1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
udf_sb_lvidiu(struct super_block * sb)99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 struct logicalVolIntegrityDesc *lvid;
102 unsigned int partnum;
103 unsigned int offset;
104
105 if (!UDF_SB(sb)->s_lvid_bh)
106 return NULL;
107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 partnum = le32_to_cpu(lvid->numOfPartitions);
109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 (2 * sizeof(uint32_t)) < partnum) {
112 udf_err(sb, "Logical volume integrity descriptor corrupted "
113 "(numOfPartitions = %u)!\n", partnum);
114 return NULL;
115 }
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
udf_alloc_inode(struct super_block * sb)139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_next_alloc_block = 0;
149 ei->i_next_alloc_goal = 0;
150 ei->i_strat4096 = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154
155 return &ei->vfs_inode;
156 }
157
udf_i_callback(struct rcu_head * head)158 static void udf_i_callback(struct rcu_head *head)
159 {
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
udf_destroy_inode(struct inode * inode)164 static void udf_destroy_inode(struct inode *inode)
165 {
166 call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
init_once(void * foo)169 static void init_once(void *foo)
170 {
171 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173 ei->i_ext.i_data = NULL;
174 inode_init_once(&ei->vfs_inode);
175 }
176
init_inodecache(void)177 static int __init init_inodecache(void)
178 {
179 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 sizeof(struct udf_inode_info),
181 0, (SLAB_RECLAIM_ACCOUNT |
182 SLAB_MEM_SPREAD),
183 init_once);
184 if (!udf_inode_cachep)
185 return -ENOMEM;
186 return 0;
187 }
188
destroy_inodecache(void)189 static void destroy_inodecache(void)
190 {
191 /*
192 * Make sure all delayed rcu free inodes are flushed before we
193 * destroy cache.
194 */
195 rcu_barrier();
196 kmem_cache_destroy(udf_inode_cachep);
197 }
198
199 /* Superblock operations */
200 static const struct super_operations udf_sb_ops = {
201 .alloc_inode = udf_alloc_inode,
202 .destroy_inode = udf_destroy_inode,
203 .write_inode = udf_write_inode,
204 .evict_inode = udf_evict_inode,
205 .put_super = udf_put_super,
206 .sync_fs = udf_sync_fs,
207 .statfs = udf_statfs,
208 .remount_fs = udf_remount_fs,
209 .show_options = udf_show_options,
210 };
211
212 struct udf_options {
213 unsigned char novrs;
214 unsigned int blocksize;
215 unsigned int session;
216 unsigned int lastblock;
217 unsigned int anchor;
218 unsigned int volume;
219 unsigned short partition;
220 unsigned int fileset;
221 unsigned int rootdir;
222 unsigned int flags;
223 umode_t umask;
224 kgid_t gid;
225 kuid_t uid;
226 umode_t fmode;
227 umode_t dmode;
228 struct nls_table *nls_map;
229 };
230
init_udf_fs(void)231 static int __init init_udf_fs(void)
232 {
233 int err;
234
235 err = init_inodecache();
236 if (err)
237 goto out1;
238 err = register_filesystem(&udf_fstype);
239 if (err)
240 goto out;
241
242 return 0;
243
244 out:
245 destroy_inodecache();
246
247 out1:
248 return err;
249 }
250
exit_udf_fs(void)251 static void __exit exit_udf_fs(void)
252 {
253 unregister_filesystem(&udf_fstype);
254 destroy_inodecache();
255 }
256
257 module_init(init_udf_fs)
module_exit(exit_udf_fs)258 module_exit(exit_udf_fs)
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
265 GFP_KERNEL);
266 if (!sbi->s_partmaps) {
267 udf_err(sb, "Unable to allocate space for %d partition maps\n",
268 count);
269 sbi->s_partitions = 0;
270 return -ENOMEM;
271 }
272
273 sbi->s_partitions = count;
274 return 0;
275 }
276
udf_sb_free_bitmap(struct udf_bitmap * bitmap)277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
278 {
279 int i;
280 int nr_groups = bitmap->s_nr_groups;
281 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
282 nr_groups);
283
284 for (i = 0; i < nr_groups; i++)
285 if (bitmap->s_block_bitmap[i])
286 brelse(bitmap->s_block_bitmap[i]);
287
288 if (size <= PAGE_SIZE)
289 kfree(bitmap);
290 else
291 vfree(bitmap);
292 }
293
udf_free_partition(struct udf_part_map * map)294 static void udf_free_partition(struct udf_part_map *map)
295 {
296 int i;
297 struct udf_meta_data *mdata;
298
299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300 iput(map->s_uspace.s_table);
301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302 iput(map->s_fspace.s_table);
303 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307 if (map->s_partition_type == UDF_SPARABLE_MAP15)
308 for (i = 0; i < 4; i++)
309 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310 else if (map->s_partition_type == UDF_METADATA_MAP25) {
311 mdata = &map->s_type_specific.s_metadata;
312 iput(mdata->s_metadata_fe);
313 mdata->s_metadata_fe = NULL;
314
315 iput(mdata->s_mirror_fe);
316 mdata->s_mirror_fe = NULL;
317
318 iput(mdata->s_bitmap_fe);
319 mdata->s_bitmap_fe = NULL;
320 }
321 }
322
udf_sb_free_partitions(struct super_block * sb)323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325 struct udf_sb_info *sbi = UDF_SB(sb);
326 int i;
327 if (sbi->s_partmaps == NULL)
328 return;
329 for (i = 0; i < sbi->s_partitions; i++)
330 udf_free_partition(&sbi->s_partmaps[i]);
331 kfree(sbi->s_partmaps);
332 sbi->s_partmaps = NULL;
333 }
334
udf_show_options(struct seq_file * seq,struct dentry * root)335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337 struct super_block *sb = root->d_sb;
338 struct udf_sb_info *sbi = UDF_SB(sb);
339
340 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341 seq_puts(seq, ",nostrict");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345 seq_puts(seq, ",unhide");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347 seq_puts(seq, ",undelete");
348 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349 seq_puts(seq, ",noadinicb");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351 seq_puts(seq, ",shortad");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353 seq_puts(seq, ",uid=forget");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355 seq_puts(seq, ",uid=ignore");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357 seq_puts(seq, ",gid=forget");
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359 seq_puts(seq, ",gid=ignore");
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364 if (sbi->s_umask != 0)
365 seq_printf(seq, ",umask=%ho", sbi->s_umask);
366 if (sbi->s_fmode != UDF_INVALID_MODE)
367 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368 if (sbi->s_dmode != UDF_INVALID_MODE)
369 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371 seq_printf(seq, ",session=%u", sbi->s_session);
372 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374 if (sbi->s_anchor != 0)
375 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376 /*
377 * volume, partition, fileset and rootdir seem to be ignored
378 * currently
379 */
380 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381 seq_puts(seq, ",utf8");
382 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384
385 return 0;
386 }
387
388 /*
389 * udf_parse_options
390 *
391 * PURPOSE
392 * Parse mount options.
393 *
394 * DESCRIPTION
395 * The following mount options are supported:
396 *
397 * gid= Set the default group.
398 * umask= Set the default umask.
399 * mode= Set the default file permissions.
400 * dmode= Set the default directory permissions.
401 * uid= Set the default user.
402 * bs= Set the block size.
403 * unhide Show otherwise hidden files.
404 * undelete Show deleted files in lists.
405 * adinicb Embed data in the inode (default)
406 * noadinicb Don't embed data in the inode
407 * shortad Use short ad's
408 * longad Use long ad's (default)
409 * nostrict Unset strict conformance
410 * iocharset= Set the NLS character set
411 *
412 * The remaining are for debugging and disaster recovery:
413 *
414 * novrs Skip volume sequence recognition
415 *
416 * The following expect a offset from 0.
417 *
418 * session= Set the CDROM session (default= last session)
419 * anchor= Override standard anchor location. (default= 256)
420 * volume= Override the VolumeDesc location. (unused)
421 * partition= Override the PartitionDesc location. (unused)
422 * lastblock= Set the last block of the filesystem/
423 *
424 * The following expect a offset from the partition root.
425 *
426 * fileset= Override the fileset block location. (unused)
427 * rootdir= Override the root directory location. (unused)
428 * WARNING: overriding the rootdir to a non-directory may
429 * yield highly unpredictable results.
430 *
431 * PRE-CONDITIONS
432 * options Pointer to mount options string.
433 * uopts Pointer to mount options variable.
434 *
435 * POST-CONDITIONS
436 * <return> 1 Mount options parsed okay.
437 * <return> 0 Error parsing mount options.
438 *
439 * HISTORY
440 * July 1, 1997 - Andrew E. Mileski
441 * Written, tested, and released.
