1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
init_se_kmem_caches(void)74 int init_se_kmem_caches(void)
75 {
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
83 }
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
90 }
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
98 }
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
106 }
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
114 }
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
122 }
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
132 }
133 t10_alua_lba_map_cache = kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map),
136 __alignof__(struct t10_alua_lba_map), 0, NULL);
137 if (!t10_alua_lba_map_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 "cache failed\n");
140 goto out_free_tg_pt_gp_mem_cache;
141 }
142 t10_alua_lba_map_mem_cache = kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member),
145 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 if (!t10_alua_lba_map_mem_cache) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 "cache failed\n");
149 goto out_free_lba_map_cache;
150 }
151
152 target_completion_wq = alloc_workqueue("target_completion",
153 WQ_MEM_RECLAIM, 0);
154 if (!target_completion_wq)
155 goto out_free_lba_map_mem_cache;
156
157 return 0;
158
159 out_free_lba_map_mem_cache:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 kmem_cache_destroy(se_sess_cache);
177 out:
178 return -ENOMEM;
179 }
180
release_se_kmem_caches(void)181 void release_se_kmem_caches(void)
182 {
183 destroy_workqueue(target_completion_wq);
184 kmem_cache_destroy(se_sess_cache);
185 kmem_cache_destroy(se_ua_cache);
186 kmem_cache_destroy(t10_pr_reg_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_cache);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 kmem_cache_destroy(t10_alua_lba_map_cache);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200 * Allocate a new row index for the entry type specified
201 */
scsi_get_new_index(scsi_index_t type)202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204 u32 new_index;
205
206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208 spin_lock(&scsi_mib_index_lock);
209 new_index = ++scsi_mib_index[type];
210 spin_unlock(&scsi_mib_index_lock);
211
212 return new_index;
213 }
214
transport_subsystem_check_init(void)215 void transport_subsystem_check_init(void)
216 {
217 int ret;
218 static int sub_api_initialized;
219
220 if (sub_api_initialized)
221 return;
222
223 ret = request_module("target_core_iblock");
224 if (ret != 0)
225 pr_err("Unable to load target_core_iblock\n");
226
227 ret = request_module("target_core_file");
228 if (ret != 0)
229 pr_err("Unable to load target_core_file\n");
230
231 ret = request_module("target_core_pscsi");
232 if (ret != 0)
233 pr_err("Unable to load target_core_pscsi\n");
234
235 ret = request_module("target_core_user");
236 if (ret != 0)
237 pr_err("Unable to load target_core_user\n");
238
239 sub_api_initialized = 1;
240 }
241
transport_init_session(enum target_prot_op sup_prot_ops)242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
243 {
244 struct se_session *se_sess;
245
246 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
247 if (!se_sess) {
248 pr_err("Unable to allocate struct se_session from"
249 " se_sess_cache\n");
250 return ERR_PTR(-ENOMEM);
251 }
252 INIT_LIST_HEAD(&se_sess->sess_list);
253 INIT_LIST_HEAD(&se_sess->sess_acl_list);
254 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
255 INIT_LIST_HEAD(&se_sess->sess_wait_list);
256 spin_lock_init(&se_sess->sess_cmd_lock);
257 kref_init(&se_sess->sess_kref);
258 se_sess->sup_prot_ops = sup_prot_ops;
259
260 return se_sess;
261 }
262 EXPORT_SYMBOL(transport_init_session);
263
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)264 int transport_alloc_session_tags(struct se_session *se_sess,
265 unsigned int tag_num, unsigned int tag_size)
266 {
267 int rc;
268
269 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
270 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
271 if (!se_sess->sess_cmd_map) {
272 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
273 if (!se_sess->sess_cmd_map) {
274 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275 return -ENOMEM;
276 }
277 }
278
279 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
280 if (rc < 0) {
281 pr_err("Unable to init se_sess->sess_tag_pool,"
282 " tag_num: %u\n", tag_num);
283 if (is_vmalloc_addr(se_sess->sess_cmd_map))
284 vfree(se_sess->sess_cmd_map);
285 else
286 kfree(se_sess->sess_cmd_map);
287 se_sess->sess_cmd_map = NULL;
288 return -ENOMEM;
289 }
290
291 return 0;
292 }
293 EXPORT_SYMBOL(transport_alloc_session_tags);
294
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)295 struct se_session *transport_init_session_tags(unsigned int tag_num,
296 unsigned int tag_size,
297 enum target_prot_op sup_prot_ops)
298 {
299 struct se_session *se_sess;
300 int rc;
301
302 se_sess = transport_init_session(sup_prot_ops);
303 if (IS_ERR(se_sess))
304 return se_sess;
305
306 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
307 if (rc < 0) {
308 transport_free_session(se_sess);
309 return ERR_PTR(-ENOMEM);
310 }
311
312 return se_sess;
313 }
314 EXPORT_SYMBOL(transport_init_session_tags);
315
316 /*
317 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
318 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)319 void __transport_register_session(
320 struct se_portal_group *se_tpg,
321 struct se_node_acl *se_nacl,
322 struct se_session *se_sess,
323 void *fabric_sess_ptr)
324 {
325 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
326 unsigned char buf[PR_REG_ISID_LEN];
327
328 se_sess->se_tpg = se_tpg;
329 se_sess->fabric_sess_ptr = fabric_sess_ptr;
330 /*
331 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
332 *
333 * Only set for struct se_session's that will actually be moving I/O.
334 * eg: *NOT* discovery sessions.
335 */
336 if (se_nacl) {
337 /*
338 *
339 * Determine if fabric allows for T10-PI feature bits exposed to
340 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
341 *
342 * If so, then always save prot_type on a per se_node_acl node
343 * basis and re-instate the previous sess_prot_type to avoid
344 * disabling PI from below any previously initiator side
345 * registered LUNs.
346 */
347 if (se_nacl->saved_prot_type)
348 se_sess->sess_prot_type = se_nacl->saved_prot_type;
349 else if (tfo->tpg_check_prot_fabric_only)
350 se_sess->sess_prot_type = se_nacl->saved_prot_type =
351 tfo->tpg_check_prot_fabric_only(se_tpg);
352 /*
353 * If the fabric module supports an ISID based TransportID,
354 * save this value in binary from the fabric I_T Nexus now.
355 */
356 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
357 memset(&buf[0], 0, PR_REG_ISID_LEN);
358 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
359 &buf[0], PR_REG_ISID_LEN);
360 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
361 }
362 kref_get(&se_nacl->acl_kref);
363
364 spin_lock_irq(&se_nacl->nacl_sess_lock);
365 /*
366 * The se_nacl->nacl_sess pointer will be set to the
367 * last active I_T Nexus for each struct se_node_acl.
