1 /*
2 * kernel/sched/proc.c
3 *
4 * Kernel load calculations, forked from sched/core.c
5 */
6
7 #include <linux/export.h>
8
9 #include "sched.h"
10
11 /*
12 * Global load-average calculations
13 *
14 * We take a distributed and async approach to calculating the global load-avg
15 * in order to minimize overhead.
16 *
17 * The global load average is an exponentially decaying average of nr_running +
18 * nr_uninterruptible.
19 *
20 * Once every LOAD_FREQ:
21 *
22 * nr_active = 0;
23 * for_each_possible_cpu(cpu)
24 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
25 *
26 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
27 *
28 * Due to a number of reasons the above turns in the mess below:
29 *
30 * - for_each_possible_cpu() is prohibitively expensive on machines with
31 * serious number of cpus, therefore we need to take a distributed approach
32 * to calculating nr_active.
33 *
34 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
35 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
36 *
37 * So assuming nr_active := 0 when we start out -- true per definition, we
38 * can simply take per-cpu deltas and fold those into a global accumulate
39 * to obtain the same result. See calc_load_fold_active().
40 *
41 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
42 * across the machine, we assume 10 ticks is sufficient time for every
43 * cpu to have completed this task.
44 *
45 * This places an upper-bound on the IRQ-off latency of the machine. Then
46 * again, being late doesn't loose the delta, just wrecks the sample.
47 *
48 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
49 * this would add another cross-cpu cacheline miss and atomic operation
50 * to the wakeup path. Instead we increment on whatever cpu the task ran
51 * when it went into uninterruptible state and decrement on whatever cpu
52 * did the wakeup. This means that only the sum of nr_uninterruptible over
53 * all cpus yields the correct result.
54 *
55 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
56 */
57
58 /* Variables and functions for calc_load */
59 atomic_long_t calc_load_tasks;
60 unsigned long calc_load_update;
61 unsigned long avenrun[3];
62 EXPORT_SYMBOL(avenrun); /* should be removed */
63
64 /**
65 * get_avenrun - get the load average array
66 * @loads: pointer to dest load array
67 * @offset: offset to add
68 * @shift: shift count to shift the result left
69 *
70 * These values are estimates at best, so no need for locking.
71 */
get_avenrun(unsigned long * loads,unsigned long offset,int shift)72 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
73 {
74 loads[0] = (avenrun[0] + offset) << shift;
75 loads[1] = (avenrun[1] + offset) << shift;
76 loads[2] = (avenrun[2] + offset) << shift;
77 }
78
calc_load_fold_active(struct rq * this_rq)79 long calc_load_fold_active(struct rq *this_rq)
80 {
81 long nr_active, delta = 0;
82
83 nr_active = this_rq->nr_running;
84 nr_active += (long) this_rq->nr_uninterruptible;
85
86 if (nr_active != this_rq->calc_load_active) {
87 delta = nr_active - this_rq->calc_load_active;
88 this_rq->calc_load_active = nr_active;
89 }
90
91 return delta;
92 }
93
94 /*
95 * a1 = a0 * e + a * (1 - e)
96 */
97 static unsigned long
calc_load(unsigned long load,unsigned long exp,unsigned long active)98 calc_load(unsigned long load, unsigned long exp, unsigned long active)
99 {
100 unsigned long newload;
101
102 newload = load * exp + active * (FIXED_1 - exp);
103 if (active >= load)
104 newload += FIXED_1-1;
105
106 return newload / FIXED_1;
107 }
108
109 #ifdef CONFIG_NO_HZ_COMMON
110 /*
111 * Handle NO_HZ for the global load-average.
112 *
113 * Since the above described distributed algorithm to compute the global
114 * load-average relies on per-cpu sampling from the tick, it is affected by
115 * NO_HZ.
116 *
117 * The basic idea is to fold the nr_active delta into a global idle-delta upon
118 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
119 * when we read the global state.
120 *
121 * Obviously reality has to ruin such a delightfully simple scheme:
122 *
123 * - When we go NO_HZ idle during the window, we can negate our sample
124 * contribution, causing under-accounting.
125 *
126 * We avoid this by keeping two idle-delta counters and flipping them
127 * when the window starts, thus separating old and new NO_HZ load.
128 *
129 * The only trick is the slight shift in index flip for read vs write.
130 *
131 * 0s 5s 10s 15s
132 * +10 +10 +10 +10
133 * |-|-----------|-|-----------|-|-----------|-|
134 * r:0 0 1 1 0 0 1 1 0
135 * w:0 1 1 0 0 1 1 0 0
136 *
137 * This ensures we'll fold the old idle contribution in this window while
138 * accumlating the new one.
