1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 
157 /**
158  *	free_tty_struct		-	free a disused tty
159  *	@tty: tty struct to free
160  *
161  *	Free the write buffers, tty queue and tty memory itself.
162  *
163  *	Locking: none. Must be called after tty is definitely unused
164  */
165 
free_tty_struct(struct tty_struct * tty)166 void free_tty_struct(struct tty_struct *tty)
167 {
168 	if (!tty)
169 		return;
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
file_tty(struct file * file)176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
tty_alloc_file(struct file * file)181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty_files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty_files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
tty_free_file(struct file * file)213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
tty_del_file(struct file * file)222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 
226 	spin_lock(&tty_files_lock);
227 	list_del(&priv->list);
228 	spin_unlock(&tty_files_lock);
229 	tty_free_file(file);
230 }
231 
232 
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234 
235 /**
236  *	tty_name	-	return tty naming
237  *	@tty: tty structure
238  *	@buf: buffer for output
239  *
240  *	Convert a tty structure into a name. The name reflects the kernel
241  *	naming policy and if udev is in use may not reflect user space
242  *
243  *	Locking: none
244  */
245 
tty_name(struct tty_struct * tty,char * buf)246 char *tty_name(struct tty_struct *tty, char *buf)
247 {
248 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
249 		strcpy(buf, "NULL tty");
250 	else
251 		strcpy(buf, tty->name);
252 	return buf;
253 }
254 
255 EXPORT_SYMBOL(tty_name);
256 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)257 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
258 			      const char *routine)
259 {
260 #ifdef TTY_PARANOIA_CHECK
261 	if (!tty) {
262 		printk(KERN_WARNING
263 			"null TTY for (%d:%d) in %s\n",
264 			imajor(inode), iminor(inode), routine);
265 		return 1;
266 	}
267 	if (tty->magic != TTY_MAGIC) {
268 		printk(KERN_WARNING
269 			"bad magic number for tty struct (%d:%d) in %s\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty_files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty_files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
295 				    "!= #fd's(%d) in %s\n",
296 		       tty->name, tty->count, count, routine);
297 		return count;
298 	}
299 #endif
300 	return 0;
301 }
302 
303 /**
304  *	get_tty_driver		-	find device of a tty
305  *	@dev_t: device identifier
306  *	@index: returns the index of the tty
307  *
308  *	This routine returns a tty driver structure, given a device number
309  *	and also passes back the index number.
310  *
311  *	Locking: caller must hold tty_mutex
312  */
313 
get_tty_driver(dev_t device,int * index)314 static struct tty_driver *get_tty_driver(dev_t device, int *index)
315 {
316 	struct tty_driver *p;
317 
318 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
319 		dev_t base = MKDEV(p->major, p->minor_start);
320 		if (device < base || device >= base + p->num)
321 			continue;
322 		*index = device - base;
323 		return tty_driver_kref_get(p);
324 	}
325 	return NULL;
326 }
327 
328 #ifdef CONFIG_CONSOLE_POLL
329 
330 /**
331  *	tty_find_polling_driver	-	find device of a polled tty
332  *	@name: name string to match
333  *	@line: pointer to resulting tty line nr
334  *
335  *	This routine returns a tty driver structure, given a name
336  *	and the condition that the tty driver is capable of polled
337  *	operation.
338  */
tty_find_polling_driver(char * name,int * line)339 struct tty_driver *tty_find_polling_driver(char *name, int *line)
340 {
341 	struct tty_driver *p, *res = NULL;
342 	int tty_line = 0;
343 	int len;
344 	char *str, *stp;
345 
346 	for (str = name; *str; str++)
347 		if ((*str >= '0' && *str <= '9') || *str == ',')
348 			break;
349 	if (!*str)
350 		return NULL;
351 
352 	len = str - name;
353 	tty_line = simple_strtoul(str, &str, 10);
354 
355 	mutex_lock(&tty_mutex);
356 	/* Search through the tty devices to look for a match */
357 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
358 		if (strncmp(name, p->name, len) != 0)
359 			continue;
360 		stp = str;
361 		if (*stp == ',')
362 			stp++;
363 		if (*stp == '\0')
364 			stp = NULL;
365 
366 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
367 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
368 			res = tty_driver_kref_get(p);
369 			*line = tty_line;
370 			break;
371 		}
372 	}
373 	mutex_unlock(&tty_mutex);
374 
375 	return res;
376 }
377 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
378 #endif
379 
380 /**
381  *	tty_check_change	-	check for POSIX terminal changes
382  *	@tty: tty to check
383  *
384  *	If we try to write to, or set the state of, a terminal and we're
385  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
386  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
387  *
388  *	Locking: ctrl_lock
389  */
390 
tty_check_change(struct tty_struct * tty)391 int tty_check_change(struct tty_struct *tty)
392 {
393 	unsigned long flags;
394 	int ret = 0;
395 
396 	if (current->signal->tty != tty)
397 		return 0;
398 
399 	spin_lock_irqsave(&tty->ctrl_lock, flags);
400 
401 	if (!tty->pgrp) {
402 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
403 		goto out_unlock;
404 	}
405 	if (task_pgrp(current) == tty->pgrp)
406 		goto out_unlock;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 	if (is_ignored(SIGTTOU))
409 		goto out;
410 	if (is_current_pgrp_orphaned()) {
411 		ret = -EIO;
412 		goto out;
413 	}
414 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
415 	set_thread_flag(TIF_SIGPENDING);
416 	ret = -ERESTARTSYS;
417 out:
418 	return ret;
419 out_unlock:
420 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
421 	return ret;
422 }
423 
424 EXPORT_SYMBOL(tty_check_change);
425 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)426 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
427 				size_t count, loff_t *ppos)
428 {
429 	return 0;
430 }
431 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)432 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
433 				 size_t count, loff_t *ppos)
434 {
435 	return -EIO;
436 }
437 
438 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)439 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
440 {
441 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
442 }
443 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)444 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
445 		unsigned long arg)
446 {
447 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
448 }
449 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)450 static long hung_up_tty_compat_ioctl(struct file *file,
451 				     unsigned int cmd, unsigned long arg)
452 {
453 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455 
456 static const struct file_operations tty_fops = {
457 	.llseek		= no_llseek,
458 	.read		= tty_read,
459 	.write		= tty_write,
460 	.poll		= tty_poll,
461 	.unlocked_ioctl	= tty_ioctl,
462 	.compat_ioctl	= tty_compat_ioctl,
463 	.open		= tty_open,
464 	.release	= tty_release,
465 	.fasync		= tty_fasync,
466 };
467 
468 static const struct file_operations console_fops = {
469 	.llseek		= no_llseek,
470 	.read		= tty_read,
471 	.write		= redirected_tty_write,
472 	.poll		= tty_poll,
473 	.unlocked_ioctl	= tty_ioctl,
474 	.compat_ioctl	= tty_compat_ioctl,
475 	.open		= tty_open,
476 	.release	= tty_release,
477 	.fasync		= tty_fasync,
478 };
479 
480 static const struct file_operations hung_up_tty_fops = {
481 	.llseek		= no_llseek,
482 	.read		= hung_up_tty_read,
483 	.write		= hung_up_tty_write,
484 	.poll		= hung_up_tty_poll,
485 	.unlocked_ioctl	= hung_up_tty_ioctl,
486 	.compat_ioctl	= hung_up_tty_compat_ioctl,
487 	.release	= tty_release,
488 };
489 
490 static DEFINE_SPINLOCK(redirect_lock);
491 static struct file *redirect;
492 
493 
proc_clear_tty(struct task_struct * p)494 void proc_clear_tty(struct task_struct *p)
495 {
496 	unsigned long flags;
497 	struct tty_struct *tty;
498 	spin_lock_irqsave(&p->sighand->siglock, flags);
499 	tty = p->signal->tty;
500 	p->signal->tty = NULL;
501 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
502 	tty_kref_put(tty);
503 }
504 
505 /**
506  * proc_set_tty -  set the controlling terminal
507  *
508  * Only callable by the session leader and only if it does not already have
509  * a controlling terminal.
510  *
511  * Caller must hold:  tty_lock()
512  *		      a readlock on tasklist_lock
513  *		      sighand lock
514  */
__proc_set_tty(struct tty_struct * tty)515 static void __proc_set_tty(struct tty_struct *tty)
516 {
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&tty->ctrl_lock, flags);
520 	/*
521 	 * The session and fg pgrp references will be non-NULL if
522 	 * tiocsctty() is stealing the controlling tty
523 	 */
524 	put_pid(tty->session);
525 	put_pid(tty->pgrp);
526 	tty->pgrp = get_pid(task_pgrp(current));
527 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
528 	tty->session = get_pid(task_session(current));
529 	if (current->signal->tty) {
530 		printk(KERN_DEBUG "tty not NULL!!\n");
531 		tty_kref_put(current->signal->tty);
532 	}
533 	put_pid(current->signal->tty_old_pgrp);
534 	current->signal->tty = tty_kref_get(tty);
535 	current->signal->tty_old_pgrp = NULL;
536 }
537 
proc_set_tty(struct tty_struct * tty)538 static void proc_set_tty(struct tty_struct *tty)
539 {
540 	spin_lock_irq(&current->sighand->siglock);
541 	__proc_set_tty(tty);
542 	spin_unlock_irq(&current->sighand->siglock);
543 }
544 
get_current_tty(void)545 struct tty_struct *get_current_tty(void)
546 {
547 	struct tty_struct *tty;
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&current->sighand->siglock, flags);
551 	tty = tty_kref_get(current->signal->tty);
552 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
553 	return tty;
554 }
555 EXPORT_SYMBOL_GPL(get_current_tty);
556 
session_clear_tty(struct pid * session)557 static void session_clear_tty(struct pid *session)
558 {
559 	struct task_struct *p;
560 	do_each_pid_task(session, PIDTYPE_SID, p) {
561 		proc_clear_tty(p);
562 	} while_each_pid_task(session, PIDTYPE_SID, p);
563 }
564 
565 /**
566  *	tty_wakeup	-	request more data
567  *	@tty: terminal
568  *
569  *	Internal and external helper for wakeups of tty. This function
570  *	informs the line discipline if present that the driver is ready
571  *	to receive more output data.
572  */
573 
tty_wakeup(struct tty_struct * tty)574 void tty_wakeup(struct tty_struct *tty)
575 {
576 	struct tty_ldisc *ld;
577 
578 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
579 		ld = tty_ldisc_ref(tty);
580 		if (ld) {
581 			if (ld->ops->write_wakeup)
582 				ld->ops->write_wakeup(tty);
583 			tty_ldisc_deref(ld);
584 		}
585 	}
586 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
587 }
588 
589 EXPORT_SYMBOL_GPL(tty_wakeup);
590 
591 /**
592  *	tty_signal_session_leader	- sends SIGHUP to session leader
593  *	@tty		controlling tty
594  *	@exit_session	if non-zero, signal all foreground group processes
595  *
596  *	Send SIGHUP and SIGCONT to the session leader and its process group.
597  *	Optionally, signal all processes in the foreground process group.
598  *
599  *	Returns the number of processes in the session with this tty
600  *	as their controlling terminal. This value is used to drop
601  *	tty references for those processes.
602  */
tty_signal_session_leader(struct tty_struct * tty,int exit_session)603 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
604 {
605 	struct task_struct *p;
606 	int refs = 0;
607 	struct pid *tty_pgrp = NULL;
608 
609 	read_lock(&tasklist_lock);
610 	if (tty->session) {
611 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612 			spin_lock_irq(&p->sighand->siglock);
613 			if (p->signal->tty == tty) {
614 				p->signal->tty = NULL;
615 				/* We defer the dereferences outside fo
616 				   the tasklist lock */
617 				refs++;
618 			}
619 			if (!p->signal->leader) {
620 				spin_unlock_irq(&p->sighand->siglock);
621 				continue;
622 			}
623 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
626 			spin_lock(&tty->ctrl_lock);
627 			tty_pgrp = get_pid(tty->pgrp);
628 			if (tty->pgrp)
629 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
630 			spin_unlock(&tty->ctrl_lock);
631 			spin_unlock_irq(&p->sighand->siglock);
632 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
633 	}
634 	read_unlock(&tasklist_lock);
635 
636 	if (tty_pgrp) {
637 		if (exit_session)
638 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
639 		put_pid(tty_pgrp);
640 	}
641 
642 	return refs;
643 }
644 
645 /**
646  *	__tty_hangup		-	actual handler for hangup events
647  *	@work: tty device
648  *
649  *	This can be called by a "kworker" kernel thread.  That is process
650  *	synchronous but doesn't hold any locks, so we need to make sure we
651  *	have the appropriate locks for what we're doing.
652  *
653  *	The hangup event clears any pending redirections onto the hung up
654  *	device. It ensures future writes will error and it does the needed
655  *	line discipline hangup and signal delivery. The tty object itself
656  *	remains intact.
