1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21 /*
22 * UBI wear-leveling sub-system.
23 *
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
45 *
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
49 *
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
64 *
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
91 *
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
99 */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 struct ubi_wl_entry *e);
143
144 /**
145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146 * @e: the wear-leveling entry to add
147 * @root: the root of the tree
148 *
149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150 * the @ubi->used and @ubi->free RB-trees.
151 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 struct rb_node **p, *parent = NULL;
155
156 p = &root->rb_node;
157 while (*p) {
158 struct ubi_wl_entry *e1;
159
160 parent = *p;
161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163 if (e->ec < e1->ec)
164 p = &(*p)->rb_left;
165 else if (e->ec > e1->ec)
166 p = &(*p)->rb_right;
167 else {
168 ubi_assert(e->pnum != e1->pnum);
169 if (e->pnum < e1->pnum)
170 p = &(*p)->rb_left;
171 else
172 p = &(*p)->rb_right;
173 }
174 }
175
176 rb_link_node(&e->u.rb, parent, p);
177 rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181 * wl_tree_destroy - destroy a wear-leveling entry.
182 * @ubi: UBI device description object
183 * @e: the wear-leveling entry to add
184 *
185 * This function destroys a wear leveling entry and removes
186 * the reference from the lookup table.
187 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 ubi->lookuptbl[e->pnum] = NULL;
191 kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195 * do_work - do one pending work.
196 * @ubi: UBI device description object
197 *
198 * This function returns zero in case of success and a negative error code in
199 * case of failure.
200 */
do_work(struct ubi_device * ubi)201 static int do_work(struct ubi_device *ubi)
202 {
203 int err;
204 struct ubi_work *wrk;
205
206 cond_resched();
207
208 /*
209 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 * it in read mode, so many of them may be doing works at a time. But
211 * the queue flush code has to be sure the whole queue of works is
212 * done, and it takes the mutex in write mode.
213 */
214 down_read(&ubi->work_sem);
215 spin_lock(&ubi->wl_lock);
216 if (list_empty(&ubi->works)) {
217 spin_unlock(&ubi->wl_lock);
218 up_read(&ubi->work_sem);
219 return 0;
220 }
221
222 wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 list_del(&wrk->list);
224 ubi->works_count -= 1;
225 ubi_assert(ubi->works_count >= 0);
226 spin_unlock(&ubi->wl_lock);
227
228 /*
229 * Call the worker function. Do not touch the work structure
230 * after this call as it will have been freed or reused by that
231 * time by the worker function.
232 */
233 err = wrk->func(ubi, wrk, 0);
234 if (err)
235 ubi_err(ubi, "work failed with error code %d", err);
236 up_read(&ubi->work_sem);
237
238 return err;
239 }
240
241 /**
242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243 * @e: the wear-leveling entry to check
244 * @root: the root of the tree
245 *
246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
247 * is not.
248 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 struct rb_node *p;
252
253 p = root->rb_node;
254 while (p) {
255 struct ubi_wl_entry *e1;
256
257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259 if (e->pnum == e1->pnum) {
260 ubi_assert(e == e1);
261 return 1;
262 }
263
264 if (e->ec < e1->ec)
265 p = p->rb_left;
266 else if (e->ec > e1->ec)
267 p = p->rb_right;
268 else {
269 ubi_assert(e->pnum != e1->pnum);
270 if (e->pnum < e1->pnum)
271 p = p->rb_left;
272 else
273 p = p->rb_right;
274 }
275 }
276
277 return 0;
278 }
279
280 /**
281 * prot_queue_add - add physical eraseblock to the protection queue.
282 * @ubi: UBI device description object
283 * @e: the physical eraseblock to add
284 *
285 * This function adds @e to the tail of the protection queue @ubi->pq, where
286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288 * be locked.
289 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292 int pq_tail = ubi->pq_head - 1;
293
294 if (pq_tail < 0)
295 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303 * @ubi: UBI device description object
304 * @root: the RB-tree where to look for
305 * @diff: maximum possible difference from the smallest erase counter
306 *
307 * This function looks for a wear leveling entry with erase counter closest to
308 * min + @diff, where min is the smallest erase counter.
309 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 struct rb_root *root, int diff)
312 {
313 struct rb_node *p;
314 struct ubi_wl_entry *e, *prev_e = NULL;
315 int max;
316
317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318 max = e->ec + diff;
319
320 p = root->rb_node;
321 while (p) {
322 struct ubi_wl_entry *e1;
323
324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325 if (e1->ec >= max)
326 p = p->rb_left;
327 else {
328 p = p->rb_right;
329 prev_e = e;
330 e = e1;
331 }
332 }
333
334 /* If no fastmap has been written and this WL entry can be used
335 * as anchor PEB, hold it back and return the second best WL entry
336 * such that fastmap can use the anchor PEB later. */
337 if (prev_e && !ubi->fm_disabled &&
338 !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 return prev_e;
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 int vol_id, int lnum, int torture)
584 {
585 struct ubi_work *wl_wrk;
586
587 ubi_assert(e);
588
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
600 wl_wrk->torture = torture;
601
602 schedule_ubi_work(ubi, wl_wrk);
603 return 0;
604 }
605
606 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
607 /**
608 * do_sync_erase - run the erase worker synchronously.