442 */
443
444 enum {
445 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449 Opt_rootdir, Opt_utf8, Opt_iocharset,
450 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451 Opt_fmode, Opt_dmode
452 };
453
454 static const match_table_t tokens = {
455 {Opt_novrs, "novrs"},
456 {Opt_nostrict, "nostrict"},
457 {Opt_bs, "bs=%u"},
458 {Opt_unhide, "unhide"},
459 {Opt_undelete, "undelete"},
460 {Opt_noadinicb, "noadinicb"},
461 {Opt_adinicb, "adinicb"},
462 {Opt_shortad, "shortad"},
463 {Opt_longad, "longad"},
464 {Opt_uforget, "uid=forget"},
465 {Opt_uignore, "uid=ignore"},
466 {Opt_gforget, "gid=forget"},
467 {Opt_gignore, "gid=ignore"},
468 {Opt_gid, "gid=%u"},
469 {Opt_uid, "uid=%u"},
470 {Opt_umask, "umask=%o"},
471 {Opt_session, "session=%u"},
472 {Opt_lastblock, "lastblock=%u"},
473 {Opt_anchor, "anchor=%u"},
474 {Opt_volume, "volume=%u"},
475 {Opt_partition, "partition=%u"},
476 {Opt_fileset, "fileset=%u"},
477 {Opt_rootdir, "rootdir=%u"},
478 {Opt_utf8, "utf8"},
479 {Opt_iocharset, "iocharset=%s"},
480 {Opt_fmode, "mode=%o"},
481 {Opt_dmode, "dmode=%o"},
482 {Opt_err, NULL}
483 };
484
udf_parse_options(char * options,struct udf_options * uopt,bool remount)485 static int udf_parse_options(char *options, struct udf_options *uopt,
486 bool remount)
487 {
488 char *p;
489 int option;
490
491 uopt->novrs = 0;
492 uopt->partition = 0xFFFF;
493 uopt->session = 0xFFFFFFFF;
494 uopt->lastblock = 0;
495 uopt->anchor = 0;
496 uopt->volume = 0xFFFFFFFF;
497 uopt->rootdir = 0xFFFFFFFF;
498 uopt->fileset = 0xFFFFFFFF;
499 uopt->nls_map = NULL;
500
501 if (!options)
502 return 1;
503
504 while ((p = strsep(&options, ",")) != NULL) {
505 substring_t args[MAX_OPT_ARGS];
506 int token;
507 unsigned n;
508 if (!*p)
509 continue;
510
511 token = match_token(p, tokens, args);
512 switch (token) {
513 case Opt_novrs:
514 uopt->novrs = 1;
515 break;
516 case Opt_bs:
517 if (match_int(&args[0], &option))
518 return 0;
519 n = option;
520 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521 return 0;
522 uopt->blocksize = n;
523 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524 break;
525 case Opt_unhide:
526 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527 break;
528 case Opt_undelete:
529 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530 break;
531 case Opt_noadinicb:
532 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533 break;
534 case Opt_adinicb:
535 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536 break;
537 case Opt_shortad:
538 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539 break;
540 case Opt_longad:
541 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542 break;
543 case Opt_gid:
544 if (match_int(args, &option))
545 return 0;
546 uopt->gid = make_kgid(current_user_ns(), option);
547 if (!gid_valid(uopt->gid))
548 return 0;
549 uopt->flags |= (1 << UDF_FLAG_GID_SET);
550 break;
551 case Opt_uid:
552 if (match_int(args, &option))
553 return 0;
554 uopt->uid = make_kuid(current_user_ns(), option);
555 if (!uid_valid(uopt->uid))
556 return 0;
557 uopt->flags |= (1 << UDF_FLAG_UID_SET);
558 break;
559 case Opt_umask:
560 if (match_octal(args, &option))
561 return 0;
562 uopt->umask = option;
563 break;
564 case Opt_nostrict:
565 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566 break;
567 case Opt_session:
568 if (match_int(args, &option))
569 return 0;
570 uopt->session = option;
571 if (!remount)
572 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573 break;
574 case Opt_lastblock:
575 if (match_int(args, &option))
576 return 0;
577 uopt->lastblock = option;
578 if (!remount)
579 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580 break;
581 case Opt_anchor:
582 if (match_int(args, &option))
583 return 0;
584 uopt->anchor = option;
585 break;
586 case Opt_volume:
587 if (match_int(args, &option))
588 return 0;
589 uopt->volume = option;
590 break;
591 case Opt_partition:
592 if (match_int(args, &option))
593 return 0;
594 uopt->partition = option;
595 break;
596 case Opt_fileset:
597 if (match_int(args, &option))
598 return 0;
599 uopt->fileset = option;
600 break;
601 case Opt_rootdir:
602 if (match_int(args, &option))
603 return 0;
604 uopt->rootdir = option;
605 break;
606 case Opt_utf8:
607 uopt->flags |= (1 << UDF_FLAG_UTF8);
608 break;
609 #ifdef CONFIG_UDF_NLS
610 case Opt_iocharset:
611 uopt->nls_map = load_nls(args[0].from);
612 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613 break;
614 #endif
615 case Opt_uignore:
616 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617 break;
618 case Opt_uforget:
619 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620 break;
621 case Opt_gignore:
622 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623 break;
624 case Opt_gforget:
625 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626 break;
627 case Opt_fmode:
628 if (match_octal(args, &option))
629 return 0;
630 uopt->fmode = option & 0777;
631 break;
632 case Opt_dmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->dmode = option & 0777;
636 break;
637 default:
638 pr_err("bad mount option \"%s\" or missing value\n", p);
639 return 0;
640 }
641 }
642 return 1;
643 }
644
udf_remount_fs(struct super_block * sb,int * flags,char * options)645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647 struct udf_options uopt;
648 struct udf_sb_info *sbi = UDF_SB(sb);
649 int error = 0;
650 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651
652 sync_filesystem(sb);
653 if (lvidiu) {
654 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656 return -EACCES;
657 }
658
659 uopt.flags = sbi->s_flags;
660 uopt.uid = sbi->s_uid;
661 uopt.gid = sbi->s_gid;
662 uopt.umask = sbi->s_umask;
663 uopt.fmode = sbi->s_fmode;
664 uopt.dmode = sbi->s_dmode;
665
666 if (!udf_parse_options(options, &uopt, true))
667 return -EINVAL;
668
669 write_lock(&sbi->s_cred_lock);
670 sbi->s_flags = uopt.flags;
671 sbi->s_uid = uopt.uid;
672 sbi->s_gid = uopt.gid;
673 sbi->s_umask = uopt.umask;
674 sbi->s_fmode = uopt.fmode;
675 sbi->s_dmode = uopt.dmode;
676 write_unlock(&sbi->s_cred_lock);
677
678 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679 goto out_unlock;
680
681 if (*flags & MS_RDONLY)
682 udf_close_lvid(sb);
683 else
684 udf_open_lvid(sb);
685
686 out_unlock:
687 return error;
688 }
689
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
udf_check_vsd(struct super_block * sb)692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694 struct volStructDesc *vsd = NULL;
695 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696 int sectorsize;
697 struct buffer_head *bh = NULL;
698 int nsr02 = 0;
699 int nsr03 = 0;
700 struct udf_sb_info *sbi;
701
702 sbi = UDF_SB(sb);
703 if (sb->s_blocksize < sizeof(struct volStructDesc))
704 sectorsize = sizeof(struct volStructDesc);
705 else
706 sectorsize = sb->s_blocksize;
707
708 sector += (sbi->s_session << sb->s_blocksize_bits);
709
710 udf_debug("Starting at sector %u (%ld byte sectors)\n",
711 (unsigned int)(sector >> sb->s_blocksize_bits),
712 sb->s_blocksize);
713 /* Process the sequence (if applicable). The hard limit on the sector
714 * offset is arbitrary, hopefully large enough so that all valid UDF
715 * filesystems will be recognised. There is no mention of an upper
716 * bound to the size of the volume recognition area in the standard.
