1 #include "perf_event_intel_uncore.h"
2 
3 static struct intel_uncore_type *empty_uncore[] = { NULL, };
4 struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
5 struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
6 
7 static bool pcidrv_registered;
8 struct pci_driver *uncore_pci_driver;
9 /* pci bus to socket mapping */
10 int uncore_pcibus_to_physid[256] = { [0 ... 255] = -1, };
11 struct pci_dev *uncore_extra_pci_dev[UNCORE_SOCKET_MAX][UNCORE_EXTRA_PCI_DEV_MAX];
12 
13 static DEFINE_RAW_SPINLOCK(uncore_box_lock);
14 /* mask of cpus that collect uncore events */
15 static cpumask_t uncore_cpu_mask;
16 
17 /* constraint for the fixed counter */
18 static struct event_constraint uncore_constraint_fixed =
19 	EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
20 struct event_constraint uncore_constraint_empty =
21 	EVENT_CONSTRAINT(0, 0, 0);
22 
uncore_event_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)23 ssize_t uncore_event_show(struct kobject *kobj,
24 			  struct kobj_attribute *attr, char *buf)
25 {
26 	struct uncore_event_desc *event =
27 		container_of(attr, struct uncore_event_desc, attr);
28 	return sprintf(buf, "%s", event->config);
29 }
30 
uncore_event_to_pmu(struct perf_event * event)31 struct intel_uncore_pmu *uncore_event_to_pmu(struct perf_event *event)
32 {
33 	return container_of(event->pmu, struct intel_uncore_pmu, pmu);
34 }
35 
uncore_pmu_to_box(struct intel_uncore_pmu * pmu,int cpu)36 struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
37 {
38 	struct intel_uncore_box *box;
39 
40 	box = *per_cpu_ptr(pmu->box, cpu);
41 	if (box)
42 		return box;
43 
44 	raw_spin_lock(&uncore_box_lock);
45 	/* Recheck in lock to handle races. */
46 	if (*per_cpu_ptr(pmu->box, cpu))
47 		goto out;
48 	list_for_each_entry(box, &pmu->box_list, list) {
49 		if (box->phys_id == topology_physical_package_id(cpu)) {
50 			atomic_inc(&box->refcnt);
51 			*per_cpu_ptr(pmu->box, cpu) = box;
52 			break;
53 		}
54 	}
55 out:
56 	raw_spin_unlock(&uncore_box_lock);
57 
58 	return *per_cpu_ptr(pmu->box, cpu);
59 }
60 
uncore_event_to_box(struct perf_event * event)61 struct intel_uncore_box *uncore_event_to_box(struct perf_event *event)
62 {
63 	/*
64 	 * perf core schedules event on the basis of cpu, uncore events are
65 	 * collected by one of the cpus inside a physical package.
66 	 */
67 	return uncore_pmu_to_box(uncore_event_to_pmu(event), smp_processor_id());
68 }
69 
uncore_msr_read_counter(struct intel_uncore_box * box,struct perf_event * event)70 u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
71 {
72 	u64 count;
73 
74 	rdmsrl(event->hw.event_base, count);
75 
76 	return count;
77 }
78 
79 /*
80  * generic get constraint function for shared match/mask registers.
81  */
82 struct event_constraint *
uncore_get_constraint(struct intel_uncore_box * box,struct perf_event * event)83 uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
84 {
85 	struct intel_uncore_extra_reg *er;
86 	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
87 	struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
88 	unsigned long flags;
89 	bool ok = false;
90 
91 	/*
92 	 * reg->alloc can be set due to existing state, so for fake box we
93 	 * need to ignore this, otherwise we might fail to allocate proper
94 	 * fake state for this extra reg constraint.
95 	 */
96 	if (reg1->idx == EXTRA_REG_NONE ||
97 	    (!uncore_box_is_fake(box) && reg1->alloc))
98 		return NULL;
99 
100 	er = &box->shared_regs[reg1->idx];
101 	raw_spin_lock_irqsave(&er->lock, flags);
102 	if (!atomic_read(&er->ref) ||
103 	    (er->config1 == reg1->config && er->config2 == reg2->config)) {
104 		atomic_inc(&er->ref);
105 		er->config1 = reg1->config;
106 		er->config2 = reg2->config;
107 		ok = true;
108 	}
109 	raw_spin_unlock_irqrestore(&er->lock, flags);
110 
111 	if (ok) {
112 		if (!uncore_box_is_fake(box))
113 			reg1->alloc = 1;
114 		return NULL;
115 	}
116 
117 	return &uncore_constraint_empty;
118 }
119 
uncore_put_constraint(struct intel_uncore_box * box,struct perf_event * event)120 void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
121 {
122 	struct intel_uncore_extra_reg *er;
123 	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
124 
125 	/*
126 	 * Only put constraint if extra reg was actually allocated. Also
127 	 * takes care of event which do not use an extra shared reg.
128 	 *
129 	 * Also, if this is a fake box we shouldn't touch any event state
130 	 * (reg->alloc) and we don't care about leaving inconsistent box
131 	 * state either since it will be thrown out.