609 * @ubi: UBI device description object
610 * @e: the WL entry of the physical eraseblock to erase
611 * @vol_id: the volume ID that last used this PEB
612 * @lnum: the last used logical eraseblock number for the PEB
613 * @torture: if the physical eraseblock has to be tortured
614 *
615 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
617 int vol_id, int lnum, int torture)
618 {
619 struct ubi_work wl_wrk;
620
621 dbg_wl("sync erase of PEB %i", e->pnum);
622
623 wl_wrk.e = e;
624 wl_wrk.vol_id = vol_id;
625 wl_wrk.lnum = lnum;
626 wl_wrk.torture = torture;
627
628 return __erase_worker(ubi, &wl_wrk);
629 }
630
631 /**
632 * wear_leveling_worker - wear-leveling worker function.
633 * @ubi: UBI device description object
634 * @wrk: the work object
635 * @shutdown: non-zero if the worker has to free memory and exit
636 * because the WL-subsystem is shutting down
637 *
638 * This function copies a more worn out physical eraseblock to a less worn out
639 * one. Returns zero in case of success and a negative error code in case of
640 * failure.
641 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)642 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
643 int shutdown)
644 {
645 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
646 int vol_id = -1, lnum = -1;
647 #ifdef CONFIG_MTD_UBI_FASTMAP
648 int anchor = wrk->anchor;
649 #endif
650 struct ubi_wl_entry *e1, *e2;
651 struct ubi_vid_hdr *vid_hdr;
652
653 kfree(wrk);
654 if (shutdown)
655 return 0;
656
657 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
658 if (!vid_hdr)
659 return -ENOMEM;
660
661 mutex_lock(&ubi->move_mutex);
662 spin_lock(&ubi->wl_lock);
663 ubi_assert(!ubi->move_from && !ubi->move_to);
664 ubi_assert(!ubi->move_to_put);
665
666 if (!ubi->free.rb_node ||
667 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
668 /*
669 * No free physical eraseblocks? Well, they must be waiting in
670 * the queue to be erased. Cancel movement - it will be
671 * triggered again when a free physical eraseblock appears.
672 *
673 * No used physical eraseblocks? They must be temporarily
674 * protected from being moved. They will be moved to the
675 * @ubi->used tree later and the wear-leveling will be
676 * triggered again.
677 */
678 dbg_wl("cancel WL, a list is empty: free %d, used %d",
679 !ubi->free.rb_node, !ubi->used.rb_node);
680 goto out_cancel;
681 }
682
683 #ifdef CONFIG_MTD_UBI_FASTMAP
684 /* Check whether we need to produce an anchor PEB */
685 if (!anchor)
686 anchor = !anchor_pebs_avalible(&ubi->free);
687
688 if (anchor) {
689 e1 = find_anchor_wl_entry(&ubi->used);
690 if (!e1)
691 goto out_cancel;
692 e2 = get_peb_for_wl(ubi);
693 if (!e2)
694 goto out_cancel;
695
696 self_check_in_wl_tree(ubi, e1, &ubi->used);
697 rb_erase(&e1->u.rb, &ubi->used);
698 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
699 } else if (!ubi->scrub.rb_node) {
700 #else
701 if (!ubi->scrub.rb_node) {
702 #endif
703 /*
704 * Now pick the least worn-out used physical eraseblock and a
705 * highly worn-out free physical eraseblock. If the erase
706 * counters differ much enough, start wear-leveling.
707 */
708 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
709 e2 = get_peb_for_wl(ubi);
710 if (!e2)
711 goto out_cancel;
712
713 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
714 dbg_wl("no WL needed: min used EC %d, max free EC %d",
715 e1->ec, e2->ec);
716
717 /* Give the unused PEB back */
718 wl_tree_add(e2, &ubi->free);
719 ubi->free_count++;
720 goto out_cancel;
721 }
722 self_check_in_wl_tree(ubi, e1, &ubi->used);
723 rb_erase(&e1->u.rb, &ubi->used);
724 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
725 e1->pnum, e1->ec, e2->pnum, e2->ec);
726 } else {
727 /* Perform scrubbing */
728 scrubbing = 1;
729 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
730 e2 = get_peb_for_wl(ubi);
731 if (!e2)
732 goto out_cancel;
733
734 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
735 rb_erase(&e1->u.rb, &ubi->scrub);
736 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
737 }
738
739 ubi->move_from = e1;
740 ubi->move_to = e2;
741 spin_unlock(&ubi->wl_lock);
742
743 /*
744 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
745 * We so far do not know which logical eraseblock our physical
746 * eraseblock (@e1) belongs to. We have to read the volume identifier
747 * header first.
748 *
749 * Note, we are protected from this PEB being unmapped and erased. The
750 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
751 * which is being moved was unmapped.
752 */
753
754 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
755 if (err && err != UBI_IO_BITFLIPS) {
756 if (err == UBI_IO_FF) {
757 /*
758 * We are trying to move PEB without a VID header. UBI
759 * always write VID headers shortly after the PEB was
760 * given, so we have a situation when it has not yet
761 * had a chance to write it, because it was preempted.
762 * So add this PEB to the protection queue so far,
763 * because presumably more data will be written there
764 * (including the missing VID header), and then we'll
765 * move it.
766 */
767 dbg_wl("PEB %d has no VID header", e1->pnum);
768 protect = 1;
769 goto out_not_moved;
770 } else if (err == UBI_IO_FF_BITFLIPS) {
771 /*
772 * The same situation as %UBI_IO_FF, but bit-flips were
773 * detected. It is better to schedule this PEB for
774 * scrubbing.