717 * The limit will prevent the code to read all the sectors of a
718 * specially crafted image (like a bluray disc full of CD001 sectors),
719 * potentially causing minutes or even hours of uninterruptible I/O
720 * activity. This actually happened with uninitialised SSD partitions
721 * (all 0xFF) before the check for the limit and all valid IDs were
722 * added */
723 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724 sector += sectorsize) {
725 /* Read a block */
726 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727 if (!bh)
728 break;
729
730 /* Look for ISO descriptors */
731 vsd = (struct volStructDesc *)(bh->b_data +
732 (sector & (sb->s_blocksize - 1)));
733
734 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735 VSD_STD_ID_LEN)) {
736 switch (vsd->structType) {
737 case 0:
738 udf_debug("ISO9660 Boot Record found\n");
739 break;
740 case 1:
741 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742 break;
743 case 2:
744 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745 break;
746 case 3:
747 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748 break;
749 case 255:
750 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751 break;
752 default:
753 udf_debug("ISO9660 VRS (%u) found\n",
754 vsd->structType);
755 break;
756 }
757 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758 VSD_STD_ID_LEN))
759 ; /* nothing */
760 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761 VSD_STD_ID_LEN)) {
762 brelse(bh);
763 break;
764 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765 VSD_STD_ID_LEN))
766 nsr02 = sector;
767 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768 VSD_STD_ID_LEN))
769 nsr03 = sector;
770 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771 VSD_STD_ID_LEN))
772 ; /* nothing */
773 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774 VSD_STD_ID_LEN))
775 ; /* nothing */
776 else {
777 /* invalid id : end of volume recognition area */
778 brelse(bh);
779 break;
780 }
781 brelse(bh);
782 }
783
784 if (nsr03)
785 return nsr03;
786 else if (nsr02)
787 return nsr02;
788 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789 VSD_FIRST_SECTOR_OFFSET)
790 return -1;
791 else
792 return 0;
793 }
794
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)795 static int udf_find_fileset(struct super_block *sb,
796 struct kernel_lb_addr *fileset,
797 struct kernel_lb_addr *root)
798 {
799 struct buffer_head *bh = NULL;
800 long lastblock;
801 uint16_t ident;
802 struct udf_sb_info *sbi;
803
804 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805 fileset->partitionReferenceNum != 0xFFFF) {
806 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807
808 if (!bh) {
809 return 1;
810 } else if (ident != TAG_IDENT_FSD) {
811 brelse(bh);
812 return 1;
813 }
814
815 }
816
817 sbi = UDF_SB(sb);
818 if (!bh) {
819 /* Search backwards through the partitions */
820 struct kernel_lb_addr newfileset;
821
822 /* --> cvg: FIXME - is it reasonable? */
823 return 1;
824
825 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826 (newfileset.partitionReferenceNum != 0xFFFF &&
827 fileset->logicalBlockNum == 0xFFFFFFFF &&
828 fileset->partitionReferenceNum == 0xFFFF);
829 newfileset.partitionReferenceNum--) {
830 lastblock = sbi->s_partmaps
831 [newfileset.partitionReferenceNum]
832 .s_partition_len;
833 newfileset.logicalBlockNum = 0;
834
835 do {
836 bh = udf_read_ptagged(sb, &newfileset, 0,
837 &ident);
838 if (!bh) {
839 newfileset.logicalBlockNum++;
840 continue;
841 }
842
843 switch (ident) {
844 case TAG_IDENT_SBD:
845 {
846 struct spaceBitmapDesc *sp;
847 sp = (struct spaceBitmapDesc *)
848 bh->b_data;
849 newfileset.logicalBlockNum += 1 +
850 ((le32_to_cpu(sp->numOfBytes) +
851 sizeof(struct spaceBitmapDesc)
852 - 1) >> sb->s_blocksize_bits);
853 brelse(bh);
854 break;
855 }
856 case TAG_IDENT_FSD:
857 *fileset = newfileset;
858 break;
859 default:
860 newfileset.logicalBlockNum++;
861 brelse(bh);
862 bh = NULL;
863 break;
864 }
865 } while (newfileset.logicalBlockNum < lastblock &&
866 fileset->logicalBlockNum == 0xFFFFFFFF &&
867 fileset->partitionReferenceNum == 0xFFFF);
868 }
869 }
870
871 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872 fileset->partitionReferenceNum != 0xFFFF) && bh) {
873 udf_debug("Fileset at block=%d, partition=%d\n",
874 fileset->logicalBlockNum,
875 fileset->partitionReferenceNum);
876
877 sbi->s_partition = fileset->partitionReferenceNum;
878 udf_load_fileset(sb, bh, root);
879 brelse(bh);
880 return 0;
881 }
882 return 1;
883 }
884
885 /*
886 * Load primary Volume Descriptor Sequence
887 *
888 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889 * should be tried.
890 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893 struct primaryVolDesc *pvoldesc;
894 struct ustr *instr, *outstr;
895 struct buffer_head *bh;
896 uint16_t ident;
897 int ret = -ENOMEM;
898
899 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900 if (!instr)
901 return -ENOMEM;
902
903 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
904 if (!outstr)
905 goto out1;
906
907 bh = udf_read_tagged(sb, block, block, &ident);
908 if (!bh) {
909 ret = -EAGAIN;
910 goto out2;
911 }
912
913 if (ident != TAG_IDENT_PVD) {
914 ret = -EIO;
915 goto out_bh;
916 }
917
918 pvoldesc = (struct primaryVolDesc *)bh->b_data;
919
920 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
921 pvoldesc->recordingDateAndTime)) {
922 #ifdef UDFFS_DEBUG
923 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
924 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
925 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
926 ts->minute, le16_to_cpu(ts->typeAndTimezone));
927 #endif
928 }
929
930 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
931 if (udf_CS0toUTF8(outstr, instr)) {
932 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
933 outstr->u_len > 31 ? 31 : outstr->u_len);
934 udf_debug("volIdent[] = '%s'\n",
935 UDF_SB(sb)->s_volume_ident);
936 }
937
938 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
939 if (udf_CS0toUTF8(outstr, instr))
940 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
941
942 ret = 0;
943 out_bh:
944 brelse(bh);
945 out2:
946 kfree(outstr);
947 out1:
948 kfree(instr);
949 return ret;
950 }
951
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_num)952 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
953 u32 meta_file_loc, u32 partition_num)
954 {
955 struct kernel_lb_addr addr;
956 struct inode *metadata_fe;
957
958 addr.logicalBlockNum = meta_file_loc;
959 addr.partitionReferenceNum = partition_num;
960
961 metadata_fe = udf_iget_special(sb, &addr);
962
963 if (IS_ERR(metadata_fe)) {
964 udf_warn(sb, "metadata inode efe not found\n");
965 return metadata_fe;
966 }
967 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
968 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
969 iput(metadata_fe);
970 return ERR_PTR(-EIO);
971 }
972
973 return metadata_fe;
974 }
975
udf_load_metadata_files(struct super_block * sb,int partition)976 static int udf_load_metadata_files(struct super_block *sb, int partition)
977 {
978 struct udf_sb_info *sbi = UDF_SB(sb);
979 struct udf_part_map *map;
980 struct udf_meta_data *mdata;
981 struct kernel_lb_addr addr;
982 struct inode *fe;
983
984 map = &sbi->s_partmaps[partition];
985 mdata = &map->s_type_specific.s_metadata;
986
987 /* metadata address */
988 udf_debug("Metadata file location: block = %d part = %d\n",
989 mdata->s_meta_file_loc, map->s_partition_num);
990
991 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
992 map->s_partition_num);
993 if (IS_ERR(fe)) {
994 /* mirror file entry */
995 udf_debug("Mirror metadata file location: block = %d part = %d\n",
996 mdata->s_mirror_file_loc, map->s_partition_num);
997
998 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
999 map->s_partition_num);
1000
1001 if (IS_ERR(fe)) {
1002 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1003 return PTR_ERR(fe);
1004 }
1005 mdata->s_mirror_fe = fe;
1006 } else
1007 mdata->s_metadata_fe = fe;
1008
1009
1010 /*
1011 * bitmap file entry
1012 * Note:
1013 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1014 */
1015 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1016 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1017 addr.partitionReferenceNum = map->s_partition_num;
1018
1019 udf_debug("Bitmap file location: block = %d part = %d\n",
1020 addr.logicalBlockNum, addr.partitionReferenceNum);
1021
1022 fe = udf_iget_special(sb, &addr);
1023 if (IS_ERR(fe)) {
1024 if (sb->s_flags & MS_RDONLY)
1025 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1026 else {
1027 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1028 return PTR_ERR(fe);
1029 }
1030 } else
1031 mdata->s_bitmap_fe = fe;
1032 }
1033
1034 udf_debug("udf_load_metadata_files Ok\n");
1035 return 0;
1036 }
1037
udf_load_fileset(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * root)1038 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1039 struct kernel_lb_addr *root)
1040 {
1041 struct fileSetDesc *fset;
1042
1043 fset = (struct fileSetDesc *)bh->b_data;
1044
1045 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1046
1047 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1048
1049 udf_debug("Rootdir at block=%d, partition=%d\n",
1050 root->logicalBlockNum, root->partitionReferenceNum);
1051 }
1052