657  *
658  *	Locking:
659  *		BTM
660  *		  redirect lock for undoing redirection
661  *		  file list lock for manipulating list of ttys
662  *		  tty_ldiscs_lock from called functions
663  *		  termios_rwsem resetting termios data
664  *		  tasklist_lock to walk task list for hangup event
665  *		    ->siglock to protect ->signal/->sighand
666  */
__tty_hangup(struct tty_struct * tty,int exit_session)667 static void __tty_hangup(struct tty_struct *tty, int exit_session)
668 {
669 	struct file *cons_filp = NULL;
670 	struct file *filp, *f = NULL;
671 	struct tty_file_private *priv;
672 	int    closecount = 0, n;
673 	int refs;
674 
675 	if (!tty)
676 		return;
677 
678 
679 	spin_lock(&redirect_lock);
680 	if (redirect && file_tty(redirect) == tty) {
681 		f = redirect;
682 		redirect = NULL;
683 	}
684 	spin_unlock(&redirect_lock);
685 
686 	tty_lock(tty);
687 
688 	if (test_bit(TTY_HUPPED, &tty->flags)) {
689 		tty_unlock(tty);
690 		return;
691 	}
692 
693 	/* inuse_filps is protected by the single tty lock,
694 	   this really needs to change if we want to flush the
695 	   workqueue with the lock held */
696 	check_tty_count(tty, "tty_hangup");
697 
698 	spin_lock(&tty_files_lock);
699 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
700 	list_for_each_entry(priv, &tty->tty_files, list) {
701 		filp = priv->file;
702 		if (filp->f_op->write == redirected_tty_write)
703 			cons_filp = filp;
704 		if (filp->f_op->write != tty_write)
705 			continue;
706 		closecount++;
707 		__tty_fasync(-1, filp, 0);	/* can't block */
708 		filp->f_op = &hung_up_tty_fops;
709 	}
710 	spin_unlock(&tty_files_lock);
711 
712 	refs = tty_signal_session_leader(tty, exit_session);
713 	/* Account for the p->signal references we killed */
714 	while (refs--)
715 		tty_kref_put(tty);
716 
717 	tty_ldisc_hangup(tty);
718 
719 	spin_lock_irq(&tty->ctrl_lock);
720 	clear_bit(TTY_THROTTLED, &tty->flags);
721 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
722 	put_pid(tty->session);
723 	put_pid(tty->pgrp);
724 	tty->session = NULL;
725 	tty->pgrp = NULL;
726 	tty->ctrl_status = 0;
727 	spin_unlock_irq(&tty->ctrl_lock);
728 
729 	/*
730 	 * If one of the devices matches a console pointer, we
731 	 * cannot just call hangup() because that will cause
732 	 * tty->count and state->count to go out of sync.
733 	 * So we just call close() the right number of times.
734 	 */
735 	if (cons_filp) {
736 		if (tty->ops->close)
737 			for (n = 0; n < closecount; n++)
738 				tty->ops->close(tty, cons_filp);
739 	} else if (tty->ops->hangup)
740 		tty->ops->hangup(tty);
741 	/*
742 	 * We don't want to have driver/ldisc interactions beyond
743 	 * the ones we did here. The driver layer expects no
744 	 * calls after ->hangup() from the ldisc side. However we
745 	 * can't yet guarantee all that.
746 	 */
747 	set_bit(TTY_HUPPED, &tty->flags);
748 	tty_unlock(tty);
749 
750 	if (f)
751 		fput(f);
752 }
753 
do_tty_hangup(struct work_struct * work)754 static void do_tty_hangup(struct work_struct *work)
755 {
756 	struct tty_struct *tty =
757 		container_of(work, struct tty_struct, hangup_work);
758 
759 	__tty_hangup(tty, 0);
760 }
761 
762 /**
763  *	tty_hangup		-	trigger a hangup event
764  *	@tty: tty to hangup
765  *
766  *	A carrier loss (virtual or otherwise) has occurred on this like
767  *	schedule a hangup sequence to run after this event.
768  */
769 
tty_hangup(struct tty_struct * tty)770 void tty_hangup(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 	char	buf[64];
774 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
775 #endif
776 	schedule_work(&tty->hangup_work);
777 }
778 
779 EXPORT_SYMBOL(tty_hangup);
780 
781 /**
782  *	tty_vhangup		-	process vhangup
783  *	@tty: tty to hangup
784  *
785  *	The user has asked via system call for the terminal to be hung up.
786  *	We do this synchronously so that when the syscall returns the process
787  *	is complete. That guarantee is necessary for security reasons.
788  */
789 
tty_vhangup(struct tty_struct * tty)790 void tty_vhangup(struct tty_struct *tty)
791 {
792 #ifdef TTY_DEBUG_HANGUP
793 	char	buf[64];
794 
795 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
796 #endif
797 	__tty_hangup(tty, 0);
798 }
799 
800 EXPORT_SYMBOL(tty_vhangup);
801 
802 
803 /**
804  *	tty_vhangup_self	-	process vhangup for own ctty
805  *
806  *	Perform a vhangup on the current controlling tty
807  */
808 
tty_vhangup_self(void)809 void tty_vhangup_self(void)
810 {
811 	struct tty_struct *tty;
812 
813 	tty = get_current_tty();
814 	if (tty) {
815 		tty_vhangup(tty);
816 		tty_kref_put(tty);
817 	}
818 }
819 
820 /**
821  *	tty_vhangup_session		-	hangup session leader exit
822  *	@tty: tty to hangup
823  *
824  *	The session leader is exiting and hanging up its controlling terminal.
825  *	Every process in the foreground process group is signalled SIGHUP.
826  *
827  *	We do this synchronously so that when the syscall returns the process
828  *	is complete. That guarantee is necessary for security reasons.
829  */
830 
tty_vhangup_session(struct tty_struct * tty)831 static void tty_vhangup_session(struct tty_struct *tty)
832 {
833 #ifdef TTY_DEBUG_HANGUP
834 	char	buf[64];
835 
836 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
837 #endif
838 	__tty_hangup(tty, 1);
839 }
840 
841 /**
842  *	tty_hung_up_p		-	was tty hung up
843  *	@filp: file pointer of tty
844  *
845  *	Return true if the tty has been subject to a vhangup or a carrier
846  *	loss
847  */
848 
tty_hung_up_p(struct file * filp)849 int tty_hung_up_p(struct file *filp)
850 {
851 	return (filp->f_op == &hung_up_tty_fops);
852 }
853 
854 EXPORT_SYMBOL(tty_hung_up_p);
855 
856 /**
857  *	disassociate_ctty	-	disconnect controlling tty
858  *	@on_exit: true if exiting so need to "hang up" the session
859  *
860  *	This function is typically called only by the session leader, when
861  *	it wants to disassociate itself from its controlling tty.
862  *
863  *	It performs the following functions:
864  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
865  * 	(2)  Clears the tty from being controlling the session
866  * 	(3)  Clears the controlling tty for all processes in the
867  * 		session group.
868  *
869  *	The argument on_exit is set to 1 if called when a process is
870  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
871  *
872  *	Locking:
873  *		BTM is taken for hysterical raisins, and held when
874  *		  called from no_tty().
875  *		  tty_mutex is taken to protect tty
876  *		  ->siglock is taken to protect ->signal/->sighand
877  *		  tasklist_lock is taken to walk process list for sessions
878  *		    ->siglock is taken to protect ->signal/->sighand
879  */
880 
disassociate_ctty(int on_exit)881 void disassociate_ctty(int on_exit)
882 {
883 	struct tty_struct *tty;
884 
885 	if (!current->signal->leader)
886 		return;
887 
888 	tty = get_current_tty();
889 	if (tty) {
890 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
891 			tty_vhangup_session(tty);
892 		} else {
893 			struct pid *tty_pgrp = tty_get_pgrp(tty);
894 			if (tty_pgrp) {
895 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
896 				if (!on_exit)
897 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
898 				put_pid(tty_pgrp);
899 			}
900 		}
901 		tty_kref_put(tty);
902 
903 	} else if (on_exit) {
904 		struct pid *old_pgrp;
905 		spin_lock_irq(&current->sighand->siglock);
906 		old_pgrp = current->signal->tty_old_pgrp;
907 		current->signal->tty_old_pgrp = NULL;
908 		spin_unlock_irq(&current->sighand->siglock);
909 		if (old_pgrp) {
910 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
911 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
912 			put_pid(old_pgrp);
913 		}
914 		return;
915 	}
916 
917 	spin_lock_irq(&current->sighand->siglock);
918 	put_pid(current->signal->tty_old_pgrp);
919 	current->signal->tty_old_pgrp = NULL;
920 
921 	tty = tty_kref_get(current->signal->tty);
922 	if (tty) {
923 		unsigned long flags;
924 		spin_lock_irqsave(&tty->ctrl_lock, flags);
925 		put_pid(tty->session);
926 		put_pid(tty->pgrp);
927 		tty->session = NULL;
928 		tty->pgrp = NULL;
929 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
930 		tty_kref_put(tty);
931 	} else {
932 #ifdef TTY_DEBUG_HANGUP
933 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
934 		       " = NULL", tty);
935 #endif
936 	}
937 
938 	spin_unlock_irq(&current->sighand->siglock);
939 	/* Now clear signal->tty under the lock */
940 	read_lock(&tasklist_lock);
941 	session_clear_tty(task_session(current));
942 	read_unlock(&tasklist_lock);
943 }
944 
945 /**
946  *
947  *	no_tty	- Ensure the current process does not have a controlling tty
948  */
no_tty(void)949 void no_tty(void)
950 {
951 	/* FIXME: Review locking here. The tty_lock never covered any race
952 	   between a new association and proc_clear_tty but possible we need
953 	   to protect against this anyway */
954 	struct task_struct *tsk = current;
955 	disassociate_ctty(0);
956 	proc_clear_tty(tsk);
957 }
958 
959 
960 /**
961  *	stop_tty	-	propagate flow control
962  *	@tty: tty to stop
963  *
964  *	Perform flow control to the driver. May be called
965  *	on an already stopped device and will not re-call the driver
966  *	method.
967  *
968  *	This functionality is used by both the line disciplines for
969  *	halting incoming flow and by the driver. It may therefore be
970  *	called from any context, may be under the tty atomic_write_lock
971  *	but not always.
972  *
973  *	Locking:
974  *		flow_lock
975  */
976 
__stop_tty(struct tty_struct * tty)977 void __stop_tty(struct tty_struct *tty)
978 {
979 	if (tty->stopped)
980 		return;
981 	tty->stopped = 1;
982 	if (tty->ops->stop)
983 		tty->ops->stop(tty);
984 }
985 
stop_tty(struct tty_struct * tty)986 void stop_tty(struct tty_struct *tty)
987 {
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&tty->flow_lock, flags);
991 	__stop_tty(tty);
992 	spin_unlock_irqrestore(&tty->flow_lock, flags);
993 }
994 EXPORT_SYMBOL(stop_tty);
995 
996 /**
997  *	start_tty	-	propagate flow control
998  *	@tty: tty to start
999  *
1000  *	Start a tty that has been stopped if at all possible. If this
1001  *	tty was previous stopped and is now being started, the driver
1002  *	start method is invoked and the line discipline woken.
1003  *
1004  *	Locking:
1005  *		flow_lock
1006  */
1007 
__start_tty(struct tty_struct * tty)1008 void __start_tty(struct tty_struct *tty)
1009 {
1010 	if (!tty->stopped || tty->flow_stopped)
1011 		return;
1012 	tty->stopped = 0;
1013 	if (tty->ops->start)
1014 		tty->ops->start(tty);
1015 	tty_wakeup(tty);
1016 }
1017 
start_tty(struct tty_struct * tty)1018 void start_tty(struct tty_struct *tty)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&tty->flow_lock, flags);
1023 	__start_tty(tty);
1024 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1025 }
1026 EXPORT_SYMBOL(start_tty);
1027 
tty_update_time(struct timespec * time)1028 static void tty_update_time(struct timespec *time)
1029 {
1030 	unsigned long sec = get_seconds();
1031 
1032 	/*
1033 	 * We only care if the two values differ in anything other than the
1034 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1035 	 * the time of the tty device, otherwise it could be construded as a
1036 	 * security leak to let userspace know the exact timing of the tty.
1037 	 */
1038 	if ((sec ^ time->tv_sec) & ~7)
1039 		time->tv_sec = sec;
1040 }
1041 
1042 /**
1043  *	tty_read	-	read method for tty device files
1044  *	@file: pointer to tty file
1045  *	@buf: user buffer
1046  *	@count: size of user buffer
1047  *	@ppos: unused
1048  *
1049  *	Perform the read system call function on this terminal device. Checks
1050  *	for hung up devices before calling the line discipline method.
1051  *
1052  *	Locking:
1053  *		Locks the line discipline internally while needed. Multiple
1054  *	read calls may be outstanding in parallel.
1055  */
1056 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1057 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1058 			loff_t *ppos)
1059 {
1060 	int i;
1061 	struct inode *inode = file_inode(file);
1062 	struct tty_struct *tty = file_tty(file);
1063 	struct tty_ldisc *ld;
1064 
1065 	if (tty_paranoia_check(tty, inode, "tty_read"))
1066 		return -EIO;
1067 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1068 		return -EIO;
1069 
1070 	/* We want to wait for the line discipline to sort out in this
1071 	   situation */
1072 	ld = tty_ldisc_ref_wait(tty);
1073 	if (ld->ops->read)
1074 		i = ld->ops->read(tty, file, buf, count);
1075 	else
1076 		i = -EIO;
1077 	tty_ldisc_deref(ld);
1078 
1079 	if (i > 0)
1080 		tty_update_time(&inode->i_atime);
1081 
1082 	return i;
1083 }
1084 
tty_write_unlock(struct tty_struct * tty)1085 static void tty_write_unlock(struct tty_struct *tty)
1086 {
1087 	mutex_unlock(&tty->atomic_write_lock);
1088 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1089 }
1090 
tty_write_lock(struct tty_struct * tty,int ndelay)1091 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1092 {
1093 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1094 		if (ndelay)
1095 			return -EAGAIN;
1096 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1097 			return -ERESTARTSYS;
1098 	}
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Split writes up in sane blocksizes to avoid
1104  * denial-of-service type attacks
1105  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)1106 static inline ssize_t do_tty_write(
1107 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1108 	struct tty_struct *tty,
1109 	struct file *file,
1110 	const char __user *buf,
1111 	size_t count)
1112 {
1113 	ssize_t ret, written = 0;
1114 	unsigned int chunk;
1115 
1116 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1117 	if (ret < 0)
1118 		return ret;
1119 
1120 	/*
1121 	 * We chunk up writes into a temporary buffer. This
1122 	 * simplifies low-level drivers immensely, since they
1123 	 * don't have locking issues and user mode accesses.
1124 	 *
1125 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1126 	 * big chunk-size..
1127 	 *
1128 	 * The default chunk-size is 2kB, because the NTTY
1129 	 * layer has problems with bigger chunks. It will
1130 	 * claim to be able to handle more characters than
1131 	 * it actually does.
1132 	 *
1133 	 * FIXME: This can probably go away now except that 64K chunks
1134 	 * are too likely to fail unless switched to vmalloc...
