1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
46
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
52
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
55
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
61
62 /**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69 struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74 };
75
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 static bool fm_debug;
85 #endif
86 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
87 struct class *ubi_class;
88
89 /* Slab cache for wear-leveling entries */
90 struct kmem_cache *ubi_wl_entry_slab;
91
92 /* UBI control character device */
93 static struct miscdevice ubi_ctrl_cdev = {
94 .minor = MISC_DYNAMIC_MINOR,
95 .name = "ubi_ctrl",
96 .fops = &ubi_ctrl_cdev_operations,
97 };
98
99 /* All UBI devices in system */
100 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
101
102 /* Serializes UBI devices creations and removals */
103 DEFINE_MUTEX(ubi_devices_mutex);
104
105 /* Protects @ubi_devices and @ubi->ref_count */
106 static DEFINE_SPINLOCK(ubi_devices_lock);
107
108 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,struct class_attribute * attr,char * buf)109 static ssize_t ubi_version_show(struct class *class,
110 struct class_attribute *attr, char *buf)
111 {
112 return sprintf(buf, "%d\n", UBI_VERSION);
113 }
114
115 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
116 static struct class_attribute ubi_version =
117 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
118
119 static ssize_t dev_attribute_show(struct device *dev,
120 struct device_attribute *attr, char *buf);
121
122 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
123 static struct device_attribute dev_eraseblock_size =
124 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
125 static struct device_attribute dev_avail_eraseblocks =
126 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
127 static struct device_attribute dev_total_eraseblocks =
128 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
129 static struct device_attribute dev_volumes_count =
130 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
131 static struct device_attribute dev_max_ec =
132 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
133 static struct device_attribute dev_reserved_for_bad =
134 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
135 static struct device_attribute dev_bad_peb_count =
136 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
137 static struct device_attribute dev_max_vol_count =
138 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
139 static struct device_attribute dev_min_io_size =
140 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
141 static struct device_attribute dev_bgt_enabled =
142 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
143 static struct device_attribute dev_mtd_num =
144 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
145
146 /**
147 * ubi_volume_notify - send a volume change notification.
148 * @ubi: UBI device description object
149 * @vol: volume description object of the changed volume
150 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
151 *
152 * This is a helper function which notifies all subscribers about a volume
153 * change event (creation, removal, re-sizing, re-naming, updating). Returns
154 * zero in case of success and a negative error code in case of failure.
155 */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)156 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
157 {
158 int ret;
159 struct ubi_notification nt;
160
161 ubi_do_get_device_info(ubi, &nt.di);
162 ubi_do_get_volume_info(ubi, vol, &nt.vi);
163
164 switch (ntype) {
165 case UBI_VOLUME_ADDED:
166 case UBI_VOLUME_REMOVED:
167 case UBI_VOLUME_RESIZED:
168 case UBI_VOLUME_RENAMED:
169 ret = ubi_update_fastmap(ubi);
170 if (ret)
171 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
172 }
173
174 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
175 }
176
177 /**
178 * ubi_notify_all - send a notification to all volumes.
179 * @ubi: UBI device description object
180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
181 * @nb: the notifier to call
182 *
183 * This function walks all volumes of UBI device @ubi and sends the @ntype
184 * notification for each volume. If @nb is %NULL, then all registered notifiers
185 * are called, otherwise only the @nb notifier is called. Returns the number of
186 * sent notifications.
187 */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
189 {
190 struct ubi_notification nt;
191 int i, count = 0;
192
193 ubi_do_get_device_info(ubi, &nt.di);
194
195 mutex_lock(&ubi->device_mutex);
196 for (i = 0; i < ubi->vtbl_slots; i++) {
197 /*
198 * Since the @ubi->device is locked, and we are not going to
199 * change @ubi->volumes, we do not have to lock
200 * @ubi->volumes_lock.
201 */
202 if (!ubi->volumes[i])
203 continue;
204
205 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
206 if (nb)
207 nb->notifier_call(nb, ntype, &nt);
208 else
209 blocking_notifier_call_chain(&ubi_notifiers, ntype,
210 &nt);
211 count += 1;
212 }
213 mutex_unlock(&ubi->device_mutex);
214
215 return count;
216 }
217
218 /**
219 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
220 * @nb: the notifier to call
221 *
222 * This function walks all UBI devices and volumes and sends the
223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
224 * registered notifiers are called, otherwise only the @nb notifier is called.
225 * Returns the number of sent notifications.
226 */
ubi_enumerate_volumes(struct notifier_block * nb)227 int ubi_enumerate_volumes(struct notifier_block *nb)
228 {
229 int i, count = 0;
230
231 /*
232 * Since the @ubi_devices_mutex is locked, and we are not going to
233 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
234 */
235 for (i = 0; i < UBI_MAX_DEVICES; i++) {
236 struct ubi_device *ubi = ubi_devices[i];
237
238 if (!ubi)
239 continue;
240 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
241 }
242
243 return count;
244 }
245
246 /**
247 * ubi_get_device - get UBI device.
248 * @ubi_num: UBI device number
249 *
250 * This function returns UBI device description object for UBI device number
251 * @ubi_num, or %NULL if the device does not exist. This function increases the
252 * device reference count to prevent removal of the device. In other words, the
253 * device cannot be removed if its reference count is not zero.
254 */
ubi_get_device(int ubi_num)255 struct ubi_device *ubi_get_device(int ubi_num)
256 {
257 struct ubi_device *ubi;
258
259 spin_lock(&ubi_devices_lock);
260 ubi = ubi_devices[ubi_num];
261 if (ubi) {
262 ubi_assert(ubi->ref_count >= 0);
263 ubi->ref_count += 1;
264 get_device(&ubi->dev);
265 }
266 spin_unlock(&ubi_devices_lock);
267
268 return ubi;
269 }
270
271 /**
272 * ubi_put_device - drop an UBI device reference.