udf_compute_nr_groups(struct super_block * sb,u32 partition)1053 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1054 {
1055 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1056 return DIV_ROUND_UP(map->s_partition_len +
1057 (sizeof(struct spaceBitmapDesc) << 3),
1058 sb->s_blocksize * 8);
1059 }
1060
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1061 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1062 {
1063 struct udf_bitmap *bitmap;
1064 int nr_groups;
1065 int size;
1066
1067 nr_groups = udf_compute_nr_groups(sb, index);
1068 size = sizeof(struct udf_bitmap) +
1069 (sizeof(struct buffer_head *) * nr_groups);
1070
1071 if (size <= PAGE_SIZE)
1072 bitmap = kzalloc(size, GFP_KERNEL);
1073 else
1074 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1075
1076 if (bitmap == NULL)
1077 return NULL;
1078
1079 bitmap->s_nr_groups = nr_groups;
1080 return bitmap;
1081 }
1082
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1083 static int udf_fill_partdesc_info(struct super_block *sb,
1084 struct partitionDesc *p, int p_index)
1085 {
1086 struct udf_part_map *map;
1087 struct udf_sb_info *sbi = UDF_SB(sb);
1088 struct partitionHeaderDesc *phd;
1089
1090 map = &sbi->s_partmaps[p_index];
1091
1092 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1093 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1094
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1096 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1098 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1100 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1102 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1103
1104 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1105 p_index, map->s_partition_type,
1106 map->s_partition_root, map->s_partition_len);
1107
1108 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1109 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1110 return 0;
1111
1112 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1113 if (phd->unallocSpaceTable.extLength) {
1114 struct kernel_lb_addr loc = {
1115 .logicalBlockNum = le32_to_cpu(
1116 phd->unallocSpaceTable.extPosition),
1117 .partitionReferenceNum = p_index,
1118 };
1119 struct inode *inode;
1120
1121 inode = udf_iget_special(sb, &loc);
1122 if (IS_ERR(inode)) {
1123 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1124 p_index);
1125 return PTR_ERR(inode);
1126 }
1127 map->s_uspace.s_table = inode;
1128 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1129 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1130 p_index, map->s_uspace.s_table->i_ino);
1131 }
1132
1133 if (phd->unallocSpaceBitmap.extLength) {
1134 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135 if (!bitmap)
1136 return -ENOMEM;
1137 map->s_uspace.s_bitmap = bitmap;
1138 bitmap->s_extPosition = le32_to_cpu(
1139 phd->unallocSpaceBitmap.extPosition);
1140 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1141 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1142 p_index, bitmap->s_extPosition);
1143 }
1144
1145 if (phd->partitionIntegrityTable.extLength)
1146 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1147
1148 if (phd->freedSpaceTable.extLength) {
1149 struct kernel_lb_addr loc = {
1150 .logicalBlockNum = le32_to_cpu(
1151 phd->freedSpaceTable.extPosition),
1152 .partitionReferenceNum = p_index,
1153 };
1154 struct inode *inode;
1155
1156 inode = udf_iget_special(sb, &loc);
1157 if (IS_ERR(inode)) {
1158 udf_debug("cannot load freedSpaceTable (part %d)\n",
1159 p_index);
1160 return PTR_ERR(inode);
1161 }
1162 map->s_fspace.s_table = inode;
1163 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1164 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1165 p_index, map->s_fspace.s_table->i_ino);
1166 }
1167
1168 if (phd->freedSpaceBitmap.extLength) {
1169 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1170 if (!bitmap)
1171 return -ENOMEM;
1172 map->s_fspace.s_bitmap = bitmap;
1173 bitmap->s_extPosition = le32_to_cpu(
1174 phd->freedSpaceBitmap.extPosition);
1175 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1176 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1177 p_index, bitmap->s_extPosition);
1178 }
1179 return 0;
1180 }
1181
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1182 static void udf_find_vat_block(struct super_block *sb, int p_index,
1183 int type1_index, sector_t start_block)
1184 {
1185 struct udf_sb_info *sbi = UDF_SB(sb);
1186 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1187 sector_t vat_block;
1188 struct kernel_lb_addr ino;
1189 struct inode *inode;
1190
1191 /*
1192 * VAT file entry is in the last recorded block. Some broken disks have
1193 * it a few blocks before so try a bit harder...
1194 */
1195 ino.partitionReferenceNum = type1_index;
1196 for (vat_block = start_block;
1197 vat_block >= map->s_partition_root &&
1198 vat_block >= start_block - 3; vat_block--) {
1199 ino.logicalBlockNum = vat_block - map->s_partition_root;
1200 inode = udf_iget_special(sb, &ino);
1201 if (!IS_ERR(inode)) {
1202 sbi->s_vat_inode = inode;
1203 break;
1204 }
1205 }
1206 }
1207
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1208 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1209 {
1210 struct udf_sb_info *sbi = UDF_SB(sb);
1211 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1212 struct buffer_head *bh = NULL;
1213 struct udf_inode_info *vati;
1214 uint32_t pos;
1215 struct virtualAllocationTable20 *vat20;
1216 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1217
1218 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1219 if (!sbi->s_vat_inode &&
1220 sbi->s_last_block != blocks - 1) {
1221 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1222 (unsigned long)sbi->s_last_block,
1223 (unsigned long)blocks - 1);
1224 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1225 }
1226 if (!sbi->s_vat_inode)
1227 return -EIO;
1228
1229 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1230 map->s_type_specific.s_virtual.s_start_offset = 0;
1231 map->s_type_specific.s_virtual.s_num_entries =
1232 (sbi->s_vat_inode->i_size - 36) >> 2;
1233 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1234 vati = UDF_I(sbi->s_vat_inode);
1235 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1236 pos = udf_block_map(sbi->s_vat_inode, 0);
1237 bh = sb_bread(sb, pos);
1238 if (!bh)
1239 return -EIO;
1240 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1241 } else {
1242 vat20 = (struct virtualAllocationTable20 *)
1243 vati->i_ext.i_data;
1244 }
1245
1246 map->s_type_specific.s_virtual.s_start_offset =
1247 le16_to_cpu(vat20->lengthHeader);
1248 map->s_type_specific.s_virtual.s_num_entries =
1249 (sbi->s_vat_inode->i_size -
1250 map->s_type_specific.s_virtual.
1251 s_start_offset) >> 2;
1252 brelse(bh);
1253 }
1254 return 0;
1255 }
1256
1257 /*
1258 * Load partition descriptor block
1259 *
1260 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1261 * sequence.
1262 */
udf_load_partdesc(struct super_block * sb,sector_t block)1263 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1264 {
1265 struct buffer_head *bh;
1266 struct partitionDesc *p;
1267 struct udf_part_map *map;
1268 struct udf_sb_info *sbi = UDF_SB(sb);
1269 int i, type1_idx;
1270 uint16_t partitionNumber;
1271 uint16_t ident;
1272 int ret;
1273
1274 bh = udf_read_tagged(sb, block, block, &ident);
1275 if (!bh)
1276 return -EAGAIN;
1277 if (ident != TAG_IDENT_PD) {
1278 ret = 0;
1279 goto out_bh;
1280 }
1281
1282 p = (struct partitionDesc *)bh->b_data;
1283 partitionNumber = le16_to_cpu(p->partitionNumber);
1284
1285 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1286 for (i = 0; i < sbi->s_partitions; i++) {
1287 map = &sbi->s_partmaps[i];
1288 udf_debug("Searching map: (%d == %d)\n",
1289 map->s_partition_num, partitionNumber);
1290 if (map->s_partition_num == partitionNumber &&
1291 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1292 map->s_partition_type == UDF_SPARABLE_MAP15))
1293 break;
1294 }
1295
1296 if (i >= sbi->s_partitions) {
1297 udf_debug("Partition (%d) not found in partition map\n",
1298 partitionNumber);
1299 ret = 0;
1300 goto out_bh;
1301 }
1302
1303 ret = udf_fill_partdesc_info(sb, p, i);
1304 if (ret < 0)
1305 goto out_bh;
1306
1307 /*
1308 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1309 * PHYSICAL partitions are already set up
1310 */
1311 type1_idx = i;
1312 #ifdef UDFFS_DEBUG
1313 map = NULL; /* supress 'maybe used uninitialized' warning */
1314 #endif
1315 for (i = 0; i < sbi->s_partitions; i++) {
1316 map = &sbi->s_partmaps[i];
1317
1318 if (map->s_partition_num == partitionNumber &&
1319 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1320 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1321 map->s_partition_type == UDF_METADATA_MAP25))
1322 break;
1323 }
1324
1325 if (i >= sbi->s_partitions) {
1326 ret = 0;
1327 goto out_bh;
1328 }
1329
1330 ret = udf_fill_partdesc_info(sb, p, i);
1331 if (ret < 0)
1332 goto out_bh;
1333
1334 if (map->s_partition_type == UDF_METADATA_MAP25) {
1335 ret = udf_load_metadata_files(sb, i);
1336 if (ret < 0) {
1337 udf_err(sb, "error loading MetaData partition map %d\n",
1338 i);
1339 goto out_bh;
1340 }
1341 } else {
1342 /*
1343 * If we have a partition with virtual map, we don't handle
1344 * writing to it (we overwrite blocks instead of relocating
1345 * them).