139 *
140 * - When we wake up from NO_HZ idle during the window, we push up our
141 * contribution, since we effectively move our sample point to a known
142 * busy state.
143 *
144 * This is solved by pushing the window forward, and thus skipping the
145 * sample, for this cpu (effectively using the idle-delta for this cpu which
146 * was in effect at the time the window opened). This also solves the issue
147 * of having to deal with a cpu having been in NOHZ idle for multiple
148 * LOAD_FREQ intervals.
149 *
150 * When making the ILB scale, we should try to pull this in as well.
151 */
152 static atomic_long_t calc_load_idle[2];
153 static int calc_load_idx;
154
calc_load_write_idx(void)155 static inline int calc_load_write_idx(void)
156 {
157 int idx = calc_load_idx;
158
159 /*
160 * See calc_global_nohz(), if we observe the new index, we also
161 * need to observe the new update time.
162 */
163 smp_rmb();
164
165 /*
166 * If the folding window started, make sure we start writing in the
167 * next idle-delta.
168 */
169 if (!time_before(jiffies, calc_load_update))
170 idx++;
171
172 return idx & 1;
173 }
174
calc_load_read_idx(void)175 static inline int calc_load_read_idx(void)
176 {
177 return calc_load_idx & 1;
178 }
179
calc_load_enter_idle(void)180 void calc_load_enter_idle(void)
181 {
182 struct rq *this_rq = this_rq();
183 long delta;
184
185 /*
186 * We're going into NOHZ mode, if there's any pending delta, fold it
187 * into the pending idle delta.
188 */
189 delta = calc_load_fold_active(this_rq);
190 if (delta) {
191 int idx = calc_load_write_idx();
192 atomic_long_add(delta, &calc_load_idle[idx]);
193 }
194 }
195
calc_load_exit_idle(void)196 void calc_load_exit_idle(void)
197 {
198 struct rq *this_rq = this_rq();
199
200 /*
201 * If we're still before the sample window, we're done.
202 */
203 if (time_before(jiffies, this_rq->calc_load_update))
204 return;
205
206 /*
207 * We woke inside or after the sample window, this means we're already
208 * accounted through the nohz accounting, so skip the entire deal and
209 * sync up for the next window.
210 */
211 this_rq->calc_load_update = calc_load_update;
212 if (time_before(jiffies, this_rq->calc_load_update + 10))
213 this_rq->calc_load_update += LOAD_FREQ;
214 }
215
calc_load_fold_idle(void)216 static long calc_load_fold_idle(void)
217 {
218 int idx = calc_load_read_idx();
219 long delta = 0;
220
221 if (atomic_long_read(&calc_load_idle[idx]))
222 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
223
224 return delta;
225 }
226
227 /**
228 * fixed_power_int - compute: x^n, in O(log n) time
229 *
230 * @x: base of the power
231 * @frac_bits: fractional bits of @x
232 * @n: power to raise @x to.
233 *
234 * By exploiting the relation between the definition of the natural power
235 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
236 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
237 * (where: n_i \elem {0, 1}, the binary vector representing n),
238 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
239 * of course trivially computable in O(log_2 n), the length of our binary
240 * vector.
241 */
242 static unsigned long
fixed_power_int(unsigned long x,unsigned int frac_bits,unsigned int n)243 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
244 {
245 unsigned long result = 1UL << frac_bits;
246
247 if (n) for (;;) {
248 if (n & 1) {
249 result *= x;
250 result += 1UL << (frac_bits - 1);
251 result >>= frac_bits;
252 }
253 n >>= 1;
254 if (!n)
255 break;
256 x *= x;
257 x += 1UL << (frac_bits - 1);
258 x >>= frac_bits;
259 }
260
261 return result;
262 }
263
264 /*
265 * a1 = a0 * e + a * (1 - e)
266 *
267 * a2 = a1 * e + a * (1 - e)
268 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
269 * = a0 * e^2 + a * (1 - e) * (1 + e)
270 *
271 * a3 = a2 * e + a * (1 - e)
272 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
273 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
274 *
275 * ...
