1 /*
2  * Copyright (C) 1994 Linus Torvalds
3  *
4  * Pentium III FXSR, SSE support
5  * General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  * x86-64 work by Andi Kleen 2002
8  */
9 
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12 
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/compat.h>
16 #include <linux/slab.h>
17 #include <asm/asm.h>
18 #include <asm/cpufeature.h>
19 #include <asm/processor.h>
20 #include <asm/sigcontext.h>
21 #include <asm/user.h>
22 #include <asm/uaccess.h>
23 #include <asm/xsave.h>
24 #include <asm/smap.h>
25 
26 #ifdef CONFIG_X86_64
27 # include <asm/sigcontext32.h>
28 # include <asm/user32.h>
29 struct ksignal;
30 int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
31 			compat_sigset_t *set, struct pt_regs *regs);
32 int ia32_setup_frame(int sig, struct ksignal *ksig,
33 		     compat_sigset_t *set, struct pt_regs *regs);
34 #else
35 # define user_i387_ia32_struct	user_i387_struct
36 # define user32_fxsr_struct	user_fxsr_struct
37 # define ia32_setup_frame	__setup_frame
38 # define ia32_setup_rt_frame	__setup_rt_frame
39 #endif
40 
41 extern unsigned int mxcsr_feature_mask;
42 extern void fpu_init(void);
43 extern void eager_fpu_init(void);
44 
45 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
46 
47 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
48 			      struct task_struct *tsk);
49 extern void convert_to_fxsr(struct task_struct *tsk,
50 			    const struct user_i387_ia32_struct *env);
51 
52 extern user_regset_active_fn fpregs_active, xfpregs_active;
53 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
54 				xstateregs_get;
55 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
56 				 xstateregs_set;
57 
58 /*
59  * xstateregs_active == fpregs_active. Please refer to the comment
60  * at the definition of fpregs_active.
61  */
62 #define xstateregs_active	fpregs_active
63 
64 #ifdef CONFIG_MATH_EMULATION
65 extern void finit_soft_fpu(struct i387_soft_struct *soft);
66 #else
finit_soft_fpu(struct i387_soft_struct * soft)67 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
68 #endif
69 
70 /*
71  * Must be run with preemption disabled: this clears the fpu_owner_task,
72  * on this CPU.
73  *
74  * This will disable any lazy FPU state restore of the current FPU state,
75  * but if the current thread owns the FPU, it will still be saved by.
76  */
__cpu_disable_lazy_restore(unsigned int cpu)77 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
78 {
79 	per_cpu(fpu_owner_task, cpu) = NULL;
80 }
81 
82 /*
83  * Used to indicate that the FPU state in memory is newer than the FPU
84  * state in registers, and the FPU state should be reloaded next time the
85  * task is run. Only safe on the current task, or non-running tasks.
86  */
task_disable_lazy_fpu_restore(struct task_struct * tsk)87 static inline void task_disable_lazy_fpu_restore(struct task_struct *tsk)
88 {
89 	tsk->thread.fpu.last_cpu = ~0;
90 }
91 
fpu_lazy_restore(struct task_struct * new,unsigned int cpu)92 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
93 {
94 	return new == this_cpu_read_stable(fpu_owner_task) &&
95 		cpu == new->thread.fpu.last_cpu;
96 }
97 
is_ia32_compat_frame(void)98 static inline int is_ia32_compat_frame(void)
99 {
100 	return config_enabled(CONFIG_IA32_EMULATION) &&
101 	       test_thread_flag(TIF_IA32);
102 }
103 
is_ia32_frame(void)104 static inline int is_ia32_frame(void)
105 {
106 	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
107 }
108 
is_x32_frame(void)109 static inline int is_x32_frame(void)
110 {
111 	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
112 }
113 
114 #define X87_FSW_ES (1 << 7)	/* Exception Summary */
115 
use_eager_fpu(void)116 static __always_inline __pure bool use_eager_fpu(void)
117 {
118 	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
119 }
120 
use_xsaveopt(void)121 static __always_inline __pure bool use_xsaveopt(void)
122 {
123 	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
124 }
125 
use_xsave(void)126 static __always_inline __pure bool use_xsave(void)
127 {
128 	return static_cpu_has_safe(X86_FEATURE_XSAVE);
129 }
130 
use_fxsr(void)131 static __always_inline __pure bool use_fxsr(void)
132 {
133 	return static_cpu_has_safe(X86_FEATURE_FXSR);
134 }
135 
fx_finit(struct i387_fxsave_struct * fx)136 static inline void fx_finit(struct i387_fxsave_struct *fx)