273 * @ubi: UBI device description object
274 */
ubi_put_device(struct ubi_device * ubi)275 void ubi_put_device(struct ubi_device *ubi)
276 {
277 spin_lock(&ubi_devices_lock);
278 ubi->ref_count -= 1;
279 put_device(&ubi->dev);
280 spin_unlock(&ubi_devices_lock);
281 }
282
283 /**
284 * ubi_get_by_major - get UBI device by character device major number.
285 * @major: major number
286 *
287 * This function is similar to 'ubi_get_device()', but it searches the device
288 * by its major number.
289 */
ubi_get_by_major(int major)290 struct ubi_device *ubi_get_by_major(int major)
291 {
292 int i;
293 struct ubi_device *ubi;
294
295 spin_lock(&ubi_devices_lock);
296 for (i = 0; i < UBI_MAX_DEVICES; i++) {
297 ubi = ubi_devices[i];
298 if (ubi && MAJOR(ubi->cdev.dev) == major) {
299 ubi_assert(ubi->ref_count >= 0);
300 ubi->ref_count += 1;
301 get_device(&ubi->dev);
302 spin_unlock(&ubi_devices_lock);
303 return ubi;
304 }
305 }
306 spin_unlock(&ubi_devices_lock);
307
308 return NULL;
309 }
310
311 /**
312 * ubi_major2num - get UBI device number by character device major number.
313 * @major: major number
314 *
315 * This function searches UBI device number object by its major number. If UBI
316 * device was not found, this function returns -ENODEV, otherwise the UBI device
317 * number is returned.
318 */
ubi_major2num(int major)319 int ubi_major2num(int major)
320 {
321 int i, ubi_num = -ENODEV;
322
323 spin_lock(&ubi_devices_lock);
324 for (i = 0; i < UBI_MAX_DEVICES; i++) {
325 struct ubi_device *ubi = ubi_devices[i];
326
327 if (ubi && MAJOR(ubi->cdev.dev) == major) {
328 ubi_num = ubi->ubi_num;
329 break;
330 }
331 }
332 spin_unlock(&ubi_devices_lock);
333
334 return ubi_num;
335 }
336
337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)338 static ssize_t dev_attribute_show(struct device *dev,
339 struct device_attribute *attr, char *buf)
340 {
341 ssize_t ret;
342 struct ubi_device *ubi;
343
344 /*
345 * The below code looks weird, but it actually makes sense. We get the
346 * UBI device reference from the contained 'struct ubi_device'. But it
347 * is unclear if the device was removed or not yet. Indeed, if the
348 * device was removed before we increased its reference count,
349 * 'ubi_get_device()' will return -ENODEV and we fail.
350 *
351 * Remember, 'struct ubi_device' is freed in the release function, so
352 * we still can use 'ubi->ubi_num'.
353 */
354 ubi = container_of(dev, struct ubi_device, dev);
355 ubi = ubi_get_device(ubi->ubi_num);
356 if (!ubi)
357 return -ENODEV;
358
359 if (attr == &dev_eraseblock_size)
360 ret = sprintf(buf, "%d\n", ubi->leb_size);
361 else if (attr == &dev_avail_eraseblocks)
362 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
363 else if (attr == &dev_total_eraseblocks)
364 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
365 else if (attr == &dev_volumes_count)
366 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
367 else if (attr == &dev_max_ec)
368 ret = sprintf(buf, "%d\n", ubi->max_ec);
369 else if (attr == &dev_reserved_for_bad)
370 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
371 else if (attr == &dev_bad_peb_count)
372 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
373 else if (attr == &dev_max_vol_count)
374 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
375 else if (attr == &dev_min_io_size)
376 ret = sprintf(buf, "%d\n", ubi->min_io_size);
377 else if (attr == &dev_bgt_enabled)
378 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
379 else if (attr == &dev_mtd_num)
380 ret = sprintf(buf, "%d\n", ubi->mtd->index);
381 else
382 ret = -EINVAL;
383
384 ubi_put_device(ubi);
385 return ret;
386 }
387
dev_release(struct device * dev)388 static void dev_release(struct device *dev)
389 {
390 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
391
392 kfree(ubi);
393 }
394
395 /**
396 * ubi_sysfs_init - initialize sysfs for an UBI device.
397 * @ubi: UBI device description object
398 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
399 * taken
400 *
401 * This function returns zero in case of success and a negative error code in
402 * case of failure.
403 */
ubi_sysfs_init(struct ubi_device * ubi,int * ref)404 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
405 {
406 int err;
407
408 ubi->dev.release = dev_release;
409 ubi->dev.devt = ubi->cdev.dev;
410 ubi->dev.class = ubi_class;
411 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
412 err = device_register(&ubi->dev);
413 if (err)
414 return err;
415
416 *ref = 1;
417 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
418 if (err)
419 return err;
420 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
421 if (err)
422 return err;
423 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
424 if (err)
425 return err;
426 err = device_create_file(&ubi->dev, &dev_volumes_count);
427 if (err)
428 return err;
429 err = device_create_file(&ubi->dev, &dev_max_ec);
430 if (err)
431 return err;
432 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
433 if (err)
434 return err;
435 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
436 if (err)
437 return err;
438 err = device_create_file(&ubi->dev, &dev_max_vol_count);
439 if (err)
440 return err;
441 err = device_create_file(&ubi->dev, &dev_min_io_size);
442 if (err)
443 return err;
444 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
445 if (err)
446 return err;
447 err = device_create_file(&ubi->dev, &dev_mtd_num);
448 return err;
449 }
450
451 /**
452 * ubi_sysfs_close - close sysfs for an UBI device.
