONST(0x0000000000000004)
87 #define HPTE_R_G		ASM_CONST(0x0000000000000008)
88 #define HPTE_R_M		ASM_CONST(0x0000000000000010)
89 #define HPTE_R_I		ASM_CONST(0x0000000000000020)
90 #define HPTE_R_W		ASM_CONST(0x0000000000000040)
91 #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
92 #define HPTE_R_C		ASM_CONST(0x0000000000000080)
93 #define HPTE_R_R		ASM_CONST(0x0000000000000100)
94 #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
95 
96 #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
97 #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
98 
99 /* Values for PP (assumes Ks=0, Kp=1) */
100 #define PP_RWXX	0	/* Supervisor read/write, User none */
101 #define PP_RWRX 1	/* Supervisor read/write, User read */
102 #define PP_RWRW 2	/* Supervisor read/write, User read/write */
103 #define PP_RXRX 3	/* Supervisor read,       User read */
104 #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
105 
106 /* Fields for tlbiel instruction in architecture 2.06 */
107 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
108 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
109 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
110 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
111 #define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
112 #define TLBIEL_INVAL_SET_SHIFT	12
113 
114 #define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
115 #define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
116 
117 #ifndef __ASSEMBLY__
118 
119 struct hash_pte {
120 	__be64 v;
121 	__be64 r;
122 };
123 
124 extern struct hash_pte *htab_address;
125 extern unsigned long htab_size_bytes;
126 extern unsigned long htab_hash_mask;
127 
128 /*
129  * Page size definition
130  *
131  *    shift : is the "PAGE_SHIFT" value for that page size
132  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
133  *            directly to a slbmte "vsid" value
134  *    penc  : is the HPTE encoding mask for the "LP" field:
135  *
136  */
137 struct mmu_psize_def
138 {
139 	unsigned int	shift;	/* number of bits */
140 	int		penc[MMU_PAGE_COUNT];	/* HPTE encoding */
141 	unsigned int	tlbiel;	/* tlbiel supported for that page size */
142 	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
143 	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
144 };
145 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
146 
shift_to_mmu_psize(unsigned int shift)147 static inline int shift_to_mmu_psize(unsigned int shift)
148 {
149 	int psize;
150 
151 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
152 		if (mmu_psize_defs[psize].shift == shift)
153 			return psize;
154 	return -1;
155 }
156 
mmu_psize_to_shift(unsigned int mmu_psize)157 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
158 {
159 	if (mmu_psize_defs[mmu_psize].shift)
160 		return mmu_psize_defs[mmu_psize].shift;
161 	BUG();
162 }
163 
164 #endif /* __ASSEMBLY__ */
165 
166 /*
167  * Segment sizes.
168  * These are the values used by hardware in the B field of
169  * SLB entries and the first dword of MMU hashtable entries.
170  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
171  */
172 #define MMU_SEGSIZE_256M	0
173 #define MMU_SEGSIZE_1T		1
174 
175 /*
176  * encode page number shift.
177  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
178  * 12 bits. This enable us to address upto 76 bit va.
179  * For hpt hash from a va we can ignore the page size bits of va and for
180  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
181  * we work in all cases including 4k page size.
182  */
183 #define VPN_SHIFT	12
184 
185 /*
186  * HPTE Large Page (LP) details
187  */
188 #define LP_SHIFT	12
189 #define LP_BITS		8
190 #define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
191 
192 #ifndef __ASSEMBLY__
193 
slb_vsid_shift(int ssize)194 static inline int slb_vsid_shift(int ssize)
195 {
196 	if (ssize == MMU_SEGSIZE_256M)
197 		return SLB_VSID_SHIFT;
198 	return SLB_VSID_SHIFT_1T;
199 }
200 
segment_shift(int ssize)201 static inline int segment_shift(int ssize)
202 {
203 	if (ssize == MMU_SEGSIZE_256M)
204 		return SID_SHIFT;
205 	return SID_SHIFT_1T;
206 }
207 
208 /*
209  * The current system page and segment sizes
210  */
211 extern int mmu_linear_psize;
212 extern int mmu_virtual_psize;
213 extern int mmu_vmalloc_psize;
214 extern int mmu_vmemmap_psize;
215 extern int mmu_io_psize;
216 extern int mmu_kernel_ssize;
217 extern int mmu_highuser_ssize;
218 extern u16 mmu_slb_size;
219 extern unsigned long tce_alloc_start, tce_alloc_end;
220 
221 /*
222  * If the processor supports 64k normal pages but not 64k cache
223  * inhibited pages, we have to be prepared to switch processes
224  * to use 4k pages when they create cache-inhibited mappings.