368 */
369 se_nacl->nacl_sess = se_sess;
370
371 list_add_tail(&se_sess->sess_acl_list,
372 &se_nacl->acl_sess_list);
373 spin_unlock_irq(&se_nacl->nacl_sess_lock);
374 }
375 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
376
377 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
378 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
379 }
380 EXPORT_SYMBOL(__transport_register_session);
381
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)382 void transport_register_session(
383 struct se_portal_group *se_tpg,
384 struct se_node_acl *se_nacl,
385 struct se_session *se_sess,
386 void *fabric_sess_ptr)
387 {
388 unsigned long flags;
389
390 spin_lock_irqsave(&se_tpg->session_lock, flags);
391 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
392 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
393 }
394 EXPORT_SYMBOL(transport_register_session);
395
target_release_session(struct kref * kref)396 static void target_release_session(struct kref *kref)
397 {
398 struct se_session *se_sess = container_of(kref,
399 struct se_session, sess_kref);
400 struct se_portal_group *se_tpg = se_sess->se_tpg;
401
402 se_tpg->se_tpg_tfo->close_session(se_sess);
403 }
404
target_get_session(struct se_session * se_sess)405 void target_get_session(struct se_session *se_sess)
406 {
407 kref_get(&se_sess->sess_kref);
408 }
409 EXPORT_SYMBOL(target_get_session);
410
target_put_session(struct se_session * se_sess)411 void target_put_session(struct se_session *se_sess)
412 {
413 struct se_portal_group *tpg = se_sess->se_tpg;
414
415 if (tpg->se_tpg_tfo->put_session != NULL) {
416 tpg->se_tpg_tfo->put_session(se_sess);
417 return;
418 }
419 kref_put(&se_sess->sess_kref, target_release_session);
420 }
421 EXPORT_SYMBOL(target_put_session);
422
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)423 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
424 {
425 struct se_session *se_sess;
426 ssize_t len = 0;
427
428 spin_lock_bh(&se_tpg->session_lock);
429 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
430 if (!se_sess->se_node_acl)
431 continue;
432 if (!se_sess->se_node_acl->dynamic_node_acl)
433 continue;
434 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
435 break;
436
437 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
438 se_sess->se_node_acl->initiatorname);
439 len += 1; /* Include NULL terminator */
440 }
441 spin_unlock_bh(&se_tpg->session_lock);
442
443 return len;
444 }
445 EXPORT_SYMBOL(target_show_dynamic_sessions);
446
target_complete_nacl(struct kref * kref)447 static void target_complete_nacl(struct kref *kref)
448 {
449 struct se_node_acl *nacl = container_of(kref,
450 struct se_node_acl, acl_kref);
451
452 complete(&nacl->acl_free_comp);
453 }
454
target_put_nacl(struct se_node_acl * nacl)455 void target_put_nacl(struct se_node_acl *nacl)
456 {
457 kref_put(&nacl->acl_kref, target_complete_nacl);
458 }
459
transport_deregister_session_configfs(struct se_session * se_sess)460 void transport_deregister_session_configfs(struct se_session *se_sess)
461 {
462 struct se_node_acl *se_nacl;
463 unsigned long flags;
464 /*
465 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
466 */
467 se_nacl = se_sess->se_node_acl;
468 if (se_nacl) {
469 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
470 if (se_nacl->acl_stop == 0)
471 list_del(&se_sess->sess_acl_list);
472 /*
473 * If the session list is empty, then clear the pointer.
474 * Otherwise, set the struct se_session pointer from the tail
475 * element of the per struct se_node_acl active session list.
476 */
477 if (list_empty(&se_nacl->acl_sess_list))
478 se_nacl->nacl_sess = NULL;
479 else {
480 se_nacl->nacl_sess = container_of(
481 se_nacl->acl_sess_list.prev,
482 struct se_session, sess_acl_list);
483 }
484 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
485 }
486 }
487 EXPORT_SYMBOL(transport_deregister_session_configfs);
488
transport_free_session(struct se_session * se_sess)489 void transport_free_session(struct se_session *se_sess)
490 {
491 if (se_sess->sess_cmd_map) {
492 percpu_ida_destroy(&se_sess->sess_tag_pool);
493 if (is_vmalloc_addr(se_sess->sess_cmd_map))
494 vfree(se_sess->sess_cmd_map);
495 else
496 kfree(se_sess->sess_cmd_map);
497 }
498 kmem_cache_free(se_sess_cache, se_sess);
499 }
500 EXPORT_SYMBOL(transport_free_session);
501
transport_deregister_session(struct se_session * se_sess)502 void transport_deregister_session(struct se_session *se_sess)
503 {
504 struct se_portal_group *se_tpg = se_sess->se_tpg;
505 const struct target_core_fabric_ops *se_tfo;
506 struct se_node_acl *se_nacl;
507 unsigned long flags;
508 bool comp_nacl = true;
509
510 if (!se_tpg) {
511 transport_free_session(se_sess);
512 return;
513 }
514 se_tfo = se_tpg->se_tpg_tfo;
515
516 spin_lock_irqsave(&se_tpg->session_lock, flags);
517 list_del(&se_sess->sess_list);
518 se_sess->se_tpg = NULL;
519 se_sess->fabric_sess_ptr = NULL;
520 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
521
522 /*
523 * Determine if we need to do extra work for this initiator node's
524 * struct se_node_acl if it had been previously dynamically generated.
525 */
526 se_nacl = se_sess->se_node_acl;
527
528 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
529 if (se_nacl && se_nacl->dynamic_node_acl) {
530 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
531 list_del(&se_nacl->acl_list);
532 se_tpg->num_node_acls--;
533 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
534 core_tpg_wait_for_nacl_pr_ref(se_nacl);
535 core_free_device_list_for_node(se_nacl, se_tpg);
536 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
537
538 comp_nacl = false;
539 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
540 }
541 }
542 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
543
544 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
545 se_tpg->se_tpg_tfo->get_fabric_name());
546 /*
547 * If last kref is dropping now for an explicit NodeACL, awake sleeping
548 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
549 * removal context.
550 */
551 if (se_nacl && comp_nacl)
552 target_put_nacl(se_nacl);
553
554 transport_free_session(se_sess);
555 }
556 EXPORT_SYMBOL(transport_deregister_session);
557
target_remove_from_state_list(struct se_cmd * cmd)558 static void target_remove_from_state_list(struct se_cmd *cmd)
559 {
560 struct se_device *dev = cmd->se_dev;
561 unsigned long flags;
562
563 if (!dev)
564 return;
565
566 if (cmd->transport_state & CMD_T_BUSY)
567 return;
568
569 spin_lock_irqsave(&dev->execute_task_lock, flags);
570 if (cmd->state_active) {
571 list_del(&cmd->state_list);
572 cmd->state_active = false;
573 }
574 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
575 }
576
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)577 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
578 bool write_pending)
579 {
580 unsigned long flags;
581
582 if (remove_from_lists) {
583 target_remove_from_state_list(cmd);
584
585 /*
586 * Clear struct se_cmd->se_lun before the handoff to FE.
587 */
588 cmd->se_lun = NULL;
589 }
590
591 spin_lock_irqsave(&cmd->t_state_lock, flags);
592 if (write_pending)
593 cmd->t_state = TRANSPORT_WRITE_PENDING;
594
595 /*
596 * Determine if frontend context caller is requesting the stopping of
597 * this command for frontend exceptions.
598 */
599 if (cmd->transport_state & CMD_T_STOP) {
600 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
601 __func__, __LINE__,
602 cmd->se_tfo->get_task_tag(cmd));
603
604 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
605
606 complete_all(&cmd->t_transport_stop_comp);
607 return 1;
608 }
609
610 cmd->transport_state &= ~CMD_T_ACTIVE;
611 if (remove_from_lists) {
612 /*
613 * Some fabric modules like tcm_loop can release
614 * their internally allocated I/O reference now and
615 * struct se_cmd now.
616 *
617 * Fabric modules are expected to return '1' here if the
618 * se_cmd being passed is released at this point,
619 * or zero if not being released.
620 */
621 if (cmd->se_tfo->check_stop_free != NULL) {
622 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
623 return cmd->se_tfo->check_stop_free(cmd);
624 }
625 }
626
627 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
628 return 0;
629 }
630
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)631 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
632 {
633 return transport_cmd_check_stop(cmd, true, false);
634 }
635
transport_lun_remove_cmd(struct se_cmd * cmd)636 static void transport_lun_remove_cmd(struct se_cmd *cmd)
637 {
638 struct se_lun *lun = cmd->se_lun;
639
640 if (!lun)
641 return;
642
643 if (cmpxchg(&cmd->lun_ref_active, true, false))
644 percpu_ref_put(&lun->lun_ref);
645 }
646
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)647 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
648 {
649 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
650
651 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
652 transport_lun_remove_cmd(cmd);
653 /*
654 * Allow the fabric driver to unmap any resources before
655 * releasing the descriptor via TFO->release_cmd()
656 */
657 if (remove)
658 cmd->se_tfo->aborted_task(cmd);
659
660 if (transport_cmd_check_stop_to_fabric(cmd))
661 return;
662 if (remove && ack_kref)
663 transport_put_cmd(cmd);
664 }
665
target_complete_failure_work(struct work_struct * work)666 static void target_complete_failure_work(struct work_struct *work)
667 {
668 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
669
670 transport_generic_request_failure(cmd,
671 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
672 }
673
674 /*
675 * Used when asking transport to copy Sense Data from the underlying
676 * Linux/SCSI struct scsi_cmnd
677 */
transport_get_sense_buffer(struct se_cmd * cmd)678 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
679 {
680 struct se_device *dev = cmd->se_dev;
681
682 WARN_ON(!cmd->se_lun);
683
684 if (!dev)
685 return NULL;
686
687 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
688 return NULL;
689
690 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
691
692 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
693 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
694 return cmd->sense_buffer;
695 }
696
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)697 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
698 {
699 struct se_device *dev = cmd->se_dev;
700 int success = scsi_status == GOOD;
701 unsigned long flags;
702
703 cmd->scsi_status = scsi_status;
704
705
706 spin_lock_irqsave(&cmd->t_state_lock, flags);
707 cmd->transport_state &= ~CMD_T_BUSY;
708
709 if (dev && dev->transport->transport_complete) {
710 dev->transport->transport_complete(cmd,
711 cmd->t_data_sg,
712 transport_get_sense_buffer(cmd));
713 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
714 success = 1;
715 }
716
717 /*
718 * See if we are waiting to complete for an exception condition.