453 * @ubi: UBI device description object
454 */
ubi_sysfs_close(struct ubi_device * ubi)455 static void ubi_sysfs_close(struct ubi_device *ubi)
456 {
457 device_remove_file(&ubi->dev, &dev_mtd_num);
458 device_remove_file(&ubi->dev, &dev_bgt_enabled);
459 device_remove_file(&ubi->dev, &dev_min_io_size);
460 device_remove_file(&ubi->dev, &dev_max_vol_count);
461 device_remove_file(&ubi->dev, &dev_bad_peb_count);
462 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
463 device_remove_file(&ubi->dev, &dev_max_ec);
464 device_remove_file(&ubi->dev, &dev_volumes_count);
465 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
466 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
467 device_remove_file(&ubi->dev, &dev_eraseblock_size);
468 device_unregister(&ubi->dev);
469 }
470
471 /**
472 * kill_volumes - destroy all user volumes.
473 * @ubi: UBI device description object
474 */
kill_volumes(struct ubi_device * ubi)475 static void kill_volumes(struct ubi_device *ubi)
476 {
477 int i;
478
479 for (i = 0; i < ubi->vtbl_slots; i++)
480 if (ubi->volumes[i])
481 ubi_free_volume(ubi, ubi->volumes[i]);
482 }
483
484 /**
485 * uif_init - initialize user interfaces for an UBI device.
486 * @ubi: UBI device description object
487 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
488 * taken, otherwise set to %0
489 *
490 * This function initializes various user interfaces for an UBI device. If the
491 * initialization fails at an early stage, this function frees all the
492 * resources it allocated, returns an error, and @ref is set to %0. However,
493 * if the initialization fails after the UBI device was registered in the
494 * driver core subsystem, this function takes a reference to @ubi->dev, because
495 * otherwise the release function ('dev_release()') would free whole @ubi
496 * object. The @ref argument is set to %1 in this case. The caller has to put
497 * this reference.
498 *
499 * This function returns zero in case of success and a negative error code in
500 * case of failure.
501 */
uif_init(struct ubi_device * ubi,int * ref)502 static int uif_init(struct ubi_device *ubi, int *ref)
503 {
504 int i, err;
505 dev_t dev;
506
507 *ref = 0;
508 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
509
510 /*
511 * Major numbers for the UBI character devices are allocated
512 * dynamically. Major numbers of volume character devices are
513 * equivalent to ones of the corresponding UBI character device. Minor
514 * numbers of UBI character devices are 0, while minor numbers of
515 * volume character devices start from 1. Thus, we allocate one major
516 * number and ubi->vtbl_slots + 1 minor numbers.
517 */
518 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
519 if (err) {
520 ubi_err(ubi, "cannot register UBI character devices");
521 return err;
522 }
523
524 ubi_assert(MINOR(dev) == 0);
525 cdev_init(&ubi->cdev, &ubi_cdev_operations);
526 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
527 ubi->cdev.owner = THIS_MODULE;
528
529 err = cdev_add(&ubi->cdev, dev, 1);
530 if (err) {
531 ubi_err(ubi, "cannot add character device");
532 goto out_unreg;
533 }
534
535 err = ubi_sysfs_init(ubi, ref);
536 if (err)
537 goto out_sysfs;
538
539 for (i = 0; i < ubi->vtbl_slots; i++)
540 if (ubi->volumes[i]) {
541 err = ubi_add_volume(ubi, ubi->volumes[i]);
542 if (err) {
543 ubi_err(ubi, "cannot add volume %d", i);
544 goto out_volumes;
545 }
546 }
547
548 return 0;
549
550 out_volumes:
551 kill_volumes(ubi);
552 out_sysfs:
553 if (*ref)
554 get_device(&ubi->dev);
555 ubi_sysfs_close(ubi);
556 cdev_del(&ubi->cdev);
557 out_unreg:
558 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
559 ubi_err(ubi, "cannot initialize UBI %s, error %d",
560 ubi->ubi_name, err);
561 return err;
562 }
563
564 /**
565 * uif_close - close user interfaces for an UBI device.
566 * @ubi: UBI device description object
567 *
568 * Note, since this function un-registers UBI volume device objects (@vol->dev),
569 * the memory allocated voe the volumes is freed as well (in the release
570 * function).
571 */
uif_close(struct ubi_device * ubi)572 static void uif_close(struct ubi_device *ubi)
573 {
574 kill_volumes(ubi);
575 ubi_sysfs_close(ubi);
576 cdev_del(&ubi->cdev);
577 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
578 }
579
580 /**
581 * ubi_free_internal_volumes - free internal volumes.
582 * @ubi: UBI device description object
583 */
ubi_free_internal_volumes(struct ubi_device * ubi)584 void ubi_free_internal_volumes(struct ubi_device *ubi)
585 {
586 int i;
587
588 for (i = ubi->vtbl_slots;
589 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
590 kfree(ubi->volumes[i]->eba_tbl);
591 kfree(ubi->volumes[i]);
592 }
593 }
594
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)595 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
596 {
597 int limit, device_pebs;
598 uint64_t device_size;
599
600 if (!max_beb_per1024)
601 return 0;
602
603 /*
604 * Here we are using size of the entire flash chip and
605 * not just the MTD partition size because the maximum
606 * number of bad eraseblocks is a percentage of the
607 * whole device and bad eraseblocks are not fairly
608 * distributed over the flash chip. So the worst case
609 * is that all the bad eraseblocks of the chip are in
610 * the MTD partition we are attaching (ubi->mtd).