276 *
277 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
278 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
279 * = a0 * e^n + a * (1 - e^n)
280 *
281 * [1] application of the geometric series:
282 *
283 * n 1 - x^(n+1)
284 * S_n := \Sum x^i = -------------
285 * i=0 1 - x
286 */
287 static unsigned long
calc_load_n(unsigned long load,unsigned long exp,unsigned long active,unsigned int n)288 calc_load_n(unsigned long load, unsigned long exp,
289 unsigned long active, unsigned int n)
290 {
291
292 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
293 }
294
295 /*
296 * NO_HZ can leave us missing all per-cpu ticks calling
297 * calc_load_account_active(), but since an idle CPU folds its delta into
298 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
299 * in the pending idle delta if our idle period crossed a load cycle boundary.
300 *
301 * Once we've updated the global active value, we need to apply the exponential
302 * weights adjusted to the number of cycles missed.
303 */
calc_global_nohz(void)304 static void calc_global_nohz(void)
305 {
306 long delta, active, n;
307
308 if (!time_before(jiffies, calc_load_update + 10)) {
309 /*
310 * Catch-up, fold however many we are behind still
311 */
312 delta = jiffies - calc_load_update - 10;
313 n = 1 + (delta / LOAD_FREQ);
314
315 active = atomic_long_read(&calc_load_tasks);
316 active = active > 0 ? active * FIXED_1 : 0;
317
318 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
319 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
320 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
321
322 calc_load_update += n * LOAD_FREQ;
323 }
324
325 /*
326 * Flip the idle index...
327 *
328 * Make sure we first write the new time then flip the index, so that
329 * calc_load_write_idx() will see the new time when it reads the new
330 * index, this avoids a double flip messing things up.
331 */
332 smp_wmb();
333 calc_load_idx++;
334 }
335 #else /* !CONFIG_NO_HZ_COMMON */
336
calc_load_fold_idle(void)337 static inline long calc_load_fold_idle(void) { return 0; }
calc_global_nohz(void)338 static inline void calc_global_nohz(void) { }
339
340 #endif /* CONFIG_NO_HZ_COMMON */
341
342 /*
343 * calc_load - update the avenrun load estimates 10 ticks after the
344 * CPUs have updated calc_load_tasks.
345 */
calc_global_load(unsigned long ticks)346 void calc_global_load(unsigned long ticks)
347 {
348 long active, delta;
349
350 if (time_before(jiffies, calc_load_update + 10))
351 return;
352
353 /*
354 * Fold the 'old' idle-delta to include all NO_HZ cpus.
355 */
356 delta = calc_load_fold_idle();
357 if (delta)
358 atomic_long_add(delta, &calc_load_tasks);
359
360 active = atomic_long_read(&calc_load_tasks);
361 active = active > 0 ? active * FIXED_1 : 0;
362
363 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
364 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
365 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
366
367 calc_load_update += LOAD_FREQ;
368
369 /*
370 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
371 */
372 calc_global_nohz();
373 }
374
375 /*
376 * Called from update_cpu_load() to periodically update this CPU's
377 * active count.
378 */
calc_load_account_active(struct rq * this_rq)379 static void calc_load_account_active(struct rq *this_rq)
380 {
381 long delta;
382
383 if (time_before(jiffies, this_rq->calc_load_update))
384 return;
385
386 delta = calc_load_fold_active(this_rq);
387 if (delta)
388 atomic_long_add(delta, &calc_load_tasks);
389
390 this_rq->calc_load_update += LOAD_FREQ;
391 }
392
393 /*
394 * End of global load-average stuff
395 */
396
397 /*
398 * The exact cpuload at various idx values, calculated at every tick would be
399 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
400 *
401 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
402 * on nth tick when cpu may be busy, then we have:
403 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
404 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
405 *
406 * decay_load_missed() below does efficient calculation of
407 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
408 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
409 *
410 * The calculation is approximated on a 128 point scale.
411 * degrade_zero_ticks is the number of ticks after which load at any
412 * particular idx is approximated to be zero.
413 * degrade_factor is a precomputed table, a row for each load idx.
414 * Each column corresponds to degradation factor for a power of two ticks,
415 * based on 128 point scale.
416 * Example:
417 * row 2, col 3 (=12) says that the degradation at load idx 2 after
418 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
419 *
420 * With this power of 2 load factors, we can degrade the load n times
421 * by looking at 1 bits in n and doing as many mult/shift instead of
422 * n mult/shifts needed by the exact degradation.
423 */
424 #define DEGRADE_SHIFT 7
425 static const unsigned char
426 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
427 static const unsigned char
428 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
429 {0, 0, 0, 0, 0, 0, 0, 0},
430 {64, 32, 8, 0, 0, 0, 0, 0},
431 {96, 72, 40, 12, 1, 0, 0},
432 {112, 98, 75, 43, 15, 1, 0},
433 {120, 112, 98, 76, 45, 16, 2} };
434
435 /*
436 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
437 * would be when CPU is idle and so we just decay the old load without
438 * adding any new load.