225  * If this is the case, mmu_ci_restrictions will be set to 1.
226  */
227 extern int mmu_ci_restrictions;
228 
229 /*
230  * This computes the AVPN and B fields of the first dword of a HPTE,
231  * for use when we want to match an existing PTE.  The bottom 7 bits
232  * of the returned value are zero.
233  */
hpte_encode_avpn(unsigned long vpn,int psize,int ssize)234 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
235 					     int ssize)
236 {
237 	unsigned long v;
238 	/*
239 	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
240 	 * These bits are not needed in the PTE, because the
241 	 * low-order b of these bits are part of the byte offset
242 	 * into the virtual page and, if b < 23, the high-order
243 	 * 23-b of these bits are always used in selecting the
244 	 * PTEGs to be searched
245 	 */
246 	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
247 	v <<= HPTE_V_AVPN_SHIFT;
248 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
249 	return v;
250 }
251 
252 /*
253  * This function sets the AVPN and L fields of the HPTE  appropriately
254  * using the base page size and actual page size.
255  */
hpte_encode_v(unsigned long vpn,int base_psize,int actual_psize,int ssize)256 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
257 					  int actual_psize, int ssize)
258 {
259 	unsigned long v;
260 	v = hpte_encode_avpn(vpn, base_psize, ssize);
261 	if (actual_psize != MMU_PAGE_4K)
262 		v |= HPTE_V_LARGE;
263 	return v;
264 }
265 
266 /*
267  * This function sets the ARPN, and LP fields of the HPTE appropriately
268  * for the page size. We assume the pa is already "clean" that is properly
269  * aligned for the requested page size
270  */
hpte_encode_r(unsigned long pa,int base_psize,int actual_psize)271 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
272 					  int actual_psize)
273 {
274 	/* A 4K page needs no special encoding */
275 	if (actual_psize == MMU_PAGE_4K)
276 		return pa & HPTE_R_RPN;
277 	else {
278 		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
279 		unsigned int shift = mmu_psize_defs[actual_psize].shift;
280 		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
281 	}
282 }
283 
284 /*
285  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
286  */
hpt_vpn(unsigned long ea,unsigned long vsid,int ssize)287 static inline unsigned long hpt_vpn(unsigned long ea,
288 				    unsigned long vsid, int ssize)
289 {
290 	unsigned long mask;
291 	int s_shift = segment_shift(ssize);
292 
293 	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
294 	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
295 }
296 
297 /*
298  * This hashes a virtual address
299  */
hpt_hash(unsigned long vpn,unsigned int shift,int ssize)300 static inline unsigned long hpt_hash(unsigned long vpn,
301 				     unsigned int shift, int ssize)
302 {
303 	int mask;
304 	unsigned long hash, vsid;
305 
306 	/* VPN_SHIFT can be atmost 12 */
307 	if (ssize == MMU_SEGSIZE_256M) {
308 		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
309 		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
310 			((vpn & mask) >> (shift - VPN_SHIFT));
311 	} else {
312 		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
313 		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
314 		hash = vsid ^ (vsid << 25) ^
315 			((vpn & mask) >> (shift - VPN_SHIFT)) ;
316 	}
317 	return hash & 0x7fffffffffUL;
318 }
319 
320 #define HPTE_LOCAL_UPDATE	0x1
321 #define HPTE_NOHPTE_UPDATE	0x2
322 
323 extern int __hash_page_4K(unsigned long ea, unsigned long access,
324 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
325 			  unsigned long flags, int ssize, int subpage_prot);
326 extern int __hash_page_64K(unsigned long ea, unsigned long access,
327 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
328 			   unsigned long flags, int ssize);
329 struct mm_struct;
330 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
331 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
332 			unsigned long access, unsigned long trap,
333 			unsigned long flags);
334 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
335 		     unsigned long dsisr);
336 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
337 		     pte_t *ptep, unsigned long trap, unsigned long flags,
338 		     int ssize, unsigned int shift, unsigned int mmu_psize);
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340 extern int __hash_page_thp(unsigned long ea, unsigned long access,
341 			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
342 			   unsigned long flags, int ssize, unsigned int psize);
343 #else
__hash_page_thp(unsigned long ea,unsigned long access,unsigned long vsid,pmd_t * pmdp,unsigned long trap,unsigned long flags,int ssize,unsigned int psize)344 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
345 				  unsigned long vsid, pmd_t *pmdp,
346 				  unsigned long trap, unsigned long flags,
347 				  int ssize, unsigned int psize)
348 {
349 	BUG();
350 	return -1;
351 }
352 #endif
353 extern void hash_failure_debug(unsigned long ea, unsigned long access,
354 			       unsigned long vsid, unsigned long trap,
355 			       int ssize, int psize, int lpsize,
356 			       unsigned long pte);
357 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
358 			     unsigned long pstart, unsigned long prot,
359 			     int psize, int ssize);
360 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
361 			int psize, int ssize);
362 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
363 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
364 
365 extern void hpte_init_native(void);
366 extern void hpte_init_lpar(void);
367 extern void hpte_init_beat(void);
368 extern void hpte_init_beat_v3(void);
369 
370 extern void slb_initialize(void);
371 extern void slb_flush_and_rebolt(void);
372 
373 extern void slb_vmalloc_update(void);
374 extern void slb_set_size(u16 size);
375 #endif /* __ASSEMBLY__ */
376 
377 /*
378  * VSID allocation (256MB segment)
379  *
380  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
381  * from mmu context id and effective segment id of the address.