719 */
720 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
721 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722 complete(&cmd->task_stop_comp);
723 return;
724 }
725
726 /*
727 * Check for case where an explicit ABORT_TASK has been received
728 * and transport_wait_for_tasks() will be waiting for completion..
729 */
730 if (cmd->transport_state & CMD_T_ABORTED ||
731 cmd->transport_state & CMD_T_STOP) {
732 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
733 complete_all(&cmd->t_transport_stop_comp);
734 return;
735 } else if (!success) {
736 INIT_WORK(&cmd->work, target_complete_failure_work);
737 } else {
738 INIT_WORK(&cmd->work, target_complete_ok_work);
739 }
740
741 cmd->t_state = TRANSPORT_COMPLETE;
742 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
743 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
744
745 queue_work(target_completion_wq, &cmd->work);
746 }
747 EXPORT_SYMBOL(target_complete_cmd);
748
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
750 {
751 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
752 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
753 cmd->residual_count += cmd->data_length - length;
754 } else {
755 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
756 cmd->residual_count = cmd->data_length - length;
757 }
758
759 cmd->data_length = length;
760 }
761
762 target_complete_cmd(cmd, scsi_status);
763 }
764 EXPORT_SYMBOL(target_complete_cmd_with_length);
765
target_add_to_state_list(struct se_cmd * cmd)766 static void target_add_to_state_list(struct se_cmd *cmd)
767 {
768 struct se_device *dev = cmd->se_dev;
769 unsigned long flags;
770
771 spin_lock_irqsave(&dev->execute_task_lock, flags);
772 if (!cmd->state_active) {
773 list_add_tail(&cmd->state_list, &dev->state_list);
774 cmd->state_active = true;
775 }
776 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
777 }
778
779 /*
780 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
781 */
782 static void transport_write_pending_qf(struct se_cmd *cmd);
783 static void transport_complete_qf(struct se_cmd *cmd);
784
target_qf_do_work(struct work_struct * work)785 void target_qf_do_work(struct work_struct *work)
786 {
787 struct se_device *dev = container_of(work, struct se_device,
788 qf_work_queue);
789 LIST_HEAD(qf_cmd_list);
790 struct se_cmd *cmd, *cmd_tmp;
791
792 spin_lock_irq(&dev->qf_cmd_lock);
793 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
794 spin_unlock_irq(&dev->qf_cmd_lock);
795
796 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
797 list_del(&cmd->se_qf_node);
798 atomic_dec_mb(&dev->dev_qf_count);
799
800 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
801 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
802 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
803 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
804 : "UNKNOWN");
805
806 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
807 transport_write_pending_qf(cmd);
808 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
809 transport_complete_qf(cmd);
810 }
811 }
812
transport_dump_cmd_direction(struct se_cmd * cmd)813 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
814 {
815 switch (cmd->data_direction) {
816 case DMA_NONE:
817 return "NONE";
818 case DMA_FROM_DEVICE:
819 return "READ";
820 case DMA_TO_DEVICE:
821 return "WRITE";
822 case DMA_BIDIRECTIONAL:
823 return "BIDI";
824 default:
825 break;
826 }
827
828 return "UNKNOWN";
829 }
830
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)831 void transport_dump_dev_state(
832 struct se_device *dev,
833 char *b,
834 int *bl)
835 {
836 *bl += sprintf(b + *bl, "Status: ");
837 if (dev->export_count)
838 *bl += sprintf(b + *bl, "ACTIVATED");
839 else
840 *bl += sprintf(b + *bl, "DEACTIVATED");
841
842 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
843 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
844 dev->dev_attrib.block_size,
845 dev->dev_attrib.hw_max_sectors);
846 *bl += sprintf(b + *bl, " ");
847 }
848
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)849 void transport_dump_vpd_proto_id(
850 struct t10_vpd *vpd,
851 unsigned char *p_buf,
852 int p_buf_len)
853 {
854 unsigned char buf[VPD_TMP_BUF_SIZE];
855 int len;
856
857 memset(buf, 0, VPD_TMP_BUF_SIZE);
858 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
859
860 switch (vpd->protocol_identifier) {
861 case 0x00:
862 sprintf(buf+len, "Fibre Channel\n");
863 break;
864 case 0x10:
865 sprintf(buf+len, "Parallel SCSI\n");
866 break;
867 case 0x20:
868 sprintf(buf+len, "SSA\n");
869 break;
870 case 0x30:
871 sprintf(buf+len, "IEEE 1394\n");
872 break;
873 case 0x40:
874 sprintf(buf+len, "SCSI Remote Direct Memory Access"
875 " Protocol\n");
876 break;
877 case 0x50:
878 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
879 break;
880 case 0x60:
881 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
882 break;
883 case 0x70:
884 sprintf(buf+len, "Automation/Drive Interface Transport"
885 " Protocol\n");
886 break;
887 case 0x80:
888 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
889 break;
890 default:
891 sprintf(buf+len, "Unknown 0x%02x\n",
892 vpd->protocol_identifier);
893 break;
894 }
895
896 if (p_buf)
897 strncpy(p_buf, buf, p_buf_len);
898 else
899 pr_debug("%s", buf);
900 }
901
902 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)903 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
904 {
905 /*
906 * Check if the Protocol Identifier Valid (PIV) bit is set..
907 *
908 * from spc3r23.pdf section 7.5.1
909 */
910 if (page_83[1] & 0x80) {
911 vpd->protocol_identifier = (page_83[0] & 0xf0);
912 vpd->protocol_identifier_set = 1;
913 transport_dump_vpd_proto_id(vpd, NULL, 0);
914 }
915 }
916 EXPORT_SYMBOL(transport_set_vpd_proto_id);
917
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)918 int transport_dump_vpd_assoc(
919 struct t10_vpd *vpd,
920 unsigned char *p_buf,
921 int p_buf_len)
922 {
923 unsigned char buf[VPD_TMP_BUF_SIZE];
924 int ret = 0;
925 int len;
926
927 memset(buf, 0, VPD_TMP_BUF_SIZE);
928 len = sprintf(buf, "T10 VPD Identifier Association: ");
929
930 switch (vpd->association) {
931 case 0x00:
932 sprintf(buf+len, "addressed logical unit\n");
933 break;
934 case 0x10:
935 sprintf(buf+len, "target port\n");
936 break;
937 case 0x20:
938 sprintf(buf+len, "SCSI target device\n");
939 break;
940 default:
941 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
942 ret = -EINVAL;
943 break;
944 }
945
946 if (p_buf)
947 strncpy(p_buf, buf, p_buf_len);
948 else
949 pr_debug("%s", buf);
950
951 return ret;
952 }
953
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)954 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
955 {
956 /*
957 * The VPD identification association..