1135 	 */
1136 	chunk = 2048;
1137 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1138 		chunk = 65536;
1139 	if (count < chunk)
1140 		chunk = count;
1141 
1142 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1143 	if (tty->write_cnt < chunk) {
1144 		unsigned char *buf_chunk;
1145 
1146 		if (chunk < 1024)
1147 			chunk = 1024;
1148 
1149 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1150 		if (!buf_chunk) {
1151 			ret = -ENOMEM;
1152 			goto out;
1153 		}
1154 		kfree(tty->write_buf);
1155 		tty->write_cnt = chunk;
1156 		tty->write_buf = buf_chunk;
1157 	}
1158 
1159 	/* Do the write .. */
1160 	for (;;) {
1161 		size_t size = count;
1162 		if (size > chunk)
1163 			size = chunk;
1164 		ret = -EFAULT;
1165 		if (copy_from_user(tty->write_buf, buf, size))
1166 			break;
1167 		ret = write(tty, file, tty->write_buf, size);
1168 		if (ret <= 0)
1169 			break;
1170 		written += ret;
1171 		buf += ret;
1172 		count -= ret;
1173 		if (!count)
1174 			break;
1175 		ret = -ERESTARTSYS;
1176 		if (signal_pending(current))
1177 			break;
1178 		cond_resched();
1179 	}
1180 	if (written) {
1181 		tty_update_time(&file_inode(file)->i_mtime);
1182 		ret = written;
1183 	}
1184 out:
1185 	tty_write_unlock(tty);
1186 	return ret;
1187 }
1188 
1189 /**
1190  * tty_write_message - write a message to a certain tty, not just the console.
1191  * @tty: the destination tty_struct
1192  * @msg: the message to write
1193  *
1194  * This is used for messages that need to be redirected to a specific tty.
1195  * We don't put it into the syslog queue right now maybe in the future if
1196  * really needed.
1197  *
1198  * We must still hold the BTM and test the CLOSING flag for the moment.
1199  */
1200 
tty_write_message(struct tty_struct * tty,char * msg)1201 void tty_write_message(struct tty_struct *tty, char *msg)
1202 {
1203 	if (tty) {
1204 		mutex_lock(&tty->atomic_write_lock);
1205 		tty_lock(tty);
1206 		if (tty->ops->write && tty->count > 0) {
1207 			tty_unlock(tty);
1208 			tty->ops->write(tty, msg, strlen(msg));
1209 		} else
1210 			tty_unlock(tty);
1211 		tty_write_unlock(tty);
1212 	}
1213 	return;
1214 }
1215 
1216 
1217 /**
1218  *	tty_write		-	write method for tty device file
1219  *	@file: tty file pointer
1220  *	@buf: user data to write
1221  *	@count: bytes to write
1222  *	@ppos: unused
1223  *
1224  *	Write data to a tty device via the line discipline.
1225  *
1226  *	Locking:
1227  *		Locks the line discipline as required
1228  *		Writes to the tty driver are serialized by the atomic_write_lock
1229  *	and are then processed in chunks to the device. The line discipline
1230  *	write method will not be invoked in parallel for each device.
1231  */
1232 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1233 static ssize_t tty_write(struct file *file, const char __user *buf,
1234 						size_t count, loff_t *ppos)
1235 {
1236 	struct tty_struct *tty = file_tty(file);
1237  	struct tty_ldisc *ld;
1238 	ssize_t ret;
1239 
1240 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1241 		return -EIO;
1242 	if (!tty || !tty->ops->write ||
1243 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1244 			return -EIO;
1245 	/* Short term debug to catch buggy drivers */
1246 	if (tty->ops->write_room == NULL)
1247 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1248 			tty->driver->name);
1249 	ld = tty_ldisc_ref_wait(tty);
1250 	if (!ld->ops->write)
1251 		ret = -EIO;
1252 	else
1253 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1254 	tty_ldisc_deref(ld);
1255 	return ret;
1256 }
1257 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1258 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1259 						size_t count, loff_t *ppos)
1260 {
1261 	struct file *p = NULL;
1262 
1263 	spin_lock(&redirect_lock);
1264 	if (redirect)
1265 		p = get_file(redirect);
1266 	spin_unlock(&redirect_lock);
1267 
1268 	if (p) {
1269 		ssize_t res;
1270 		res = vfs_write(p, buf, count, &p->f_pos);
1271 		fput(p);
1272 		return res;
1273 	}
1274 	return tty_write(file, buf, count, ppos);
1275 }
1276 
1277 /**
1278  *	tty_send_xchar	-	send priority character
1279  *
1280  *	Send a high priority character to the tty even if stopped
1281  *
1282  *	Locking: none for xchar method, write ordering for write method.
1283  */
1284 
tty_send_xchar(struct tty_struct * tty,char ch)1285 int tty_send_xchar(struct tty_struct *tty, char ch)
1286 {
1287 	int	was_stopped = tty->stopped;
1288 
1289 	if (tty->ops->send_xchar) {
1290 		down_read(&tty->termios_rwsem);
1291 		tty->ops->send_xchar(tty, ch);
1292 		up_read(&tty->termios_rwsem);
1293 		return 0;
1294 	}
1295 
1296 	if (tty_write_lock(tty, 0) < 0)
1297 		return -ERESTARTSYS;
1298 
1299 	down_read(&tty->termios_rwsem);
1300 	if (was_stopped)
1301 		start_tty(tty);
1302 	tty->ops->write(tty, &ch, 1);
1303 	if (was_stopped)
1304 		stop_tty(tty);
1305 	up_read(&tty->termios_rwsem);
1306 	tty_write_unlock(tty);
1307 	return 0;
1308 }
1309 
1310 static char ptychar[] = "pqrstuvwxyzabcde";
1311 
1312 /**
1313  *	pty_line_name	-	generate name for a pty
1314  *	@driver: the tty driver in use
1315  *	@index: the minor number
1316  *	@p: output buffer of at least 6 bytes
1317  *
1318  *	Generate a name from a driver reference and write it to the output
1319  *	buffer.
1320  *
1321  *	Locking: None
1322  */
pty_line_name(struct tty_driver * driver,int index,char * p)1323 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1324 {
1325 	int i = index + driver->name_base;
1326 	/* ->name is initialized to "ttyp", but "tty" is expected */
1327 	sprintf(p, "%s%c%x",
1328 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1329 		ptychar[i >> 4 & 0xf], i & 0xf);
1330 }
1331 
1332 /**
1333  *	tty_line_name	-	generate name for a tty
1334  *	@driver: the tty driver in use
1335  *	@index: the minor number
1336  *	@p: output buffer of at least 7 bytes
1337  *
1338  *	Generate a name from a driver reference and write it to the output
1339  *	buffer.
1340  *
1341  *	Locking: None
1342  */
tty_line_name(struct tty_driver * driver,int index,char * p)1343 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1344 {
1345 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1346 		return sprintf(p, "%s", driver->name);
1347 	else
1348 		return sprintf(p, "%s%d", driver->name,
1349 			       index + driver->name_base);
1350 }
1351 
1352 /**
1353  *	tty_driver_lookup_tty() - find an existing tty, if any
1354  *	@driver: the driver for the tty
1355  *	@idx:	 the minor number
1356  *
1357  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1358  *	driver lookup() method returns an error.
1359  *
1360  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1361  */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1362 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1363 		struct inode *inode, int idx)
1364 {
1365 	struct tty_struct *tty;
1366 
1367 	if (driver->ops->lookup)
1368 		tty = driver->ops->lookup(driver, inode, idx);
1369 	else
1370 		tty = driver->ttys[idx];
1371 
1372 	if (!IS_ERR(tty))
1373 		tty_kref_get(tty);
1374 	return tty;
1375 }
1376 
1377 /**
1378  *	tty_init_termios	-  helper for termios setup
1379  *	@tty: the tty to set up
1380  *
1381  *	Initialise the termios structures for this tty. Thus runs under
1382  *	the tty_mutex currently so we can be relaxed about ordering.
1383  */
1384 
tty_init_termios(struct tty_struct * tty)1385 int tty_init_termios(struct tty_struct *tty)
1386 {
1387 	struct ktermios *tp;
1388 	int idx = tty->index;
1389 
1390 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1391 		tty->termios = tty->driver->init_termios;
1392 	else {
1393 		/* Check for lazy saved data */
1394 		tp = tty->driver->termios[idx];
1395 		if (tp != NULL)
1396 			tty->termios = *tp;
1397 		else
1398 			tty->termios = tty->driver->init_termios;
1399 	}
1400 	/* Compatibility until drivers always set this */
1401 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1402 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1403 	return 0;
1404 }
1405 EXPORT_SYMBOL_GPL(tty_init_termios);
1406 
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1407 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1408 {
1409 	int ret = tty_init_termios(tty);
1410 	if (ret)
1411 		return ret;
1412 
1413 	tty_driver_kref_get(driver);
1414 	tty->count++;
1415 	driver->ttys[tty->index] = tty;
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(tty_standard_install);
1419 
1420 /**
1421  *	tty_driver_install_tty() - install a tty entry in the driver
1422  *	@driver: the driver for the tty
1423  *	@tty: the tty
1424  *
1425  *	Install a tty object into the driver tables. The tty->index field
1426  *	will be set by the time this is called. This method is responsible
1427  *	for ensuring any need additional structures are allocated and
1428  *	configured.
1429  *
1430  *	Locking: tty_mutex for now
1431  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1432 static int tty_driver_install_tty(struct tty_driver *driver,
1433 						struct tty_struct *tty)
1434 {
1435 	return driver->ops->install ? driver->ops->install(driver, tty) :
1436 		tty_standard_install(driver, tty);
1437 }
1438 
1439 /**
1440  *	tty_driver_remove_tty() - remove a tty from the driver tables
1441  *	@driver: the driver for the tty
1442  *	@idx:	 the minor number
1443  *
1444  *	Remvoe a tty object from the driver tables. The tty->index field
1445  *	will be set by the time this is called.
1446  *
1447  *	Locking: tty_mutex for now
1448  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1449 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450 {
1451 	if (driver->ops->remove)
1452 		driver->ops->remove(driver, tty);
1453 	else
1454 		driver->ttys[tty->index] = NULL;
1455 }
1456 
1457 /*
1458  * 	tty_reopen()	- fast re-open of an open tty
1459  * 	@tty	- the tty to open
1460  *
1461  *	Return 0 on success, -errno on error.
1462  *	Re-opens on master ptys are not allowed and return -EIO.
1463  *
1464  *	Locking: Caller must hold tty_lock
1465  */
tty_reopen(struct tty_struct * tty)1466 static int tty_reopen(struct tty_struct *tty)
1467 {
1468 	struct tty_driver *driver = tty->driver;
1469 
1470 	if (!tty->count)
1471 		return -EIO;
1472 
1473 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1474 	    driver->subtype == PTY_TYPE_MASTER)
1475 		return -EIO;
1476 
1477 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478 		return -EBUSY;
1479 
1480 	tty->count++;
1481 
1482 	WARN_ON(!tty->ldisc);
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  *	tty_init_dev		-	initialise a tty device
1489  *	@driver: tty driver we are opening a device on
1490  *	@idx: device index
1491  *	@ret_tty: returned tty structure
1492  *
1493  *	Prepare a tty device. This may not be a "new" clean device but
1494  *	could also be an active device. The pty drivers require special
1495  *	handling because of this.
1496  *
1497  *	Locking:
1498  *		The function is called under the tty_mutex, which
1499  *	protects us from the tty struct or driver itself going away.
1500  *
1501  *	On exit the tty device has the line discipline attached and
1502  *	a reference count of 1. If a pair was created for pty/tty use
1503  *	and the other was a pty master then it too has a reference count of 1.
1504  *
1505  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1506  * failed open.  The new code protects the open with a mutex, so it's
1507  * really quite straightforward.  The mutex locking can probably be
1508  * relaxed for the (most common) case of reopening a tty.
1509  */
1510 
tty_init_dev(struct tty_driver * driver,int idx)1511 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1512 {
1513 	struct tty_struct *tty;
1514 	int retval;
1515 
1516 	/*
1517 	 * First time open is complex, especially for PTY devices.
1518 	 * This code guarantees that either everything succeeds and the
1519 	 * TTY is ready for operation, or else the table slots are vacated
1520 	 * and the allocated memory released.  (Except that the termios
1521 	 * and locked termios may be retained.)
1522 	 */
1523 
1524 	if (!try_module_get(driver->owner))
1525 		return ERR_PTR(-ENODEV);
1526 
1527 	tty = alloc_tty_struct(driver, idx);
1528 	if (!tty) {
1529 		retval = -ENOMEM;
1530 		goto err_module_put;
1531 	}
1532 
1533 	tty_lock(tty);
1534 	retval = tty_driver_install_tty(driver, tty);
1535 	if (retval < 0)
1536 		goto err_deinit_tty;
1537 
1538 	if (!tty->port)
1539 		tty->port = driver->ports[idx];
1540 
1541 	WARN_RATELIMIT(!tty->port,
1542 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1543 			__func__, tty->driver->name);
1544 
1545 	tty->port->itty = tty;
1546 
1547 	/*
1548 	 * Structures all installed ... call the ldisc open routines.
1549 	 * If we fail here just call release_tty to clean up.  No need
1550 	 * to decrement the use counts, as release_tty doesn't care.