775 */
776 dbg_wl("PEB %d has no VID header but has bit-flips",
777 e1->pnum);
778 scrubbing = 1;
779 goto out_not_moved;
780 }
781
782 ubi_err(ubi, "error %d while reading VID header from PEB %d",
783 err, e1->pnum);
784 goto out_error;
785 }
786
787 vol_id = be32_to_cpu(vid_hdr->vol_id);
788 lnum = be32_to_cpu(vid_hdr->lnum);
789
790 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
791 if (err) {
792 if (err == MOVE_CANCEL_RACE) {
793 /*
794 * The LEB has not been moved because the volume is
795 * being deleted or the PEB has been put meanwhile. We
796 * should prevent this PEB from being selected for
797 * wear-leveling movement again, so put it to the
798 * protection queue.
799 */
800 protect = 1;
801 goto out_not_moved;
802 }
803 if (err == MOVE_RETRY) {
804 scrubbing = 1;
805 goto out_not_moved;
806 }
807 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
808 err == MOVE_TARGET_RD_ERR) {
809 /*
810 * Target PEB had bit-flips or write error - torture it.
811 */
812 torture = 1;
813 goto out_not_moved;
814 }
815
816 if (err == MOVE_SOURCE_RD_ERR) {
817 /*
818 * An error happened while reading the source PEB. Do
819 * not switch to R/O mode in this case, and give the
820 * upper layers a possibility to recover from this,
821 * e.g. by unmapping corresponding LEB. Instead, just
822 * put this PEB to the @ubi->erroneous list to prevent
823 * UBI from trying to move it over and over again.
824 */
825 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
826 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
827 ubi->erroneous_peb_count);
828 goto out_error;
829 }
830 erroneous = 1;
831 goto out_not_moved;
832 }
833
834 if (err < 0)
835 goto out_error;
836
837 ubi_assert(0);
838 }
839
840 /* The PEB has been successfully moved */
841 if (scrubbing)
842 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
843 e1->pnum, vol_id, lnum, e2->pnum);
844 ubi_free_vid_hdr(ubi, vid_hdr);
845
846 spin_lock(&ubi->wl_lock);
847 if (!ubi->move_to_put) {
848 wl_tree_add(e2, &ubi->used);
849 e2 = NULL;
850 }
851 ubi->move_from = ubi->move_to = NULL;
852 ubi->move_to_put = ubi->wl_scheduled = 0;
853 spin_unlock(&ubi->wl_lock);
854
855 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
856 if (err) {
857 if (e2)
858 wl_entry_destroy(ubi, e2);
859 goto out_ro;
860 }
861
862 if (e2) {
863 /*
864 * Well, the target PEB was put meanwhile, schedule it for
865 * erasure.
866 */
867 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
868 e2->pnum, vol_id, lnum);
869 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
870 if (err)
871 goto out_ro;
872 }
873
874 dbg_wl("done");
875 mutex_unlock(&ubi->move_mutex);
876 return 0;
877
878 /*
879 * For some reasons the LEB was not moved, might be an error, might be
880 * something else. @e1 was not changed, so return it back. @e2 might
881 * have been changed, schedule it for erasure.
882 */
883 out_not_moved:
884 if (vol_id != -1)
885 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
886 e1->pnum, vol_id, lnum, e2->pnum, err);
887 else
888 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
889 e1->pnum, e2->pnum, err);
890 spin_lock(&ubi->wl_lock);
891 if (protect)
892 prot_queue_add(ubi, e1);
893 else if (erroneous) {
894 wl_tree_add(e1, &ubi->erroneous);
895 ubi->erroneous_peb_count += 1;
896 } else if (scrubbing)
897 wl_tree_add(e1, &ubi->scrub);
898 else
899 wl_tree_add(e1, &ubi->used);
900 ubi_assert(!ubi->move_to_put);
901 ubi->move_from = ubi->move_to = NULL;
902 ubi->wl_scheduled = 0;
903 spin_unlock(&ubi->wl_lock);
904
905 ubi_free_vid_hdr(ubi, vid_hdr);
906 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
907 if (err)
908 goto out_ro;
909
910 mutex_unlock(&ubi->move_mutex);
911 return 0;
912
913 out_error:
914 if (vol_id != -1)
915 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
916 err, e1->pnum, e2->pnum);
917 else
918 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
919 err, e1->pnum, vol_id, lnum, e2->pnum);
920 spin_lock(&ubi->wl_lock);
921 ubi->move_from = ubi->move_to = NULL;
922 ubi->move_to_put = ubi->wl_scheduled = 0;
923 spin_unlock(&ubi->wl_lock);
924
925 ubi_free_vid_hdr(ubi, vid_hdr);
926 wl_entry_destroy(ubi, e1);
927 wl_entry_destroy(ubi, e2);
928
929 out_ro:
930 ubi_ro_mode(ubi);
931 mutex_unlock(&ubi->move_mutex);
932 ubi_assert(err != 0);
933 return err < 0 ? err : -EIO;
934
935 out_cancel:
936 ubi->wl_scheduled = 0;
937 spin_unlock(&ubi->wl_lock);
938 mutex_unlock(&ubi->move_mutex);
939 ubi_free_vid_hdr(ubi, vid_hdr);
940 return 0;
941 }
942
943 /**
944 * ensure_wear_leveling - schedule wear-leveling if it is needed.
945 * @ubi: UBI device description object
946 * @nested: set to non-zero if this function is called from UBI worker
947 *
948 * This function checks if it is time to start wear-leveling and schedules it
949 * if yes. This function returns zero in case of success and a negative error
950 * code in case of failure.
951 */
952 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
953 {
954 int err = 0;
955 struct ubi_wl_entry *e1;
956 struct ubi_wl_entry *e2;
957 struct ubi_work *wrk;
958
959 spin_lock(&ubi->wl_lock);
960 if (ubi->wl_scheduled)
961 /* Wear-leveling is already in the work queue */
962 goto out_unlock;
963
964 /*
965 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
966 * the WL worker has to be scheduled anyway.