958 *
959 * from spc3r23.pdf Section 7.6.3.1 Table 297
960 */
961 vpd->association = (page_83[1] & 0x30);
962 return transport_dump_vpd_assoc(vpd, NULL, 0);
963 }
964 EXPORT_SYMBOL(transport_set_vpd_assoc);
965
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)966 int transport_dump_vpd_ident_type(
967 struct t10_vpd *vpd,
968 unsigned char *p_buf,
969 int p_buf_len)
970 {
971 unsigned char buf[VPD_TMP_BUF_SIZE];
972 int ret = 0;
973 int len;
974
975 memset(buf, 0, VPD_TMP_BUF_SIZE);
976 len = sprintf(buf, "T10 VPD Identifier Type: ");
977
978 switch (vpd->device_identifier_type) {
979 case 0x00:
980 sprintf(buf+len, "Vendor specific\n");
981 break;
982 case 0x01:
983 sprintf(buf+len, "T10 Vendor ID based\n");
984 break;
985 case 0x02:
986 sprintf(buf+len, "EUI-64 based\n");
987 break;
988 case 0x03:
989 sprintf(buf+len, "NAA\n");
990 break;
991 case 0x04:
992 sprintf(buf+len, "Relative target port identifier\n");
993 break;
994 case 0x08:
995 sprintf(buf+len, "SCSI name string\n");
996 break;
997 default:
998 sprintf(buf+len, "Unsupported: 0x%02x\n",
999 vpd->device_identifier_type);
1000 ret = -EINVAL;
1001 break;
1002 }
1003
1004 if (p_buf) {
1005 if (p_buf_len < strlen(buf)+1)
1006 return -EINVAL;
1007 strncpy(p_buf, buf, p_buf_len);
1008 } else {
1009 pr_debug("%s", buf);
1010 }
1011
1012 return ret;
1013 }
1014
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1015 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1016 {
1017 /*
1018 * The VPD identifier type..
1019 *
1020 * from spc3r23.pdf Section 7.6.3.1 Table 298
1021 */
1022 vpd->device_identifier_type = (page_83[1] & 0x0f);
1023 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1024 }
1025 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1026
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1027 int transport_dump_vpd_ident(
1028 struct t10_vpd *vpd,
1029 unsigned char *p_buf,
1030 int p_buf_len)
1031 {
1032 unsigned char buf[VPD_TMP_BUF_SIZE];
1033 int ret = 0;
1034
1035 memset(buf, 0, VPD_TMP_BUF_SIZE);
1036
1037 switch (vpd->device_identifier_code_set) {
1038 case 0x01: /* Binary */
1039 snprintf(buf, sizeof(buf),
1040 "T10 VPD Binary Device Identifier: %s\n",
1041 &vpd->device_identifier[0]);
1042 break;
1043 case 0x02: /* ASCII */
1044 snprintf(buf, sizeof(buf),
1045 "T10 VPD ASCII Device Identifier: %s\n",
1046 &vpd->device_identifier[0]);
1047 break;
1048 case 0x03: /* UTF-8 */
1049 snprintf(buf, sizeof(buf),
1050 "T10 VPD UTF-8 Device Identifier: %s\n",
1051 &vpd->device_identifier[0]);
1052 break;
1053 default:
1054 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1055 " 0x%02x", vpd->device_identifier_code_set);
1056 ret = -EINVAL;
1057 break;
1058 }
1059
1060 if (p_buf)
1061 strncpy(p_buf, buf, p_buf_len);
1062 else
1063 pr_debug("%s", buf);
1064
1065 return ret;
1066 }
1067
1068 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1069 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1070 {
1071 static const char hex_str[] = "0123456789abcdef";
1072 int j = 0, i = 4; /* offset to start of the identifier */
1073
1074 /*
1075 * The VPD Code Set (encoding)
1076 *
1077 * from spc3r23.pdf Section 7.6.3.1 Table 296
1078 */
1079 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1080 switch (vpd->device_identifier_code_set) {
1081 case 0x01: /* Binary */
1082 vpd->device_identifier[j++] =
1083 hex_str[vpd->device_identifier_type];
1084 while (i < (4 + page_83[3])) {
1085 vpd->device_identifier[j++] =
1086 hex_str[(page_83[i] & 0xf0) >> 4];
1087 vpd->device_identifier[j++] =
1088 hex_str[page_83[i] & 0x0f];
1089 i++;
1090 }
1091 break;
1092 case 0x02: /* ASCII */
1093 case 0x03: /* UTF-8 */
1094 while (i < (4 + page_83[3]))
1095 vpd->device_identifier[j++] = page_83[i++];
1096 break;
1097 default:
1098 break;
1099 }
1100
1101 return transport_dump_vpd_ident(vpd, NULL, 0);
1102 }
1103 EXPORT_SYMBOL(transport_set_vpd_ident);
1104
1105 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1106 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1107 {
1108 struct se_device *dev = cmd->se_dev;
1109
1110 if (cmd->unknown_data_length) {
1111 cmd->data_length = size;
1112 } else if (size != cmd->data_length) {
1113 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1114 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1115 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1116 cmd->data_length, size, cmd->t_task_cdb[0]);
1117
1118 if (cmd->data_direction == DMA_TO_DEVICE) {
1119 pr_err("Rejecting underflow/overflow"
1120 " WRITE data\n");
1121 return TCM_INVALID_CDB_FIELD;
1122 }
1123 /*
1124 * Reject READ_* or WRITE_* with overflow/underflow for
1125 * type SCF_SCSI_DATA_CDB.
1126 */
1127 if (dev->dev_attrib.block_size != 512) {
1128 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1129 " CDB on non 512-byte sector setup subsystem"
1130 " plugin: %s\n", dev->transport->name);
1131 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1132 return TCM_INVALID_CDB_FIELD;
1133 }
1134 /*
1135 * For the overflow case keep the existing fabric provided
1136 * ->data_length. Otherwise for the underflow case, reset
1137 * ->data_length to the smaller SCSI expected data transfer
1138 * length.
1139 */
1140 if (size > cmd->data_length) {
1141 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1142 cmd->residual_count = (size - cmd->data_length);
1143 } else {
1144 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1145 cmd->residual_count = (cmd->data_length - size);
1146 cmd->data_length = size;
1147 }
1148 }
1149
1150 return 0;
1151
1152 }
1153
1154 /*
1155 * Used by fabric modules containing a local struct se_cmd within their
1156 * fabric dependent per I/O descriptor.
1157 */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1158 void transport_init_se_cmd(
1159 struct se_cmd *cmd,
1160 const struct target_core_fabric_ops *tfo,
1161 struct se_session *se_sess,
1162 u32 data_length,
1163 int data_direction,
1164 int task_attr,
1165 unsigned char *sense_buffer)
1166 {
1167 INIT_LIST_HEAD(&cmd->se_delayed_node);
1168 INIT_LIST_HEAD(&cmd->se_qf_node);
1169 INIT_LIST_HEAD(&cmd->se_cmd_list);
1170 INIT_LIST_HEAD(&cmd->state_list);
1171 init_completion(&cmd->t_transport_stop_comp);
1172 init_completion(&cmd->cmd_wait_comp);
1173 init_completion(&cmd->task_stop_comp);
1174 spin_lock_init(&cmd->t_state_lock);
1175 kref_init(&cmd->cmd_kref);
1176 cmd->transport_state = CMD_T_DEV_ACTIVE;
1177
1178 cmd->se_tfo = tfo;
1179 cmd->se_sess = se_sess;
1180 cmd->data_length = data_length;
1181 cmd->data_direction = data_direction;
1182 cmd->sam_task_attr = task_attr;
1183 cmd->sense_buffer = sense_buffer;
1184
1185 cmd->state_active = false;
1186 }
1187 EXPORT_SYMBOL(transport_init_se_cmd);
1188
1189 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1190 transport_check_alloc_task_attr(struct se_cmd *cmd)
1191 {
1192 struct se_device *dev = cmd->se_dev;
1193
1194 /*
1195 * Check if SAM Task Attribute emulation is enabled for this
1196 * struct se_device storage object
1197 */
1198 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1199 return 0;
1200
1201 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1202 pr_debug("SAM Task Attribute ACA"
1203 " emulation is not supported\n");
1204 return TCM_INVALID_CDB_FIELD;
1205 }
1206 /*
1207 * Used to determine when ORDERED commands should go from
1208 * Dormant to Active status.