1346 */
1347 if (!(sb->s_flags & MS_RDONLY)) {
1348 ret = -EACCES;
1349 goto out_bh;
1350 }
1351 ret = udf_load_vat(sb, i, type1_idx);
1352 if (ret < 0)
1353 goto out_bh;
1354 }
1355 ret = 0;
1356 out_bh:
1357 /* In case loading failed, we handle cleanup in udf_fill_super */
1358 brelse(bh);
1359 return ret;
1360 }
1361
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1362 static int udf_load_sparable_map(struct super_block *sb,
1363 struct udf_part_map *map,
1364 struct sparablePartitionMap *spm)
1365 {
1366 uint32_t loc;
1367 uint16_t ident;
1368 struct sparingTable *st;
1369 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1370 int i;
1371 struct buffer_head *bh;
1372
1373 map->s_partition_type = UDF_SPARABLE_MAP15;
1374 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1375 if (!is_power_of_2(sdata->s_packet_len)) {
1376 udf_err(sb, "error loading logical volume descriptor: "
1377 "Invalid packet length %u\n",
1378 (unsigned)sdata->s_packet_len);
1379 return -EIO;
1380 }
1381 if (spm->numSparingTables > 4) {
1382 udf_err(sb, "error loading logical volume descriptor: "
1383 "Too many sparing tables (%d)\n",
1384 (int)spm->numSparingTables);
1385 return -EIO;
1386 }
1387
1388 for (i = 0; i < spm->numSparingTables; i++) {
1389 loc = le32_to_cpu(spm->locSparingTable[i]);
1390 bh = udf_read_tagged(sb, loc, loc, &ident);
1391 if (!bh)
1392 continue;
1393
1394 st = (struct sparingTable *)bh->b_data;
1395 if (ident != 0 ||
1396 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1397 strlen(UDF_ID_SPARING)) ||
1398 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1399 sb->s_blocksize) {
1400 brelse(bh);
1401 continue;
1402 }
1403
1404 sdata->s_spar_map[i] = bh;
1405 }
1406 map->s_partition_func = udf_get_pblock_spar15;
1407 return 0;
1408 }
1409
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1410 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1411 struct kernel_lb_addr *fileset)
1412 {
1413 struct logicalVolDesc *lvd;
1414 int i, offset;
1415 uint8_t type;
1416 struct udf_sb_info *sbi = UDF_SB(sb);
1417 struct genericPartitionMap *gpm;
1418 uint16_t ident;
1419 struct buffer_head *bh;
1420 unsigned int table_len;
1421 int ret;
1422
1423 bh = udf_read_tagged(sb, block, block, &ident);
1424 if (!bh)
1425 return -EAGAIN;
1426 BUG_ON(ident != TAG_IDENT_LVD);
1427 lvd = (struct logicalVolDesc *)bh->b_data;
1428 table_len = le32_to_cpu(lvd->mapTableLength);
1429 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1430 udf_err(sb, "error loading logical volume descriptor: "
1431 "Partition table too long (%u > %lu)\n", table_len,
1432 sb->s_blocksize - sizeof(*lvd));
1433 ret = -EIO;
1434 goto out_bh;
1435 }
1436
1437 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1438 if (ret)
1439 goto out_bh;
1440
1441 for (i = 0, offset = 0;
1442 i < sbi->s_partitions && offset < table_len;
1443 i++, offset += gpm->partitionMapLength) {
1444 struct udf_part_map *map = &sbi->s_partmaps[i];
1445 gpm = (struct genericPartitionMap *)
1446 &(lvd->partitionMaps[offset]);
1447 type = gpm->partitionMapType;
1448 if (type == 1) {
1449 struct genericPartitionMap1 *gpm1 =
1450 (struct genericPartitionMap1 *)gpm;
1451 map->s_partition_type = UDF_TYPE1_MAP15;
1452 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1453 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1454 map->s_partition_func = NULL;
1455 } else if (type == 2) {
1456 struct udfPartitionMap2 *upm2 =
1457 (struct udfPartitionMap2 *)gpm;
1458 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1459 strlen(UDF_ID_VIRTUAL))) {
1460 u16 suf =
1461 le16_to_cpu(((__le16 *)upm2->partIdent.
1462 identSuffix)[0]);
1463 if (suf < 0x0200) {
1464 map->s_partition_type =
1465 UDF_VIRTUAL_MAP15;
1466 map->s_partition_func =
1467 udf_get_pblock_virt15;
1468 } else {
1469 map->s_partition_type =
1470 UDF_VIRTUAL_MAP20;
1471 map->s_partition_func =
1472 udf_get_pblock_virt20;
1473 }
1474 } else if (!strncmp(upm2->partIdent.ident,
1475 UDF_ID_SPARABLE,
1476 strlen(UDF_ID_SPARABLE))) {
1477 ret = udf_load_sparable_map(sb, map,
1478 (struct sparablePartitionMap *)gpm);
1479 if (ret < 0)
1480 goto out_bh;
1481 } else if (!strncmp(upm2->partIdent.ident,
1482 UDF_ID_METADATA,
1483 strlen(UDF_ID_METADATA))) {
1484 struct udf_meta_data *mdata =
1485 &map->s_type_specific.s_metadata;
1486 struct metadataPartitionMap *mdm =
1487 (struct metadataPartitionMap *)
1488 &(lvd->partitionMaps[offset]);
1489 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1490 i, type, UDF_ID_METADATA);
1491
1492 map->s_partition_type = UDF_METADATA_MAP25;
1493 map->s_partition_func = udf_get_pblock_meta25;
1494
1495 mdata->s_meta_file_loc =
1496 le32_to_cpu(mdm->metadataFileLoc);
1497 mdata->s_mirror_file_loc =
1498 le32_to_cpu(mdm->metadataMirrorFileLoc);
1499 mdata->s_bitmap_file_loc =
1500 le32_to_cpu(mdm->metadataBitmapFileLoc);
1501 mdata->s_alloc_unit_size =
1502 le32_to_cpu(mdm->allocUnitSize);
1503 mdata->s_align_unit_size =
1504 le16_to_cpu(mdm->alignUnitSize);
1505 if (mdm->flags & 0x01)
1506 mdata->s_flags |= MF_DUPLICATE_MD;
1507
1508 udf_debug("Metadata Ident suffix=0x%x\n",
1509 le16_to_cpu(*(__le16 *)
1510 mdm->partIdent.identSuffix));
1511 udf_debug("Metadata part num=%d\n",
1512 le16_to_cpu(mdm->partitionNum));
1513 udf_debug("Metadata part alloc unit size=%d\n",
1514 le32_to_cpu(mdm->allocUnitSize));
1515 udf_debug("Metadata file loc=%d\n",
1516 le32_to_cpu(mdm->metadataFileLoc));
1517 udf_debug("Mirror file loc=%d\n",
1518 le32_to_cpu(mdm->metadataMirrorFileLoc));
1519 udf_debug("Bitmap file loc=%d\n",
1520 le32_to_cpu(mdm->metadataBitmapFileLoc));
1521 udf_debug("Flags: %d %d\n",
1522 mdata->s_flags, mdm->flags);
1523 } else {
1524 udf_debug("Unknown ident: %s\n",
1525 upm2->partIdent.ident);
1526 continue;
1527 }
1528 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1529 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1530 }
1531 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1532 i, map->s_partition_num, type, map->s_volumeseqnum);
1533 }
1534
1535 if (fileset) {
1536 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1537
1538 *fileset = lelb_to_cpu(la->extLocation);
1539 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1540 fileset->logicalBlockNum,
1541 fileset->partitionReferenceNum);
1542 }
1543 if (lvd->integritySeqExt.extLength)
1544 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1545 ret = 0;
1546 out_bh:
1547 brelse(bh);
1548 return ret;
1549 }
1550
1551 /*
1552 * udf_load_logicalvolint
1553 *
1554 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557 struct buffer_head *bh = NULL;
1558 uint16_t ident;
1559 struct udf_sb_info *sbi = UDF_SB(sb);
1560 struct logicalVolIntegrityDesc *lvid;
1561
1562 while (loc.extLength > 0 &&
1563 (bh = udf_read_tagged(sb, loc.extLocation,
1564 loc.extLocation, &ident)) &&
1565 ident == TAG_IDENT_LVID) {
1566 sbi->s_lvid_bh = bh;
1567 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1568
1569 if (lvid->nextIntegrityExt.extLength)
1570 udf_load_logicalvolint(sb,
1571 leea_to_cpu(lvid->nextIntegrityExt));
1572
1573 if (sbi->s_lvid_bh != bh)
1574 brelse(bh);
1575 loc.extLength -= sb->s_blocksize;
1576 loc.extLocation++;
1577 }
1578 if (sbi->s_lvid_bh != bh)
1579 brelse(bh);
1580 }
1581
1582 /*
1583 * Process a main/reserve volume descriptor sequence.
1584 * @block First block of first extent of the sequence.
1585 * @lastblock Lastblock of first extent of the sequence.
1586 * @fileset There we store extent containing root fileset
1587 *
1588 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1589 * sequence
1590 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1591 static noinline int udf_process_sequence(
1592 struct super_block *sb,
1593 sector_t block, sector_t lastblock,
1594 struct kernel_lb_addr *fileset)
1595 {
1596 struct buffer_head *bh = NULL;
1597 struct udf_vds_record vds[VDS_POS_LENGTH];
1598 struct udf_vds_record *curr;
1599 struct generic_desc *gd;
1600 struct volDescPtr *vdp;
1601 bool done = false;
1602 uint32_t vdsn;
1603 uint16_t ident;
1604 long next_s = 0, next_e = 0;
1605 int ret;
1606
1607 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1608
1609 /*
1610 * Read the main descriptor sequence and find which descriptors
1611 * are in it.