967 */
968 if (!ubi->scrub.rb_node) {
969 if (!ubi->used.rb_node || !ubi->free.rb_node)
970 /* No physical eraseblocks - no deal */
971 goto out_unlock;
972
973 /*
974 * We schedule wear-leveling only if the difference between the
975 * lowest erase counter of used physical eraseblocks and a high
976 * erase counter of free physical eraseblocks is greater than
977 * %UBI_WL_THRESHOLD.
978 */
979 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
980 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
981
982 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
983 goto out_unlock;
984 dbg_wl("schedule wear-leveling");
985 } else
986 dbg_wl("schedule scrubbing");
987
988 ubi->wl_scheduled = 1;
989 spin_unlock(&ubi->wl_lock);
990
991 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
992 if (!wrk) {
993 err = -ENOMEM;
994 goto out_cancel;
995 }
996
997 wrk->anchor = 0;
998 wrk->func = &wear_leveling_worker;
999 if (nested)
1000 __schedule_ubi_work(ubi, wrk);
1001 else
1002 schedule_ubi_work(ubi, wrk);
1003 return err;
1004
1005 out_cancel:
1006 spin_lock(&ubi->wl_lock);
1007 ubi->wl_scheduled = 0;
1008 out_unlock:
1009 spin_unlock(&ubi->wl_lock);
1010 return err;
1011 }
1012
1013 /**
1014 * __erase_worker - physical eraseblock erase worker function.
1015 * @ubi: UBI device description object
1016 * @wl_wrk: the work object
1017 * @shutdown: non-zero if the worker has to free memory and exit
1018 * because the WL sub-system is shutting down
1019 *
1020 * This function erases a physical eraseblock and perform torture testing if
1021 * needed. It also takes care about marking the physical eraseblock bad if
1022 * needed. Returns zero in case of success and a negative error code in case of
1023 * failure.
1024 */
1025 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1026 {
1027 struct ubi_wl_entry *e = wl_wrk->e;
1028 int pnum = e->pnum;
1029 int vol_id = wl_wrk->vol_id;
1030 int lnum = wl_wrk->lnum;
1031 int err, available_consumed = 0;
1032
1033 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1034 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1035
1036 err = sync_erase(ubi, e, wl_wrk->torture);
1037 if (!err) {
1038 spin_lock(&ubi->wl_lock);
1039 wl_tree_add(e, &ubi->free);
1040 ubi->free_count++;
1041 spin_unlock(&ubi->wl_lock);
1042
1043 /*
1044 * One more erase operation has happened, take care about
1045 * protected physical eraseblocks.
1046 */
1047 serve_prot_queue(ubi);
1048
1049 /* And take care about wear-leveling */
1050 err = ensure_wear_leveling(ubi, 1);
1051 return err;
1052 }
1053
1054 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1055
1056 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1057 err == -EBUSY) {
1058 int err1;
1059
1060 /* Re-schedule the LEB for erasure */
1061 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1062 if (err1) {
1063 wl_entry_destroy(ubi, e);
1064 err = err1;
1065 goto out_ro;
1066 }
1067 return err;
1068 }
1069
1070 wl_entry_destroy(ubi, e);
1071 if (err != -EIO)
1072 /*
1073 * If this is not %-EIO, we have no idea what to do. Scheduling
1074 * this physical eraseblock for erasure again would cause
1075 * errors again and again. Well, lets switch to R/O mode.
1076 */
1077 goto out_ro;
1078
1079 /* It is %-EIO, the PEB went bad */
1080
1081 if (!ubi->bad_allowed) {
1082 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1083 goto out_ro;
1084 }
1085
1086 spin_lock(&ubi->volumes_lock);
1087 if (ubi->beb_rsvd_pebs == 0) {
1088 if (ubi->avail_pebs == 0) {
1089 spin_unlock(&ubi->volumes_lock);
1090 ubi_err(ubi, "no reserved/available physical eraseblocks");
1091 goto out_ro;
1092 }
1093 ubi->avail_pebs -= 1;
1094 available_consumed = 1;
1095 }
1096 spin_unlock(&ubi->volumes_lock);
1097
1098 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1099 err = ubi_io_mark_bad(ubi, pnum);
1100 if (err)
1101 goto out_ro;
1102
1103 spin_lock(&ubi->volumes_lock);
1104 if (ubi->beb_rsvd_pebs > 0) {
1105 if (available_consumed) {
1106 /*
1107 * The amount of reserved PEBs increased since we last
1108 * checked.