132 	 */
133 	if (uncore_box_is_fake(box) || !reg1->alloc)
134 		return;
135 
136 	er = &box->shared_regs[reg1->idx];
137 	atomic_dec(&er->ref);
138 	reg1->alloc = 0;
139 }
140 
uncore_shared_reg_config(struct intel_uncore_box * box,int idx)141 u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
142 {
143 	struct intel_uncore_extra_reg *er;
144 	unsigned long flags;
145 	u64 config;
146 
147 	er = &box->shared_regs[idx];
148 
149 	raw_spin_lock_irqsave(&er->lock, flags);
150 	config = er->config;
151 	raw_spin_unlock_irqrestore(&er->lock, flags);
152 
153 	return config;
154 }
155 
uncore_assign_hw_event(struct intel_uncore_box * box,struct perf_event * event,int idx)156 static void uncore_assign_hw_event(struct intel_uncore_box *box, struct perf_event *event, int idx)
157 {
158 	struct hw_perf_event *hwc = &event->hw;
159 
160 	hwc->idx = idx;
161 	hwc->last_tag = ++box->tags[idx];
162 
163 	if (hwc->idx == UNCORE_PMC_IDX_FIXED) {
164 		hwc->event_base = uncore_fixed_ctr(box);
165 		hwc->config_base = uncore_fixed_ctl(box);
166 		return;
167 	}
168 
169 	hwc->config_base = uncore_event_ctl(box, hwc->idx);
170 	hwc->event_base  = uncore_perf_ctr(box, hwc->idx);
171 }
172 
uncore_perf_event_update(struct intel_uncore_box * box,struct perf_event * event)173 void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
174 {
175 	u64 prev_count, new_count, delta;
176 	int shift;
177 
178 	if (event->hw.idx >= UNCORE_PMC_IDX_FIXED)
179 		shift = 64 - uncore_fixed_ctr_bits(box);
180 	else
181 		shift = 64 - uncore_perf_ctr_bits(box);
182 
183 	/* the hrtimer might modify the previous event value */
184 again:
185 	prev_count = local64_read(&event->hw.prev_count);
186 	new_count = uncore_read_counter(box, event);
187 	if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
188 		goto again;
189 
190 	delta = (new_count << shift) - (prev_count << shift);
191 	delta >>= shift;
192 
193 	local64_add(delta, &event->count);
194 }
195 
196 /*
197  * The overflow interrupt is unavailable for SandyBridge-EP, is broken
198  * for SandyBridge. So we use hrtimer to periodically poll the counter
199  * to avoid overflow.
200  */
uncore_pmu_hrtimer(struct hrtimer * hrtimer)201 static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
202 {
203 	struct intel_uncore_box *box;
204 	struct perf_event *event;
205 	unsigned long flags;
206 	int bit;
207 
208 	box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
209 	if (!box->n_active || box->cpu != smp_processor_id())
210 		return HRTIMER_NORESTART;
211 	/*
212 	 * disable local interrupt to prevent uncore_pmu_event_start/stop
213 	 * to interrupt the update process
214 	 */
215 	local_irq_save(flags);
216 
217 	/*
218 	 * handle boxes with an active event list as opposed to active
219 	 * counters
220 	 */
221 	list_for_each_entry(event, &box->active_list, active_entry) {
222 		uncore_perf_event_update(box, event);
223 	}
224 
225 	for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
226 		uncore_perf_event_update(box, box->events[bit]);
227 
228 	local_irq_restore(flags);
229 
230 	hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
231 	return HRTIMER_RESTART;
232 }
233 
uncore_pmu_start_hrtimer(struct intel_uncore_box * box)234 void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
235 {
236 	__hrtimer_start_range_ns(&box->hrtimer,
237 			ns_to_ktime(box->hrtimer_duration), 0,
238 			HRTIMER_MODE_REL_PINNED, 0);
239 }
240 
uncore_pmu_cancel_hrtimer(struct intel_uncore_box * box)241 void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
242 {
243 	hrtimer_cancel(&box->hrtimer);
244 }
245 
uncore_pmu_init_hrtimer(struct intel_uncore_box * box)246 static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
247 {
248 	hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
249 	box->hrtimer.function = uncore_pmu_hrtimer;
250 }
251 
uncore_alloc_box(struct intel_uncore_type * type,int node)252 static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type, int node)
253 {
254 	struct intel_uncore_box *box;
255 	int i, size;
256 
257 	size = sizeof(*box) + type->num_shared_regs * sizeof(struct intel_uncore_extra_reg);
258 
259 	box = kzalloc_node(size, GFP_KERNEL, node);
260 	if (!box)
261 		return NULL;
262 
263 	for (i = 0; i < type->num_shared_regs; i++)
264 		raw_spin_lock_init(&box->shared_regs[i].lock);
265 
266 	uncore_pmu_init_hrtimer(box);
267 	atomic_set(&box->refcnt, 1);
268 	box->cpu = -1;
269 	box->phys_id = -1;
270 
271 	/* set default hrtimer timeout */
272 	box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
273 
274 	INIT_LIST_HEAD(&box->active_list);
275 
276 	return box;
277 }
278 
279 /*
280  * Using uncore_pmu_event_init pmu event_init callback
281  * as a detection point for uncore events.