382  *
383  * For user processes max context id is limited to ((1ul << 19) - 5)
384  * for kernel space, we use the top 4 context ids to map address as below
385  * NOTE: each context only support 64TB now.
386  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
387  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
388  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
389  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
390  *
391  * The proto-VSIDs are then scrambled into real VSIDs with the
392  * multiplicative hash:
393  *
394  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
395  *
396  * VSID_MULTIPLIER is prime, so in particular it is
397  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
398  * Because the modulus is 2^n-1 we can compute it efficiently without
399  * a divide or extra multiply (see below). The scramble function gives
400  * robust scattering in the hash table (at least based on some initial
401  * results).
402  *
403  * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
404  * bad address. This enables us to consolidate bad address handling in
405  * hash_page.
406  *
407  * We also need to avoid the last segment of the last context, because that
408  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
409  * because of the modulo operation in vsid scramble. But the vmemmap
410  * (which is what uses region 0xf) will never be close to 64TB in size
411  * (it's 56 bytes per page of system memory).
412  */
413 
414 #define CONTEXT_BITS		19
415 #define ESID_BITS		18
416 #define ESID_BITS_1T		6
417 
418 /*
419  * 256MB segment
420  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
421  * available for user + kernel mapping. The top 4 contexts are used for
422  * kernel mapping. Each segment contains 2^28 bytes. Each
423  * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
424  * (19 == 37 + 28 - 46).
425  */
426 #define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)
427 
428 /*
429  * This should be computed such that protovosid * vsid_mulitplier
430  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
431  */
432 #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
433 #define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
434 #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
435 
436 #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
437 #define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
438 #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
439 
440 
441 #define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
442 
443 /*
444  * This macro generates asm code to compute the VSID scramble
445  * function.  Used in slb_allocate() and do_stab_bolted.  The function
446  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
447  *
448  *	rt = register continaing the proto-VSID and into which the
449  *		VSID will be stored
450  *	rx = scratch register (clobbered)
451  *
452  * 	- rt and rx must be different registers
453  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
454  * 	  bits may contain other garbage, so you may need to mask the
455  * 	  result.
456  */
457 #define ASM_VSID_SCRAMBLE(rt, rx, size)					\
458 	lis	rx,VSID_MULTIPLIER_##size@h;				\
459 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
460 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
461 									\
462 	srdi	rx,rt,VSID_BITS_##size;					\
463 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
464 	add	rt,rt,rx;		/* add high and low bits */	\
465 	/* NOTE: explanation based on VSID_BITS_##size = 36		\
466 	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
467 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
468 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
469 	 * the bit clear, r3 already has the answer we want, if it	\
470 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
471 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
472 	addi	rx,rt,1;						\
473 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
474 	add	rt,rt,rx
475 
476 /* 4 bits per slice and we have one slice per 1TB */
477 #define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
478 
479 #ifndef __ASSEMBLY__
480 
481 #ifdef CONFIG_PPC_SUBPAGE_PROT
482 /*
483  * For the sub-page protection option, we extend the PGD with one of
484  * these.  Basically we have a 3-level tree, with the top level being
485  * the protptrs array.  To optimize speed and memory consumption when
486  * only addresses < 4GB are being protected, pointers to the first
487  * four pages of sub-page protection words are stored in the low_prot
488  * array.