1612 */
1613 for (; (!done && block <= lastblock); block++) {
1614
1615 bh = udf_read_tagged(sb, block, block, &ident);
1616 if (!bh) {
1617 udf_err(sb,
1618 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1619 (unsigned long long)block);
1620 return -EAGAIN;
1621 }
1622
1623 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1624 gd = (struct generic_desc *)bh->b_data;
1625 vdsn = le32_to_cpu(gd->volDescSeqNum);
1626 switch (ident) {
1627 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1629 if (vdsn >= curr->volDescSeqNum) {
1630 curr->volDescSeqNum = vdsn;
1631 curr->block = block;
1632 }
1633 break;
1634 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1635 curr = &vds[VDS_POS_VOL_DESC_PTR];
1636 if (vdsn >= curr->volDescSeqNum) {
1637 curr->volDescSeqNum = vdsn;
1638 curr->block = block;
1639
1640 vdp = (struct volDescPtr *)bh->b_data;
1641 next_s = le32_to_cpu(
1642 vdp->nextVolDescSeqExt.extLocation);
1643 next_e = le32_to_cpu(
1644 vdp->nextVolDescSeqExt.extLength);
1645 next_e = next_e >> sb->s_blocksize_bits;
1646 next_e += next_s;
1647 }
1648 break;
1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654 }
1655 break;
1656 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657 curr = &vds[VDS_POS_PARTITION_DESC];
1658 if (!curr->block)
1659 curr->block = block;
1660 break;
1661 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1663 if (vdsn >= curr->volDescSeqNum) {
1664 curr->volDescSeqNum = vdsn;
1665 curr->block = block;
1666 }
1667 break;
1668 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1669 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1670 if (vdsn >= curr->volDescSeqNum) {
1671 curr->volDescSeqNum = vdsn;
1672 curr->block = block;
1673 }
1674 break;
1675 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1676 vds[VDS_POS_TERMINATING_DESC].block = block;
1677 if (next_e) {
1678 block = next_s;
1679 lastblock = next_e;
1680 next_s = next_e = 0;
1681 } else
1682 done = true;
1683 break;
1684 }
1685 brelse(bh);
1686 }
1687 /*
1688 * Now read interesting descriptors again and process them
1689 * in a suitable order
1690 */
1691 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1692 udf_err(sb, "Primary Volume Descriptor not found!\n");
1693 return -EAGAIN;
1694 }
1695 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1696 if (ret < 0)
1697 return ret;
1698
1699 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1700 ret = udf_load_logicalvol(sb,
1701 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1702 fileset);
1703 if (ret < 0)
1704 return ret;
1705 }
1706
1707 if (vds[VDS_POS_PARTITION_DESC].block) {
1708 /*
1709 * We rescan the whole descriptor sequence to find
1710 * partition descriptor blocks and process them.
1711 */
1712 for (block = vds[VDS_POS_PARTITION_DESC].block;
1713 block < vds[VDS_POS_TERMINATING_DESC].block;
1714 block++) {
1715 ret = udf_load_partdesc(sb, block);
1716 if (ret < 0)
1717 return ret;
1718 }
1719 }
1720
1721 return 0;
1722 }
1723
1724 /*
1725 * Load Volume Descriptor Sequence described by anchor in bh
1726 *
1727 * Returns <0 on error, 0 on success
1728 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1729 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1730 struct kernel_lb_addr *fileset)
1731 {
1732 struct anchorVolDescPtr *anchor;
1733 sector_t main_s, main_e, reserve_s, reserve_e;
1734 int ret;
1735
1736 anchor = (struct anchorVolDescPtr *)bh->b_data;
1737
1738 /* Locate the main sequence */
1739 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1740 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1741 main_e = main_e >> sb->s_blocksize_bits;
1742 main_e += main_s;
1743
1744 /* Locate the reserve sequence */
1745 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1746 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1747 reserve_e = reserve_e >> sb->s_blocksize_bits;
1748 reserve_e += reserve_s;
1749
1750 /* Process the main & reserve sequences */
1751 /* responsible for finding the PartitionDesc(s) */
1752 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1753 if (ret != -EAGAIN)
1754 return ret;
1755 udf_sb_free_partitions(sb);
1756 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1757 if (ret < 0) {
1758 udf_sb_free_partitions(sb);
1759 /* No sequence was OK, return -EIO */
1760 if (ret == -EAGAIN)
1761 ret = -EIO;
1762 }
1763 return ret;
1764 }
1765
1766 /*
1767 * Check whether there is an anchor block in the given block and
1768 * load Volume Descriptor Sequence if so.
1769 *
1770 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1771 * block
1772 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1773 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1774 struct kernel_lb_addr *fileset)
1775 {
1776 struct buffer_head *bh;
1777 uint16_t ident;
1778 int ret;
1779
1780 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1781 udf_fixed_to_variable(block) >=
1782 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1783 return -EAGAIN;
1784
1785 bh = udf_read_tagged(sb, block, block, &ident);
1786 if (!bh)
1787 return -EAGAIN;
1788 if (ident != TAG_IDENT_AVDP) {
1789 brelse(bh);
1790 return -EAGAIN;
1791 }
1792 ret = udf_load_sequence(sb, bh, fileset);
1793 brelse(bh);
1794 return ret;
1795 }
1796
1797 /*
1798 * Search for an anchor volume descriptor pointer.
1799 *
1800 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1801 * of anchors.
1802 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1803 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1804 struct kernel_lb_addr *fileset)
1805 {
1806 sector_t last[6];
1807 int i;
1808 struct udf_sb_info *sbi = UDF_SB(sb);
1809 int last_count = 0;
1810 int ret;
1811
1812 /* First try user provided anchor */
1813 if (sbi->s_anchor) {
1814 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1815 if (ret != -EAGAIN)
1816 return ret;
1817 }
1818 /*
1819 * according to spec, anchor is in either:
1820 * block 256
1821 * lastblock-256
1822 * lastblock
1823 * however, if the disc isn't closed, it could be 512.
1824 */
1825 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1826 if (ret != -EAGAIN)
1827 return ret;
1828 /*
1829 * The trouble is which block is the last one. Drives often misreport
1830 * this so we try various possibilities.
1831 */
1832 last[last_count++] = *lastblock;
1833 if (*lastblock >= 1)
1834 last[last_count++] = *lastblock - 1;
1835 last[last_count++] = *lastblock + 1;
1836 if (*lastblock >= 2)
1837 last[last_count++] = *lastblock - 2;
1838 if (*lastblock >= 150)
1839 last[last_count++] = *lastblock - 150;
1840 if (*lastblock >= 152)
1841 last[last_count++] = *lastblock - 152;
1842
1843 for (i = 0; i < last_count; i++) {
1844 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1845 sb->s_blocksize_bits)
1846 continue;
1847 ret = udf_check_anchor_block(sb, last[i], fileset);
1848 if (ret != -EAGAIN) {
1849 if (!ret)
1850 *lastblock = last[i];
1851 return ret;
1852 }
1853 if (last[i] < 256)
1854 continue;
1855 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1856 if (ret != -EAGAIN) {
1857 if (!ret)
1858 *lastblock = last[i];
1859 return ret;
1860 }
1861 }
1862
1863 /* Finally try block 512 in case media is open */
1864 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1865 }
1866
1867 /*
1868 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1869 * area specified by it. The function expects sbi->s_lastblock to be the last
1870 * block on the media.
1871 *
1872 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1873 * was not found.
1874 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1875 static int udf_find_anchor(struct super_block *sb,
1876 struct kernel_lb_addr *fileset)
1877 {
1878 struct udf_sb_info *sbi = UDF_SB(sb);
1879 sector_t lastblock = sbi->s_last_block;
1880 int ret;
1881
1882 ret = udf_scan_anchors(sb, &lastblock, fileset);
1883 if (ret != -EAGAIN)
1884 goto out;
1885
1886 /* No anchor found? Try VARCONV conversion of block numbers */
1887 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1888 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1889 /* Firstly, we try to not convert number of the last block */
1890 ret = udf_scan_anchors(sb, &lastblock, fileset);
1891 if (ret != -EAGAIN)
1892 goto out;
1893
1894 lastblock = sbi->s_last_block;
1895 /* Secondly, we try with converted number of the last block */
1896 ret = udf_scan_anchors(sb, &lastblock, fileset);
1897 if (ret < 0) {
1898 /* VARCONV didn't help. Clear it. */
1899 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1900 }
1901 out:
1902 if (ret == 0)
1903 sbi->s_last_block = lastblock;
1904 return ret;
1905 }
1906
1907 /*
1908 * Check Volume Structure Descriptor, find Anchor block and load Volume
1909 * Descriptor Sequence.
1910 *
1911 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1912 * block was not found.