1109 */
1110 ubi->avail_pebs += 1;
1111 available_consumed = 0;
1112 }
1113 ubi->beb_rsvd_pebs -= 1;
1114 }
1115 ubi->bad_peb_count += 1;
1116 ubi->good_peb_count -= 1;
1117 ubi_calculate_reserved(ubi);
1118 if (available_consumed)
1119 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1120 else if (ubi->beb_rsvd_pebs)
1121 ubi_msg(ubi, "%d PEBs left in the reserve",
1122 ubi->beb_rsvd_pebs);
1123 else
1124 ubi_warn(ubi, "last PEB from the reserve was used");
1125 spin_unlock(&ubi->volumes_lock);
1126
1127 return err;
1128
1129 out_ro:
1130 if (available_consumed) {
1131 spin_lock(&ubi->volumes_lock);
1132 ubi->avail_pebs += 1;
1133 spin_unlock(&ubi->volumes_lock);
1134 }
1135 ubi_ro_mode(ubi);
1136 return err;
1137 }
1138
1139 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1140 int shutdown)
1141 {
1142 int ret;
1143
1144 if (shutdown) {
1145 struct ubi_wl_entry *e = wl_wrk->e;
1146
1147 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1148 kfree(wl_wrk);
1149 wl_entry_destroy(ubi, e);
1150 return 0;
1151 }
1152
1153 ret = __erase_worker(ubi, wl_wrk);
1154 kfree(wl_wrk);
1155 return ret;
1156 }
1157
1158 /**
1159 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1160 * @ubi: UBI device description object
1161 * @vol_id: the volume ID that last used this PEB
1162 * @lnum: the last used logical eraseblock number for the PEB
1163 * @pnum: physical eraseblock to return
1164 * @torture: if this physical eraseblock has to be tortured
1165 *
1166 * This function is called to return physical eraseblock @pnum to the pool of
1167 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1168 * occurred to this @pnum and it has to be tested. This function returns zero
1169 * in case of success, and a negative error code in case of failure.
1170 */
1171 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1172 int pnum, int torture)
1173 {
1174 int err;
1175 struct ubi_wl_entry *e;
1176
1177 dbg_wl("PEB %d", pnum);
1178 ubi_assert(pnum >= 0);
1179 ubi_assert(pnum < ubi->peb_count);
1180
1181 down_read(&ubi->fm_protect);
1182
1183 retry:
1184 spin_lock(&ubi->wl_lock);
1185 e = ubi->lookuptbl[pnum];
1186 if (e == ubi->move_from) {
1187 /*
1188 * User is putting the physical eraseblock which was selected to
1189 * be moved. It will be scheduled for erasure in the
1190 * wear-leveling worker.
1191 */
1192 dbg_wl("PEB %d is being moved, wait", pnum);
1193 spin_unlock(&ubi->wl_lock);
1194
1195 /* Wait for the WL worker by taking the @ubi->move_mutex */
1196 mutex_lock(&ubi->move_mutex);
1197 mutex_unlock(&ubi->move_mutex);
1198 goto retry;
1199 } else if (e == ubi->move_to) {
1200 /*
1201 * User is putting the physical eraseblock which was selected
1202 * as the target the data is moved to. It may happen if the EBA
1203 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1204 * but the WL sub-system has not put the PEB to the "used" tree
1205 * yet, but it is about to do this. So we just set a flag which
1206 * will tell the WL worker that the PEB is not needed anymore
1207 * and should be scheduled for erasure.
1208 */
1209 dbg_wl("PEB %d is the target of data moving", pnum);
1210 ubi_assert(!ubi->move_to_put);
1211 ubi->move_to_put = 1;
1212 spin_unlock(&ubi->wl_lock);
1213 up_read(&ubi->fm_protect);
1214 return 0;
1215 } else {
1216 if (in_wl_tree(e, &ubi->used)) {
1217 self_check_in_wl_tree(ubi, e, &ubi->used);
1218 rb_erase(&e->u.rb, &ubi->used);
1219 } else if (in_wl_tree(e, &ubi->scrub)) {
1220 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1221 rb_erase(&e->u.rb, &ubi->scrub);
1222 } else if (in_wl_tree(e, &ubi->erroneous)) {
1223 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1224 rb_erase(&e->u.rb, &ubi->erroneous);
1225 ubi->erroneous_peb_count -= 1;
1226 ubi_assert(ubi->erroneous_peb_count >= 0);
1227 /* Erroneous PEBs should be tortured */
1228 torture = 1;
1229 } else {
1230 err = prot_queue_del(ubi, e->pnum);
1231 if (err) {
1232 ubi_err(ubi, "PEB %d not found", pnum);
1233 ubi_ro_mode(ubi);
1234 spin_unlock(&ubi->wl_lock);
1235 up_read(&ubi->fm_protect);
1236 return err;
1237 }
1238 }
1239 }
1240 spin_unlock(&ubi->wl_lock);
1241
1242 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1243 if (err) {
1244 spin_lock(&ubi->wl_lock);
1245 wl_tree_add(e, &ubi->used);
1246 spin_unlock(&ubi->wl_lock);
1247 }
1248
1249 up_read(&ubi->fm_protect);
1250 return err;
1251 }
1252
1253 /**
1254 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1255 * @ubi: UBI device description object
1256 * @pnum: the physical eraseblock to schedule
1257 *
1258 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1259 * needs scrubbing. This function schedules a physical eraseblock for
1260 * scrubbing which is done in background. This function returns zero in case of
1261 * success and a negative error code in case of failure.
1262 */
1263 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1264 {
1265 struct ubi_wl_entry *e;
1266
1267 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1268
1269 retry:
1270 spin_lock(&ubi->wl_lock);
1271 e = ubi->lookuptbl[pnum];
1272 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1273 in_wl_tree(e, &ubi->erroneous)) {
1274 spin_unlock(&ubi->wl_lock);
1275 return 0;
1276 }
1277
1278 if (e == ubi->move_to) {
1279 /*
1280 * This physical eraseblock was used to move data to. The data
1281 * was moved but the PEB was not yet inserted to the proper
1282 * tree. We should just wait a little and let the WL worker
1283 * proceed.