611 */
612 device_size = mtd_get_device_size(ubi->mtd);
613 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
614 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
615
616 /* Round it up */
617 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
618 limit += 1;
619
620 return limit;
621 }
622
623 /**
624 * io_init - initialize I/O sub-system for a given UBI device.
625 * @ubi: UBI device description object
626 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
627 *
628 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
629 * assumed:
630 * o EC header is always at offset zero - this cannot be changed;
631 * o VID header starts just after the EC header at the closest address
632 * aligned to @io->hdrs_min_io_size;
633 * o data starts just after the VID header at the closest address aligned to
634 * @io->min_io_size
635 *
636 * This function returns zero in case of success and a negative error code in
637 * case of failure.
638 */
io_init(struct ubi_device * ubi,int max_beb_per1024)639 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
640 {
641 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
642 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
643
644 if (ubi->mtd->numeraseregions != 0) {
645 /*
646 * Some flashes have several erase regions. Different regions
647 * may have different eraseblock size and other
648 * characteristics. It looks like mostly multi-region flashes
649 * have one "main" region and one or more small regions to
650 * store boot loader code or boot parameters or whatever. I
651 * guess we should just pick the largest region. But this is
652 * not implemented.
653 */
654 ubi_err(ubi, "multiple regions, not implemented");
655 return -EINVAL;
656 }
657
658 if (ubi->vid_hdr_offset < 0)
659 return -EINVAL;
660
661 /*
662 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
663 * physical eraseblocks maximum.
664 */
665
666 ubi->peb_size = ubi->mtd->erasesize;
667 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
668 ubi->flash_size = ubi->mtd->size;
669
670 if (mtd_can_have_bb(ubi->mtd)) {
671 ubi->bad_allowed = 1;
672 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
673 }
674
675 if (ubi->mtd->type == MTD_NORFLASH) {
676 ubi_assert(ubi->mtd->writesize == 1);
677 ubi->nor_flash = 1;
678 }
679
680 ubi->min_io_size = ubi->mtd->writesize;
681 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
682
683 /*
684 * Make sure minimal I/O unit is power of 2. Note, there is no
685 * fundamental reason for this assumption. It is just an optimization
686 * which allows us to avoid costly division operations.
687 */
688 if (!is_power_of_2(ubi->min_io_size)) {
689 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
690 ubi->min_io_size);
691 return -EINVAL;
692 }
693
694 ubi_assert(ubi->hdrs_min_io_size > 0);
695 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
696 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
697
698 ubi->max_write_size = ubi->mtd->writebufsize;
699 /*
700 * Maximum write size has to be greater or equivalent to min. I/O
701 * size, and be multiple of min. I/O size.
702 */
703 if (ubi->max_write_size < ubi->min_io_size ||
704 ubi->max_write_size % ubi->min_io_size ||
705 !is_power_of_2(ubi->max_write_size)) {
706 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
707 ubi->max_write_size, ubi->min_io_size);
708 return -EINVAL;
709 }
710
711 /* Calculate default aligned sizes of EC and VID headers */
712 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
713 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
714
715 dbg_gen("min_io_size %d", ubi->min_io_size);
716 dbg_gen("max_write_size %d", ubi->max_write_size);
717 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
718 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
719 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
720
721 if (ubi->vid_hdr_offset == 0)
722 /* Default offset */
723 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
724 ubi->ec_hdr_alsize;
725 else {
726 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
727 ~(ubi->hdrs_min_io_size - 1);
728 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
729 ubi->vid_hdr_aloffset;
730 }
731
732 /* Similar for the data offset */
733 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
734 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
735
736 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
737 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
738 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
739 dbg_gen("leb_start %d", ubi->leb_start);
740
741 /* The shift must be aligned to 32-bit boundary */
742 if (ubi->vid_hdr_shift % 4) {
743 ubi_err(ubi, "unaligned VID header shift %d",
744 ubi->vid_hdr_shift);
745 return -EINVAL;
746 }
747
748 /* Check sanity */
749 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
750 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
751 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
752 ubi->leb_start & (ubi->min_io_size - 1)) {
753 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
754 ubi->vid_hdr_offset, ubi->leb_start);
755 return -EINVAL;
756 }
757
758 /*
759 * Set maximum amount of physical erroneous eraseblocks to be 10%.
760 * Erroneous PEB are those which have read errors.
761 */
762 ubi->max_erroneous = ubi->peb_count / 10;
763 if (ubi->max_erroneous < 16)
764 ubi->max_erroneous = 16;
765 dbg_gen("max_erroneous %d", ubi->max_erroneous);
766
767 /*
768 * It may happen that EC and VID headers are situated in one minimal
769 * I/O unit. In this case we can only accept this UBI image in
770 * read-only mode.
771 */
772 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
773 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
774 ubi->ro_mode = 1;
775 }
776
777 ubi->leb_size = ubi->peb_size - ubi->leb_start;
778
779 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
780 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
781 ubi->mtd->index);
782 ubi->ro_mode = 1;
783 }
784
785 /*
786 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
787 * unfortunately, MTD does not provide this information. We should loop
788 * over all physical eraseblocks and invoke mtd->block_is_bad() for
789 * each physical eraseblock. So, we leave @ubi->bad_peb_count
790 * uninitialized so far.
791 */
792
793 return 0;
794 }
795
796 /**
797 * autoresize - re-size the volume which has the "auto-resize" flag set.