282  */
283 static int uncore_pmu_event_init(struct perf_event *event);
284 
is_uncore_event(struct perf_event * event)285 static bool is_uncore_event(struct perf_event *event)
286 {
287 	return event->pmu->event_init == uncore_pmu_event_init;
288 }
289 
290 static int
uncore_collect_events(struct intel_uncore_box * box,struct perf_event * leader,bool dogrp)291 uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader, bool dogrp)
292 {
293 	struct perf_event *event;
294 	int n, max_count;
295 
296 	max_count = box->pmu->type->num_counters;
297 	if (box->pmu->type->fixed_ctl)
298 		max_count++;
299 
300 	if (box->n_events >= max_count)
301 		return -EINVAL;
302 
303 	n = box->n_events;
304 
305 	if (is_uncore_event(leader)) {
306 		box->event_list[n] = leader;
307 		n++;
308 	}
309 
310 	if (!dogrp)
311 		return n;
312 
313 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
314 		if (!is_uncore_event(event) ||
315 		    event->state <= PERF_EVENT_STATE_OFF)
316 			continue;
317 
318 		if (n >= max_count)
319 			return -EINVAL;
320 
321 		box->event_list[n] = event;
322 		n++;
323 	}
324 	return n;
325 }
326 
327 static struct event_constraint *
uncore_get_event_constraint(struct intel_uncore_box * box,struct perf_event * event)328 uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
329 {
330 	struct intel_uncore_type *type = box->pmu->type;
331 	struct event_constraint *c;
332 
333 	if (type->ops->get_constraint) {
334 		c = type->ops->get_constraint(box, event);
335 		if (c)
336 			return c;
337 	}
338 
339 	if (event->attr.config == UNCORE_FIXED_EVENT)
340 		return &uncore_constraint_fixed;
341 
342 	if (type->constraints) {
343 		for_each_event_constraint(c, type->constraints) {
344 			if ((event->hw.config & c->cmask) == c->code)
345 				return c;
346 		}
347 	}
348 
349 	return &type->unconstrainted;
350 }
351 
uncore_put_event_constraint(struct intel_uncore_box * box,struct perf_event * event)352 static void uncore_put_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
353 {
354 	if (box->pmu->type->ops->put_constraint)
355 		box->pmu->type->ops->put_constraint(box, event);
356 }
357 
uncore_assign_events(struct intel_uncore_box * box,int assign[],int n)358 static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
359 {
360 	unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
361 	struct event_constraint *c;
362 	int i, wmin, wmax, ret = 0;
363 	struct hw_perf_event *hwc;
364 
365 	bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);
366 
367 	for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
368 		c = uncore_get_event_constraint(box, box->event_list[i]);
369 		box->event_constraint[i] = c;
370 		wmin = min(wmin, c->weight);
371 		wmax = max(wmax, c->weight);
372 	}
373 
374 	/* fastpath, try to reuse previous register */
375 	for (i = 0; i < n; i++) {
376 		hwc = &box->event_list[i]->hw;
377 		c = box->event_constraint[i];
378 
379 		/* never assigned */
380 		if (hwc->idx == -1)
381 			break;
382 
383 		/* constraint still honored */
384 		if (!test_bit(hwc->idx, c->idxmsk))
385 			break;
386 
387 		/* not already used */
388 		if (test_bit(hwc->idx, used_mask))
389 			break;
390 
391 		__set_bit(hwc->idx, used_mask);
392 		if (assign)
393 			assign[i] = hwc->idx;
394 	}
395 	/* slow path */
396 	if (i != n)
397 		ret = perf_assign_events(box->event_constraint, n,
398 					 wmin, wmax, n, assign);
399 
400 	if (!assign || ret) {
401 		for (i = 0; i < n; i++)
402 			uncore_put_event_constraint(box, box->event_list[i]);
403 	}
404 	return ret ? -EINVAL : 0;
405 }
406 
uncore_pmu_event_start(struct perf_event * event,int flags)407 static void uncore_pmu_event_start(struct perf_event *event, int flags)
408 {
409 	struct intel_uncore_box *box = uncore_event_to_box(event);
410 	int idx = event->hw.idx;
411 
412 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
413 		return;
414 
415 	if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
416 		return;
417 
418 	event->hw.state = 0;
419 	box->events[idx] = event;
420 	box->n_active++;
421 	__set_bit(idx, box->active_mask);
422 
423 	local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
424 	uncore_enable_event(box, event);
425 
426 	if (box->n_active == 1) {
427 		uncore_enable_box(box);
428 		uncore_pmu_start_hrtimer(box);
429 	}
430 }
431 
uncore_pmu_event_stop(struct perf_event * event,int flags)432 static void uncore_pmu_event_stop(struct perf_event *event, int flags)
433 {
434 	struct intel_uncore_box *box = uncore_event_to_box(event);
435 	struct hw_perf_event *hwc = &event->hw;
436 
437 	if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
438 		uncore_disable_event(box, event);
439 		box->n_active--;
440 		box->events[hwc->idx] = NULL;
441 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
442 		hwc->state |= PERF_HES_STOPPED;
443 
444 		if (box->n_active == 0) {
445 			uncore_disable_box(box);
446 			uncore_pmu_cancel_hrtimer(box);
447 		}
448 	}
449 
450 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
451 		/*
452 		 * Drain the remaining delta count out of a event
453 		 * that we are disabling:
454 		 */
455 		uncore_perf_event_update(box, event);
456 		hwc->state |= PERF_HES_UPTODATE;
457 	}
458 }
459 
uncore_pmu_event_add(struct perf_event * event,int flags)460 static int uncore_pmu_event_add(struct perf_event *event, int flags)
461 {
462 	struct intel_uncore_box *box = uncore_event_to_box(event);
463 	struct hw_perf_event *hwc = &event->hw;
464 	int assign[UNCORE_PMC_IDX_MAX];
465 	int i, n, ret;
466 
467 	if (!box)
468 		return -ENODEV;
469 
470 	ret = n = uncore_collect_events(box, event, false);
471 	if (ret < 0)
472 		return ret;
473 
474 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
475 	if (!(flags & PERF_EF_START))
476 		hwc->state |= PERF_HES_ARCH;
477 
478 	ret = uncore_assign_events(box, assign, n);
479 	if (ret)
480 		return ret;
481 
482 	/* save events moving to new counters */
483 	for (i = 0; i < box->n_events; i++) {
484 		event = box->event_list[i];
485 		hwc = &event->hw;
486 
487 		if (hwc->idx == assign[i] &&
488 			hwc->last_tag == box->tags[assign[i]])
489 			continue;
490 		/*
491 		 * Ensure we don't accidentally enable a stopped
492 		 * counter simply because we rescheduled.