1209 */
1210 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1211 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1212 cmd->se_ordered_id, cmd->sam_task_attr,
1213 dev->transport->name);
1214 return 0;
1215 }
1216
1217 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1218 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1219 {
1220 struct se_device *dev = cmd->se_dev;
1221 sense_reason_t ret;
1222
1223 /*
1224 * Ensure that the received CDB is less than the max (252 + 8) bytes
1225 * for VARIABLE_LENGTH_CMD
1226 */
1227 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1228 pr_err("Received SCSI CDB with command_size: %d that"
1229 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1230 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1231 return TCM_INVALID_CDB_FIELD;
1232 }
1233 /*
1234 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1235 * allocate the additional extended CDB buffer now.. Otherwise
1236 * setup the pointer from __t_task_cdb to t_task_cdb.
1237 */
1238 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1239 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1240 GFP_KERNEL);
1241 if (!cmd->t_task_cdb) {
1242 pr_err("Unable to allocate cmd->t_task_cdb"
1243 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1244 scsi_command_size(cdb),
1245 (unsigned long)sizeof(cmd->__t_task_cdb));
1246 return TCM_OUT_OF_RESOURCES;
1247 }
1248 } else
1249 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1250 /*
1251 * Copy the original CDB into cmd->
1252 */
1253 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1254
1255 trace_target_sequencer_start(cmd);
1256
1257 /*
1258 * Check for an existing UNIT ATTENTION condition
1259 */
1260 ret = target_scsi3_ua_check(cmd);
1261 if (ret)
1262 return ret;
1263
1264 ret = target_alua_state_check(cmd);
1265 if (ret)
1266 return ret;
1267
1268 ret = target_check_reservation(cmd);
1269 if (ret) {
1270 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1271 return ret;
1272 }
1273
1274 ret = dev->transport->parse_cdb(cmd);
1275 if (ret)
1276 return ret;
1277
1278 ret = transport_check_alloc_task_attr(cmd);
1279 if (ret)
1280 return ret;
1281
1282 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1283
1284 spin_lock(&cmd->se_lun->lun_sep_lock);
1285 if (cmd->se_lun->lun_sep)
1286 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1287 spin_unlock(&cmd->se_lun->lun_sep_lock);
1288 return 0;
1289 }
1290 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1291
1292 /*
1293 * Used by fabric module frontends to queue tasks directly.
1294 * Many only be used from process context only
1295 */
transport_handle_cdb_direct(struct se_cmd * cmd)1296 int transport_handle_cdb_direct(
1297 struct se_cmd *cmd)
1298 {
1299 sense_reason_t ret;
1300
1301 if (!cmd->se_lun) {
1302 dump_stack();
1303 pr_err("cmd->se_lun is NULL\n");
1304 return -EINVAL;
1305 }
1306 if (in_interrupt()) {
1307 dump_stack();
1308 pr_err("transport_generic_handle_cdb cannot be called"
1309 " from interrupt context\n");
1310 return -EINVAL;
1311 }
1312 /*
1313 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1314 * outstanding descriptors are handled correctly during shutdown via
1315 * transport_wait_for_tasks()
1316 *
1317 * Also, we don't take cmd->t_state_lock here as we only expect
1318 * this to be called for initial descriptor submission.
1319 */
1320 cmd->t_state = TRANSPORT_NEW_CMD;
1321 cmd->transport_state |= CMD_T_ACTIVE;
1322
1323 /*
1324 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1325 * so follow TRANSPORT_NEW_CMD processing thread context usage
1326 * and call transport_generic_request_failure() if necessary..
1327 */
1328 ret = transport_generic_new_cmd(cmd);
1329 if (ret)
1330 transport_generic_request_failure(cmd, ret);
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(transport_handle_cdb_direct);
1334
1335 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1336 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1337 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1338 {
1339 if (!sgl || !sgl_count)
1340 return 0;
1341
1342 /*
1343 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1344 * scatterlists already have been set to follow what the fabric
1345 * passes for the original expected data transfer length.
1346 */
1347 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1348 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1349 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1350 return TCM_INVALID_CDB_FIELD;
1351 }
1352
1353 cmd->t_data_sg = sgl;
1354 cmd->t_data_nents = sgl_count;
1355
1356 if (sgl_bidi && sgl_bidi_count) {
1357 cmd->t_bidi_data_sg = sgl_bidi;
1358 cmd->t_bidi_data_nents = sgl_bidi_count;
1359 }
1360 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1361 return 0;
1362 }
1363
1364 /*
1365 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1366 * se_cmd + use pre-allocated SGL memory.
1367 *
1368 * @se_cmd: command descriptor to submit
1369 * @se_sess: associated se_sess for endpoint
1370 * @cdb: pointer to SCSI CDB
1371 * @sense: pointer to SCSI sense buffer
1372 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1373 * @data_length: fabric expected data transfer length
1374 * @task_addr: SAM task attribute
1375 * @data_dir: DMA data direction
1376 * @flags: flags for command submission from target_sc_flags_tables
1377 * @sgl: struct scatterlist memory for unidirectional mapping
1378 * @sgl_count: scatterlist count for unidirectional mapping
1379 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1380 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1381 * @sgl_prot: struct scatterlist memory protection information
1382 * @sgl_prot_count: scatterlist count for protection information
1383 *
1384 * Returns non zero to signal active I/O shutdown failure. All other
1385 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1386 * but still return zero here.
1387 *
1388 * This may only be called from process context, and also currently
1389 * assumes internal allocation of fabric payload buffer by target-core.
1390 */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1391 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1392 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1393 u32 data_length, int task_attr, int data_dir, int flags,
1394 struct scatterlist *sgl, u32 sgl_count,
1395 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1396 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1397 {
1398 struct se_portal_group *se_tpg;
1399 sense_reason_t rc;
1400 int ret;
1401
1402 se_tpg = se_sess->se_tpg;
1403 BUG_ON(!se_tpg);
1404 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1405 BUG_ON(in_interrupt());
1406 /*
1407 * Initialize se_cmd for target operation. From this point
1408 * exceptions are handled by sending exception status via
1409 * target_core_fabric_ops->queue_status() callback
1410 */
1411 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1412 data_length, data_dir, task_attr, sense);
1413 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1414 se_cmd->unknown_data_length = 1;
1415 /*
1416 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1417 * se_sess->sess_cmd_list. A second kref_get here is necessary
1418 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1419 * kref_put() to happen during fabric packet acknowledgement.
1420 */
1421 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1422 if (ret)
1423 return ret;
1424 /*
1425 * Signal bidirectional data payloads to target-core
1426 */
1427 if (flags & TARGET_SCF_BIDI_OP)
1428 se_cmd->se_cmd_flags |= SCF_BIDI;
1429 /*
1430 * Locate se_lun pointer and attach it to struct se_cmd
1431 */
1432 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1433 if (rc) {
1434 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1435 target_put_sess_cmd(se_cmd);
1436 return 0;
1437 }
1438
1439 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1440 if (rc != 0) {
1441 transport_generic_request_failure(se_cmd, rc);
1442 return 0;
1443 }
1444
1445 /*
1446 * Save pointers for SGLs containing protection information,
1447 * if present.
1448 */
1449 if (sgl_prot_count) {
1450 se_cmd->t_prot_sg = sgl_prot;
1451 se_cmd->t_prot_nents = sgl_prot_count;
1452 }
1453
1454 /*
1455 * When a non zero sgl_count has been passed perform SGL passthrough
1456 * mapping for pre-allocated fabric memory instead of having target
1457 * core perform an internal SGL allocation..