798 * @ubi: UBI device description object
799 * @vol_id: ID of the volume to re-size
800 *
801 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
802 * the volume table to the largest possible size. See comments in ubi-header.h
803 * for more description of the flag. Returns zero in case of success and a
804 * negative error code in case of failure.
805 */
autoresize(struct ubi_device * ubi,int vol_id)806 static int autoresize(struct ubi_device *ubi, int vol_id)
807 {
808 struct ubi_volume_desc desc;
809 struct ubi_volume *vol = ubi->volumes[vol_id];
810 int err, old_reserved_pebs = vol->reserved_pebs;
811
812 if (ubi->ro_mode) {
813 ubi_warn(ubi, "skip auto-resize because of R/O mode");
814 return 0;
815 }
816
817 /*
818 * Clear the auto-resize flag in the volume in-memory copy of the
819 * volume table, and 'ubi_resize_volume()' will propagate this change
820 * to the flash.
821 */
822 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
823
824 if (ubi->avail_pebs == 0) {
825 struct ubi_vtbl_record vtbl_rec;
826
827 /*
828 * No available PEBs to re-size the volume, clear the flag on
829 * flash and exit.
830 */
831 vtbl_rec = ubi->vtbl[vol_id];
832 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
833 if (err)
834 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
835 vol_id);
836 } else {
837 desc.vol = vol;
838 err = ubi_resize_volume(&desc,
839 old_reserved_pebs + ubi->avail_pebs);
840 if (err)
841 ubi_err(ubi, "cannot auto-resize volume %d",
842 vol_id);
843 }
844
845 if (err)
846 return err;
847
848 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
849 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
850 return 0;
851 }
852
853 /**
854 * ubi_attach_mtd_dev - attach an MTD device.
855 * @mtd: MTD device description object
856 * @ubi_num: number to assign to the new UBI device
857 * @vid_hdr_offset: VID header offset
858 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
859 *
860 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
861 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
862 * which case this function finds a vacant device number and assigns it
863 * automatically. Returns the new UBI device number in case of success and a
864 * negative error code in case of failure.
865 *
866 * Note, the invocations of this function has to be serialized by the
867 * @ubi_devices_mutex.
868 */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024)869 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
870 int vid_hdr_offset, int max_beb_per1024)
871 {
872 struct ubi_device *ubi;
873 int i, err, ref = 0;
874
875 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
876 return -EINVAL;
877
878 if (!max_beb_per1024)
879 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
880
881 /*
882 * Check if we already have the same MTD device attached.
883 *
884 * Note, this function assumes that UBI devices creations and deletions
885 * are serialized, so it does not take the &ubi_devices_lock.
886 */
887 for (i = 0; i < UBI_MAX_DEVICES; i++) {
888 ubi = ubi_devices[i];
889 if (ubi && mtd->index == ubi->mtd->index) {
890 ubi_err(ubi, "mtd%d is already attached to ubi%d",
891 mtd->index, i);
892 return -EEXIST;
893 }
894 }
895
896 /*
897 * Make sure this MTD device is not emulated on top of an UBI volume
898 * already. Well, generally this recursion works fine, but there are
899 * different problems like the UBI module takes a reference to itself
900 * by attaching (and thus, opening) the emulated MTD device. This
901 * results in inability to unload the module. And in general it makes
902 * no sense to attach emulated MTD devices, so we prohibit this.
903 */
904 if (mtd->type == MTD_UBIVOLUME) {
905 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
906 mtd->index);
907 return -EINVAL;
908 }
909
910 if (ubi_num == UBI_DEV_NUM_AUTO) {
911 /* Search for an empty slot in the @ubi_devices array */
912 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
913 if (!ubi_devices[ubi_num])
914 break;
915 if (ubi_num == UBI_MAX_DEVICES) {
916 ubi_err(ubi, "only %d UBI devices may be created",
917 UBI_MAX_DEVICES);
918 return -ENFILE;
919 }
920 } else {
921 if (ubi_num >= UBI_MAX_DEVICES)
922 return -EINVAL;
923
924 /* Make sure ubi_num is not busy */
925 if (ubi_devices[ubi_num]) {
926 ubi_err(ubi, "already exists");
927 return -EEXIST;
928 }
929 }
930
931 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
932 if (!ubi)
933 return -ENOMEM;
934
935 ubi->mtd = mtd;
936 ubi->ubi_num = ubi_num;
937 ubi->vid_hdr_offset = vid_hdr_offset;
938 ubi->autoresize_vol_id = -1;
939
940 #ifdef CONFIG_MTD_UBI_FASTMAP
941 ubi->fm_pool.used = ubi->fm_pool.size = 0;
942 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
943
944 /*
945 * fm_pool.max_size is 5% of the total number of PEBs but it's also
946 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
947 */
948 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
949 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
950 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
951 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
952
953 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
954 ubi->fm_disabled = !fm_autoconvert;
955 if (fm_debug)
956 ubi_enable_dbg_chk_fastmap(ubi);
957
958 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
959 <= UBI_FM_MAX_START) {
960 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
961 UBI_FM_MAX_START);
962 ubi->fm_disabled = 1;
963 }
964
965 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
966 ubi_msg(ubi, "default fastmap WL pool size: %d",
967 ubi->fm_wl_pool.max_size);
968 #else
969 ubi->fm_disabled = 1;
970 #endif