1551 	 */
1552 	retval = tty_ldisc_setup(tty, tty->link);
1553 	if (retval)
1554 		goto err_release_tty;
1555 	/* Return the tty locked so that it cannot vanish under the caller */
1556 	return tty;
1557 
1558 err_deinit_tty:
1559 	tty_unlock(tty);
1560 	deinitialize_tty_struct(tty);
1561 	free_tty_struct(tty);
1562 err_module_put:
1563 	module_put(driver->owner);
1564 	return ERR_PTR(retval);
1565 
1566 	/* call the tty release_tty routine to clean out this slot */
1567 err_release_tty:
1568 	tty_unlock(tty);
1569 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1570 				 "clearing slot %d\n", idx);
1571 	release_tty(tty, idx);
1572 	return ERR_PTR(retval);
1573 }
1574 
tty_free_termios(struct tty_struct * tty)1575 void tty_free_termios(struct tty_struct *tty)
1576 {
1577 	struct ktermios *tp;
1578 	int idx = tty->index;
1579 
1580 	/* If the port is going to reset then it has no termios to save */
1581 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582 		return;
1583 
1584 	/* Stash the termios data */
1585 	tp = tty->driver->termios[idx];
1586 	if (tp == NULL) {
1587 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588 		if (tp == NULL) {
1589 			pr_warn("tty: no memory to save termios state.\n");
1590 			return;
1591 		}
1592 		tty->driver->termios[idx] = tp;
1593 	}
1594 	*tp = tty->termios;
1595 }
1596 EXPORT_SYMBOL(tty_free_termios);
1597 
1598 /**
1599  *	tty_flush_works		-	flush all works of a tty/pty pair
1600  *	@tty: tty device to flush works for (or either end of a pty pair)
1601  *
1602  *	Sync flush all works belonging to @tty (and the 'other' tty).
1603  */
tty_flush_works(struct tty_struct * tty)1604 static void tty_flush_works(struct tty_struct *tty)
1605 {
1606 	flush_work(&tty->SAK_work);
1607 	flush_work(&tty->hangup_work);
1608 	if (tty->link) {
1609 		flush_work(&tty->link->SAK_work);
1610 		flush_work(&tty->link->hangup_work);
1611 	}
1612 }
1613 
1614 /**
1615  *	release_one_tty		-	release tty structure memory
1616  *	@kref: kref of tty we are obliterating
1617  *
1618  *	Releases memory associated with a tty structure, and clears out the
1619  *	driver table slots. This function is called when a device is no longer
1620  *	in use. It also gets called when setup of a device fails.
1621  *
1622  *	Locking:
1623  *		takes the file list lock internally when working on the list
1624  *	of ttys that the driver keeps.
1625  *
1626  *	This method gets called from a work queue so that the driver private
1627  *	cleanup ops can sleep (needed for USB at least)
1628  */
release_one_tty(struct work_struct * work)1629 static void release_one_tty(struct work_struct *work)
1630 {
1631 	struct tty_struct *tty =
1632 		container_of(work, struct tty_struct, hangup_work);
1633 	struct tty_driver *driver = tty->driver;
1634 	struct module *owner = driver->owner;
1635 
1636 	if (tty->ops->cleanup)
1637 		tty->ops->cleanup(tty);
1638 
1639 	tty->magic = 0;
1640 	tty_driver_kref_put(driver);
1641 	module_put(owner);
1642 
1643 	spin_lock(&tty_files_lock);
1644 	list_del_init(&tty->tty_files);
1645 	spin_unlock(&tty_files_lock);
1646 
1647 	put_pid(tty->pgrp);
1648 	put_pid(tty->session);
1649 	free_tty_struct(tty);
1650 }
1651 
queue_release_one_tty(struct kref * kref)1652 static void queue_release_one_tty(struct kref *kref)
1653 {
1654 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1655 
1656 	/* The hangup queue is now free so we can reuse it rather than
1657 	   waste a chunk of memory for each port */
1658 	INIT_WORK(&tty->hangup_work, release_one_tty);
1659 	schedule_work(&tty->hangup_work);
1660 }
1661 
1662 /**
1663  *	tty_kref_put		-	release a tty kref
1664  *	@tty: tty device
1665  *
1666  *	Release a reference to a tty device and if need be let the kref
1667  *	layer destruct the object for us
1668  */
1669 
tty_kref_put(struct tty_struct * tty)1670 void tty_kref_put(struct tty_struct *tty)
1671 {
1672 	if (tty)
1673 		kref_put(&tty->kref, queue_release_one_tty);
1674 }
1675 EXPORT_SYMBOL(tty_kref_put);
1676 
1677 /**
1678  *	release_tty		-	release tty structure memory
1679  *
1680  *	Release both @tty and a possible linked partner (think pty pair),
1681  *	and decrement the refcount of the backing module.
1682  *
1683  *	Locking:
1684  *		tty_mutex
1685  *		takes the file list lock internally when working on the list
1686  *	of ttys that the driver keeps.
1687  *
1688  */
release_tty(struct tty_struct * tty,int idx)1689 static void release_tty(struct tty_struct *tty, int idx)
1690 {
1691 	/* This should always be true but check for the moment */
1692 	WARN_ON(tty->index != idx);
1693 	WARN_ON(!mutex_is_locked(&tty_mutex));
1694 	if (tty->ops->shutdown)
1695 		tty->ops->shutdown(tty);
1696 	tty_free_termios(tty);
1697 	tty_driver_remove_tty(tty->driver, tty);
1698 	tty->port->itty = NULL;
1699 	if (tty->link)
1700 		tty->link->port->itty = NULL;
1701 	cancel_work_sync(&tty->port->buf.work);
1702 
1703 	tty_kref_put(tty->link);
1704 	tty_kref_put(tty);
1705 }
1706 
1707 /**
1708  *	tty_release_checks - check a tty before real release
1709  *	@tty: tty to check
1710  *	@o_tty: link of @tty (if any)
1711  *	@idx: index of the tty
1712  *
1713  *	Performs some paranoid checking before true release of the @tty.
1714  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1715  */
tty_release_checks(struct tty_struct * tty,int idx)1716 static int tty_release_checks(struct tty_struct *tty, int idx)
1717 {
1718 #ifdef TTY_PARANOIA_CHECK
1719 	if (idx < 0 || idx >= tty->driver->num) {
1720 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1721 				__func__, tty->name);
1722 		return -1;
1723 	}
1724 
1725 	/* not much to check for devpts */
1726 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727 		return 0;
1728 
1729 	if (tty != tty->driver->ttys[idx]) {
1730 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1731 				__func__, idx, tty->name);
1732 		return -1;
1733 	}
1734 	if (tty->driver->other) {
1735 		struct tty_struct *o_tty = tty->link;
1736 
1737 		if (o_tty != tty->driver->other->ttys[idx]) {
1738 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1739 					__func__, idx, tty->name);
1740 			return -1;
1741 		}
1742 		if (o_tty->link != tty) {
1743 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1744 			return -1;
1745 		}
1746 	}
1747 #endif
1748 	return 0;
1749 }
1750 
1751 /**
1752  *	tty_release		-	vfs callback for close
1753  *	@inode: inode of tty
1754  *	@filp: file pointer for handle to tty
1755  *
1756  *	Called the last time each file handle is closed that references
1757  *	this tty. There may however be several such references.
1758  *
1759  *	Locking:
1760  *		Takes bkl. See tty_release_dev
1761  *
1762  * Even releasing the tty structures is a tricky business.. We have
1763  * to be very careful that the structures are all released at the
1764  * same time, as interrupts might otherwise get the wrong pointers.
1765  *
1766  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767  * lead to double frees or releasing memory still in use.
1768  */
1769 
tty_release(struct inode * inode,struct file * filp)1770 int tty_release(struct inode *inode, struct file *filp)
1771 {
1772 	struct tty_struct *tty = file_tty(filp);
1773 	struct tty_struct *o_tty = NULL;
1774 	int	do_sleep, final;
1775 	int	idx;
1776 	char	buf[64];
1777 	long	timeout = 0;
1778 	int	once = 1;
1779 
1780 	if (tty_paranoia_check(tty, inode, __func__))
1781 		return 0;
1782 
1783 	tty_lock(tty);
1784 	check_tty_count(tty, __func__);
1785 
1786 	__tty_fasync(-1, filp, 0);
1787 
1788 	idx = tty->index;
1789 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1790 	    tty->driver->subtype == PTY_TYPE_MASTER)
1791 		o_tty = tty->link;
1792 
1793 	if (tty_release_checks(tty, idx)) {
1794 		tty_unlock(tty);
1795 		return 0;
1796 	}
1797 
1798 #ifdef TTY_DEBUG_HANGUP
1799 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1800 			tty_name(tty, buf), tty->count);
1801 #endif
1802 
1803 	if (tty->ops->close)
1804 		tty->ops->close(tty, filp);
1805 
1806 	/* If tty is pty master, lock the slave pty (stable lock order) */
1807 	tty_lock_slave(o_tty);
1808 
1809 	/*
1810 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1811 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1812 	 * wait queues and kick everyone out _before_ actually starting to
1813 	 * close.  This ensures that we won't block while releasing the tty
1814 	 * structure.
1815 	 *
1816 	 * The test for the o_tty closing is necessary, since the master and
1817 	 * slave sides may close in any order.  If the slave side closes out
1818 	 * first, its count will be one, since the master side holds an open.
1819 	 * Thus this test wouldn't be triggered at the time the slave closed,
1820 	 * so we do it now.
1821 	 */
1822 	while (1) {
1823 		do_sleep = 0;
1824 
1825 		if (tty->count <= 1) {
1826 			if (waitqueue_active(&tty->read_wait)) {
1827 				wake_up_poll(&tty->read_wait, POLLIN);
1828 				do_sleep++;
1829 			}
1830 			if (waitqueue_active(&tty->write_wait)) {
1831 				wake_up_poll(&tty->write_wait, POLLOUT);
1832 				do_sleep++;
1833 			}
1834 		}
1835 		if (o_tty && o_tty->count <= 1) {
1836 			if (waitqueue_active(&o_tty->read_wait)) {
1837 				wake_up_poll(&o_tty->read_wait, POLLIN);
1838 				do_sleep++;
1839 			}
1840 			if (waitqueue_active(&o_tty->write_wait)) {
1841 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1842 				do_sleep++;
1843 			}
1844 		}
1845 		if (!do_sleep)
1846 			break;
1847 
1848 		if (once) {
1849 			once = 0;
1850 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1851 			       __func__, tty_name(tty, buf));
1852 		}
1853 		schedule_timeout_killable(timeout);
1854 		if (timeout < 120 * HZ)
1855 			timeout = 2 * timeout + 1;
1856 		else
1857 			timeout = MAX_SCHEDULE_TIMEOUT;
1858 	}
1859 
1860 	if (o_tty) {
1861 		if (--o_tty->count < 0) {
1862 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1863 				__func__, o_tty->count, tty_name(o_tty, buf));
1864 			o_tty->count = 0;
1865 		}
1866 	}
1867 	if (--tty->count < 0) {
1868 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1869 				__func__, tty->count, tty_name(tty, buf));
1870 		tty->count = 0;
1871 	}
1872 
1873 	/*
1874 	 * We've decremented tty->count, so we need to remove this file
1875 	 * descriptor off the tty->tty_files list; this serves two
1876 	 * purposes:
1877 	 *  - check_tty_count sees the correct number of file descriptors
1878 	 *    associated with this tty.
1879 	 *  - do_tty_hangup no longer sees this file descriptor as
1880 	 *    something that needs to be handled for hangups.
1881 	 */
1882 	tty_del_file(filp);
1883 
1884 	/*
1885 	 * Perform some housekeeping before deciding whether to return.
1886 	 *
1887 	 * If _either_ side is closing, make sure there aren't any
1888 	 * processes that still think tty or o_tty is their controlling
1889 	 * tty.
1890 	 */
1891 	if (!tty->count) {
1892 		read_lock(&tasklist_lock);
1893 		session_clear_tty(tty->session);
1894 		if (o_tty)
1895 			session_clear_tty(o_tty->session);
1896 		read_unlock(&tasklist_lock);
1897 	}
1898 
1899 	/* check whether both sides are closing ... */
1900 	final = !tty->count && !(o_tty && o_tty->count);
1901 
1902 	tty_unlock_slave(o_tty);
1903 	tty_unlock(tty);
1904 
1905 	/* At this point, the tty->count == 0 should ensure a dead tty
1906 	   cannot be re-opened by a racing opener */
1907 
1908 	if (!final)
1909 		return 0;
1910 
1911 #ifdef TTY_DEBUG_HANGUP
1912 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1913 #endif
1914 	/*
1915 	 * Ask the line discipline code to release its structures
1916 	 */
1917 	tty_ldisc_release(tty);
1918 
1919 	/* Wait for pending work before tty destruction commmences */
1920 	tty_flush_works(tty);
1921 
1922 #ifdef TTY_DEBUG_HANGUP
1923 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1924 #endif
1925 	/*
1926 	 * The release_tty function takes care of the details of clearing
1927 	 * the slots and preserving the termios structure. The tty_unlock_pair
1928 	 * should be safe as we keep a kref while the tty is locked (so the
1929 	 * unlock never unlocks a freed tty).
1930 	 */
1931 	mutex_lock(&tty_mutex);
1932 	release_tty(tty, idx);
1933 	mutex_unlock(&tty_mutex);
1934 
1935 	return 0;
1936 }
1937 
1938 /**
1939  *	tty_open_current_tty - get locked tty of current task
1940  *	@device: device number
1941  *	@filp: file pointer to tty
1942  *	@return: locked tty of the current task iff @device is /dev/tty
1943  *
1944  *	Performs a re-open of the current task's controlling tty.
1945  *
1946  *	We cannot return driver and index like for the other nodes because
1947  *	devpts will not work then. It expects inodes to be from devpts FS.
1948  */
tty_open_current_tty(dev_t device,struct file * filp)1949 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1950 {
1951 	struct tty_struct *tty;
1952 	int retval;
1953 
1954 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1955 		return NULL;
1956 
1957 	tty = get_current_tty();
1958 	if (!tty)
1959 		return ERR_PTR(-ENXIO);
1960 
1961 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1962 	/* noctty = 1; */
1963 	tty_lock(tty);
1964 	tty_kref_put(tty);	/* safe to drop the kref now */
1965 
1966 	retval = tty_reopen(tty);
1967 	if (retval < 0) {
1968 		tty_unlock(tty);
1969 		tty = ERR_PTR(retval);
1970 	}
1971 	return tty;
1972 }
1973 
1974 /**
1975  *	tty_lookup_driver - lookup a tty driver for a given device file
1976  *	@device: device number
1977  *	@filp: file pointer to tty
1978  *	@noctty: set if the device should not become a controlling tty
1979  *	@index: index for the device in the @return driver
1980  *	@return: driver for this inode (with increased refcount)
1981  *
1982  * 	If @return is not erroneous, the caller is responsible to decrement the
1983  * 	refcount by tty_driver_kref_put.