489  * Each page of sub-page protection words protects 1GB (4 bytes
490  * protects 64k).  For the 3-level tree, each page of pointers then
491  * protects 8TB.
492  */
493 struct subpage_prot_table {
494 	unsigned long maxaddr;	/* only addresses < this are protected */
495 	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
496 	unsigned int *low_prot[4];
497 };
498 
499 #define SBP_L1_BITS		(PAGE_SHIFT - 2)
500 #define SBP_L2_BITS		(PAGE_SHIFT - 3)
501 #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
502 #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
503 #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
504 #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
505 
506 extern void subpage_prot_free(struct mm_struct *mm);
507 extern void subpage_prot_init_new_context(struct mm_struct *mm);
508 #else
subpage_prot_free(struct mm_struct * mm)509 static inline void subpage_prot_free(struct mm_struct *mm) {}
subpage_prot_init_new_context(struct mm_struct * mm)510 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
511 #endif /* CONFIG_PPC_SUBPAGE_PROT */
512 
513 typedef unsigned long mm_context_id_t;
514 struct spinlock;
515 
516 typedef struct {
517 	mm_context_id_t id;
518 	u16 user_psize;		/* page size index */
519 
520 #ifdef CONFIG_PPC_MM_SLICES
521 	u64 low_slices_psize;	/* SLB page size encodings */
522 	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
523 #else
524 	u16 sllp;		/* SLB page size encoding */
525 #endif
526 	unsigned long vdso_base;
527 #ifdef CONFIG_PPC_SUBPAGE_PROT
528 	struct subpage_prot_table spt;
529 #endif /* CONFIG_PPC_SUBPAGE_PROT */
530 #ifdef CONFIG_PPC_ICSWX
531 	struct spinlock *cop_lockp; /* guard acop and cop_pid */
532 	unsigned long acop;	/* mask of enabled coprocessor types */
533 	unsigned int cop_pid;	/* pid value used with coprocessors */
534 #endif /* CONFIG_PPC_ICSWX */
535 #ifdef CONFIG_PPC_64K_PAGES
536 	/* for 4K PTE fragment support */
537 	void *pte_frag;
538 #endif
539 } mm_context_t;
540 
541 
542 #if 0
543 /*
544  * The code below is equivalent to this function for arguments
545  * < 2^VSID_BITS, which is all this should ever be called
546  * with.  However gcc is not clever enough to compute the
547  * modulus (2^n-1) without a second multiply.
548  */
549 #define vsid_scramble(protovsid, size) \
550 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
551 
552 #else /* 1 */
553 #define vsid_scramble(protovsid, size) \
554 	({								 \
555 		unsigned long x;					 \
556 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
557 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
558 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
559 	})
560 #endif /* 1 */
561 
562 /* Returns the segment size indicator for a user address */
user_segment_size(unsigned long addr)563 static inline int user_segment_size(unsigned long addr)
564 {
565 	/* Use 1T segments if possible for addresses >= 1T */
566 	if (addr >= (1UL << SID_SHIFT_1T))
567 		return mmu_highuser_ssize;
568 	return MMU_SEGSIZE_256M;
569 }
570 
get_vsid(unsigned long context,unsigned long ea,int ssize)571 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
572 				     int ssize)
573 {
574 	/*
575 	 * Bad address. We return VSID 0 for that
576 	 */
577 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
578 		return 0;
579 
580 	if (ssize == MMU_SEGSIZE_256M)
581 		return vsid_scramble((context << ESID_BITS)
582 				     | (ea >> SID_SHIFT), 256M);
583 	return vsid_scramble((context << ESID_BITS_1T)
584 			     | (ea >> SID_SHIFT_1T), 1T);
585 }
586 
587 /*
588  * This is only valid for addresses >= PAGE_OFFSET
589  *
590  * For kernel space, we use the top 4 context ids to map address as below
591  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
592  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
593  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
594  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
595  */
get_kernel_vsid(unsigned long ea,int ssize)596 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
597 {
598 	unsigned long context;
599 
600 	/*
601 	 * kernel take the top 4 context from the available range
602 	 */
603 	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
604 	return get_vsid(context, ea, ssize);
605 }
606 #endif /* __ASSEMBLY__ */
607 
608 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
609