971 mutex_init(&ubi->buf_mutex);
972 mutex_init(&ubi->ckvol_mutex);
973 mutex_init(&ubi->device_mutex);
974 spin_lock_init(&ubi->volumes_lock);
975 init_rwsem(&ubi->fm_protect);
976 init_rwsem(&ubi->fm_eba_sem);
977
978 ubi_msg(ubi, "attaching mtd%d", mtd->index);
979
980 err = io_init(ubi, max_beb_per1024);
981 if (err)
982 goto out_free;
983
984 err = -ENOMEM;
985 ubi->peb_buf = vmalloc(ubi->peb_size);
986 if (!ubi->peb_buf)
987 goto out_free;
988
989 #ifdef CONFIG_MTD_UBI_FASTMAP
990 ubi->fm_size = ubi_calc_fm_size(ubi);
991 ubi->fm_buf = vzalloc(ubi->fm_size);
992 if (!ubi->fm_buf)
993 goto out_free;
994 #endif
995 err = ubi_attach(ubi, 0);
996 if (err) {
997 ubi_err(ubi, "failed to attach mtd%d, error %d",
998 mtd->index, err);
999 goto out_free;
1000 }
1001
1002 if (ubi->autoresize_vol_id != -1) {
1003 err = autoresize(ubi, ubi->autoresize_vol_id);
1004 if (err)
1005 goto out_detach;
1006 }
1007
1008 err = uif_init(ubi, &ref);
1009 if (err)
1010 goto out_detach;
1011
1012 err = ubi_debugfs_init_dev(ubi);
1013 if (err)
1014 goto out_uif;
1015
1016 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1017 if (IS_ERR(ubi->bgt_thread)) {
1018 err = PTR_ERR(ubi->bgt_thread);
1019 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1020 ubi->bgt_name, err);
1021 goto out_debugfs;
1022 }
1023
1024 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1025 mtd->index, mtd->name, ubi->flash_size >> 20);
1026 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1027 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1028 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1029 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1030 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1031 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1032 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1033 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1034 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1035 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1036 ubi->vtbl_slots);
1037 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1038 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1039 ubi->image_seq);
1040 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1041 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1042
1043 /*
1044 * The below lock makes sure we do not race with 'ubi_thread()' which
1045 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1046 */
1047 spin_lock(&ubi->wl_lock);
1048 ubi->thread_enabled = 1;
1049 wake_up_process(ubi->bgt_thread);
1050 spin_unlock(&ubi->wl_lock);
1051
1052 ubi_devices[ubi_num] = ubi;
1053 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1054 return ubi_num;
1055
1056 out_debugfs:
1057 ubi_debugfs_exit_dev(ubi);
1058 out_uif:
1059 get_device(&ubi->dev);
1060 ubi_assert(ref);
1061 uif_close(ubi);
1062 out_detach:
1063 ubi_wl_close(ubi);
1064 ubi_free_internal_volumes(ubi);
1065 vfree(ubi->vtbl);
1066 out_free:
1067 vfree(ubi->peb_buf);
1068 vfree(ubi->fm_buf);
1069 if (ref)
1070 put_device(&ubi->dev);
1071 else
1072 kfree(ubi);
1073 return err;
1074 }
1075
1076 /**
1077 * ubi_detach_mtd_dev - detach an MTD device.
1078 * @ubi_num: UBI device number to detach from
1079 * @anyway: detach MTD even if device reference count is not zero
1080 *
1081 * This function destroys an UBI device number @ubi_num and detaches the
1082 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1083 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1084 * exist.
1085 *
1086 * Note, the invocations of this function has to be serialized by the
1087 * @ubi_devices_mutex.
1088 */
ubi_detach_mtd_dev(int ubi_num,int anyway)1089 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1090 {
1091 struct ubi_device *ubi;
1092
1093 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1094 return -EINVAL;
1095
1096 ubi = ubi_get_device(ubi_num);
1097 if (!ubi)
1098 return -EINVAL;
1099
1100 spin_lock(&ubi_devices_lock);
1101 put_device(&ubi->dev);
1102 ubi->ref_count -= 1;
1103 if (ubi->ref_count) {
1104 if (!anyway) {
1105 spin_unlock(&ubi_devices_lock);
1106 return -EBUSY;
1107 }
1108 /* This may only happen if there is a bug */
1109 ubi_err(ubi, "%s reference count %d, destroy anyway",
1110 ubi->ubi_name, ubi->ref_count);
1111 }
1112 ubi_devices[ubi_num] = NULL;
1113 spin_unlock(&ubi_devices_lock);
1114
1115 ubi_assert(ubi_num == ubi->ubi_num);
1116 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1117 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1118 #ifdef CONFIG_MTD_UBI_FASTMAP
1119 /* If we don't write a new fastmap at detach time we lose all
1120 * EC updates that have been made since the last written fastmap.
1121 * In case of fastmap debugging we omit the update to simulate an
1122 * unclean shutdown. */
1123 if (!ubi_dbg_chk_fastmap(ubi))
1124 ubi_update_fastmap(ubi);
1125 #endif
1126 /*
1127 * Before freeing anything, we have to stop the background thread to
1128 * prevent it from doing anything on this device while we are freeing.
1129 */
1130 if (ubi->bgt_thread)
1131 kthread_stop(ubi->bgt_thread);
1132
1133 /*
1134 * Get a reference to the device in order to prevent 'dev_release()'
1135 * from freeing the @ubi object.
1136 */
1137 get_device(&ubi->dev);
1138
1139 ubi_debugfs_exit_dev(ubi);
1140 uif_close(ubi);
1141
1142 ubi_wl_close(ubi);
1143 ubi_free_internal_volumes(ubi);
1144 vfree(ubi->vtbl);
1145 put_mtd_device(ubi->mtd);
1146 vfree(ubi->peb_buf);
1147 vfree(ubi->fm_buf);
1148 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1149 put_device(&ubi->dev);
1150 return 0;
1151 }
1152
1153 /**
1154 * open_mtd_by_chdev - open an MTD device by its character device node path.