1458 */
1459 if (sgl_count != 0) {
1460 BUG_ON(!sgl);
1461
1462 /*
1463 * A work-around for tcm_loop as some userspace code via
1464 * scsi-generic do not memset their associated read buffers,
1465 * so go ahead and do that here for type non-data CDBs. Also
1466 * note that this is currently guaranteed to be a single SGL
1467 * for this case by target core in target_setup_cmd_from_cdb()
1468 * -> transport_generic_cmd_sequencer().
1469 */
1470 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1471 se_cmd->data_direction == DMA_FROM_DEVICE) {
1472 unsigned char *buf = NULL;
1473
1474 if (sgl)
1475 buf = kmap(sg_page(sgl)) + sgl->offset;
1476
1477 if (buf) {
1478 memset(buf, 0, sgl->length);
1479 kunmap(sg_page(sgl));
1480 }
1481 }
1482
1483 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1484 sgl_bidi, sgl_bidi_count);
1485 if (rc != 0) {
1486 transport_generic_request_failure(se_cmd, rc);
1487 return 0;
1488 }
1489 }
1490
1491 /*
1492 * Check if we need to delay processing because of ALUA
1493 * Active/NonOptimized primary access state..
1494 */
1495 core_alua_check_nonop_delay(se_cmd);
1496
1497 transport_handle_cdb_direct(se_cmd);
1498 return 0;
1499 }
1500 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1501
1502 /*
1503 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1504 *
1505 * @se_cmd: command descriptor to submit
1506 * @se_sess: associated se_sess for endpoint
1507 * @cdb: pointer to SCSI CDB
1508 * @sense: pointer to SCSI sense buffer
1509 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1510 * @data_length: fabric expected data transfer length
1511 * @task_addr: SAM task attribute
1512 * @data_dir: DMA data direction
1513 * @flags: flags for command submission from target_sc_flags_tables
1514 *
1515 * Returns non zero to signal active I/O shutdown failure. All other
1516 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1517 * but still return zero here.
1518 *
1519 * This may only be called from process context, and also currently
1520 * assumes internal allocation of fabric payload buffer by target-core.
1521 *
1522 * It also assumes interal target core SGL memory allocation.
1523 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1524 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1525 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1526 u32 data_length, int task_attr, int data_dir, int flags)
1527 {
1528 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1529 unpacked_lun, data_length, task_attr, data_dir,
1530 flags, NULL, 0, NULL, 0, NULL, 0);
1531 }
1532 EXPORT_SYMBOL(target_submit_cmd);
1533
target_complete_tmr_failure(struct work_struct * work)1534 static void target_complete_tmr_failure(struct work_struct *work)
1535 {
1536 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1537
1538 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1539 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1540
1541 transport_cmd_check_stop_to_fabric(se_cmd);
1542 }
1543
1544 /**
1545 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1546 * for TMR CDBs
1547 *
1548 * @se_cmd: command descriptor to submit
1549 * @se_sess: associated se_sess for endpoint
1550 * @sense: pointer to SCSI sense buffer
1551 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1552 * @fabric_context: fabric context for TMR req
1553 * @tm_type: Type of TM request
1554 * @gfp: gfp type for caller
1555 * @tag: referenced task tag for TMR_ABORT_TASK
1556 * @flags: submit cmd flags
1557 *
1558 * Callable from all contexts.
1559 **/
1560
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1561 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1562 unsigned char *sense, u32 unpacked_lun,
1563 void *fabric_tmr_ptr, unsigned char tm_type,
1564 gfp_t gfp, unsigned int tag, int flags)
1565 {
1566 struct se_portal_group *se_tpg;
1567 int ret;
1568
1569 se_tpg = se_sess->se_tpg;
1570 BUG_ON(!se_tpg);
1571
1572 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1573 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1574 /*
1575 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1576 * allocation failure.
1577 */
1578 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1579 if (ret < 0)
1580 return -ENOMEM;
1581
1582 if (tm_type == TMR_ABORT_TASK)
1583 se_cmd->se_tmr_req->ref_task_tag = tag;
1584
1585 /* See target_submit_cmd for commentary */
1586 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1587 if (ret) {
1588 core_tmr_release_req(se_cmd->se_tmr_req);
1589 return ret;
1590 }
1591
1592 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1593 if (ret) {
1594 /*
1595 * For callback during failure handling, push this work off
1596 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1597 */
1598 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1599 schedule_work(&se_cmd->work);
1600 return 0;
1601 }
1602 transport_generic_handle_tmr(se_cmd);
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(target_submit_tmr);
1606
1607 /*
1608 * If the cmd is active, request it to be stopped and sleep until it
1609 * has completed.
1610 */
target_stop_cmd(struct se_cmd * cmd,unsigned long * flags)1611 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1612 __releases(&cmd->t_state_lock)
1613 __acquires(&cmd->t_state_lock)
1614 {
1615 bool was_active = false;
1616
1617 if (cmd->transport_state & CMD_T_BUSY) {
1618 cmd->transport_state |= CMD_T_REQUEST_STOP;
1619 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1620
1621 pr_debug("cmd %p waiting to complete\n", cmd);
1622 wait_for_completion(&cmd->task_stop_comp);
1623 pr_debug("cmd %p stopped successfully\n", cmd);
1624
1625 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1626 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1627 cmd->transport_state &= ~CMD_T_BUSY;
1628 was_active = true;
1629 }
1630
1631 return was_active;
1632 }
1633
1634 /*
1635 * Handle SAM-esque emulation for generic transport request failures.
1636 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1637 void transport_generic_request_failure(struct se_cmd *cmd,
1638 sense_reason_t sense_reason)
1639 {
1640 int ret = 0, post_ret = 0;
1641
1642 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1643 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1644 cmd->t_task_cdb[0]);
1645 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1646 cmd->se_tfo->get_cmd_state(cmd),
1647 cmd->t_state, sense_reason);
1648 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1649 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1650 (cmd->transport_state & CMD_T_STOP) != 0,
1651 (cmd->transport_state & CMD_T_SENT) != 0);
1652
1653 /*
1654 * For SAM Task Attribute emulation for failed struct se_cmd
1655 */
1656 transport_complete_task_attr(cmd);
1657 /*
1658 * Handle special case for COMPARE_AND_WRITE failure, where the
1659 * callback is expected to drop the per device ->caw_sem.
1660 */
1661 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1662 cmd->transport_complete_callback)
1663 cmd->transport_complete_callback(cmd, false, &post_ret);
1664
1665 switch (sense_reason) {
1666 case TCM_NON_EXISTENT_LUN:
1667 case TCM_UNSUPPORTED_SCSI_OPCODE:
1668 case TCM_INVALID_CDB_FIELD:
1669 case TCM_INVALID_PARAMETER_LIST:
1670 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1671 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1672 case TCM_UNKNOWN_MODE_PAGE:
1673 case TCM_WRITE_PROTECTED:
1674 case TCM_ADDRESS_OUT_OF_RANGE:
1675 case TCM_CHECK_CONDITION_ABORT_CMD:
1676 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1677 case TCM_CHECK_CONDITION_NOT_READY:
1678 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1679 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1680 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1681 break;
1682 case TCM_OUT_OF_RESOURCES:
1683 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1684 break;
1685 case TCM_RESERVATION_CONFLICT:
1686 /*
1687 * No SENSE Data payload for this case, set SCSI Status
1688 * and queue the response to $FABRIC_MOD.
1689 *
1690 * Uses linux/include/scsi/scsi.h SAM status codes defs
1691 */
1692 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1693 /*
1694 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1695 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1696 * CONFLICT STATUS.