493 		 */
494 		if (hwc->state & PERF_HES_STOPPED)
495 			hwc->state |= PERF_HES_ARCH;
496 
497 		uncore_pmu_event_stop(event, PERF_EF_UPDATE);
498 	}
499 
500 	/* reprogram moved events into new counters */
501 	for (i = 0; i < n; i++) {
502 		event = box->event_list[i];
503 		hwc = &event->hw;
504 
505 		if (hwc->idx != assign[i] ||
506 			hwc->last_tag != box->tags[assign[i]])
507 			uncore_assign_hw_event(box, event, assign[i]);
508 		else if (i < box->n_events)
509 			continue;
510 
511 		if (hwc->state & PERF_HES_ARCH)
512 			continue;
513 
514 		uncore_pmu_event_start(event, 0);
515 	}
516 	box->n_events = n;
517 
518 	return 0;
519 }
520 
uncore_pmu_event_del(struct perf_event * event,int flags)521 static void uncore_pmu_event_del(struct perf_event *event, int flags)
522 {
523 	struct intel_uncore_box *box = uncore_event_to_box(event);
524 	int i;
525 
526 	uncore_pmu_event_stop(event, PERF_EF_UPDATE);
527 
528 	for (i = 0; i < box->n_events; i++) {
529 		if (event == box->event_list[i]) {
530 			uncore_put_event_constraint(box, event);
531 
532 			while (++i < box->n_events)
533 				box->event_list[i - 1] = box->event_list[i];
534 
535 			--box->n_events;
536 			break;
537 		}
538 	}
539 
540 	event->hw.idx = -1;
541 	event->hw.last_tag = ~0ULL;
542 }
543 
uncore_pmu_event_read(struct perf_event * event)544 void uncore_pmu_event_read(struct perf_event *event)
545 {
546 	struct intel_uncore_box *box = uncore_event_to_box(event);
547 	uncore_perf_event_update(box, event);
548 }
549 
550 /*
551  * validation ensures the group can be loaded onto the
552  * PMU if it was the only group available.
553  */
uncore_validate_group(struct intel_uncore_pmu * pmu,struct perf_event * event)554 static int uncore_validate_group(struct intel_uncore_pmu *pmu,
555 				struct perf_event *event)
556 {
557 	struct perf_event *leader = event->group_leader;
558 	struct intel_uncore_box *fake_box;
559 	int ret = -EINVAL, n;
560 
561 	fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
562 	if (!fake_box)
563 		return -ENOMEM;
564 
565 	fake_box->pmu = pmu;
566 	/*
567 	 * the event is not yet connected with its
568 	 * siblings therefore we must first collect
569 	 * existing siblings, then add the new event
570 	 * before we can simulate the scheduling
571 	 */
572 	n = uncore_collect_events(fake_box, leader, true);
573 	if (n < 0)
574 		goto out;
575 
576 	fake_box->n_events = n;
577 	n = uncore_collect_events(fake_box, event, false);
578 	if (n < 0)
579 		goto out;
580 
581 	fake_box->n_events = n;
582 
583 	ret = uncore_assign_events(fake_box, NULL, n);
584 out:
585 	kfree(fake_box);
586 	return ret;
587 }
588 
uncore_pmu_event_init(struct perf_event * event)589 static int uncore_pmu_event_init(struct perf_event *event)
590 {
591 	struct intel_uncore_pmu *pmu;
592 	struct intel_uncore_box *box;
593 	struct hw_perf_event *hwc = &event->hw;
594 	int ret;
595 
596 	if (event->attr.type != event->pmu->type)
597 		return -ENOENT;
598 
599 	pmu = uncore_event_to_pmu(event);
600 	/* no device found for this pmu */
601 	if (pmu->func_id < 0)
602 		return -ENOENT;
603 
604 	/*
605 	 * Uncore PMU does measure at all privilege level all the time.
606 	 * So it doesn't make sense to specify any exclude bits.
607 	 */
608 	if (event->attr.exclude_user || event->attr.exclude_kernel ||
609 			event->attr.exclude_hv || event->attr.exclude_idle)
610 		return -EINVAL;
611 
612 	/* Sampling not supported yet */
613 	if (hwc->sample_period)
614 		return -EINVAL;
615 
616 	/*
617 	 * Place all uncore events for a particular physical package
618 	 * onto a single cpu
619 	 */
620 	if (event->cpu < 0)
621 		return -EINVAL;
622 	box = uncore_pmu_to_box(pmu, event->cpu);
623 	if (!box || box->cpu < 0)
624 		return -EINVAL;
625 	event->cpu = box->cpu;
626 
627 	event->hw.idx = -1;
628 	event->hw.last_tag = ~0ULL;
629 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
630 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
631 
632 	if (event->attr.config == UNCORE_FIXED_EVENT) {
633 		/* no fixed counter */
634 		if (!pmu->type->fixed_ctl)
635 			return -EINVAL;
636 		/*
637 		 * if there is only one fixed counter, only the first pmu
638 		 * can access the fixed counter
639 		 */
640 		if (pmu->type->single_fixed && pmu->pmu_idx > 0)
641 			return -EINVAL;
642 
643 		/* fixed counters have event field hardcoded to zero */
644 		hwc->config = 0ULL;
645 	} else {
646 		hwc->config = event->attr.config & pmu->type->event_mask;
647 		if (pmu->type->ops->hw_config) {
648 			ret = pmu->type->ops->hw_config(box, event);
649 			if (ret)
650 				return ret;
651 		}
652 	}
653 
654 	if (event->group_leader != event)
655 		ret = uncore_validate_group(pmu, event);
656 	else
657 		ret = 0;
658 
659 	return ret;
660 }
661 
uncore_get_attr_cpumask(struct device * dev,struct device_attribute * attr,char * buf)662 static ssize_t uncore_get_attr_cpumask(struct device *dev,