1284 */
1285 spin_unlock(&ubi->wl_lock);
1286 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1287 yield();
1288 goto retry;
1289 }
1290
1291 if (in_wl_tree(e, &ubi->used)) {
1292 self_check_in_wl_tree(ubi, e, &ubi->used);
1293 rb_erase(&e->u.rb, &ubi->used);
1294 } else {
1295 int err;
1296
1297 err = prot_queue_del(ubi, e->pnum);
1298 if (err) {
1299 ubi_err(ubi, "PEB %d not found", pnum);
1300 ubi_ro_mode(ubi);
1301 spin_unlock(&ubi->wl_lock);
1302 return err;
1303 }
1304 }
1305
1306 wl_tree_add(e, &ubi->scrub);
1307 spin_unlock(&ubi->wl_lock);
1308
1309 /*
1310 * Technically scrubbing is the same as wear-leveling, so it is done
1311 * by the WL worker.
1312 */
1313 return ensure_wear_leveling(ubi, 0);
1314 }
1315
1316 /**
1317 * ubi_wl_flush - flush all pending works.
1318 * @ubi: UBI device description object
1319 * @vol_id: the volume id to flush for
1320 * @lnum: the logical eraseblock number to flush for
1321 *
1322 * This function executes all pending works for a particular volume id /
1323 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1324 * acts as a wildcard for all of the corresponding volume numbers or logical
1325 * eraseblock numbers. It returns zero in case of success and a negative error
1326 * code in case of failure.
1327 */
1328 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1329 {
1330 int err = 0;
1331 int found = 1;
1332
1333 /*
1334 * Erase while the pending works queue is not empty, but not more than
1335 * the number of currently pending works.
1336 */
1337 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1338 vol_id, lnum, ubi->works_count);
1339
1340 while (found) {
1341 struct ubi_work *wrk, *tmp;
1342 found = 0;
1343
1344 down_read(&ubi->work_sem);
1345 spin_lock(&ubi->wl_lock);
1346 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1347 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1348 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1349 list_del(&wrk->list);
1350 ubi->works_count -= 1;
1351 ubi_assert(ubi->works_count >= 0);
1352 spin_unlock(&ubi->wl_lock);
1353
1354 err = wrk->func(ubi, wrk, 0);
1355 if (err) {
1356 up_read(&ubi->work_sem);
1357 return err;
1358 }
1359
1360 spin_lock(&ubi->wl_lock);
1361 found = 1;
1362 break;
1363 }
1364 }
1365 spin_unlock(&ubi->wl_lock);
1366 up_read(&ubi->work_sem);
1367 }
1368
1369 /*
1370 * Make sure all the works which have been done in parallel are
1371 * finished.
1372 */
1373 down_write(&ubi->work_sem);
1374 up_write(&ubi->work_sem);
1375
1376 return err;
1377 }
1378
1379 /**
1380 * tree_destroy - destroy an RB-tree.
1381 * @ubi: UBI device description object
1382 * @root: the root of the tree to destroy
1383 */
1384 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1385 {
1386 struct rb_node *rb;
1387 struct ubi_wl_entry *e;
1388
1389 rb = root->rb_node;
1390 while (rb) {
1391 if (rb->rb_left)
1392 rb = rb->rb_left;
1393 else if (rb->rb_right)
1394 rb = rb->rb_right;
1395 else {
1396 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1397
1398 rb = rb_parent(rb);
1399 if (rb) {
1400 if (rb->rb_left == &e->u.rb)
1401 rb->rb_left = NULL;
1402 else
1403 rb->rb_right = NULL;
1404 }
1405
1406 wl_entry_destroy(ubi, e);
1407 }
1408 }
1409 }
1410
1411 /**
1412 * ubi_thread - UBI background thread.
1413 * @u: the UBI device description object pointer
1414 */
1415 int ubi_thread(void *u)
1416 {
1417 int failures = 0;
1418 struct ubi_device *ubi = u;
1419
1420 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1421 ubi->bgt_name, task_pid_nr(current));
1422
1423 set_freezable();
1424 for (;;) {
1425 int err;
1426
1427 if (kthread_should_stop())
1428 break;
1429
1430 if (try_to_freeze())
1431 continue;
1432
1433 spin_lock(&ubi->wl_lock);
1434 if (list_empty(&ubi->works) || ubi->ro_mode ||
1435 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1436 set_current_state(TASK_INTERRUPTIBLE);
1437 spin_unlock(&ubi->wl_lock);
1438 schedule();
1439 continue;
1440 }
1441 spin_unlock(&ubi->wl_lock);
1442
1443 err = do_work(ubi);
1444 if (err) {
1445 ubi_err(ubi, "%s: work failed with error code %d",
1446 ubi->bgt_name, err);
1447 if (failures++ > WL_MAX_FAILURES) {
1448 /*
1449 * Too many failures, disable the thread and
1450 * switch to read-only mode.
1451 */
1452 ubi_msg(ubi, "%s: %d consecutive failures",
1453 ubi->bgt_name, WL_MAX_FAILURES);
1454 ubi_ro_mode(ubi);
1455 ubi->thread_enabled = 0;
1456 continue;
1457 }
1458 } else
1459 failures = 0;
1460
1461 cond_resched();
1462 }
1463
1464 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1465 return 0;
1466 }
1467
1468 /**
1469 * shutdown_work - shutdown all pending works.
1470 * @ubi: UBI device description object
1471 */
1472 static void shutdown_work(struct ubi_device *ubi)
1473 {
1474 #ifdef CONFIG_MTD_UBI_FASTMAP
1475 flush_work(&ubi->fm_work);
1476 #endif
1477 while (!list_empty(&ubi->works)) {
1478 struct ubi_work *wrk;
1479
1480 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1481 list_del(&wrk->list);
1482 wrk->func(ubi, wrk, 1);
1483 ubi->works_count -= 1;
1484 ubi_assert(ubi->works_count >= 0);
1485 }
1486 }
1487
1488 /**
1489 * ubi_wl_init - initialize the WL sub-system using attaching information.