137 {
138 	fx->cwd = 0x37f;
139 	fx->mxcsr = MXCSR_DEFAULT;
140 }
141 
142 extern void __sanitize_i387_state(struct task_struct *);
143 
sanitize_i387_state(struct task_struct * tsk)144 static inline void sanitize_i387_state(struct task_struct *tsk)
145 {
146 	if (!use_xsaveopt())
147 		return;
148 	__sanitize_i387_state(tsk);
149 }
150 
151 #define user_insn(insn, output, input...)				\
152 ({									\
153 	int err;							\
154 	asm volatile(ASM_STAC "\n"					\
155 		     "1:" #insn "\n\t"					\
156 		     "2: " ASM_CLAC "\n"				\
157 		     ".section .fixup,\"ax\"\n"				\
158 		     "3:  movl $-1,%[err]\n"				\
159 		     "    jmp  2b\n"					\
160 		     ".previous\n"					\
161 		     _ASM_EXTABLE(1b, 3b)				\
162 		     : [err] "=r" (err), output				\
163 		     : "0"(0), input);					\
164 	err;								\
165 })
166 
167 #define check_insn(insn, output, input...)				\
168 ({									\
169 	int err;							\
170 	asm volatile("1:" #insn "\n\t"					\
171 		     "2:\n"						\
172 		     ".section .fixup,\"ax\"\n"				\
173 		     "3:  movl $-1,%[err]\n"				\
174 		     "    jmp  2b\n"					\
175 		     ".previous\n"					\
176 		     _ASM_EXTABLE(1b, 3b)				\
177 		     : [err] "=r" (err), output				\
178 		     : "0"(0), input);					\
179 	err;								\
180 })
181 
fsave_user(struct i387_fsave_struct __user * fx)182 static inline int fsave_user(struct i387_fsave_struct __user *fx)
183 {
184 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
185 }
186 
fxsave_user(struct i387_fxsave_struct __user * fx)187 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
188 {
189 	if (config_enabled(CONFIG_X86_32))
190 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
191 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
192 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
193 
194 	/* See comment in fpu_fxsave() below. */
195 	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
196 }
197 
fxrstor_checking(struct i387_fxsave_struct * fx)198 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
199 {
200 	if (config_enabled(CONFIG_X86_32))
201 		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
202 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
203 		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
204 
205 	/* See comment in fpu_fxsave() below. */
206 	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
207 			  "m" (*fx));
208 }
209 
fxrstor_user(struct i387_fxsave_struct __user * fx)210 static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
211 {
212 	if (config_enabled(CONFIG_X86_32))
213 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
214 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
215 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
216 
217 	/* See comment in fpu_fxsave() below. */
218 	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
219 			  "m" (*fx));
220 }
221 
frstor_checking(struct i387_fsave_struct * fx)222 static inline int frstor_checking(struct i387_fsave_struct *fx)
223 {
224 	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
225 }
226 
frstor_user(struct i387_fsave_struct __user * fx)227 static inline int frstor_user(struct i387_fsave_struct __user *fx)
228 {
229 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
230 }
231 
fpu_fxsave(struct fpu * fpu)232 static inline void fpu_fxsave(struct fpu *fpu)
233 {
234 	if (config_enabled(CONFIG_X86_32))
235 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
236 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
237 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave));
238 	else {
239 		/* Using "rex64; fxsave %0" is broken because, if the memory
240 		 * operand uses any extended registers for addressing, a second
241 		 * REX prefix will be generated (to the assembler, rex64
242 		 * followed by semicolon is a separate instruction), and hence
243 		 * the 64-bitness is lost.
244 		 *
245 		 * Using "fxsaveq %0" would be the ideal choice, but is only
246 		 * supported starting with gas 2.16.
247 		 *
248 		 * Using, as a workaround, the properly prefixed form below
249 		 * isn't accepted by any binutils version so far released,
250 		 * complaining that the same type of prefix is used twice if
251 		 * an extended register is needed for addressing (fix submitted
252 		 * to mainline 2005-11-21).