663 				struct device_attribute *attr, char *buf)
664 {
665 	return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
666 }
667 
668 static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);
669 
670 static struct attribute *uncore_pmu_attrs[] = {
671 	&dev_attr_cpumask.attr,
672 	NULL,
673 };
674 
675 static struct attribute_group uncore_pmu_attr_group = {
676 	.attrs = uncore_pmu_attrs,
677 };
678 
uncore_pmu_register(struct intel_uncore_pmu * pmu)679 static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
680 {
681 	int ret;
682 
683 	if (!pmu->type->pmu) {
684 		pmu->pmu = (struct pmu) {
685 			.attr_groups	= pmu->type->attr_groups,
686 			.task_ctx_nr	= perf_invalid_context,
687 			.event_init	= uncore_pmu_event_init,
688 			.add		= uncore_pmu_event_add,
689 			.del		= uncore_pmu_event_del,
690 			.start		= uncore_pmu_event_start,
691 			.stop		= uncore_pmu_event_stop,
692 			.read		= uncore_pmu_event_read,
693 		};
694 	} else {
695 		pmu->pmu = *pmu->type->pmu;
696 		pmu->pmu.attr_groups = pmu->type->attr_groups;
697 	}
698 
699 	if (pmu->type->num_boxes == 1) {
700 		if (strlen(pmu->type->name) > 0)
701 			sprintf(pmu->name, "uncore_%s", pmu->type->name);
702 		else
703 			sprintf(pmu->name, "uncore");
704 	} else {
705 		sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
706 			pmu->pmu_idx);
707 	}
708 
709 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
710 	return ret;
711 }
712 
uncore_type_exit(struct intel_uncore_type * type)713 static void __init uncore_type_exit(struct intel_uncore_type *type)
714 {
715 	int i;
716 
717 	for (i = 0; i < type->num_boxes; i++)
718 		free_percpu(type->pmus[i].box);
719 	kfree(type->pmus);
720 	type->pmus = NULL;
721 	kfree(type->events_group);
722 	type->events_group = NULL;
723 }
724 
uncore_types_exit(struct intel_uncore_type ** types)725 static void __init uncore_types_exit(struct intel_uncore_type **types)
726 {
727 	int i;
728 	for (i = 0; types[i]; i++)
729 		uncore_type_exit(types[i]);
730 }
731 
uncore_type_init(struct intel_uncore_type * type)732 static int __init uncore_type_init(struct intel_uncore_type *type)
733 {
734 	struct intel_uncore_pmu *pmus;
735 	struct attribute_group *attr_group;
736 	struct attribute **attrs;
737 	int i, j;
738 
739 	pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL);
740 	if (!pmus)
741 		return -ENOMEM;
742 
743 	type->pmus = pmus;
744 
745 	type->unconstrainted = (struct event_constraint)
746 		__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
747 				0, type->num_counters, 0, 0);
748 
749 	for (i = 0; i < type->num_boxes; i++) {
750 		pmus[i].func_id = -1;
751 		pmus[i].pmu_idx = i;
752 		pmus[i].type = type;
753 		INIT_LIST_HEAD(&pmus[i].box_list);
754 		pmus[i].box = alloc_percpu(struct intel_uncore_box *);
755 		if (!pmus[i].box)
756 			goto fail;
757 	}
758 
759 	if (type->event_descs) {
760 		i = 0;
761 		while (type->event_descs[i].attr.attr.name)
762 			i++;
763 
764 		attr_group = kzalloc(sizeof(struct attribute *) * (i + 1) +
765 					sizeof(*attr_group), GFP_KERNEL);
766 		if (!attr_group)
767 			goto fail;
768 
769 		attrs = (struct attribute **)(attr_group + 1);
770 		attr_group->name = "events";
771 		attr_group->attrs = attrs;
772 
773 		for (j = 0; j < i; j++)
774 			attrs[j] = &type->event_descs[j].attr.attr;
775 
776 		type->events_group = attr_group;
777 	}
778 
779 	type->pmu_group = &uncore_pmu_attr_group;
780 	return 0;
781 fail:
782 	uncore_type_exit(type);
783 	return -ENOMEM;
784 }
785 
uncore_types_init(struct intel_uncore_type ** types)786 static int __init uncore_types_init(struct intel_uncore_type **types)
787 {
788 	int i, ret;
789 
790 	for (i = 0; types[i]; i++) {
791 		ret = uncore_type_init(types[i]);
792 		if (ret)
793 			goto fail;
794 	}
795 	return 0;
796 fail:
797 	while (--i >= 0)
798 		uncore_type_exit(types[i]);
799 	return ret;
800 }
801 
802 /*
803  * add a pci uncore device
804  */
uncore_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)805 static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
806 {
807 	struct intel_uncore_pmu *pmu;
808 	struct intel_uncore_box *box;
809 	struct intel_uncore_type *type;
810 	int phys_id;
811 	bool first_box = false;
812 
813 	phys_id = uncore_pcibus_to_physid[pdev->bus->number];
814 	if (phys_id < 0)
815 		return -ENODEV;
816 
817 	if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
818 		int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
819 		uncore_extra_pci_dev[phys_id][idx] = pdev;
820 		pci_set_drvdata(pdev, NULL);
821 		return 0;
822 	}
823 
824 	type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
825 	box = uncore_alloc_box(type, NUMA_NO_NODE);
826 	if (!box)
827 		return -ENOMEM;
828 
829 	/*
830 	 * for performance monitoring unit with multiple boxes,
831 	 * each box has a different function id.