1984  *
1985  *	Locking: tty_mutex protects get_tty_driver
1986  */
tty_lookup_driver(dev_t device,struct file * filp,int * noctty,int * index)1987 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1988 		int *noctty, int *index)
1989 {
1990 	struct tty_driver *driver;
1991 
1992 	switch (device) {
1993 #ifdef CONFIG_VT
1994 	case MKDEV(TTY_MAJOR, 0): {
1995 		extern struct tty_driver *console_driver;
1996 		driver = tty_driver_kref_get(console_driver);
1997 		*index = fg_console;
1998 		*noctty = 1;
1999 		break;
2000 	}
2001 #endif
2002 	case MKDEV(TTYAUX_MAJOR, 1): {
2003 		struct tty_driver *console_driver = console_device(index);
2004 		if (console_driver) {
2005 			driver = tty_driver_kref_get(console_driver);
2006 			if (driver) {
2007 				/* Don't let /dev/console block */
2008 				filp->f_flags |= O_NONBLOCK;
2009 				*noctty = 1;
2010 				break;
2011 			}
2012 		}
2013 		return ERR_PTR(-ENODEV);
2014 	}
2015 	default:
2016 		driver = get_tty_driver(device, index);
2017 		if (!driver)
2018 			return ERR_PTR(-ENODEV);
2019 		break;
2020 	}
2021 	return driver;
2022 }
2023 
2024 /**
2025  *	tty_open		-	open a tty device
2026  *	@inode: inode of device file
2027  *	@filp: file pointer to tty
2028  *
2029  *	tty_open and tty_release keep up the tty count that contains the
2030  *	number of opens done on a tty. We cannot use the inode-count, as
2031  *	different inodes might point to the same tty.
2032  *
2033  *	Open-counting is needed for pty masters, as well as for keeping
2034  *	track of serial lines: DTR is dropped when the last close happens.
2035  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2036  *
2037  *	The termios state of a pty is reset on first open so that
2038  *	settings don't persist across reuse.
2039  *
2040  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2041  *		 tty->count should protect the rest.
2042  *		 ->siglock protects ->signal/->sighand
2043  *
2044  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2045  *	tty_mutex
2046  */
2047 
tty_open(struct inode * inode,struct file * filp)2048 static int tty_open(struct inode *inode, struct file *filp)
2049 {
2050 	struct tty_struct *tty;
2051 	int noctty, retval;
2052 	struct tty_driver *driver = NULL;
2053 	int index;
2054 	dev_t device = inode->i_rdev;
2055 	unsigned saved_flags = filp->f_flags;
2056 
2057 	nonseekable_open(inode, filp);
2058 
2059 retry_open:
2060 	retval = tty_alloc_file(filp);
2061 	if (retval)
2062 		return -ENOMEM;
2063 
2064 	noctty = filp->f_flags & O_NOCTTY;
2065 	index  = -1;
2066 	retval = 0;
2067 
2068 	tty = tty_open_current_tty(device, filp);
2069 	if (!tty) {
2070 		mutex_lock(&tty_mutex);
2071 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2072 		if (IS_ERR(driver)) {
2073 			retval = PTR_ERR(driver);
2074 			goto err_unlock;
2075 		}
2076 
2077 		/* check whether we're reopening an existing tty */
2078 		tty = tty_driver_lookup_tty(driver, inode, index);
2079 		if (IS_ERR(tty)) {
2080 			retval = PTR_ERR(tty);
2081 			goto err_unlock;
2082 		}
2083 
2084 		if (tty) {
2085 			mutex_unlock(&tty_mutex);
2086 			tty_lock(tty);
2087 			/* safe to drop the kref from tty_driver_lookup_tty() */
2088 			tty_kref_put(tty);
2089 			retval = tty_reopen(tty);
2090 			if (retval < 0) {
2091 				tty_unlock(tty);
2092 				tty = ERR_PTR(retval);
2093 			}
2094 		} else { /* Returns with the tty_lock held for now */
2095 			tty = tty_init_dev(driver, index);
2096 			mutex_unlock(&tty_mutex);
2097 		}
2098 
2099 		tty_driver_kref_put(driver);
2100 	}
2101 
2102 	if (IS_ERR(tty)) {
2103 		retval = PTR_ERR(tty);
2104 		goto err_file;
2105 	}
2106 
2107 	tty_add_file(tty, filp);
2108 
2109 	check_tty_count(tty, __func__);
2110 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2111 	    tty->driver->subtype == PTY_TYPE_MASTER)
2112 		noctty = 1;
2113 #ifdef TTY_DEBUG_HANGUP
2114 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2115 #endif
2116 	if (tty->ops->open)
2117 		retval = tty->ops->open(tty, filp);
2118 	else
2119 		retval = -ENODEV;
2120 	filp->f_flags = saved_flags;
2121 
2122 	if (retval) {
2123 #ifdef TTY_DEBUG_HANGUP
2124 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2125 				retval, tty->name);
2126 #endif
2127 		tty_unlock(tty); /* need to call tty_release without BTM */
2128 		tty_release(inode, filp);
2129 		if (retval != -ERESTARTSYS)
2130 			return retval;
2131 
2132 		if (signal_pending(current))
2133 			return retval;
2134 
2135 		schedule();
2136 		/*
2137 		 * Need to reset f_op in case a hangup happened.
2138 		 */
2139 		if (tty_hung_up_p(filp))
2140 			filp->f_op = &tty_fops;
2141 		goto retry_open;
2142 	}
2143 	clear_bit(TTY_HUPPED, &tty->flags);
2144 
2145 
2146 	read_lock(&tasklist_lock);
2147 	spin_lock_irq(&current->sighand->siglock);
2148 	if (!noctty &&
2149 	    current->signal->leader &&
2150 	    !current->signal->tty &&
2151 	    tty->session == NULL) {
2152 		/*
2153 		 * Don't let a process that only has write access to the tty
2154 		 * obtain the privileges associated with having a tty as
2155 		 * controlling terminal (being able to reopen it with full
2156 		 * access through /dev/tty, being able to perform pushback).
2157 		 * Many distributions set the group of all ttys to "tty" and
2158 		 * grant write-only access to all terminals for setgid tty
2159 		 * binaries, which should not imply full privileges on all ttys.
2160 		 *
2161 		 * This could theoretically break old code that performs open()
2162 		 * on a write-only file descriptor. In that case, it might be
2163 		 * necessary to also permit this if
2164 		 * inode_permission(inode, MAY_READ) == 0.
2165 		 */
2166 		if (filp->f_mode & FMODE_READ)
2167 			__proc_set_tty(tty);
2168 	}
2169 	spin_unlock_irq(&current->sighand->siglock);
2170 	read_unlock(&tasklist_lock);
2171 	tty_unlock(tty);
2172 	return 0;
2173 err_unlock:
2174 	mutex_unlock(&tty_mutex);
2175 	/* after locks to avoid deadlock */
2176 	if (!IS_ERR_OR_NULL(driver))
2177 		tty_driver_kref_put(driver);
2178 err_file:
2179 	tty_free_file(filp);
2180 	return retval;
2181 }
2182 
2183 
2184 
2185 /**
2186  *	tty_poll	-	check tty status
2187  *	@filp: file being polled
2188  *	@wait: poll wait structures to update
2189  *
2190  *	Call the line discipline polling method to obtain the poll
2191  *	status of the device.
2192  *
2193  *	Locking: locks called line discipline but ldisc poll method
2194  *	may be re-entered freely by other callers.
2195  */
2196 
tty_poll(struct file * filp,poll_table * wait)2197 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2198 {
2199 	struct tty_struct *tty = file_tty(filp);
2200 	struct tty_ldisc *ld;
2201 	int ret = 0;
2202 
2203 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2204 		return 0;
2205 
2206 	ld = tty_ldisc_ref_wait(tty);
2207 	if (ld->ops->poll)
2208 		ret = ld->ops->poll(tty, filp, wait);
2209 	tty_ldisc_deref(ld);
2210 	return ret;
2211 }
2212 
__tty_fasync(int fd,struct file * filp,int on)2213 static int __tty_fasync(int fd, struct file *filp, int on)
2214 {
2215 	struct tty_struct *tty = file_tty(filp);
2216 	struct tty_ldisc *ldisc;
2217 	unsigned long flags;
2218 	int retval = 0;
2219 
2220 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2221 		goto out;
2222 
2223 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2224 	if (retval <= 0)
2225 		goto out;
2226 
2227 	ldisc = tty_ldisc_ref(tty);
2228 	if (ldisc) {
2229 		if (ldisc->ops->fasync)
2230 			ldisc->ops->fasync(tty, on);
2231 		tty_ldisc_deref(ldisc);
2232 	}
2233 
2234 	if (on) {
2235 		enum pid_type type;
2236 		struct pid *pid;
2237 
2238 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2239 		if (tty->pgrp) {
2240 			pid = tty->pgrp;
2241 			type = PIDTYPE_PGID;
2242 		} else {
2243 			pid = task_pid(current);
2244 			type = PIDTYPE_PID;
2245 		}
2246 		get_pid(pid);
2247 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2248 		__f_setown(filp, pid, type, 0);
2249 		put_pid(pid);
2250 		retval = 0;
2251 	}
2252 out:
2253 	return retval;
2254 }
2255 
tty_fasync(int fd,struct file * filp,int on)2256 static int tty_fasync(int fd, struct file *filp, int on)
2257 {
2258 	struct tty_struct *tty = file_tty(filp);
2259 	int retval;
2260 
2261 	tty_lock(tty);
2262 	retval = __tty_fasync(fd, filp, on);
2263 	tty_unlock(tty);
2264 
2265 	return retval;
2266 }
2267 
2268 /**
2269  *	tiocsti			-	fake input character
2270  *	@tty: tty to fake input into
2271  *	@p: pointer to character
2272  *
2273  *	Fake input to a tty device. Does the necessary locking and
2274  *	input management.
2275  *
2276  *	FIXME: does not honour flow control ??
2277  *
2278  *	Locking:
2279  *		Called functions take tty_ldiscs_lock
2280  *		current->signal->tty check is safe without locks
2281  *
2282  *	FIXME: may race normal receive processing
2283  */
2284 
tiocsti(struct tty_struct * tty,char __user * p)2285 static int tiocsti(struct tty_struct *tty, char __user *p)
2286 {
2287 	char ch, mbz = 0;
2288 	struct tty_ldisc *ld;
2289 
2290 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2291 		return -EPERM;
2292 	if (get_user(ch, p))
2293 		return -EFAULT;
2294 	tty_audit_tiocsti(tty, ch);
2295 	ld = tty_ldisc_ref_wait(tty);
2296 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2297 	tty_ldisc_deref(ld);
2298 	return 0;
2299 }
2300 
2301 /**
2302  *	tiocgwinsz		-	implement window query ioctl
2303  *	@tty; tty
2304  *	@arg: user buffer for result
2305  *
2306  *	Copies the kernel idea of the window size into the user buffer.
2307  *
2308  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2309  *		is consistent.
2310  */
2311 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2312 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2313 {
2314 	int err;
2315 
2316 	mutex_lock(&tty->winsize_mutex);
2317 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2318 	mutex_unlock(&tty->winsize_mutex);
2319 
2320 	return err ? -EFAULT: 0;
2321 }
2322 
2323 /**
2324  *	tty_do_resize		-	resize event
2325  *	@tty: tty being resized
2326  *	@rows: rows (character)
2327  *	@cols: cols (character)
2328  *
2329  *	Update the termios variables and send the necessary signals to
2330  *	peform a terminal resize correctly
2331  */
2332 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2333 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2334 {
2335 	struct pid *pgrp;
2336 
2337 	/* Lock the tty */
2338 	mutex_lock(&tty->winsize_mutex);
2339 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2340 		goto done;
2341 
2342 	/* Signal the foreground process group */
2343 	pgrp = tty_get_pgrp(tty);
2344 	if (pgrp)
2345 		kill_pgrp(pgrp, SIGWINCH, 1);
2346 	put_pid(pgrp);
2347 
2348 	tty->winsize = *ws;
2349 done:
2350 	mutex_unlock(&tty->winsize_mutex);
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(tty_do_resize);
2354 
2355 /**
2356  *	tiocswinsz		-	implement window size set ioctl
2357  *	@tty; tty side of tty
2358  *	@arg: user buffer for result
2359  *
2360  *	Copies the user idea of the window size to the kernel. Traditionally
2361  *	this is just advisory information but for the Linux console it
2362  *	actually has driver level meaning and triggers a VC resize.
2363  *
2364  *	Locking:
2365  *		Driver dependent. The default do_resize method takes the
2366  *	tty termios mutex and ctrl_lock. The console takes its own lock
2367  *	then calls into the default method.
2368  */
2369 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2370 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2371 {
2372 	struct winsize tmp_ws;
2373 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2374 		return -EFAULT;
2375 
2376 	if (tty->ops->resize)
2377 		return tty->ops->resize(tty, &tmp_ws);
2378 	else
2379 		return tty_do_resize(tty, &tmp_ws);
2380 }
2381 
2382 /**
2383  *	tioccons	-	allow admin to move logical console
2384  *	@file: the file to become console
2385  *
2386  *	Allow the administrator to move the redirected console device
2387  *
2388  *	Locking: uses redirect_lock to guard the redirect information
2389  */
2390 
tioccons(struct file * file)2391 static int tioccons(struct file *file)
2392 {
2393 	if (!capable(CAP_SYS_ADMIN))
2394 		return -EPERM;
2395 	if (file->f_op->write == redirected_tty_write) {
2396 		struct file *f;
2397 		spin_lock(&redirect_lock);
2398 		f = redirect;
2399 		redirect = NULL;
2400 		spin_unlock(&redirect_lock);
2401 		if (f)
2402 			fput(f);
2403 		return 0;
2404 	}
2405 	spin_lock(&redirect_lock);
2406 	if (redirect) {
2407 		spin_unlock(&redirect_lock);
2408 		return -EBUSY;
2409 	}
2410 	redirect = get_file(file);
2411 	spin_unlock(&redirect_lock);
2412 	return 0;
2413 }
2414 
2415 /**
2416  *	fionbio		-	non blocking ioctl
2417  *	@file: file to set blocking value
2418  *	@p: user parameter
2419  *
2420  *	Historical tty interfaces had a blocking control ioctl before
2421  *	the generic functionality existed. This piece of history is preserved
2422  *	in the expected tty API of posix OS's.