253 		 *
254 		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
255 		 *
256 		 * This, however, we can work around by forcing the compiler to
257 		 * select an addressing mode that doesn't require extended
258 		 * registers.
259 		 */
260 		asm volatile( "rex64/fxsave (%[fx])"
261 			     : "=m" (fpu->state->fxsave)
262 			     : [fx] "R" (&fpu->state->fxsave));
263 	}
264 }
265 
266 /*
267  * These must be called with preempt disabled. Returns
268  * 'true' if the FPU state is still intact.
269  */
fpu_save_init(struct fpu * fpu)270 static inline int fpu_save_init(struct fpu *fpu)
271 {
272 	if (use_xsave()) {
273 		fpu_xsave(fpu);
274 
275 		/*
276 		 * xsave header may indicate the init state of the FP.
277 		 */
278 		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
279 			return 1;
280 	} else if (use_fxsr()) {
281 		fpu_fxsave(fpu);
282 	} else {
283 		asm volatile("fnsave %[fx]; fwait"
284 			     : [fx] "=m" (fpu->state->fsave));
285 		return 0;
286 	}
287 
288 	/*
289 	 * If exceptions are pending, we need to clear them so
290 	 * that we don't randomly get exceptions later.
291 	 *
292 	 * FIXME! Is this perhaps only true for the old-style
293 	 * irq13 case? Maybe we could leave the x87 state
294 	 * intact otherwise?
295 	 */
296 	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
297 		asm volatile("fnclex");
298 		return 0;
299 	}
300 	return 1;
301 }
302 
__save_init_fpu(struct task_struct * tsk)303 static inline int __save_init_fpu(struct task_struct *tsk)
304 {
305 	return fpu_save_init(&tsk->thread.fpu);
306 }
307 
fpu_restore_checking(struct fpu * fpu)308 static inline int fpu_restore_checking(struct fpu *fpu)
309 {
310 	if (use_xsave())
311 		return fpu_xrstor_checking(&fpu->state->xsave);
312 	else if (use_fxsr())
313 		return fxrstor_checking(&fpu->state->fxsave);
314 	else
315 		return frstor_checking(&fpu->state->fsave);
316 }
317 
restore_fpu_checking(struct task_struct * tsk)318 static inline int restore_fpu_checking(struct task_struct *tsk)
319 {
320 	/*
321 	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
322 	 * pending. Clear the x87 state here by setting it to fixed values.
323 	 * "m" is a random variable that should be in L1.
324 	 */
325 	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
326 		asm volatile(
327 			"fnclex\n\t"
328 			"emms\n\t"
329 			"fildl %P[addr]"	/* set F?P to defined value */
330 			: : [addr] "m" (tsk->thread.fpu.has_fpu));
331 	}
332 
333 	return fpu_restore_checking(&tsk->thread.fpu);
334 }
335 
336 /*
337  * Software FPU state helpers. Careful: these need to
338  * be preemption protection *and* they need to be
339  * properly paired with the CR0.TS changes!
340  */
__thread_has_fpu(struct task_struct * tsk)341 static inline int __thread_has_fpu(struct task_struct *tsk)
342 {
343 	return tsk->thread.fpu.has_fpu;
344 }
345 
346 /* Must be paired with an 'stts' after! */
__thread_clear_has_fpu(struct task_struct * tsk)347 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
348 {
349 	tsk->thread.fpu.has_fpu = 0;
350 	this_cpu_write(fpu_owner_task, NULL);
351 }
352 
353 /* Must be paired with a 'clts' before! */
__thread_set_has_fpu(struct task_struct * tsk)354 static inline void __thread_set_has_fpu(struct task_struct *tsk)
355 {
356 	tsk->thread.fpu.has_fpu = 1;
357 	this_cpu_write(fpu_owner_task, tsk);
358 }
359 
360 /*
361  * Encapsulate the CR0.TS handling together with the
362  * software flag.
363  *
364  * These generally need preemption protection to work,
365  * do try to avoid using these on their own.