832 	 */
833 	pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
834 	if (pmu->func_id < 0)
835 		pmu->func_id = pdev->devfn;
836 	else
837 		WARN_ON_ONCE(pmu->func_id != pdev->devfn);
838 
839 	box->phys_id = phys_id;
840 	box->pci_dev = pdev;
841 	box->pmu = pmu;
842 	uncore_box_init(box);
843 	pci_set_drvdata(pdev, box);
844 
845 	raw_spin_lock(&uncore_box_lock);
846 	if (list_empty(&pmu->box_list))
847 		first_box = true;
848 	list_add_tail(&box->list, &pmu->box_list);
849 	raw_spin_unlock(&uncore_box_lock);
850 
851 	if (first_box)
852 		uncore_pmu_register(pmu);
853 	return 0;
854 }
855 
uncore_pci_remove(struct pci_dev * pdev)856 static void uncore_pci_remove(struct pci_dev *pdev)
857 {
858 	struct intel_uncore_box *box = pci_get_drvdata(pdev);
859 	struct intel_uncore_pmu *pmu;
860 	int i, cpu, phys_id = uncore_pcibus_to_physid[pdev->bus->number];
861 	bool last_box = false;
862 
863 	box = pci_get_drvdata(pdev);
864 	if (!box) {
865 		for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
866 			if (uncore_extra_pci_dev[phys_id][i] == pdev) {
867 				uncore_extra_pci_dev[phys_id][i] = NULL;
868 				break;
869 			}
870 		}
871 		WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
872 		return;
873 	}
874 
875 	pmu = box->pmu;
876 	if (WARN_ON_ONCE(phys_id != box->phys_id))
877 		return;
878 
879 	pci_set_drvdata(pdev, NULL);
880 
881 	raw_spin_lock(&uncore_box_lock);
882 	list_del(&box->list);
883 	if (list_empty(&pmu->box_list))
884 		last_box = true;
885 	raw_spin_unlock(&uncore_box_lock);
886 
887 	for_each_possible_cpu(cpu) {
888 		if (*per_cpu_ptr(pmu->box, cpu) == box) {
889 			*per_cpu_ptr(pmu->box, cpu) = NULL;
890 			atomic_dec(&box->refcnt);
891 		}
892 	}
893 
894 	WARN_ON_ONCE(atomic_read(&box->refcnt) != 1);
895 	kfree(box);
896 
897 	if (last_box)
898 		perf_pmu_unregister(&pmu->pmu);
899 }
900 
uncore_pci_init(void)901 static int __init uncore_pci_init(void)
902 {
903 	int ret;
904 
905 	switch (boot_cpu_data.x86_model) {
906 	case 45: /* Sandy Bridge-EP */
907 		ret = snbep_uncore_pci_init();
908 		break;
909 	case 62: /* Ivy Bridge-EP */
910 		ret = ivbep_uncore_pci_init();
911 		break;
912 	case 63: /* Haswell-EP */
913 		ret = hswep_uncore_pci_init();
914 		break;
915 	case 42: /* Sandy Bridge */
916 		ret = snb_uncore_pci_init();
917 		break;
918 	case 58: /* Ivy Bridge */
919 		ret = ivb_uncore_pci_init();
920 		break;
921 	case 60: /* Haswell */
922 	case 69: /* Haswell Celeron */
923 		ret = hsw_uncore_pci_init();
924 		break;
925 	default:
926 		return 0;
927 	}
928 
929 	if (ret)
930 		return ret;
931 
932 	ret = uncore_types_init(uncore_pci_uncores);
933 	if (ret)
934 		return ret;
935 
936 	uncore_pci_driver->probe = uncore_pci_probe;
937 	uncore_pci_driver->remove = uncore_pci_remove;
938 
939 	ret = pci_register_driver(uncore_pci_driver);
940 	if (ret == 0)
941 		pcidrv_registered = true;
942 	else
943 		uncore_types_exit(uncore_pci_uncores);
944 
945 	return ret;
946 }
947 
uncore_pci_exit(void)948 static void __init uncore_pci_exit(void)
949 {
950 	if (pcidrv_registered) {
951 		pcidrv_registered = false;
952 		pci_unregister_driver(uncore_pci_driver);
953 		uncore_types_exit(uncore_pci_uncores);
954 	}
955 }
956 
957 /* CPU hot plug/unplug are serialized by cpu_add_remove_lock mutex */
958 static LIST_HEAD(boxes_to_free);
959 
uncore_kfree_boxes(void)960 static void uncore_kfree_boxes(void)
961 {
962 	struct intel_uncore_box *box;
963 
964 	while (!list_empty(&boxes_to_free)) {
965 		box = list_entry(boxes_to_free.next,
966 				 struct intel_uncore_box, list);
967 		list_del(&box->list);
968 		kfree(box);
969 	}
970 }
971 
uncore_cpu_dying(int cpu)972 static void uncore_cpu_dying(int cpu)
973 {
974 	struct intel_uncore_type *type;
975 	struct intel_uncore_pmu *pmu;
976 	struct intel_uncore_box *box;
977 	int i, j;
978 
979 	for (i = 0; uncore_msr_uncores[i]; i++) {
980 		type = uncore_msr_uncores[i];
981 		for (j = 0; j < type->num_boxes; j++) {
982 			pmu = &type->pmus[j];
983 			box = *per_cpu_ptr(pmu->box, cpu);
984 			*per_cpu_ptr(pmu->box, cpu) = NULL;
985 			if (box && atomic_dec_and_test(&box->refcnt))
986 				list_add(&box->list, &boxes_to_free);
987 		}
988 	}
989 }
990 
uncore_cpu_starting(int cpu)991 static int uncore_cpu_starting(int cpu)
992 {
993 	struct intel_uncore_type *type;
994 	struct intel_uncore_pmu *pmu;
995 	struct intel_uncore_box *box, *exist;
996 	int i, j, k, phys_id;
997 
998 	phys_id = topology_physical_package_id(cpu);
999 
1000 	for (i = 0; uncore_msr_uncores[i]; i++) {
1001 		type = uncore_msr_uncores[i];
1002 		for (j = 0; j < type->num_boxes; j++) {
1003 			pmu = &type->pmus[j];
1004 			box = *per_cpu_ptr(pmu->box, cpu);
1005 			/* called by uncore_cpu_init? */
1006 			if (box && box->phys_id >= 0) {
1007 				uncore_box_init(box);
1008 				continue;
1009 			}
1010 
1011 			for_each_online_cpu(k) {