2423  *
2424  *	Locking: none, the open file handle ensures it won't go away.
2425  */
2426 
fionbio(struct file * file,int __user * p)2427 static int fionbio(struct file *file, int __user *p)
2428 {
2429 	int nonblock;
2430 
2431 	if (get_user(nonblock, p))
2432 		return -EFAULT;
2433 
2434 	spin_lock(&file->f_lock);
2435 	if (nonblock)
2436 		file->f_flags |= O_NONBLOCK;
2437 	else
2438 		file->f_flags &= ~O_NONBLOCK;
2439 	spin_unlock(&file->f_lock);
2440 	return 0;
2441 }
2442 
2443 /**
2444  *	tiocsctty	-	set controlling tty
2445  *	@tty: tty structure
2446  *	@arg: user argument
2447  *
2448  *	This ioctl is used to manage job control. It permits a session
2449  *	leader to set this tty as the controlling tty for the session.
2450  *
2451  *	Locking:
2452  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2453  *		Takes tasklist_lock internally to walk sessions
2454  *		Takes ->siglock() when updating signal->tty
2455  */
2456 
tiocsctty(struct tty_struct * tty,struct file * file,int arg)2457 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2458 {
2459 	int ret = 0;
2460 
2461 	tty_lock(tty);
2462 	read_lock(&tasklist_lock);
2463 
2464 	if (current->signal->leader && (task_session(current) == tty->session))
2465 		goto unlock;
2466 
2467 	/*
2468 	 * The process must be a session leader and
2469 	 * not have a controlling tty already.
2470 	 */
2471 	if (!current->signal->leader || current->signal->tty) {
2472 		ret = -EPERM;
2473 		goto unlock;
2474 	}
2475 
2476 	if (tty->session) {
2477 		/*
2478 		 * This tty is already the controlling
2479 		 * tty for another session group!
2480 		 */
2481 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2482 			/*
2483 			 * Steal it away
2484 			 */
2485 			session_clear_tty(tty->session);
2486 		} else {
2487 			ret = -EPERM;
2488 			goto unlock;
2489 		}
2490 	}
2491 
2492 	/* See the comment in tty_open(). */
2493 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2494 		ret = -EPERM;
2495 		goto unlock;
2496 	}
2497 
2498 	proc_set_tty(tty);
2499 unlock:
2500 	read_unlock(&tasklist_lock);
2501 	tty_unlock(tty);
2502 	return ret;
2503 }
2504 
2505 /**
2506  *	tty_get_pgrp	-	return a ref counted pgrp pid
2507  *	@tty: tty to read
2508  *
2509  *	Returns a refcounted instance of the pid struct for the process
2510  *	group controlling the tty.
2511  */
2512 
tty_get_pgrp(struct tty_struct * tty)2513 struct pid *tty_get_pgrp(struct tty_struct *tty)
2514 {
2515 	unsigned long flags;
2516 	struct pid *pgrp;
2517 
2518 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2519 	pgrp = get_pid(tty->pgrp);
2520 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2521 
2522 	return pgrp;
2523 }
2524 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2525 
2526 /*
2527  * This checks not only the pgrp, but falls back on the pid if no
2528  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2529  * without this...
2530  *
2531  * The caller must hold rcu lock or the tasklist lock.
2532  */
session_of_pgrp(struct pid * pgrp)2533 static struct pid *session_of_pgrp(struct pid *pgrp)
2534 {
2535 	struct task_struct *p;
2536 	struct pid *sid = NULL;
2537 
2538 	p = pid_task(pgrp, PIDTYPE_PGID);
2539 	if (p == NULL)
2540 		p = pid_task(pgrp, PIDTYPE_PID);
2541 	if (p != NULL)
2542 		sid = task_session(p);
2543 
2544 	return sid;
2545 }
2546 
2547 /**
2548  *	tiocgpgrp		-	get process group
2549  *	@tty: tty passed by user
2550  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2551  *	@p: returned pid
2552  *
2553  *	Obtain the process group of the tty. If there is no process group
2554  *	return an error.
2555  *
2556  *	Locking: none. Reference to current->signal->tty is safe.
2557  */
2558 
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2559 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2560 {
2561 	struct pid *pid;
2562 	int ret;
2563 	/*
2564 	 * (tty == real_tty) is a cheap way of
2565 	 * testing if the tty is NOT a master pty.
2566 	 */
2567 	if (tty == real_tty && current->signal->tty != real_tty)
2568 		return -ENOTTY;
2569 	pid = tty_get_pgrp(real_tty);
2570 	ret =  put_user(pid_vnr(pid), p);
2571 	put_pid(pid);
2572 	return ret;
2573 }
2574 
2575 /**
2576  *	tiocspgrp		-	attempt to set process group
2577  *	@tty: tty passed by user
2578  *	@real_tty: tty side device matching tty passed by user
2579  *	@p: pid pointer
2580  *
2581  *	Set the process group of the tty to the session passed. Only
2582  *	permitted where the tty session is our session.
2583  *
2584  *	Locking: RCU, ctrl lock
2585  */
2586 
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2587 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2588 {
2589 	struct pid *pgrp;
2590 	pid_t pgrp_nr;
2591 	int retval = tty_check_change(real_tty);
2592 	unsigned long flags;
2593 
2594 	if (retval == -EIO)
2595 		return -ENOTTY;
2596 	if (retval)
2597 		return retval;
2598 	if (!current->signal->tty ||
2599 	    (current->signal->tty != real_tty) ||
2600 	    (real_tty->session != task_session(current)))
2601 		return -ENOTTY;
2602 	if (get_user(pgrp_nr, p))
2603 		return -EFAULT;
2604 	if (pgrp_nr < 0)
2605 		return -EINVAL;
2606 	rcu_read_lock();
2607 	pgrp = find_vpid(pgrp_nr);
2608 	retval = -ESRCH;
2609 	if (!pgrp)
2610 		goto out_unlock;
2611 	retval = -EPERM;
2612 	if (session_of_pgrp(pgrp) != task_session(current))
2613 		goto out_unlock;
2614 	retval = 0;
2615 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2616 	put_pid(real_tty->pgrp);
2617 	real_tty->pgrp = get_pid(pgrp);
2618 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2619 out_unlock:
2620 	rcu_read_unlock();
2621 	return retval;
2622 }
2623 
2624 /**
2625  *	tiocgsid		-	get session id
2626  *	@tty: tty passed by user
2627  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628  *	@p: pointer to returned session id
2629  *
2630  *	Obtain the session id of the tty. If there is no session
2631  *	return an error.
2632  *
2633  *	Locking: none. Reference to current->signal->tty is safe.
2634  */
2635 
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2636 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637 {
2638 	/*
2639 	 * (tty == real_tty) is a cheap way of
2640 	 * testing if the tty is NOT a master pty.
2641 	*/
2642 	if (tty == real_tty && current->signal->tty != real_tty)
2643 		return -ENOTTY;
2644 	if (!real_tty->session)
2645 		return -ENOTTY;
2646 	return put_user(pid_vnr(real_tty->session), p);
2647 }
2648 
2649 /**
2650  *	tiocsetd	-	set line discipline
2651  *	@tty: tty device
2652  *	@p: pointer to user data
2653  *
2654  *	Set the line discipline according to user request.
2655  *
2656  *	Locking: see tty_set_ldisc, this function is just a helper
2657  */
2658 
tiocsetd(struct tty_struct * tty,int __user * p)2659 static int tiocsetd(struct tty_struct *tty, int __user *p)
2660 {
2661 	int ldisc;
2662 	int ret;
2663 
2664 	if (get_user(ldisc, p))
2665 		return -EFAULT;
2666 
2667 	ret = tty_set_ldisc(tty, ldisc);
2668 
2669 	return ret;
2670 }
2671 
2672 /**
2673  *	tiocgetd	-	get line discipline
2674  *	@tty: tty device
2675  *	@p: pointer to user data
2676  *
2677  *	Retrieves the line discipline id directly from the ldisc.
2678  *
2679  *	Locking: waits for ldisc reference (in case the line discipline
2680  *		is changing or the tty is being hungup)
2681  */
2682 
tiocgetd(struct tty_struct * tty,int __user * p)2683 static int tiocgetd(struct tty_struct *tty, int __user *p)
2684 {
2685 	struct tty_ldisc *ld;
2686 	int ret;
2687 
2688 	ld = tty_ldisc_ref_wait(tty);
2689 	ret = put_user(ld->ops->num, p);
2690 	tty_ldisc_deref(ld);
2691 	return ret;
2692 }
2693 
2694 /**
2695  *	send_break	-	performed time break
2696  *	@tty: device to break on
2697  *	@duration: timeout in mS
2698  *
2699  *	Perform a timed break on hardware that lacks its own driver level
2700  *	timed break functionality.
2701  *
2702  *	Locking:
2703  *		atomic_write_lock serializes
2704  *
2705  */
2706 
send_break(struct tty_struct * tty,unsigned int duration)2707 static int send_break(struct tty_struct *tty, unsigned int duration)
2708 {
2709 	int retval;
2710 
2711 	if (tty->ops->break_ctl == NULL)
2712 		return 0;
2713 
2714 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2715 		retval = tty->ops->break_ctl(tty, duration);
2716 	else {
2717 		/* Do the work ourselves */
2718 		if (tty_write_lock(tty, 0) < 0)
2719 			return -EINTR;
2720 		retval = tty->ops->break_ctl(tty, -1);
2721 		if (retval)
2722 			goto out;
2723 		if (!signal_pending(current))
2724 			msleep_interruptible(duration);
2725 		retval = tty->ops->break_ctl(tty, 0);
2726 out:
2727 		tty_write_unlock(tty);
2728 		if (signal_pending(current))
2729 			retval = -EINTR;
2730 	}
2731 	return retval;
2732 }
2733 
2734 /**
2735  *	tty_tiocmget		-	get modem status
2736  *	@tty: tty device
2737  *	@file: user file pointer
2738  *	@p: pointer to result
2739  *
2740  *	Obtain the modem status bits from the tty driver if the feature
2741  *	is supported. Return -EINVAL if it is not available.
2742  *
2743  *	Locking: none (up to the driver)
2744  */
2745 
tty_tiocmget(struct tty_struct * tty,int __user * p)2746 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2747 {
2748 	int retval = -EINVAL;
2749 
2750 	if (tty->ops->tiocmget) {
2751 		retval = tty->ops->tiocmget(tty);
2752 
2753 		if (retval >= 0)
2754 			retval = put_user(retval, p);
2755 	}
2756 	return retval;
2757 }
2758 
2759 /**
2760  *	tty_tiocmset		-	set modem status
2761  *	@tty: tty device
2762  *	@cmd: command - clear bits, set bits or set all
2763  *	@p: pointer to desired bits
2764  *
2765  *	Set the modem status bits from the tty driver if the feature
2766  *	is supported. Return -EINVAL if it is not available.
2767  *
2768  *	Locking: none (up to the driver)
2769  */
2770 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2771 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2772 	     unsigned __user *p)
2773 {
2774 	int retval;
2775 	unsigned int set, clear, val;
2776 
2777 	if (tty->ops->tiocmset == NULL)
2778 		return -EINVAL;
2779 
2780 	retval = get_user(val, p);
2781 	if (retval)
2782 		return retval;
2783 	set = clear = 0;
2784 	switch (cmd) {
2785 	case TIOCMBIS:
2786 		set = val;
2787 		break;
2788 	case TIOCMBIC:
2789 		clear = val;
2790 		break;
2791 	case TIOCMSET:
2792 		set = val;
2793 		clear = ~val;
2794 		break;
2795 	}
2796 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2797 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2798 	return tty->ops->tiocmset(tty, set, clear);
2799 }
2800 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2801 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2802 {
2803 	int retval = -EINVAL;
2804 	struct serial_icounter_struct icount;
2805 	memset(&icount, 0, sizeof(icount));
2806 	if (tty->ops->get_icount)
2807 		retval = tty->ops->get_icount(tty, &icount);
2808 	if (retval != 0)
2809 		return retval;
2810 	if (copy_to_user(arg, &icount, sizeof(icount)))
2811 		return -EFAULT;
2812 	return 0;
2813 }
2814 
tty_warn_deprecated_flags(struct serial_struct __user * ss)2815 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2816 {
2817 	static DEFINE_RATELIMIT_STATE(depr_flags,
2818 			DEFAULT_RATELIMIT_INTERVAL,
2819 			DEFAULT_RATELIMIT_BURST);
2820 	char comm[TASK_COMM_LEN];
2821 	int flags;
2822 
2823 	if (get_user(flags, &ss->flags))
2824 		return;
2825 
2826 	flags &= ASYNC_DEPRECATED;
2827 
2828 	if (flags && __ratelimit(&depr_flags))
2829 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2830 				__func__, get_task_comm(comm, current), flags);
2831 }
2832 
2833 /*
2834  * if pty, return the slave side (real_tty)
2835  * otherwise, return self
2836  */
tty_pair_get_tty(struct tty_struct * tty)2837 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2838 {
2839 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2840 	    tty->driver->subtype == PTY_TYPE_MASTER)
2841 		tty = tty->link;
2842 	return tty;
2843 }
2844 
2845 /*
2846  * Split this up, as gcc can choke on it otherwise..