366  */
__thread_fpu_end(struct task_struct * tsk)367 static inline void __thread_fpu_end(struct task_struct *tsk)
368 {
369 	__thread_clear_has_fpu(tsk);
370 	if (!use_eager_fpu())
371 		stts();
372 }
373 
__thread_fpu_begin(struct task_struct * tsk)374 static inline void __thread_fpu_begin(struct task_struct *tsk)
375 {
376 	if (!use_eager_fpu())
377 		clts();
378 	__thread_set_has_fpu(tsk);
379 }
380 
drop_fpu(struct task_struct * tsk)381 static inline void drop_fpu(struct task_struct *tsk)
382 {
383 	/*
384 	 * Forget coprocessor state..
385 	 */
386 	preempt_disable();
387 	tsk->thread.fpu_counter = 0;
388 
389 	if (__thread_has_fpu(tsk)) {
390 		/* Ignore delayed exceptions from user space */
391 		asm volatile("1: fwait\n"
392 			     "2:\n"
393 			     _ASM_EXTABLE(1b, 2b));
394 		__thread_fpu_end(tsk);
395 	}
396 
397 	clear_stopped_child_used_math(tsk);
398 	preempt_enable();
399 }
400 
restore_init_xstate(void)401 static inline void restore_init_xstate(void)
402 {
403 	if (use_xsave())
404 		xrstor_state(init_xstate_buf, -1);
405 	else
406 		fxrstor_checking(&init_xstate_buf->i387);
407 }
408 
409 /*
410  * Reset the FPU state in the eager case and drop it in the lazy case (later use
411  * will reinit it).
412  */
fpu_reset_state(struct task_struct * tsk)413 static inline void fpu_reset_state(struct task_struct *tsk)
414 {
415 	if (!use_eager_fpu())
416 		drop_fpu(tsk);
417 	else
418 		restore_init_xstate();
419 }
420 
421 /*
422  * FPU state switching for scheduling.
423  *
424  * This is a two-stage process:
425  *
426  *  - switch_fpu_prepare() saves the old state and
427  *    sets the new state of the CR0.TS bit. This is
428  *    done within the context of the old process.
429  *
430  *  - switch_fpu_finish() restores the new state as
431  *    necessary.
432  */
433 typedef struct { int preload; } fpu_switch_t;
434 
switch_fpu_prepare(struct task_struct * old,struct task_struct * new,int cpu)435 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
436 {
437 	fpu_switch_t fpu;
438 
439 	/*
440 	 * If the task has used the math, pre-load the FPU on xsave processors
441 	 * or if the past 5 consecutive context-switches used math.
442 	 */
443 	fpu.preload = tsk_used_math(new) &&
444 		      (use_eager_fpu() || new->thread.fpu_counter > 5);
445 
446 	if (__thread_has_fpu(old)) {
447 		if (!__save_init_fpu(old))
448 			task_disable_lazy_fpu_restore(old);
449 		else
450 			old->thread.fpu.last_cpu = cpu;
451 
452 		/* But leave fpu_owner_task! */
453 		old->thread.fpu.has_fpu = 0;
454 
455 		/* Don't change CR0.TS if we just switch! */
456 		if (fpu.preload) {
457 			new->thread.fpu_counter++;
458 			__thread_set_has_fpu(new);
459 			prefetch(new->thread.fpu.state);
460 		} else if (!use_eager_fpu())
461 			stts();
462 	} else {
463 		old->thread.fpu_counter = 0;
464 		task_disable_lazy_fpu_restore(old);
465 		if (fpu.preload) {
466 			new->thread.fpu_counter++;
467 			if (fpu_lazy_restore(new, cpu))
468 				fpu.preload = 0;
469 			else
470 				prefetch(new->thread.fpu.state);
471 			__thread_fpu_begin(new);
472 		}
473 	}
474 	return fpu;
475 }
476 
477 /*
478  * By the time this gets called, we've already cleared CR0.TS and
479  * given the process the FPU if we are going to preload the FPU
480  * state - all we need to do is to conditionally restore the register
481  * state itself.
482  */
switch_fpu_finish(struct task_struct * new,fpu_switch_t fpu)483 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
484 {
485 	if (fpu.preload) {
486 		if (unlikely(restore_fpu_checking(new)))
487 			fpu_reset_state(new);
488 	}
489 }
490 
491 /*
492  * Signal frame handlers...