1913 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1914 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1915 int silent, struct kernel_lb_addr *fileset)
1916 {
1917 struct udf_sb_info *sbi = UDF_SB(sb);
1918 loff_t nsr_off;
1919 int ret;
1920
1921 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1922 if (!silent)
1923 udf_warn(sb, "Bad block size\n");
1924 return -EINVAL;
1925 }
1926 sbi->s_last_block = uopt->lastblock;
1927 if (!uopt->novrs) {
1928 /* Check that it is NSR02 compliant */
1929 nsr_off = udf_check_vsd(sb);
1930 if (!nsr_off) {
1931 if (!silent)
1932 udf_warn(sb, "No VRS found\n");
1933 return 0;
1934 }
1935 if (nsr_off == -1)
1936 udf_debug("Failed to read sector at offset %d. "
1937 "Assuming open disc. Skipping validity "
1938 "check\n", VSD_FIRST_SECTOR_OFFSET);
1939 if (!sbi->s_last_block)
1940 sbi->s_last_block = udf_get_last_block(sb);
1941 } else {
1942 udf_debug("Validity check skipped because of novrs option\n");
1943 }
1944
1945 /* Look for anchor block and load Volume Descriptor Sequence */
1946 sbi->s_anchor = uopt->anchor;
1947 ret = udf_find_anchor(sb, fileset);
1948 if (ret < 0) {
1949 if (!silent && ret == -EAGAIN)
1950 udf_warn(sb, "No anchor found\n");
1951 return ret;
1952 }
1953 return 0;
1954 }
1955
udf_open_lvid(struct super_block * sb)1956 static void udf_open_lvid(struct super_block *sb)
1957 {
1958 struct udf_sb_info *sbi = UDF_SB(sb);
1959 struct buffer_head *bh = sbi->s_lvid_bh;
1960 struct logicalVolIntegrityDesc *lvid;
1961 struct logicalVolIntegrityDescImpUse *lvidiu;
1962
1963 if (!bh)
1964 return;
1965 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1966 lvidiu = udf_sb_lvidiu(sb);
1967 if (!lvidiu)
1968 return;
1969
1970 mutex_lock(&sbi->s_alloc_mutex);
1971 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1972 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1973 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1974 CURRENT_TIME);
1975 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1976
1977 lvid->descTag.descCRC = cpu_to_le16(
1978 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1979 le16_to_cpu(lvid->descTag.descCRCLength)));
1980
1981 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1982 mark_buffer_dirty(bh);
1983 sbi->s_lvid_dirty = 0;
1984 mutex_unlock(&sbi->s_alloc_mutex);
1985 /* Make opening of filesystem visible on the media immediately */
1986 sync_dirty_buffer(bh);
1987 }
1988
udf_close_lvid(struct super_block * sb)1989 static void udf_close_lvid(struct super_block *sb)
1990 {
1991 struct udf_sb_info *sbi = UDF_SB(sb);
1992 struct buffer_head *bh = sbi->s_lvid_bh;
1993 struct logicalVolIntegrityDesc *lvid;
1994 struct logicalVolIntegrityDescImpUse *lvidiu;
1995
1996 if (!bh)
1997 return;
1998 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1999 lvidiu = udf_sb_lvidiu(sb);
2000 if (!lvidiu)
2001 return;
2002
2003 mutex_lock(&sbi->s_alloc_mutex);
2004 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2005 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2006 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2007 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2008 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2009 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2010 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2011 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2012 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2013 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2014
2015 lvid->descTag.descCRC = cpu_to_le16(
2016 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2017 le16_to_cpu(lvid->descTag.descCRCLength)));
2018
2019 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2020 /*
2021 * We set buffer uptodate unconditionally here to avoid spurious
2022 * warnings from mark_buffer_dirty() when previous EIO has marked
2023 * the buffer as !uptodate
2024 */
2025 set_buffer_uptodate(bh);
2026 mark_buffer_dirty(bh);
2027 sbi->s_lvid_dirty = 0;
2028 mutex_unlock(&sbi->s_alloc_mutex);
2029 /* Make closing of filesystem visible on the media immediately */
2030 sync_dirty_buffer(bh);
2031 }
2032
lvid_get_unique_id(struct super_block * sb)2033 u64 lvid_get_unique_id(struct super_block *sb)
2034 {
2035 struct buffer_head *bh;
2036 struct udf_sb_info *sbi = UDF_SB(sb);
2037 struct logicalVolIntegrityDesc *lvid;
2038 struct logicalVolHeaderDesc *lvhd;
2039 u64 uniqueID;
2040 u64 ret;
2041
2042 bh = sbi->s_lvid_bh;
2043 if (!bh)
2044 return 0;
2045
2046 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2047 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2048
2049 mutex_lock(&sbi->s_alloc_mutex);
2050 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2051 if (!(++uniqueID & 0xFFFFFFFF))
2052 uniqueID += 16;
2053 lvhd->uniqueID = cpu_to_le64(uniqueID);
2054 mutex_unlock(&sbi->s_alloc_mutex);
2055 mark_buffer_dirty(bh);
2056
2057 return ret;
2058 }
2059
udf_fill_super(struct super_block * sb,void * options,int silent)2060 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2061 {
2062 int ret = -EINVAL;
2063 struct inode *inode = NULL;
2064 struct udf_options uopt;
2065 struct kernel_lb_addr rootdir, fileset;
2066 struct udf_sb_info *sbi;
2067
2068 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2069 uopt.uid = INVALID_UID;
2070 uopt.gid = INVALID_GID;
2071 uopt.umask = 0;
2072 uopt.fmode = UDF_INVALID_MODE;
2073 uopt.dmode = UDF_INVALID_MODE;
2074
2075 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2076 if (!sbi)
2077 return -ENOMEM;
2078
2079 sb->s_fs_info = sbi;
2080
2081 mutex_init(&sbi->s_alloc_mutex);
2082
2083 if (!udf_parse_options((char *)options, &uopt, false))
2084 goto parse_options_failure;
2085
2086 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2087 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2088 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2089 goto parse_options_failure;
2090 }
2091 #ifdef CONFIG_UDF_NLS
2092 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2093 uopt.nls_map = load_nls_default();
2094 if (!uopt.nls_map)
2095 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2096 else
2097 udf_debug("Using default NLS map\n");
2098 }
2099 #endif
2100 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2101 uopt.flags |= (1 << UDF_FLAG_UTF8);
2102
2103 fileset.logicalBlockNum = 0xFFFFFFFF;
2104 fileset.partitionReferenceNum = 0xFFFF;
2105
2106 sbi->s_flags = uopt.flags;
2107 sbi->s_uid = uopt.uid;
2108 sbi->s_gid = uopt.gid;
2109 sbi->s_umask = uopt.umask;
2110 sbi->s_fmode = uopt.fmode;
2111 sbi->s_dmode = uopt.dmode;
2112 sbi->s_nls_map = uopt.nls_map;
2113 rwlock_init(&sbi->s_cred_lock);
2114
2115 if (uopt.session == 0xFFFFFFFF)
2116 sbi->s_session = udf_get_last_session(sb);
2117 else
2118 sbi->s_session = uopt.session;
2119
2120 udf_debug("Multi-session=%d\n", sbi->s_session);
2121
2122 /* Fill in the rest of the superblock */
2123 sb->s_op = &udf_sb_ops;
2124 sb->s_export_op = &udf_export_ops;
2125
2126 sb->s_magic = UDF_SUPER_MAGIC;
2127 sb->s_time_gran = 1000;
2128
2129 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2130 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2131 } else {
2132 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2133 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2134 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2135 if (!silent)
2136 pr_notice("Rescanning with blocksize %d\n",
2137 UDF_DEFAULT_BLOCKSIZE);
2138 brelse(sbi->s_lvid_bh);
2139 sbi->s_lvid_bh = NULL;
2140 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2141 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2142 }
2143 }
2144 if (ret < 0) {
2145 if (ret == -EAGAIN) {
2146 udf_warn(sb, "No partition found (1)\n");
2147 ret = -EINVAL;
2148 }
2149 goto error_out;
2150 }
2151
2152 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2153
2154 if (sbi->s_lvid_bh) {
2155 struct logicalVolIntegrityDescImpUse *lvidiu =
2156 udf_sb_lvidiu(sb);
2157 uint16_t minUDFReadRev;
2158 uint16_t minUDFWriteRev;
2159
2160 if (!lvidiu) {
2161 ret = -EINVAL;
2162 goto error_out;
2163 }
2164 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2165 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2166 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2167 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2168 minUDFReadRev,
2169 UDF_MAX_READ_VERSION);
2170 ret = -EINVAL;
2171 goto error_out;
2172 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2173 !(sb->s_flags & MS_RDONLY)) {
2174 ret = -EACCES;
2175 goto error_out;
2176 }
2177
2178 sbi->s_udfrev = minUDFWriteRev;
2179
2180 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2181 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2182 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2183 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2184 }
2185
2186 if (!sbi->s_partitions) {
2187 udf_warn(sb, "No partition found (2)\n");
2188 ret = -EINVAL;
2189 goto error_out;
2190 }
2191
2192 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2193 UDF_PART_FLAG_READ_ONLY &&
2194 !(sb->s_flags & MS_RDONLY)) {
2195 ret = -EACCES;
2196 goto error_out;
2197 }
2198
2199 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2200 udf_warn(sb, "No fileset found\n");
2201 ret = -EINVAL;
2202 goto error_out;
2203 }
2204
2205 if (!silent) {
2206 struct timestamp ts;
2207 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2208 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2209 sbi->s_volume_ident,
2210 le16_to_cpu(ts.year), ts.month, ts.day,
2211 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2212 }
2213 if (!(sb->s_flags & MS_RDONLY))
2214 udf_open_lvid(sb);
2215
2216 /* Assign the root inode */
2217 /* assign inodes by physical block number */
2218 /* perhaps it's not extensible enough, but for now ... */
2219 inode = udf_iget(sb, &rootdir);
2220 if (IS_ERR(inode)) {
2221 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2222 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2223 ret = PTR_ERR(inode);
2224 goto error_out;
2225 }
2226
2227 /* Allocate a dentry for the root inode */
2228 sb->s_root = d_make_root(inode);
2229 if (!sb->s_root) {
2230 udf_err(sb, "Couldn't allocate root dentry\n");
2231 ret = -ENOMEM;
2232 goto error_out;
2233 }
2234 sb->s_maxbytes = MAX_LFS_FILESIZE;
2235 sb->s_max_links = UDF_MAX_LINKS;
2236 return 0;
2237
2238 error_out:
2239 iput(sbi->s_vat_inode);
2240 parse_options_failure:
2241 #ifdef CONFIG_UDF_NLS
2242 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2243 unload_nls(sbi->s_nls_map);
2244 #endif
2245 if (!(sb->s_flags & MS_RDONLY))
2246 udf_close_lvid(sb);
2247 brelse(sbi->s_lvid_bh);
2248 udf_sb_free_partitions(sb);
2249 kfree(sbi);
2250 sb->s_fs_info = NULL;
2251
2252 return ret;
2253 }
2254
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2255 void _udf_err(struct super_block *sb, const char *function,
2256 const char *fmt, ...)