1012 				exist = *per_cpu_ptr(pmu->box, k);
1013 				if (exist && exist->phys_id == phys_id) {
1014 					atomic_inc(&exist->refcnt);
1015 					*per_cpu_ptr(pmu->box, cpu) = exist;
1016 					if (box) {
1017 						list_add(&box->list,
1018 							 &boxes_to_free);
1019 						box = NULL;
1020 					}
1021 					break;
1022 				}
1023 			}
1024 
1025 			if (box) {
1026 				box->phys_id = phys_id;
1027 				uncore_box_init(box);
1028 			}
1029 		}
1030 	}
1031 	return 0;
1032 }
1033 
uncore_cpu_prepare(int cpu,int phys_id)1034 static int uncore_cpu_prepare(int cpu, int phys_id)
1035 {
1036 	struct intel_uncore_type *type;
1037 	struct intel_uncore_pmu *pmu;
1038 	struct intel_uncore_box *box;
1039 	int i, j;
1040 
1041 	for (i = 0; uncore_msr_uncores[i]; i++) {
1042 		type = uncore_msr_uncores[i];
1043 		for (j = 0; j < type->num_boxes; j++) {
1044 			pmu = &type->pmus[j];
1045 			if (pmu->func_id < 0)
1046 				pmu->func_id = j;
1047 
1048 			box = uncore_alloc_box(type, cpu_to_node(cpu));
1049 			if (!box)
1050 				return -ENOMEM;
1051 
1052 			box->pmu = pmu;
1053 			box->phys_id = phys_id;
1054 			*per_cpu_ptr(pmu->box, cpu) = box;
1055 		}
1056 	}
1057 	return 0;
1058 }
1059 
1060 static void
uncore_change_context(struct intel_uncore_type ** uncores,int old_cpu,int new_cpu)1061 uncore_change_context(struct intel_uncore_type **uncores, int old_cpu, int new_cpu)
1062 {
1063 	struct intel_uncore_type *type;
1064 	struct intel_uncore_pmu *pmu;
1065 	struct intel_uncore_box *box;
1066 	int i, j;
1067 
1068 	for (i = 0; uncores[i]; i++) {
1069 		type = uncores[i];
1070 		for (j = 0; j < type->num_boxes; j++) {
1071 			pmu = &type->pmus[j];
1072 			if (old_cpu < 0)
1073 				box = uncore_pmu_to_box(pmu, new_cpu);
1074 			else
1075 				box = uncore_pmu_to_box(pmu, old_cpu);
1076 			if (!box)
1077 				continue;
1078 
1079 			if (old_cpu < 0) {
1080 				WARN_ON_ONCE(box->cpu != -1);
1081 				box->cpu = new_cpu;
1082 				continue;
1083 			}
1084 
1085 			WARN_ON_ONCE(box->cpu != old_cpu);
1086 			if (new_cpu >= 0) {
1087 				uncore_pmu_cancel_hrtimer(box);
1088 				perf_pmu_migrate_context(&pmu->pmu,
1089 						old_cpu, new_cpu);
1090 				box->cpu = new_cpu;
1091 			} else {
1092 				box->cpu = -1;
1093 			}
1094 		}
1095 	}
1096 }
1097 
uncore_event_exit_cpu(int cpu)1098 static void uncore_event_exit_cpu(int cpu)
1099 {
1100 	int i, phys_id, target;
1101 
1102 	/* if exiting cpu is used for collecting uncore events */
1103 	if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
1104 		return;
1105 
1106 	/* find a new cpu to collect uncore events */
1107 	phys_id = topology_physical_package_id(cpu);
1108 	target = -1;
1109 	for_each_online_cpu(i) {
1110 		if (i == cpu)
1111 			continue;
1112 		if (phys_id == topology_physical_package_id(i)) {
1113 			target = i;
1114 			break;
1115 		}
1116 	}
1117 
1118 	/* migrate uncore events to the new cpu */
1119 	if (target >= 0)
1120 		cpumask_set_cpu(target, &uncore_cpu_mask);
1121 
1122 	uncore_change_context(uncore_msr_uncores, cpu, target);
1123 	uncore_change_context(uncore_pci_uncores, cpu, target);
1124 }
1125 
uncore_event_init_cpu(int cpu)1126 static void uncore_event_init_cpu(int cpu)
1127 {
1128 	int i, phys_id;
1129 
1130 	phys_id = topology_physical_package_id(cpu);
1131 	for_each_cpu(i, &uncore_cpu_mask) {
1132 		if (phys_id == topology_physical_package_id(i))
1133 			return;
1134 	}
1135 
1136 	cpumask_set_cpu(cpu, &uncore_cpu_mask);
1137 
1138 	uncore_change_context(uncore_msr_uncores, -1, cpu);
1139 	uncore_change_context(uncore_pci_uncores, -1, cpu);
1140 }
1141 
uncore_cpu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1142 static int uncore_cpu_notifier(struct notifier_block *self,
1143 			       unsigned long action, void *hcpu)
1144 {
1145 	unsigned int cpu = (long)hcpu;
1146 
1147 	/* allocate/free data structure for uncore box */
1148 	switch (action & ~CPU_TASKS_FROZEN) {
1149 	case CPU_UP_PREPARE:
1150 		uncore_cpu_prepare(cpu, -1);
1151 		break;
1152 	case CPU_STARTING:
1153 		uncore_cpu_starting(cpu);
1154 		break;
1155 	case CPU_UP_CANCELED:
1156 	case CPU_DYING:
1157 		uncore_cpu_dying(cpu);
1158 		break;
1159 	case CPU_ONLINE:
1160 	case CPU_DEAD:
1161 		uncore_kfree_boxes();
1162 		break;
1163 	default:
1164 		break;
1165 	}
1166 
1167 	/* select the cpu that collects uncore events */
1168 	switch (action & ~CPU_TASKS_FROZEN) {
1169 	case CPU_DOWN_FAILED:
1170 	case CPU_STARTING:
1171 		uncore_event_init_cpu(cpu);
1172 		break;
1173 	case CPU_DOWN_PREPARE:
1174 		uncore_event_exit_cpu(cpu);
1175 		break;
1176 	default:
1177 		break;
1178 	}
1179 
1180 	return NOTIFY_OK;
1181 }
1182 
1183 static struct notifier_block uncore_cpu_nb = {
1184 	.notifier_call	= uncore_cpu_notifier,
1185 	/*
1186 	 * to migrate uncore events, our notifier should be executed
1187 	 * before perf core's notifier.