493  */
494 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
495 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
496 
xstate_sigframe_size(void)497 static inline int xstate_sigframe_size(void)
498 {
499 	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
500 }
501 
restore_xstate_sig(void __user * buf,int ia32_frame)502 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
503 {
504 	void __user *buf_fx = buf;
505 	int size = xstate_sigframe_size();
506 
507 	if (ia32_frame && use_fxsr()) {
508 		buf_fx = buf + sizeof(struct i387_fsave_struct);
509 		size += sizeof(struct i387_fsave_struct);
510 	}
511 
512 	return __restore_xstate_sig(buf, buf_fx, size);
513 }
514 
515 /*
516  * Needs to be preemption-safe.
517  *
518  * NOTE! user_fpu_begin() must be used only immediately before restoring
519  * the save state. It does not do any saving/restoring on its own. In
520  * lazy FPU mode, it is just an optimization to avoid a #NM exception,
521  * the task can lose the FPU right after preempt_enable().
522  */
user_fpu_begin(void)523 static inline void user_fpu_begin(void)
524 {
525 	preempt_disable();
526 	if (!user_has_fpu())
527 		__thread_fpu_begin(current);
528 	preempt_enable();
529 }
530 
__save_fpu(struct task_struct * tsk)531 static inline void __save_fpu(struct task_struct *tsk)
532 {
533 	if (use_xsave()) {
534 		if (unlikely(system_state == SYSTEM_BOOTING))
535 			xsave_state_booting(&tsk->thread.fpu.state->xsave, -1);
536 		else
537 			xsave_state(&tsk->thread.fpu.state->xsave, -1);
538 	} else
539 		fpu_fxsave(&tsk->thread.fpu);
540 }
541 
542 /*
543  * i387 state interaction
544  */
get_fpu_cwd(struct task_struct * tsk)545 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
546 {
547 	if (cpu_has_fxsr) {
548 		return tsk->thread.fpu.state->fxsave.cwd;
549 	} else {
550 		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
551 	}
552 }
553 
get_fpu_swd(struct task_struct * tsk)554 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
555 {
556 	if (cpu_has_fxsr) {
557 		return tsk->thread.fpu.state->fxsave.swd;
558 	} else {
559 		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
560 	}
561 }
562 
get_fpu_mxcsr(struct task_struct * tsk)563 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
564 {
565 	if (cpu_has_xmm) {
566 		return tsk->thread.fpu.state->fxsave.mxcsr;
567 	} else {
568 		return MXCSR_DEFAULT;
569 	}
570 }
571 
fpu_allocated(struct fpu * fpu)572 static bool fpu_allocated(struct fpu *fpu)
573 {
574 	return fpu->state != NULL;
575 }
576 
fpu_alloc(struct fpu * fpu)577 static inline int fpu_alloc(struct fpu *fpu)
578 {
579 	if (fpu_allocated(fpu))
580 		return 0;
581 	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
582 	if (!fpu->state)
583 		return -ENOMEM;
584 	WARN_ON((unsigned long)fpu->state & 15);
585 	return 0;
586 }
587 
fpu_free(struct fpu * fpu)588 static inline void fpu_free(struct fpu *fpu)
589 {
590 	if (fpu->state) {
591 		kmem_cache_free(task_xstate_cachep, fpu->state);
592 		fpu->state = NULL;
593 	}
594 }
595 
fpu_copy(struct task_struct * dst,struct task_struct * src)596 static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
597 {
598 	if (use_eager_fpu()) {
599 		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
600 		__save_fpu(dst);
601 	} else {
602 		struct fpu *dfpu = &dst->thread.fpu;
603 		struct fpu *sfpu = &src->thread.fpu;
604 
605 		unlazy_fpu(src);
606 		memcpy(dfpu->state, sfpu->state, xstate_size);
607 	}
608 }
609 
610 static inline unsigned long
alloc_mathframe(unsigned long sp,int ia32_frame,unsigned long * buf_fx,unsigned long * size)611 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
612 		unsigned long *size)
613 {
614 	unsigned long frame_size = xstate_sigframe_size();
615 
616 	*buf_fx = sp = round_down(sp - frame_size, 64);
617 	if (ia32_frame && use_fxsr()) {
618 		frame_size += sizeof(struct i387_fsave_struct);
619 		sp -= sizeof(struct i387_fsave_struct);
620 	}
621 
622 	*size = frame_size;
623 	return sp;
624 }
625 
626 #endif
627