2257 {
2258 struct va_format vaf;
2259 va_list args;
2260
2261 va_start(args, fmt);
2262
2263 vaf.fmt = fmt;
2264 vaf.va = &args;
2265
2266 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2267
2268 va_end(args);
2269 }
2270
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2271 void _udf_warn(struct super_block *sb, const char *function,
2272 const char *fmt, ...)
2273 {
2274 struct va_format vaf;
2275 va_list args;
2276
2277 va_start(args, fmt);
2278
2279 vaf.fmt = fmt;
2280 vaf.va = &args;
2281
2282 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2283
2284 va_end(args);
2285 }
2286
udf_put_super(struct super_block * sb)2287 static void udf_put_super(struct super_block *sb)
2288 {
2289 struct udf_sb_info *sbi;
2290
2291 sbi = UDF_SB(sb);
2292
2293 iput(sbi->s_vat_inode);
2294 #ifdef CONFIG_UDF_NLS
2295 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2296 unload_nls(sbi->s_nls_map);
2297 #endif
2298 if (!(sb->s_flags & MS_RDONLY))
2299 udf_close_lvid(sb);
2300 brelse(sbi->s_lvid_bh);
2301 udf_sb_free_partitions(sb);
2302 mutex_destroy(&sbi->s_alloc_mutex);
2303 kfree(sb->s_fs_info);
2304 sb->s_fs_info = NULL;
2305 }
2306
udf_sync_fs(struct super_block * sb,int wait)2307 static int udf_sync_fs(struct super_block *sb, int wait)
2308 {
2309 struct udf_sb_info *sbi = UDF_SB(sb);
2310
2311 mutex_lock(&sbi->s_alloc_mutex);
2312 if (sbi->s_lvid_dirty) {
2313 /*
2314 * Blockdevice will be synced later so we don't have to submit
2315 * the buffer for IO
2316 */
2317 mark_buffer_dirty(sbi->s_lvid_bh);
2318 sbi->s_lvid_dirty = 0;
2319 }
2320 mutex_unlock(&sbi->s_alloc_mutex);
2321
2322 return 0;
2323 }
2324
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2325 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2326 {
2327 struct super_block *sb = dentry->d_sb;
2328 struct udf_sb_info *sbi = UDF_SB(sb);
2329 struct logicalVolIntegrityDescImpUse *lvidiu;
2330 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2331
2332 lvidiu = udf_sb_lvidiu(sb);
2333 buf->f_type = UDF_SUPER_MAGIC;
2334 buf->f_bsize = sb->s_blocksize;
2335 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2336 buf->f_bfree = udf_count_free(sb);
2337 buf->f_bavail = buf->f_bfree;
2338 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2339 le32_to_cpu(lvidiu->numDirs)) : 0)
2340 + buf->f_bfree;
2341 buf->f_ffree = buf->f_bfree;
2342 buf->f_namelen = UDF_NAME_LEN - 2;
2343 buf->f_fsid.val[0] = (u32)id;
2344 buf->f_fsid.val[1] = (u32)(id >> 32);
2345
2346 return 0;
2347 }
2348
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2349 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2350 struct udf_bitmap *bitmap)
2351 {
2352 struct buffer_head *bh = NULL;
2353 unsigned int accum = 0;
2354 int index;
2355 int block = 0, newblock;
2356 struct kernel_lb_addr loc;
2357 uint32_t bytes;
2358 uint8_t *ptr;
2359 uint16_t ident;
2360 struct spaceBitmapDesc *bm;
2361
2362 loc.logicalBlockNum = bitmap->s_extPosition;
2363 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2364 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2365
2366 if (!bh) {
2367 udf_err(sb, "udf_count_free failed\n");
2368 goto out;
2369 } else if (ident != TAG_IDENT_SBD) {
2370 brelse(bh);
2371 udf_err(sb, "udf_count_free failed\n");
2372 goto out;
2373 }
2374
2375 bm = (struct spaceBitmapDesc *)bh->b_data;
2376 bytes = le32_to_cpu(bm->numOfBytes);
2377 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2378 ptr = (uint8_t *)bh->b_data;
2379
2380 while (bytes > 0) {
2381 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2382 accum += bitmap_weight((const unsigned long *)(ptr + index),
2383 cur_bytes * 8);
2384 bytes -= cur_bytes;
2385 if (bytes) {
2386 brelse(bh);
2387 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2388 bh = udf_tread(sb, newblock);
2389 if (!bh) {
2390 udf_debug("read failed\n");
2391 goto out;
2392 }
2393 index = 0;
2394 ptr = (uint8_t *)bh->b_data;
2395 }
2396 }
2397 brelse(bh);
2398 out:
2399 return accum;
2400 }
2401
udf_count_free_table(struct super_block * sb,struct inode * table)2402 static unsigned int udf_count_free_table(struct super_block *sb,
2403 struct inode *table)
2404 {
2405 unsigned int accum = 0;
2406 uint32_t elen;
2407 struct kernel_lb_addr eloc;
2408 int8_t etype;
2409 struct extent_position epos;
2410
2411 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2412 epos.block = UDF_I(table)->i_location;
2413 epos.offset = sizeof(struct unallocSpaceEntry);
2414 epos.bh = NULL;
2415
2416 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2417 accum += (elen >> table->i_sb->s_blocksize_bits);
2418
2419 brelse(epos.bh);
2420 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2421
2422 return accum;
2423 }
2424
udf_count_free(struct super_block * sb)2425 static unsigned int udf_count_free(struct super_block *sb)
2426 {
2427 unsigned int accum = 0;
2428 struct udf_sb_info *sbi;
2429 struct udf_part_map *map;
2430
2431 sbi = UDF_SB(sb);
2432 if (sbi->s_lvid_bh) {
2433 struct logicalVolIntegrityDesc *lvid =
2434 (struct logicalVolIntegrityDesc *)
2435 sbi->s_lvid_bh->b_data;
2436 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2437 accum = le32_to_cpu(
2438 lvid->freeSpaceTable[sbi->s_partition]);
2439 if (accum == 0xFFFFFFFF)
2440 accum = 0;
2441 }
2442 }
2443
2444 if (accum)
2445 return accum;
2446
2447 map = &sbi->s_partmaps[sbi->s_partition];
2448 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2449 accum += udf_count_free_bitmap(sb,
2450 map->s_uspace.s_bitmap);
2451 }
2452 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2453 accum += udf_count_free_bitmap(sb,
2454 map->s_fspace.s_bitmap);
2455 }
2456 if (accum)
2457 return accum;
2458
2459 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2460 accum += udf_count_free_table(sb,
2461 map->s_uspace.s_table);
2462 }
2463 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2464 accum += udf_count_free_table(sb,
2465 map->s_fspace.s_table);
2466 }
2467
2468 return accum;
2469 }
2470