439 */
440 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)441 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
442 {
443 int j = 0;
444
445 if (!missed_updates)
446 return load;
447
448 if (missed_updates >= degrade_zero_ticks[idx])
449 return 0;
450
451 if (idx == 1)
452 return load >> missed_updates;
453
454 while (missed_updates) {
455 if (missed_updates % 2)
456 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
457
458 missed_updates >>= 1;
459 j++;
460 }
461 return load;
462 }
463
464 /*
465 * Update rq->cpu_load[] statistics. This function is usually called every
466 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
467 * every tick. We fix it up based on jiffies.
468 */
__update_cpu_load(struct rq * this_rq,unsigned long this_load,unsigned long pending_updates)469 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
470 unsigned long pending_updates)
471 {
472 int i, scale;
473
474 this_rq->nr_load_updates++;
475
476 /* Update our load: */
477 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
478 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
479 unsigned long old_load, new_load;
480
481 /* scale is effectively 1 << i now, and >> i divides by scale */
482
483 old_load = this_rq->cpu_load[i];
484 old_load = decay_load_missed(old_load, pending_updates - 1, i);
485 new_load = this_load;
486 /*
487 * Round up the averaging division if load is increasing. This
488 * prevents us from getting stuck on 9 if the load is 10, for
489 * example.
490 */
491 if (new_load > old_load)
492 new_load += scale - 1;
493
494 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
495 }
496
497 sched_avg_update(this_rq);
498 }
499
500 #ifdef CONFIG_SMP
get_rq_runnable_load(struct rq * rq)501 static inline unsigned long get_rq_runnable_load(struct rq *rq)
502 {
503 return rq->cfs.runnable_load_avg;
504 }
505 #else
get_rq_runnable_load(struct rq * rq)506 static inline unsigned long get_rq_runnable_load(struct rq *rq)
507 {
508 return rq->load.weight;
509 }
510 #endif
511
512 #ifdef CONFIG_NO_HZ_COMMON
513 /*
514 * There is no sane way to deal with nohz on smp when using jiffies because the
515 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
516 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
517 *
518 * Therefore we cannot use the delta approach from the regular tick since that
519 * would seriously skew the load calculation. However we'll make do for those
520 * updates happening while idle (nohz_idle_balance) or coming out of idle
521 * (tick_nohz_idle_exit).
522 *
523 * This means we might still be one tick off for nohz periods.
524 */
525
526 /*
527 * Called from nohz_idle_balance() to update the load ratings before doing the
528 * idle balance.
529 */
update_idle_cpu_load(struct rq * this_rq)530 void update_idle_cpu_load(struct rq *this_rq)
531 {
532 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
533 unsigned long load = get_rq_runnable_load(this_rq);
534 unsigned long pending_updates;
535
536 /*
537 * bail if there's load or we're actually up-to-date.
538 */
539 if (load || curr_jiffies == this_rq->last_load_update_tick)
540 return;
541
542 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
543 this_rq->last_load_update_tick = curr_jiffies;
544
545 __update_cpu_load(this_rq, load, pending_updates);
546 }
547
548 /*
549 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
550 */
update_cpu_load_nohz(void)551 void update_cpu_load_nohz(void)
552 {
553 struct rq *this_rq = this_rq();
554 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
555 unsigned long pending_updates;
556
557 if (curr_jiffies == this_rq->last_load_update_tick)
558 return;
559
560 raw_spin_lock(&this_rq->lock);
561 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
562 if (pending_updates) {
563 this_rq->last_load_update_tick = curr_jiffies;
564 /*
565 * We were idle, this means load 0, the current load might be
566 * !0 due to remote wakeups and the sort.
567 */
568 __update_cpu_load(this_rq, 0, pending_updates);
569 }
570 raw_spin_unlock(&this_rq->lock);
571 }
572 #endif /* CONFIG_NO_HZ */
573
574 /*
575 * Called from scheduler_tick()
576 */
update_cpu_load_active(struct rq * this_rq)577 void update_cpu_load_active(struct rq *this_rq)
578 {
579 unsigned long load = get_rq_runnable_load(this_rq);
580 /*
581 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
582 */
583 this_rq->last_load_update_tick = jiffies;
584 __update_cpu_load(this_rq, load, 1);
585
586 calc_load_account_active(this_rq);
587 }
588