1697 *
1698 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1699 */
1700 if (cmd->se_sess &&
1701 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1702 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1703 cmd->orig_fe_lun, 0x2C,
1704 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1705
1706 trace_target_cmd_complete(cmd);
1707 ret = cmd->se_tfo-> queue_status(cmd);
1708 if (ret == -EAGAIN || ret == -ENOMEM)
1709 goto queue_full;
1710 goto check_stop;
1711 default:
1712 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1713 cmd->t_task_cdb[0], sense_reason);
1714 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1715 break;
1716 }
1717
1718 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1719 if (ret == -EAGAIN || ret == -ENOMEM)
1720 goto queue_full;
1721
1722 check_stop:
1723 transport_lun_remove_cmd(cmd);
1724 if (!transport_cmd_check_stop_to_fabric(cmd))
1725 ;
1726 return;
1727
1728 queue_full:
1729 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1730 transport_handle_queue_full(cmd, cmd->se_dev);
1731 }
1732 EXPORT_SYMBOL(transport_generic_request_failure);
1733
__target_execute_cmd(struct se_cmd * cmd)1734 void __target_execute_cmd(struct se_cmd *cmd)
1735 {
1736 sense_reason_t ret;
1737
1738 if (cmd->execute_cmd) {
1739 ret = cmd->execute_cmd(cmd);
1740 if (ret) {
1741 spin_lock_irq(&cmd->t_state_lock);
1742 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1743 spin_unlock_irq(&cmd->t_state_lock);
1744
1745 transport_generic_request_failure(cmd, ret);
1746 }
1747 }
1748 }
1749
target_write_prot_action(struct se_cmd * cmd)1750 static int target_write_prot_action(struct se_cmd *cmd)
1751 {
1752 u32 sectors;
1753 /*
1754 * Perform WRITE_INSERT of PI using software emulation when backend
1755 * device has PI enabled, if the transport has not already generated
1756 * PI using hardware WRITE_INSERT offload.
1757 */
1758 switch (cmd->prot_op) {
1759 case TARGET_PROT_DOUT_INSERT:
1760 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1761 sbc_dif_generate(cmd);
1762 break;
1763 case TARGET_PROT_DOUT_STRIP:
1764 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1765 break;
1766
1767 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1768 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1769 sectors, 0, NULL, 0);
1770 if (unlikely(cmd->pi_err)) {
1771 spin_lock_irq(&cmd->t_state_lock);
1772 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1773 spin_unlock_irq(&cmd->t_state_lock);
1774 transport_generic_request_failure(cmd, cmd->pi_err);
1775 return -1;
1776 }
1777 break;
1778 default:
1779 break;
1780 }
1781
1782 return 0;
1783 }
1784
target_handle_task_attr(struct se_cmd * cmd)1785 static bool target_handle_task_attr(struct se_cmd *cmd)
1786 {
1787 struct se_device *dev = cmd->se_dev;
1788
1789 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1790 return false;
1791
1792 /*
1793 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1794 * to allow the passed struct se_cmd list of tasks to the front of the list.
1795 */
1796 switch (cmd->sam_task_attr) {
1797 case TCM_HEAD_TAG:
1798 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1799 "se_ordered_id: %u\n",
1800 cmd->t_task_cdb[0], cmd->se_ordered_id);
1801 return false;
1802 case TCM_ORDERED_TAG:
1803 atomic_inc_mb(&dev->dev_ordered_sync);
1804
1805 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1806 " se_ordered_id: %u\n",
1807 cmd->t_task_cdb[0], cmd->se_ordered_id);
1808
1809 /*
1810 * Execute an ORDERED command if no other older commands
1811 * exist that need to be completed first.
1812 */
1813 if (!atomic_read(&dev->simple_cmds))
1814 return false;
1815 break;
1816 default:
1817 /*
1818 * For SIMPLE and UNTAGGED Task Attribute commands
1819 */
1820 atomic_inc_mb(&dev->simple_cmds);
1821 break;
1822 }
1823
1824 if (atomic_read(&dev->dev_ordered_sync) == 0)
1825 return false;
1826
1827 spin_lock(&dev->delayed_cmd_lock);
1828 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1829 spin_unlock(&dev->delayed_cmd_lock);
1830
1831 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1832 " delayed CMD list, se_ordered_id: %u\n",
1833 cmd->t_task_cdb[0], cmd->sam_task_attr,
1834 cmd->se_ordered_id);
1835 return true;
1836 }
1837
1838 static int __transport_check_aborted_status(struct se_cmd *, int);
1839
target_execute_cmd(struct se_cmd * cmd)1840 void target_execute_cmd(struct se_cmd *cmd)
1841 {
1842 /*
1843 * Determine if frontend context caller is requesting the stopping of
1844 * this command for frontend exceptions.
1845 *
1846 * If the received CDB has aleady been aborted stop processing it here.
1847 */
1848 spin_lock_irq(&cmd->t_state_lock);
1849 if (__transport_check_aborted_status(cmd, 1)) {
1850 spin_unlock_irq(&cmd->t_state_lock);
1851 return;
1852 }
1853 if (cmd->transport_state & CMD_T_STOP) {
1854 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1855 __func__, __LINE__,
1856 cmd->se_tfo->get_task_tag(cmd));
1857
1858 spin_unlock_irq(&cmd->t_state_lock);
1859 complete_all(&cmd->t_transport_stop_comp);
1860 return;
1861 }
1862
1863 cmd->t_state = TRANSPORT_PROCESSING;
1864 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1865 spin_unlock_irq(&cmd->t_state_lock);
1866
1867 if (target_write_prot_action(cmd))
1868 return;
1869
1870 if (target_handle_task_attr(cmd)) {
1871 spin_lock_irq(&cmd->t_state_lock);
1872 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1873 spin_unlock_irq(&cmd->t_state_lock);
1874 return;
1875 }
1876
1877 __target_execute_cmd(cmd);
1878 }
1879 EXPORT_SYMBOL(target_execute_cmd);
1880
1881 /*
1882 * Process all commands up to the last received ORDERED task attribute which
1883 * requires another blocking boundary
1884 */
target_restart_delayed_cmds(struct se_device * dev)1885 static void target_restart_delayed_cmds(struct se_device *dev)
1886 {
1887 for (;;) {
1888 struct se_cmd *cmd;
1889
1890 spin_lock(&dev->delayed_cmd_lock);
1891 if (list_empty(&dev->delayed_cmd_list)) {
1892 spin_unlock(&dev->delayed_cmd_lock);
1893 break;
1894 }
1895
1896 cmd = list_entry(dev->delayed_cmd_list.next,
1897 struct se_cmd, se_delayed_node);
1898 list_del(&cmd->se_delayed_node);
1899 spin_unlock(&dev->delayed_cmd_lock);
1900
1901 __target_execute_cmd(cmd);
1902
1903 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1904 break;
1905 }
1906 }
1907
1908 /*
1909 * Called from I/O completion to determine which dormant/delayed
1910 * and ordered cmds need to have their tasks added to the execution queue.