1188 	 */
1189 	.priority	= CPU_PRI_PERF + 1,
1190 };
1191 
uncore_cpu_setup(void * dummy)1192 static void __init uncore_cpu_setup(void *dummy)
1193 {
1194 	uncore_cpu_starting(smp_processor_id());
1195 }
1196 
uncore_cpu_init(void)1197 static int __init uncore_cpu_init(void)
1198 {
1199 	int ret;
1200 
1201 	switch (boot_cpu_data.x86_model) {
1202 	case 26: /* Nehalem */
1203 	case 30:
1204 	case 37: /* Westmere */
1205 	case 44:
1206 		nhm_uncore_cpu_init();
1207 		break;
1208 	case 42: /* Sandy Bridge */
1209 	case 58: /* Ivy Bridge */
1210 		snb_uncore_cpu_init();
1211 		break;
1212 	case 45: /* Sandy Bridge-EP */
1213 		snbep_uncore_cpu_init();
1214 		break;
1215 	case 46: /* Nehalem-EX */
1216 	case 47: /* Westmere-EX aka. Xeon E7 */
1217 		nhmex_uncore_cpu_init();
1218 		break;
1219 	case 62: /* Ivy Bridge-EP */
1220 		ivbep_uncore_cpu_init();
1221 		break;
1222 	case 63: /* Haswell-EP */
1223 		hswep_uncore_cpu_init();
1224 		break;
1225 	default:
1226 		return 0;
1227 	}
1228 
1229 	ret = uncore_types_init(uncore_msr_uncores);
1230 	if (ret)
1231 		return ret;
1232 
1233 	return 0;
1234 }
1235 
uncore_pmus_register(void)1236 static int __init uncore_pmus_register(void)
1237 {
1238 	struct intel_uncore_pmu *pmu;
1239 	struct intel_uncore_type *type;
1240 	int i, j;
1241 
1242 	for (i = 0; uncore_msr_uncores[i]; i++) {
1243 		type = uncore_msr_uncores[i];
1244 		for (j = 0; j < type->num_boxes; j++) {
1245 			pmu = &type->pmus[j];
1246 			uncore_pmu_register(pmu);
1247 		}
1248 	}
1249 
1250 	return 0;
1251 }
1252 
uncore_cpumask_init(void)1253 static void __init uncore_cpumask_init(void)
1254 {
1255 	int cpu;
1256 
1257 	/*
1258 	 * ony invoke once from msr or pci init code
1259 	 */
1260 	if (!cpumask_empty(&uncore_cpu_mask))
1261 		return;
1262 
1263 	cpu_notifier_register_begin();
1264 
1265 	for_each_online_cpu(cpu) {
1266 		int i, phys_id = topology_physical_package_id(cpu);
1267 
1268 		for_each_cpu(i, &uncore_cpu_mask) {
1269 			if (phys_id == topology_physical_package_id(i)) {
1270 				phys_id = -1;
1271 				break;
1272 			}
1273 		}
1274 		if (phys_id < 0)
1275 			continue;
1276 
1277 		uncore_cpu_prepare(cpu, phys_id);
1278 		uncore_event_init_cpu(cpu);
1279 	}
1280 	on_each_cpu(uncore_cpu_setup, NULL, 1);
1281 
1282 	__register_cpu_notifier(&uncore_cpu_nb);
1283 
1284 	cpu_notifier_register_done();
1285 }
1286 
1287 
intel_uncore_init(void)1288 static int __init intel_uncore_init(void)
1289 {
1290 	int ret;
1291 
1292 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1293 		return -ENODEV;
1294 
1295 	if (cpu_has_hypervisor)
1296 		return -ENODEV;
1297 
1298 	ret = uncore_pci_init();
1299 	if (ret)
1300 		goto fail;
1301 	ret = uncore_cpu_init();
1302 	if (ret) {
1303 		uncore_pci_exit();
1304 		goto fail;
1305 	}
1306 	uncore_cpumask_init();
1307 
1308 	uncore_pmus_register();
1309 	return 0;
1310 fail:
1311 	return ret;
1312 }
1313 device_initcall(intel_uncore_init);
1314