1155 * @mtd_dev: MTD character device node path
1156 *
1157 * This helper function opens an MTD device by its character node device path.
1158 * Returns MTD device description object in case of success and a negative
1159 * error code in case of failure.
1160 */
open_mtd_by_chdev(const char * mtd_dev)1161 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1162 {
1163 int err, major, minor, mode;
1164 struct path path;
1165
1166 /* Probably this is an MTD character device node path */
1167 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1168 if (err)
1169 return ERR_PTR(err);
1170
1171 /* MTD device number is defined by the major / minor numbers */
1172 major = imajor(d_backing_inode(path.dentry));
1173 minor = iminor(d_backing_inode(path.dentry));
1174 mode = d_backing_inode(path.dentry)->i_mode;
1175 path_put(&path);
1176 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1177 return ERR_PTR(-EINVAL);
1178
1179 if (minor & 1)
1180 /*
1181 * Just do not think the "/dev/mtdrX" devices support is need,
1182 * so do not support them to avoid doing extra work.
1183 */
1184 return ERR_PTR(-EINVAL);
1185
1186 return get_mtd_device(NULL, minor / 2);
1187 }
1188
1189 /**
1190 * open_mtd_device - open MTD device by name, character device path, or number.
1191 * @mtd_dev: name, character device node path, or MTD device device number
1192 *
1193 * This function tries to open and MTD device described by @mtd_dev string,
1194 * which is first treated as ASCII MTD device number, and if it is not true, it
1195 * is treated as MTD device name, and if that is also not true, it is treated
1196 * as MTD character device node path. Returns MTD device description object in
1197 * case of success and a negative error code in case of failure.
1198 */
open_mtd_device(const char * mtd_dev)1199 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1200 {
1201 struct mtd_info *mtd;
1202 int mtd_num;
1203 char *endp;
1204
1205 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1206 if (*endp != '\0' || mtd_dev == endp) {
1207 /*
1208 * This does not look like an ASCII integer, probably this is
1209 * MTD device name.
1210 */
1211 mtd = get_mtd_device_nm(mtd_dev);
1212 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1213 /* Probably this is an MTD character device node path */
1214 mtd = open_mtd_by_chdev(mtd_dev);
1215 } else
1216 mtd = get_mtd_device(NULL, mtd_num);
1217
1218 return mtd;
1219 }
1220
ubi_init(void)1221 static int __init ubi_init(void)
1222 {
1223 int err, i, k;
1224
1225 /* Ensure that EC and VID headers have correct size */
1226 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1227 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1228
1229 if (mtd_devs > UBI_MAX_DEVICES) {
1230 pr_err("UBI error: too many MTD devices, maximum is %d",
1231 UBI_MAX_DEVICES);
1232 return -EINVAL;
1233 }
1234
1235 /* Create base sysfs directory and sysfs files */
1236 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1237 if (IS_ERR(ubi_class)) {
1238 err = PTR_ERR(ubi_class);
1239 pr_err("UBI error: cannot create UBI class");
1240 goto out;
1241 }
1242
1243 err = class_create_file(ubi_class, &ubi_version);
1244 if (err) {
1245 pr_err("UBI error: cannot create sysfs file");
1246 goto out_class;
1247 }
1248
1249 err = misc_register(&ubi_ctrl_cdev);
1250 if (err) {
1251 pr_err("UBI error: cannot register device");
1252 goto out_version;
1253 }
1254
1255 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1256 sizeof(struct ubi_wl_entry),
1257 0, 0, NULL);
1258 if (!ubi_wl_entry_slab) {
1259 err = -ENOMEM;
1260 goto out_dev_unreg;
1261 }
1262
1263 err = ubi_debugfs_init();
1264 if (err)
1265 goto out_slab;
1266
1267
1268 /* Attach MTD devices */
1269 for (i = 0; i < mtd_devs; i++) {
1270 struct mtd_dev_param *p = &mtd_dev_param[i];
1271 struct mtd_info *mtd;
1272
1273 cond_resched();
1274
1275 mtd = open_mtd_device(p->name);
1276 if (IS_ERR(mtd)) {
1277 err = PTR_ERR(mtd);
1278 pr_err("UBI error: cannot open mtd %s, error %d",
1279 p->name, err);
1280 /* See comment below re-ubi_is_module(). */
1281 if (ubi_is_module())
1282 goto out_detach;
1283 continue;
1284 }
1285
1286 mutex_lock(&ubi_devices_mutex);
1287 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1288 p->vid_hdr_offs, p->max_beb_per1024);
1289 mutex_unlock(&ubi_devices_mutex);
1290 if (err < 0) {
1291 pr_err("UBI error: cannot attach mtd%d",
1292 mtd->index);
1293 put_mtd_device(mtd);
1294
1295 /*
1296 * Originally UBI stopped initializing on any error.
1297 * However, later on it was found out that this
1298 * behavior is not very good when UBI is compiled into
1299 * the kernel and the MTD devices to attach are passed
1300 * through the command line. Indeed, UBI failure
1301 * stopped whole boot sequence.
1302 *
1303 * To fix this, we changed the behavior for the
1304 * non-module case, but preserved the old behavior for
1305 * the module case, just for compatibility. This is a
1306 * little inconsistent, though.