1490 * @ubi: UBI device description object
1491 * @ai: attaching information
1492 *
1493 * This function returns zero in case of success, and a negative error code in
1494 * case of failure.
1495 */
1496 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1497 {
1498 int err, i, reserved_pebs, found_pebs = 0;
1499 struct rb_node *rb1, *rb2;
1500 struct ubi_ainf_volume *av;
1501 struct ubi_ainf_peb *aeb, *tmp;
1502 struct ubi_wl_entry *e;
1503
1504 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1505 spin_lock_init(&ubi->wl_lock);
1506 mutex_init(&ubi->move_mutex);
1507 init_rwsem(&ubi->work_sem);
1508 ubi->max_ec = ai->max_ec;
1509 INIT_LIST_HEAD(&ubi->works);
1510
1511 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1512
1513 err = -ENOMEM;
1514 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1515 if (!ubi->lookuptbl)
1516 return err;
1517
1518 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1519 INIT_LIST_HEAD(&ubi->pq[i]);
1520 ubi->pq_head = 0;
1521
1522 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1523 cond_resched();
1524
1525 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1526 if (!e)
1527 goto out_free;
1528
1529 e->pnum = aeb->pnum;
1530 e->ec = aeb->ec;
1531 ubi->lookuptbl[e->pnum] = e;
1532 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1533 wl_entry_destroy(ubi, e);
1534 goto out_free;
1535 }
1536
1537 found_pebs++;
1538 }
1539
1540 ubi->free_count = 0;
1541 list_for_each_entry(aeb, &ai->free, u.list) {
1542 cond_resched();
1543
1544 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1545 if (!e)
1546 goto out_free;
1547
1548 e->pnum = aeb->pnum;
1549 e->ec = aeb->ec;
1550 ubi_assert(e->ec >= 0);
1551
1552 wl_tree_add(e, &ubi->free);
1553 ubi->free_count++;
1554
1555 ubi->lookuptbl[e->pnum] = e;
1556
1557 found_pebs++;
1558 }
1559
1560 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1561 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1562 cond_resched();
1563
1564 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1565 if (!e)
1566 goto out_free;
1567
1568 e->pnum = aeb->pnum;
1569 e->ec = aeb->ec;
1570 ubi->lookuptbl[e->pnum] = e;
1571
1572 if (!aeb->scrub) {
1573 dbg_wl("add PEB %d EC %d to the used tree",
1574 e->pnum, e->ec);
1575 wl_tree_add(e, &ubi->used);
1576 } else {
1577 dbg_wl("add PEB %d EC %d to the scrub tree",
1578 e->pnum, e->ec);
1579 wl_tree_add(e, &ubi->scrub);
1580 }
1581
1582 found_pebs++;
1583 }
1584 }
1585
1586 dbg_wl("found %i PEBs", found_pebs);
1587
1588 if (ubi->fm) {
1589 ubi_assert(ubi->good_peb_count ==
1590 found_pebs + ubi->fm->used_blocks);
1591
1592 for (i = 0; i < ubi->fm->used_blocks; i++) {
1593 e = ubi->fm->e[i];
1594 ubi->lookuptbl[e->pnum] = e;
1595 }
1596 }
1597 else
1598 ubi_assert(ubi->good_peb_count == found_pebs);
1599
1600 reserved_pebs = WL_RESERVED_PEBS;
1601 ubi_fastmap_init(ubi, &reserved_pebs);
1602
1603 if (ubi->avail_pebs < reserved_pebs) {
1604 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1605 ubi->avail_pebs, reserved_pebs);
1606 if (ubi->corr_peb_count)
1607 ubi_err(ubi, "%d PEBs are corrupted and not used",
1608 ubi->corr_peb_count);
1609 err = -ENOSPC;
1610 goto out_free;
1611 }
1612 ubi->avail_pebs -= reserved_pebs;
1613 ubi->rsvd_pebs += reserved_pebs;
1614
1615 /* Schedule wear-leveling if needed */
1616 err = ensure_wear_leveling(ubi, 0);
1617 if (err)
1618 goto out_free;
1619
1620 return 0;
1621
1622 out_free:
1623 shutdown_work(ubi);
1624 tree_destroy(ubi, &ubi->used);
1625 tree_destroy(ubi, &ubi->free);
1626 tree_destroy(ubi, &ubi->scrub);
1627 kfree(ubi->lookuptbl);
1628 return err;
1629 }
1630
1631 /**
1632 * protection_queue_destroy - destroy the protection queue.
1633 * @ubi: UBI device description object
1634 */
1635 static void protection_queue_destroy(struct ubi_device *ubi)
1636 {
1637 int i;
1638 struct ubi_wl_entry *e, *tmp;
1639
1640 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1641 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1642 list_del(&e->u.list);
1643 wl_entry_destroy(ubi, e);
1644 }
1645 }
1646 }
1647
1648 /**
1649 * ubi_wl_close - close the wear-leveling sub-system.
1650 * @ubi: UBI device description object
1651 */
1652 void ubi_wl_close(struct ubi_device *ubi)
1653 {
1654 dbg_wl("close the WL sub-system");
1655 ubi_fastmap_close(ubi);
1656 shutdown_work(ubi);
1657 protection_queue_destroy(ubi);
1658 tree_destroy(ubi, &ubi->used);
1659 tree_destroy(ubi, &ubi->erroneous);
1660 tree_destroy(ubi, &ubi->free);
1661 tree_destroy(ubi, &ubi->scrub);
1662 kfree(ubi->lookuptbl);
1663 }
1664
1665 /**
1666 * self_check_ec - make sure that the erase counter of a PEB is correct.