2847  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2848 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2849 {
2850 	struct tty_struct *tty = file_tty(file);
2851 	struct tty_struct *real_tty;
2852 	void __user *p = (void __user *)arg;
2853 	int retval;
2854 	struct tty_ldisc *ld;
2855 
2856 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2857 		return -EINVAL;
2858 
2859 	real_tty = tty_pair_get_tty(tty);
2860 
2861 	/*
2862 	 * Factor out some common prep work
2863 	 */
2864 	switch (cmd) {
2865 	case TIOCSETD:
2866 	case TIOCSBRK:
2867 	case TIOCCBRK:
2868 	case TCSBRK:
2869 	case TCSBRKP:
2870 		retval = tty_check_change(tty);
2871 		if (retval)
2872 			return retval;
2873 		if (cmd != TIOCCBRK) {
2874 			tty_wait_until_sent(tty, 0);
2875 			if (signal_pending(current))
2876 				return -EINTR;
2877 		}
2878 		break;
2879 	}
2880 
2881 	/*
2882 	 *	Now do the stuff.
2883 	 */
2884 	switch (cmd) {
2885 	case TIOCSTI:
2886 		return tiocsti(tty, p);
2887 	case TIOCGWINSZ:
2888 		return tiocgwinsz(real_tty, p);
2889 	case TIOCSWINSZ:
2890 		return tiocswinsz(real_tty, p);
2891 	case TIOCCONS:
2892 		return real_tty != tty ? -EINVAL : tioccons(file);
2893 	case FIONBIO:
2894 		return fionbio(file, p);
2895 	case TIOCEXCL:
2896 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2897 		return 0;
2898 	case TIOCNXCL:
2899 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2900 		return 0;
2901 	case TIOCGEXCL:
2902 	{
2903 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2904 		return put_user(excl, (int __user *)p);
2905 	}
2906 	case TIOCNOTTY:
2907 		if (current->signal->tty != tty)
2908 			return -ENOTTY;
2909 		no_tty();
2910 		return 0;
2911 	case TIOCSCTTY:
2912 		return tiocsctty(tty, file, arg);
2913 	case TIOCGPGRP:
2914 		return tiocgpgrp(tty, real_tty, p);
2915 	case TIOCSPGRP:
2916 		return tiocspgrp(tty, real_tty, p);
2917 	case TIOCGSID:
2918 		return tiocgsid(tty, real_tty, p);
2919 	case TIOCGETD:
2920 		return tiocgetd(tty, p);
2921 	case TIOCSETD:
2922 		return tiocsetd(tty, p);
2923 	case TIOCVHANGUP:
2924 		if (!capable(CAP_SYS_ADMIN))
2925 			return -EPERM;
2926 		tty_vhangup(tty);
2927 		return 0;
2928 	case TIOCGDEV:
2929 	{
2930 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2931 		return put_user(ret, (unsigned int __user *)p);
2932 	}
2933 	/*
2934 	 * Break handling
2935 	 */
2936 	case TIOCSBRK:	/* Turn break on, unconditionally */
2937 		if (tty->ops->break_ctl)
2938 			return tty->ops->break_ctl(tty, -1);
2939 		return 0;
2940 	case TIOCCBRK:	/* Turn break off, unconditionally */
2941 		if (tty->ops->break_ctl)
2942 			return tty->ops->break_ctl(tty, 0);
2943 		return 0;
2944 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2945 		/* non-zero arg means wait for all output data
2946 		 * to be sent (performed above) but don't send break.
2947 		 * This is used by the tcdrain() termios function.
2948 		 */
2949 		if (!arg)
2950 			return send_break(tty, 250);
2951 		return 0;
2952 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2953 		return send_break(tty, arg ? arg*100 : 250);
2954 
2955 	case TIOCMGET:
2956 		return tty_tiocmget(tty, p);
2957 	case TIOCMSET:
2958 	case TIOCMBIC:
2959 	case TIOCMBIS:
2960 		return tty_tiocmset(tty, cmd, p);
2961 	case TIOCGICOUNT:
2962 		retval = tty_tiocgicount(tty, p);
2963 		/* For the moment allow fall through to the old method */
2964         	if (retval != -EINVAL)
2965 			return retval;
2966 		break;
2967 	case TCFLSH:
2968 		switch (arg) {
2969 		case TCIFLUSH:
2970 		case TCIOFLUSH:
2971 		/* flush tty buffer and allow ldisc to process ioctl */
2972 			tty_buffer_flush(tty, NULL);
2973 			break;
2974 		}
2975 		break;
2976 	case TIOCSSERIAL:
2977 		tty_warn_deprecated_flags(p);
2978 		break;
2979 	}
2980 	if (tty->ops->ioctl) {
2981 		retval = tty->ops->ioctl(tty, cmd, arg);
2982 		if (retval != -ENOIOCTLCMD)
2983 			return retval;
2984 	}
2985 	ld = tty_ldisc_ref_wait(tty);
2986 	retval = -EINVAL;
2987 	if (ld->ops->ioctl) {
2988 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2989 		if (retval == -ENOIOCTLCMD)
2990 			retval = -ENOTTY;
2991 	}
2992 	tty_ldisc_deref(ld);
2993 	return retval;
2994 }
2995 
2996 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2997 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2998 				unsigned long arg)
2999 {
3000 	struct tty_struct *tty = file_tty(file);
3001 	struct tty_ldisc *ld;
3002 	int retval = -ENOIOCTLCMD;
3003 
3004 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3005 		return -EINVAL;
3006 
3007 	if (tty->ops->compat_ioctl) {
3008 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3009 		if (retval != -ENOIOCTLCMD)
3010 			return retval;
3011 	}
3012 
3013 	ld = tty_ldisc_ref_wait(tty);
3014 	if (ld->ops->compat_ioctl)
3015 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3016 	else
3017 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3018 	tty_ldisc_deref(ld);
3019 
3020 	return retval;
3021 }
3022 #endif
3023 
this_tty(const void * t,struct file * file,unsigned fd)3024 static int this_tty(const void *t, struct file *file, unsigned fd)
3025 {
3026 	if (likely(file->f_op->read != tty_read))
3027 		return 0;
3028 	return file_tty(file) != t ? 0 : fd + 1;
3029 }
3030 
3031 /*
3032  * This implements the "Secure Attention Key" ---  the idea is to
3033  * prevent trojan horses by killing all processes associated with this
3034  * tty when the user hits the "Secure Attention Key".  Required for
3035  * super-paranoid applications --- see the Orange Book for more details.
3036  *
3037  * This code could be nicer; ideally it should send a HUP, wait a few
3038  * seconds, then send a INT, and then a KILL signal.  But you then
3039  * have to coordinate with the init process, since all processes associated
3040  * with the current tty must be dead before the new getty is allowed
3041  * to spawn.
3042  *
3043  * Now, if it would be correct ;-/ The current code has a nasty hole -
3044  * it doesn't catch files in flight. We may send the descriptor to ourselves
3045  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3046  *
3047  * Nasty bug: do_SAK is being called in interrupt context.  This can
3048  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3049  */
__do_SAK(struct tty_struct * tty)3050 void __do_SAK(struct tty_struct *tty)
3051 {
3052 #ifdef TTY_SOFT_SAK
3053 	tty_hangup(tty);
3054 #else
3055 	struct task_struct *g, *p;
3056 	struct pid *session;
3057 	int		i;
3058 
3059 	if (!tty)
3060 		return;
3061 	session = tty->session;
3062 
3063 	tty_ldisc_flush(tty);
3064 
3065 	tty_driver_flush_buffer(tty);
3066 
3067 	read_lock(&tasklist_lock);
3068 	/* Kill the entire session */
3069 	do_each_pid_task(session, PIDTYPE_SID, p) {
3070 		printk(KERN_NOTICE "SAK: killed process %d"
3071 			" (%s): task_session(p)==tty->session\n",
3072 			task_pid_nr(p), p->comm);
3073 		send_sig(SIGKILL, p, 1);
3074 	} while_each_pid_task(session, PIDTYPE_SID, p);
3075 	/* Now kill any processes that happen to have the
3076 	 * tty open.
3077 	 */
3078 	do_each_thread(g, p) {
3079 		if (p->signal->tty == tty) {
3080 			printk(KERN_NOTICE "SAK: killed process %d"
3081 			    " (%s): task_session(p)==tty->session\n",
3082 			    task_pid_nr(p), p->comm);
3083 			send_sig(SIGKILL, p, 1);
3084 			continue;
3085 		}
3086 		task_lock(p);
3087 		i = iterate_fd(p->files, 0, this_tty, tty);
3088 		if (i != 0) {
3089 			printk(KERN_NOTICE "SAK: killed process %d"
3090 			    " (%s): fd#%d opened to the tty\n",
3091 				    task_pid_nr(p), p->comm, i - 1);
3092 			force_sig(SIGKILL, p);
3093 		}
3094 		task_unlock(p);
3095 	} while_each_thread(g, p);
3096 	read_unlock(&tasklist_lock);
3097 #endif
3098 }
3099 
do_SAK_work(struct work_struct * work)3100 static void do_SAK_work(struct work_struct *work)
3101 {
3102 	struct tty_struct *tty =
3103 		container_of(work, struct tty_struct, SAK_work);
3104 	__do_SAK(tty);
3105 }
3106 
3107 /*
3108  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3109  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3110  * the values which we write to it will be identical to the values which it
3111  * already has. --akpm
3112  */
do_SAK(struct tty_struct * tty)3113 void do_SAK(struct tty_struct *tty)
3114 {
3115 	if (!tty)
3116 		return;
3117 	schedule_work(&tty->SAK_work);
3118 }
3119 
3120 EXPORT_SYMBOL(do_SAK);
3121 
dev_match_devt(struct device * dev,const void * data)3122 static int dev_match_devt(struct device *dev, const void *data)
3123 {
3124 	const dev_t *devt = data;
3125 	return dev->devt == *devt;
3126 }
3127 
3128 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3129 static struct device *tty_get_device(struct tty_struct *tty)
3130 {
3131 	dev_t devt = tty_devnum(tty);
3132 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3133 }
3134 
3135 
3136 /**
3137  *	alloc_tty_struct
3138  *
3139  *	This subroutine allocates and initializes a tty structure.
3140  *
3141  *	Locking: none - tty in question is not exposed at this point
3142  */
3143 
alloc_tty_struct(struct tty_driver * driver,int idx)3144 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3145 {
3146 	struct tty_struct *tty;
3147 
3148 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3149 	if (!tty)
3150 		return NULL;
3151 
3152 	kref_init(&tty->kref);
3153 	tty->magic = TTY_MAGIC;
3154 	tty_ldisc_init(tty);
3155 	tty->session = NULL;
3156 	tty->pgrp = NULL;
3157 	mutex_init(&tty->legacy_mutex);
3158 	mutex_init(&tty->throttle_mutex);
3159 	init_rwsem(&tty->termios_rwsem);
3160 	mutex_init(&tty->winsize_mutex);
3161 	init_ldsem(&tty->ldisc_sem);
3162 	init_waitqueue_head(&tty->write_wait);
3163 	init_waitqueue_head(&tty->read_wait);
3164 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3165 	mutex_init(&tty->atomic_write_lock);
3166 	spin_lock_init(&tty->ctrl_lock);
3167 	spin_lock_init(&tty->flow_lock);
3168 	INIT_LIST_HEAD(&tty->tty_files);
3169 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3170 
3171 	tty->driver = driver;
3172 	tty->ops = driver->ops;
3173 	tty->index = idx;
3174 	tty_line_name(driver, idx, tty->name);
3175 	tty->dev = tty_get_device(tty);
3176 
3177 	return tty;
3178 }
3179 
3180 /**
3181  *	deinitialize_tty_struct
3182  *	@tty: tty to deinitialize
3183  *
3184  *	This subroutine deinitializes a tty structure that has been newly
3185  *	allocated but tty_release cannot be called on that yet.
3186  *
3187  *	Locking: none - tty in question must not be exposed at this point
3188  */
deinitialize_tty_struct(struct tty_struct * tty)3189 void deinitialize_tty_struct(struct tty_struct *tty)
3190 {
3191 	tty_ldisc_deinit(tty);
3192 }
3193 
3194 /**
3195  *	tty_put_char	-	write one character to a tty
3196  *	@tty: tty
3197  *	@ch: character
3198  *
3199  *	Write one byte to the tty using the provided put_char method
3200  *	if present. Returns the number of characters successfully output.
3201  *
3202  *	Note: the specific put_char operation in the driver layer may go
3203  *	away soon. Don't call it directly, use this method
3204  */
3205 
tty_put_char(struct tty_struct * tty,unsigned char ch)3206 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3207 {
3208 	if (tty->ops->put_char)
3209 		return tty->ops->put_char(tty, ch);
3210 	return tty->ops->write(tty, &ch, 1);
3211 }
3212 EXPORT_SYMBOL_GPL(tty_put_char);
3213 
3214 struct class *tty_class;
3215 
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3216 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3217 		unsigned int index, unsigned int count)
3218 {
3219 	/* init here, since reused cdevs cause crashes */
3220 	cdev_init(&driver->cdevs[index], &tty_fops);
3221 	driver->cdevs[index].owner = driver->owner;
3222 	return cdev_add(&driver->cdevs[index], dev, count);
3223 }
3224 
3225 /**
3226  *	tty_register_device - register a tty device
3227  *	@driver: the tty driver that describes the tty device
3228  *	@index: the index in the tty driver for this tty device
3229  *	@device: a struct device that is associated with this tty device.
3230  *		This field is optional, if there is no known struct device
3231  *		for this tty device it can be set to NULL safely.
3232  *
3233  *	Returns a pointer to the struct device for this tty device
3234  *	(or ERR_PTR(-EFOO) on error).
3235  *
3236  *	This call is required to be made to register an individual tty device
3237  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3238  *	that bit is not set, this function should not be called by a tty
3239  *	driver.
3240  *
3241  *	Locking: ??