1307 */
1308 if (ubi_is_module())
1309 goto out_detach;
1310 }
1311 }
1312
1313 err = ubiblock_init();
1314 if (err) {
1315 pr_err("UBI error: block: cannot initialize, error %d", err);
1316
1317 /* See comment above re-ubi_is_module(). */
1318 if (ubi_is_module())
1319 goto out_detach;
1320 }
1321
1322 return 0;
1323
1324 out_detach:
1325 for (k = 0; k < i; k++)
1326 if (ubi_devices[k]) {
1327 mutex_lock(&ubi_devices_mutex);
1328 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1329 mutex_unlock(&ubi_devices_mutex);
1330 }
1331 ubi_debugfs_exit();
1332 out_slab:
1333 kmem_cache_destroy(ubi_wl_entry_slab);
1334 out_dev_unreg:
1335 misc_deregister(&ubi_ctrl_cdev);
1336 out_version:
1337 class_remove_file(ubi_class, &ubi_version);
1338 out_class:
1339 class_destroy(ubi_class);
1340 out:
1341 pr_err("UBI error: cannot initialize UBI, error %d", err);
1342 return err;
1343 }
1344 late_initcall(ubi_init);
1345
ubi_exit(void)1346 static void __exit ubi_exit(void)
1347 {
1348 int i;
1349
1350 ubiblock_exit();
1351
1352 for (i = 0; i < UBI_MAX_DEVICES; i++)
1353 if (ubi_devices[i]) {
1354 mutex_lock(&ubi_devices_mutex);
1355 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1356 mutex_unlock(&ubi_devices_mutex);
1357 }
1358 ubi_debugfs_exit();
1359 kmem_cache_destroy(ubi_wl_entry_slab);
1360 misc_deregister(&ubi_ctrl_cdev);
1361 class_remove_file(ubi_class, &ubi_version);
1362 class_destroy(ubi_class);
1363 }
1364 module_exit(ubi_exit);
1365
1366 /**
1367 * bytes_str_to_int - convert a number of bytes string into an integer.
1368 * @str: the string to convert
1369 *
1370 * This function returns positive resulting integer in case of success and a
1371 * negative error code in case of failure.
1372 */
bytes_str_to_int(const char * str)1373 static int __init bytes_str_to_int(const char *str)
1374 {
1375 char *endp;
1376 unsigned long result;
1377
1378 result = simple_strtoul(str, &endp, 0);
1379 if (str == endp || result >= INT_MAX) {
1380 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1381 return -EINVAL;
1382 }
1383
1384 switch (*endp) {
1385 case 'G':
1386 result *= 1024;
1387 case 'M':
1388 result *= 1024;
1389 case 'K':
1390 result *= 1024;
1391 if (endp[1] == 'i' && endp[2] == 'B')
1392 endp += 2;
1393 case '\0':
1394 break;
1395 default:
1396 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1397 return -EINVAL;
1398 }
1399
1400 return result;
1401 }
1402
1403 /**
1404 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1405 * @val: the parameter value to parse
1406 * @kp: not used
1407 *
1408 * This function returns zero in case of success and a negative error code in
1409 * case of error.
1410 */
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1411 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1412 {
1413 int i, len;
1414 struct mtd_dev_param *p;
1415 char buf[MTD_PARAM_LEN_MAX];
1416 char *pbuf = &buf[0];
1417 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1418
1419 if (!val)
1420 return -EINVAL;
1421
1422 if (mtd_devs == UBI_MAX_DEVICES) {
1423 pr_err("UBI error: too many parameters, max. is %d\n",
1424 UBI_MAX_DEVICES);
1425 return -EINVAL;
1426 }
1427
1428 len = strnlen(val, MTD_PARAM_LEN_MAX);
1429 if (len == MTD_PARAM_LEN_MAX) {
1430 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1431 val, MTD_PARAM_LEN_MAX);
1432 return -EINVAL;
1433 }
1434
1435 if (len == 0) {
1436 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1437 return 0;
1438 }
1439
1440 strcpy(buf, val);
1441
1442 /* Get rid of the final newline */
1443 if (buf[len - 1] == '\n')
1444 buf[len - 1] = '\0';
1445
1446 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1447 tokens[i] = strsep(&pbuf, ",");
1448
1449 if (pbuf) {
1450 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1451 return -EINVAL;
1452 }
1453
1454 p = &mtd_dev_param[mtd_devs];
1455 strcpy(&p->name[0], tokens[0]);
1456
1457 token = tokens[1];
1458 if (token) {
1459 p->vid_hdr_offs = bytes_str_to_int(token);
1460
1461 if (p->vid_hdr_offs < 0)
1462 return p->vid_hdr_offs;
1463 }
1464
1465 token = tokens[2];
1466 if (token) {
1467 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1468
1469 if (err) {
1470 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1471 token);
1472 return -EINVAL;
1473 }
1474 }
1475
1476 token = tokens[3];
1477 if (token) {
1478 int err = kstrtoint(token, 10, &p->ubi_num);
1479
1480 if (err) {
1481 pr_err("UBI error: bad value for ubi_num parameter: %s",
1482 token);
1483 return -EINVAL;
1484 }
1485 } else
1486 p->ubi_num = UBI_DEV_NUM_AUTO;
1487
1488 mtd_devs += 1;
1489 return 0;
1490 }
1491
1492 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1493 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1494 "Multiple \"mtd\" parameters may be specified.\n"
1495 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1496 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1497 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1498 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1499 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1500 "\n"
1501 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1502 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1503 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1504 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1505 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1506 #ifdef CONFIG_MTD_UBI_FASTMAP
1507 module_param(fm_autoconvert, bool, 0644);
1508 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1509 module_param(fm_debug, bool, 0);
1510 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1511 #endif
1512 MODULE_VERSION(__stringify(UBI_VERSION));
1513 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1514 MODULE_AUTHOR("Artem Bityutskiy");
1515 MODULE_LICENSE("GPL");
1516