1667 * @ubi: UBI device description object
1668 * @pnum: the physical eraseblock number to check
1669 * @ec: the erase counter to check
1670 *
1671 * This function returns zero if the erase counter of physical eraseblock @pnum
1672 * is equivalent to @ec, and a negative error code if not or if an error
1673 * occurred.
1674 */
1675 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1676 {
1677 int err;
1678 long long read_ec;
1679 struct ubi_ec_hdr *ec_hdr;
1680
1681 if (!ubi_dbg_chk_gen(ubi))
1682 return 0;
1683
1684 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1685 if (!ec_hdr)
1686 return -ENOMEM;
1687
1688 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1689 if (err && err != UBI_IO_BITFLIPS) {
1690 /* The header does not have to exist */
1691 err = 0;
1692 goto out_free;
1693 }
1694
1695 read_ec = be64_to_cpu(ec_hdr->ec);
1696 if (ec != read_ec && read_ec - ec > 1) {
1697 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1698 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1699 dump_stack();
1700 err = 1;
1701 } else
1702 err = 0;
1703
1704 out_free:
1705 kfree(ec_hdr);
1706 return err;
1707 }
1708
1709 /**
1710 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1711 * @ubi: UBI device description object
1712 * @e: the wear-leveling entry to check
1713 * @root: the root of the tree
1714 *
1715 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1716 * is not.
1717 */
1718 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1719 struct ubi_wl_entry *e, struct rb_root *root)
1720 {
1721 if (!ubi_dbg_chk_gen(ubi))
1722 return 0;
1723
1724 if (in_wl_tree(e, root))
1725 return 0;
1726
1727 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1728 e->pnum, e->ec, root);
1729 dump_stack();
1730 return -EINVAL;
1731 }
1732
1733 /**
1734 * self_check_in_pq - check if wear-leveling entry is in the protection
1735 * queue.
1736 * @ubi: UBI device description object
1737 * @e: the wear-leveling entry to check
1738 *
1739 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1740 */
1741 static int self_check_in_pq(const struct ubi_device *ubi,
1742 struct ubi_wl_entry *e)
1743 {
1744 struct ubi_wl_entry *p;
1745 int i;
1746
1747 if (!ubi_dbg_chk_gen(ubi))
1748 return 0;
1749
1750 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1751 list_for_each_entry(p, &ubi->pq[i], u.list)
1752 if (p == e)
1753 return 0;
1754
1755 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1756 e->pnum, e->ec);
1757 dump_stack();
1758 return -EINVAL;
1759 }
1760 #ifndef CONFIG_MTD_UBI_FASTMAP
1761 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1762 {
1763 struct ubi_wl_entry *e;
1764
1765 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1766 self_check_in_wl_tree(ubi, e, &ubi->free);
1767 ubi->free_count--;
1768 ubi_assert(ubi->free_count >= 0);
1769 rb_erase(&e->u.rb, &ubi->free);
1770
1771 return e;
1772 }
1773
1774 /**
1775 * produce_free_peb - produce a free physical eraseblock.
1776 * @ubi: UBI device description object
1777 *
1778 * This function tries to make a free PEB by means of synchronous execution of
1779 * pending works. This may be needed if, for example the background thread is
1780 * disabled. Returns zero in case of success and a negative error code in case
1781 * of failure.
1782 */
1783 static int produce_free_peb(struct ubi_device *ubi)
1784 {
1785 int err;
1786
1787 while (!ubi->free.rb_node && ubi->works_count) {
1788 spin_unlock(&ubi->wl_lock);
1789
1790 dbg_wl("do one work synchronously");
1791 err = do_work(ubi);
1792
1793 spin_lock(&ubi->wl_lock);
1794 if (err)
1795 return err;
1796 }
1797
1798 return 0;
1799 }
1800
1801 /**
1802 * ubi_wl_get_peb - get a physical eraseblock.
1803 * @ubi: UBI device description object
1804 *
1805 * This function returns a physical eraseblock in case of success and a
1806 * negative error code in case of failure.
1807 * Returns with ubi->fm_eba_sem held in read mode!
1808 */
1809 int ubi_wl_get_peb(struct ubi_device *ubi)
1810 {
1811 int err;
1812 struct ubi_wl_entry *e;
1813
1814 retry:
1815 down_read(&ubi->fm_eba_sem);
1816 spin_lock(&ubi->wl_lock);
1817 if (!ubi->free.rb_node) {
1818 if (ubi->works_count == 0) {
1819 ubi_err(ubi, "no free eraseblocks");
1820 ubi_assert(list_empty(&ubi->works));
1821 spin_unlock(&ubi->wl_lock);
1822 return -ENOSPC;
1823 }
1824
1825 err = produce_free_peb(ubi);
1826 if (err < 0) {
1827 spin_unlock(&ubi->wl_lock);
1828 return err;
1829 }
1830 spin_unlock(&ubi->wl_lock);
1831 up_read(&ubi->fm_eba_sem);
1832 goto retry;
1833
1834 }
1835 e = wl_get_wle(ubi);
1836 prot_queue_add(ubi, e);
1837 spin_unlock(&ubi->wl_lock);
1838
1839 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1840 ubi->peb_size - ubi->vid_hdr_aloffset);
1841 if (err) {
1842 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1843 return err;
1844 }
1845
1846 return e->pnum;
1847 }
1848 #else
1849 #include "fastmap-wl.c"
1850 #endif
1851