3242  */
3243 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3244 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3245 				   struct device *device)
3246 {
3247 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3248 }
3249 EXPORT_SYMBOL(tty_register_device);
3250 
tty_device_create_release(struct device * dev)3251 static void tty_device_create_release(struct device *dev)
3252 {
3253 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3254 	kfree(dev);
3255 }
3256 
3257 /**
3258  *	tty_register_device_attr - register a tty device
3259  *	@driver: the tty driver that describes the tty device
3260  *	@index: the index in the tty driver for this tty device
3261  *	@device: a struct device that is associated with this tty device.
3262  *		This field is optional, if there is no known struct device
3263  *		for this tty device it can be set to NULL safely.
3264  *	@drvdata: Driver data to be set to device.
3265  *	@attr_grp: Attribute group to be set on device.
3266  *
3267  *	Returns a pointer to the struct device for this tty device
3268  *	(or ERR_PTR(-EFOO) on error).
3269  *
3270  *	This call is required to be made to register an individual tty device
3271  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3272  *	that bit is not set, this function should not be called by a tty
3273  *	driver.
3274  *
3275  *	Locking: ??
3276  */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3277 struct device *tty_register_device_attr(struct tty_driver *driver,
3278 				   unsigned index, struct device *device,
3279 				   void *drvdata,
3280 				   const struct attribute_group **attr_grp)
3281 {
3282 	char name[64];
3283 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3284 	struct device *dev = NULL;
3285 	int retval = -ENODEV;
3286 	bool cdev = false;
3287 
3288 	if (index >= driver->num) {
3289 		printk(KERN_ERR "Attempt to register invalid tty line number "
3290 		       " (%d).\n", index);
3291 		return ERR_PTR(-EINVAL);
3292 	}
3293 
3294 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3295 		pty_line_name(driver, index, name);
3296 	else
3297 		tty_line_name(driver, index, name);
3298 
3299 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3300 		retval = tty_cdev_add(driver, devt, index, 1);
3301 		if (retval)
3302 			goto error;
3303 		cdev = true;
3304 	}
3305 
3306 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3307 	if (!dev) {
3308 		retval = -ENOMEM;
3309 		goto error;
3310 	}
3311 
3312 	dev->devt = devt;
3313 	dev->class = tty_class;
3314 	dev->parent = device;
3315 	dev->release = tty_device_create_release;
3316 	dev_set_name(dev, "%s", name);
3317 	dev->groups = attr_grp;
3318 	dev_set_drvdata(dev, drvdata);
3319 
3320 	retval = device_register(dev);
3321 	if (retval)
3322 		goto error;
3323 
3324 	return dev;
3325 
3326 error:
3327 	put_device(dev);
3328 	if (cdev)
3329 		cdev_del(&driver->cdevs[index]);
3330 	return ERR_PTR(retval);
3331 }
3332 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3333 
3334 /**
3335  * 	tty_unregister_device - unregister a tty device
3336  * 	@driver: the tty driver that describes the tty device
3337  * 	@index: the index in the tty driver for this tty device
3338  *
3339  * 	If a tty device is registered with a call to tty_register_device() then
3340  *	this function must be called when the tty device is gone.
3341  *
3342  *	Locking: ??
3343  */
3344 
tty_unregister_device(struct tty_driver * driver,unsigned index)3345 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3346 {
3347 	device_destroy(tty_class,
3348 		MKDEV(driver->major, driver->minor_start) + index);
3349 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3350 		cdev_del(&driver->cdevs[index]);
3351 }
3352 EXPORT_SYMBOL(tty_unregister_device);
3353 
3354 /**
3355  * __tty_alloc_driver -- allocate tty driver
3356  * @lines: count of lines this driver can handle at most
3357  * @owner: module which is repsonsible for this driver
3358  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3359  *
3360  * This should not be called directly, some of the provided macros should be
3361  * used instead. Use IS_ERR and friends on @retval.
3362  */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3363 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3364 		unsigned long flags)
3365 {
3366 	struct tty_driver *driver;
3367 	unsigned int cdevs = 1;
3368 	int err;
3369 
3370 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3371 		return ERR_PTR(-EINVAL);
3372 
3373 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3374 	if (!driver)
3375 		return ERR_PTR(-ENOMEM);
3376 
3377 	kref_init(&driver->kref);
3378 	driver->magic = TTY_DRIVER_MAGIC;
3379 	driver->num = lines;
3380 	driver->owner = owner;
3381 	driver->flags = flags;
3382 
3383 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3384 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3385 				GFP_KERNEL);
3386 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3387 				GFP_KERNEL);
3388 		if (!driver->ttys || !driver->termios) {
3389 			err = -ENOMEM;
3390 			goto err_free_all;
3391 		}
3392 	}
3393 
3394 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3395 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3396 				GFP_KERNEL);
3397 		if (!driver->ports) {
3398 			err = -ENOMEM;
3399 			goto err_free_all;
3400 		}
3401 		cdevs = lines;
3402 	}
3403 
3404 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3405 	if (!driver->cdevs) {
3406 		err = -ENOMEM;
3407 		goto err_free_all;
3408 	}
3409 
3410 	return driver;
3411 err_free_all:
3412 	kfree(driver->ports);
3413 	kfree(driver->ttys);
3414 	kfree(driver->termios);
3415 	kfree(driver);
3416 	return ERR_PTR(err);
3417 }
3418 EXPORT_SYMBOL(__tty_alloc_driver);
3419 
destruct_tty_driver(struct kref * kref)3420 static void destruct_tty_driver(struct kref *kref)
3421 {
3422 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3423 	int i;
3424 	struct ktermios *tp;
3425 
3426 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3427 		/*
3428 		 * Free the termios and termios_locked structures because
3429 		 * we don't want to get memory leaks when modular tty
3430 		 * drivers are removed from the kernel.
3431 		 */
3432 		for (i = 0; i < driver->num; i++) {
3433 			tp = driver->termios[i];
3434 			if (tp) {
3435 				driver->termios[i] = NULL;
3436 				kfree(tp);
3437 			}
3438 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3439 				tty_unregister_device(driver, i);
3440 		}
3441 		proc_tty_unregister_driver(driver);
3442 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3443 			cdev_del(&driver->cdevs[0]);
3444 	}
3445 	kfree(driver->cdevs);
3446 	kfree(driver->ports);
3447 	kfree(driver->termios);
3448 	kfree(driver->ttys);
3449 	kfree(driver);
3450 }
3451 
tty_driver_kref_put(struct tty_driver * driver)3452 void tty_driver_kref_put(struct tty_driver *driver)
3453 {
3454 	kref_put(&driver->kref, destruct_tty_driver);
3455 }
3456 EXPORT_SYMBOL(tty_driver_kref_put);
3457 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3458 void tty_set_operations(struct tty_driver *driver,
3459 			const struct tty_operations *op)
3460 {
3461 	driver->ops = op;
3462 };
3463 EXPORT_SYMBOL(tty_set_operations);
3464 
put_tty_driver(struct tty_driver * d)3465 void put_tty_driver(struct tty_driver *d)
3466 {
3467 	tty_driver_kref_put(d);
3468 }
3469 EXPORT_SYMBOL(put_tty_driver);
3470 
3471 /*
3472  * Called by a tty driver to register itself.
3473  */
tty_register_driver(struct tty_driver * driver)3474 int tty_register_driver(struct tty_driver *driver)
3475 {
3476 	int error;
3477 	int i;
3478 	dev_t dev;
3479 	struct device *d;
3480 
3481 	if (!driver->major) {
3482 		error = alloc_chrdev_region(&dev, driver->minor_start,
3483 						driver->num, driver->name);
3484 		if (!error) {
3485 			driver->major = MAJOR(dev);
3486 			driver->minor_start = MINOR(dev);
3487 		}
3488 	} else {
3489 		dev = MKDEV(driver->major, driver->minor_start);
3490 		error = register_chrdev_region(dev, driver->num, driver->name);
3491 	}
3492 	if (error < 0)
3493 		goto err;
3494 
3495 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3496 		error = tty_cdev_add(driver, dev, 0, driver->num);
3497 		if (error)
3498 			goto err_unreg_char;
3499 	}
3500 
3501 	mutex_lock(&tty_mutex);
3502 	list_add(&driver->tty_drivers, &tty_drivers);
3503 	mutex_unlock(&tty_mutex);
3504 
3505 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3506 		for (i = 0; i < driver->num; i++) {
3507 			d = tty_register_device(driver, i, NULL);
3508 			if (IS_ERR(d)) {
3509 				error = PTR_ERR(d);
3510 				goto err_unreg_devs;
3511 			}
3512 		}
3513 	}
3514 	proc_tty_register_driver(driver);
3515 	driver->flags |= TTY_DRIVER_INSTALLED;
3516 	return 0;
3517 
3518 err_unreg_devs:
3519 	for (i--; i >= 0; i--)
3520 		tty_unregister_device(driver, i);
3521 
3522 	mutex_lock(&tty_mutex);
3523 	list_del(&driver->tty_drivers);
3524 	mutex_unlock(&tty_mutex);
3525 
3526 err_unreg_char:
3527 	unregister_chrdev_region(dev, driver->num);
3528 err:
3529 	return error;
3530 }
3531 EXPORT_SYMBOL(tty_register_driver);
3532 
3533 /*
3534  * Called by a tty driver to unregister itself.
3535  */
tty_unregister_driver(struct tty_driver * driver)3536 int tty_unregister_driver(struct tty_driver *driver)
3537 {
3538 #if 0
3539 	/* FIXME */
3540 	if (driver->refcount)
3541 		return -EBUSY;
3542 #endif
3543 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3544 				driver->num);
3545 	mutex_lock(&tty_mutex);
3546 	list_del(&driver->tty_drivers);
3547 	mutex_unlock(&tty_mutex);
3548 	return 0;
3549 }
3550 
3551 EXPORT_SYMBOL(tty_unregister_driver);
3552 
tty_devnum(struct tty_struct * tty)3553 dev_t tty_devnum(struct tty_struct *tty)
3554 {
3555 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3556 }
3557 EXPORT_SYMBOL(tty_devnum);
3558 
tty_default_fops(struct file_operations * fops)3559 void tty_default_fops(struct file_operations *fops)
3560 {
3561 	*fops = tty_fops;
3562 }
3563 
3564 /*
3565  * Initialize the console device. This is called *early*, so
3566  * we can't necessarily depend on lots of kernel help here.
3567  * Just do some early initializations, and do the complex setup
3568  * later.
3569  */
console_init(void)3570 void __init console_init(void)
3571 {
3572 	initcall_t *call;
3573 
3574 	/* Setup the default TTY line discipline. */
3575 	tty_ldisc_begin();
3576 
3577 	/*
3578 	 * set up the console device so that later boot sequences can
3579 	 * inform about problems etc..
3580 	 */
3581 	call = __con_initcall_start;
3582 	while (call < __con_initcall_end) {
3583 		(*call)();
3584 		call++;
3585 	}
3586 }
3587 
tty_devnode(struct device * dev,umode_t * mode)3588 static char *tty_devnode(struct device *dev, umode_t *mode)
3589 {
3590 	if (!mode)
3591 		return NULL;
3592 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3593 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3594 		*mode = 0666;
3595 	return NULL;
3596 }
3597 
tty_class_init(void)3598 static int __init tty_class_init(void)
3599 {
3600 	tty_class = class_create(THIS_MODULE, "tty");
3601 	if (IS_ERR(tty_class))
3602 		return PTR_ERR(tty_class);
3603 	tty_class->devnode = tty_devnode;
3604 	return 0;
3605 }
3606 
3607 postcore_initcall(tty_class_init);
3608 
3609 /* 3/2004 jmc: why do these devices exist? */
3610 static struct cdev tty_cdev, console_cdev;
3611 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3612 static ssize_t show_cons_active(struct device *dev,
3613 				struct device_attribute *attr, char *buf)
3614 {
3615 	struct console *cs[16];
3616 	int i = 0;
3617 	struct console *c;
3618 	ssize_t count = 0;
3619 
3620 	console_lock();
3621 	for_each_console(c) {
3622 		if (!c->device)
3623 			continue;
3624 		if (!c->write)
3625 			continue;
3626 		if ((c->flags & CON_ENABLED) == 0)
3627 			continue;
3628 		cs[i++] = c;
3629 		if (i >= ARRAY_SIZE(cs))
3630 			break;
3631 	}
3632 	while (i--) {
3633 		int index = cs[i]->index;
3634 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3635 
3636 		/* don't resolve tty0 as some programs depend on it */
3637 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3638 			count += tty_line_name(drv, index, buf + count);
3639 		else
3640 			count += sprintf(buf + count, "%s%d",
3641 					 cs[i]->name, cs[i]->index);
3642 
3643 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3644 	}
3645 	console_unlock();
3646 
3647 	return count;
3648 }
3649 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3650 
3651 static struct attribute *cons_dev_attrs[] = {
3652 	&dev_attr_active.attr,
3653 	NULL
3654 };
3655 
3656 ATTRIBUTE_GROUPS(cons_dev);
3657 
3658 static struct device *consdev;
3659 
console_sysfs_notify(void)3660 void console_sysfs_notify(void)
3661 {
3662 	if (consdev)
3663 		sysfs_notify(&consdev->kobj, NULL, "active");
3664 }
3665 
3666 /*
3667  * Ok, now we can initialize the rest of the tty devices and can count
3668  * on memory allocations, interrupts etc..
3669  */
tty_init(void)3670 int __init tty_init(void)
3671 {
3672 	cdev_init(&tty_cdev, &tty_fops);
3673 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3674 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3675 		panic("Couldn't register /dev/tty driver\n");
3676 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3677 
3678 	cdev_init(&console_cdev, &console_fops);
3679 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3680 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3681 		panic("Couldn't register /dev/console driver\n");
3682 	consdev = device_create_with_groups(tty_class, NULL,
3683 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3684 					    cons_dev_groups, "console");
3685 	if (IS_ERR(consdev))
3686 		consdev = NULL;
3687 
3688 #ifdef CONFIG_VT
3689 	vty_init(&console_fops);
3690 #endif
3691 	return 0;
3692 }
3693 
3694