1911 */
transport_complete_task_attr(struct se_cmd * cmd)1912 static void transport_complete_task_attr(struct se_cmd *cmd)
1913 {
1914 struct se_device *dev = cmd->se_dev;
1915
1916 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1917 return;
1918
1919 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1920 atomic_dec_mb(&dev->simple_cmds);
1921 dev->dev_cur_ordered_id++;
1922 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1923 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1924 cmd->se_ordered_id);
1925 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1926 dev->dev_cur_ordered_id++;
1927 pr_debug("Incremented dev_cur_ordered_id: %u for"
1928 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1929 cmd->se_ordered_id);
1930 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1931 atomic_dec_mb(&dev->dev_ordered_sync);
1932
1933 dev->dev_cur_ordered_id++;
1934 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1935 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1936 }
1937
1938 target_restart_delayed_cmds(dev);
1939 }
1940
transport_complete_qf(struct se_cmd * cmd)1941 static void transport_complete_qf(struct se_cmd *cmd)
1942 {
1943 int ret = 0;
1944
1945 transport_complete_task_attr(cmd);
1946
1947 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1948 trace_target_cmd_complete(cmd);
1949 ret = cmd->se_tfo->queue_status(cmd);
1950 goto out;
1951 }
1952
1953 switch (cmd->data_direction) {
1954 case DMA_FROM_DEVICE:
1955 trace_target_cmd_complete(cmd);
1956 ret = cmd->se_tfo->queue_data_in(cmd);
1957 break;
1958 case DMA_TO_DEVICE:
1959 if (cmd->se_cmd_flags & SCF_BIDI) {
1960 ret = cmd->se_tfo->queue_data_in(cmd);
1961 break;
1962 }
1963 /* Fall through for DMA_TO_DEVICE */
1964 case DMA_NONE:
1965 trace_target_cmd_complete(cmd);
1966 ret = cmd->se_tfo->queue_status(cmd);
1967 break;
1968 default:
1969 break;
1970 }
1971
1972 out:
1973 if (ret < 0) {
1974 transport_handle_queue_full(cmd, cmd->se_dev);
1975 return;
1976 }
1977 transport_lun_remove_cmd(cmd);
1978 transport_cmd_check_stop_to_fabric(cmd);
1979 }
1980
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)1981 static void transport_handle_queue_full(
1982 struct se_cmd *cmd,
1983 struct se_device *dev)
1984 {
1985 spin_lock_irq(&dev->qf_cmd_lock);
1986 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1987 atomic_inc_mb(&dev->dev_qf_count);
1988 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1989
1990 schedule_work(&cmd->se_dev->qf_work_queue);
1991 }
1992
target_read_prot_action(struct se_cmd * cmd)1993 static bool target_read_prot_action(struct se_cmd *cmd)
1994 {
1995 sense_reason_t rc;
1996
1997 switch (cmd->prot_op) {
1998 case TARGET_PROT_DIN_STRIP:
1999 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2000 rc = sbc_dif_read_strip(cmd);
2001 if (rc) {
2002 cmd->pi_err = rc;
2003 return true;
2004 }
2005 }
2006 break;
2007 case TARGET_PROT_DIN_INSERT:
2008 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2009 break;
2010
2011 sbc_dif_generate(cmd);
2012 break;
2013 default:
2014 break;
2015 }
2016
2017 return false;
2018 }
2019
target_complete_ok_work(struct work_struct * work)2020 static void target_complete_ok_work(struct work_struct *work)
2021 {
2022 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2023 int ret;
2024
2025 /*
2026 * Check if we need to move delayed/dormant tasks from cmds on the
2027 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2028 * Attribute.
2029 */
2030 transport_complete_task_attr(cmd);
2031
2032 /*
2033 * Check to schedule QUEUE_FULL work, or execute an existing
2034 * cmd->transport_qf_callback()
2035 */
2036 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2037 schedule_work(&cmd->se_dev->qf_work_queue);
2038
2039 /*
2040 * Check if we need to send a sense buffer from
2041 * the struct se_cmd in question.
2042 */
2043 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2044 WARN_ON(!cmd->scsi_status);
2045 ret = transport_send_check_condition_and_sense(
2046 cmd, 0, 1);
2047 if (ret == -EAGAIN || ret == -ENOMEM)
2048 goto queue_full;
2049
2050 transport_lun_remove_cmd(cmd);
2051 transport_cmd_check_stop_to_fabric(cmd);
2052 return;
2053 }
2054 /*
2055 * Check for a callback, used by amongst other things
2056 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2057 */
2058 if (cmd->transport_complete_callback) {
2059 sense_reason_t rc;
2060 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2061 bool zero_dl = !(cmd->data_length);
2062 int post_ret = 0;
2063
2064 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2065 if (!rc && !post_ret) {
2066 if (caw && zero_dl)
2067 goto queue_rsp;
2068
2069 return;
2070 } else if (rc) {
2071 ret = transport_send_check_condition_and_sense(cmd,
2072 rc, 0);
2073 if (ret == -EAGAIN || ret == -ENOMEM)
2074 goto queue_full;
2075
2076 transport_lun_remove_cmd(cmd);
2077 transport_cmd_check_stop_to_fabric(cmd);
2078 return;
2079 }
2080 }
2081
2082 queue_rsp:
2083 switch (cmd->data_direction) {
2084 case DMA_FROM_DEVICE:
2085 spin_lock(&cmd->se_lun->lun_sep_lock);
2086 if (cmd->se_lun->lun_sep) {
2087 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2088 cmd->data_length;
2089 }
2090 spin_unlock(&cmd->se_lun->lun_sep_lock);
2091 /*
2092 * Perform READ_STRIP of PI using software emulation when
2093 * backend had PI enabled, if the transport will not be
2094 * performing hardware READ_STRIP offload.
2095 */
2096 if (target_read_prot_action(cmd)) {
2097 ret = transport_send_check_condition_and_sense(cmd,
2098 cmd->pi_err, 0);
2099 if (ret == -EAGAIN || ret == -ENOMEM)
2100 goto queue_full;
2101
2102 transport_lun_remove_cmd(cmd);
2103 transport_cmd_check_stop_to_fabric(cmd);
2104 return;
2105 }
2106
2107 trace_target_cmd_complete(cmd);
2108 ret = cmd->se_tfo->queue_data_in(cmd);
2109 if (ret == -EAGAIN || ret == -ENOMEM)
2110 goto queue_full;
2111 break;
2112 case DMA_TO_DEVICE:
2113 spin_lock(&cmd->se_lun->lun_sep_lock);
2114 if (cmd->se_lun->lun_sep) {
2115 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2116 cmd->data_length;
2117 }
2118 spin_unlock(&cmd->se_lun->lun_sep_lock);
2119 /*
2120 * Check if we need to send READ payload for BIDI-COMMAND
2121 */
2122 if (cmd->se_cmd_flags & SCF_BIDI) {
2123 spin_lock(&cmd->se_lun->lun_sep_lock);
2124 if (cmd->se_lun->lun_sep) {
2125 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2126 cmd->data_length;
2127 }
2128 spin_unlock(&cmd->se_lun->lun_sep_lock);
2129 ret = cmd->se_tfo->queue_data_in(cmd);
2130 if (ret == -EAGAIN || ret == -ENOMEM)
2131 goto queue_full;
2132 break;
2133 }
2134 /* Fall through for DMA_TO_DEVICE */
2135 case DMA_NONE:
2136 trace_target_cmd_complete(cmd);
2137 ret = cmd->se_tfo->queue_status(cmd);
2138 if (ret == -EAGAIN || ret == -ENOMEM)
2139 goto queue_full;
2140 break;
2141 default:
2142 break;
2143 }
2144
2145 transport_lun_remove_cmd(cmd);
2146 transport_cmd_check_stop_to_fabric(cmd);
2147 return;
2148
2149 queue_full:
2150 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2151 " data_direction: %d\n", cmd, cmd->data_direction);
2152 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2153 transport_handle_queue_full(cmd, cmd->se_dev);
2154 }
2155
transport_free_sgl(struct scatterlist * sgl,int nents)2156 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2157 {
2158 struct scatterlist *sg;
2159 int count;
2160
2161 for_each_sg(sgl, sg, nents, count)
2162 __free_page(sg_page(sg));
2163
2164 kfree(sgl);
2165 }
2166
transport_reset_sgl_orig(struct se_cmd * cmd)2167 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2168 {
2169 /*
2170 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2171 * emulation, and free + reset pointers if necessary..
2172 */
2173 if (!cmd->t_data_sg_orig)
2174 return;
2175
2176 kfree(cmd->t_data_sg);
2177 cmd->t_data_sg = cmd->t_data_sg_orig;
2178 cmd->t_data_sg_orig = NULL;
2179 cmd->t_data_nents = cmd->t_data_nents_orig;
2180 cmd->t_data_nents_orig = 0;
2181 }
2182
transport_free_pages(struct se_cmd * cmd)2183 static inline void transport_free_pages(struct se_cmd *cmd)
2184 {
2185 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2186 /*
2187 * Release special case READ buffer payload required for
2188 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2189 */
2190 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2191 transport_free_sgl(cmd->t_bidi_data_sg,
2192 cmd->t_bidi_data_nents);
2193 cmd->t_bidi_data_sg = NULL;
2194 cmd->t_bidi_data_nents = 0;
2195 }
2196 transport_reset_sgl_orig(cmd);
2197 return;
2198 }
2199 transport_reset_sgl_orig(cmd);
2200
2201 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2202 cmd->t_data_sg = NULL;
2203 cmd->t_data_nents = 0;
2204
2205 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2206 cmd->t_bidi_data_sg = NULL;
2207 cmd->t_bidi_data_nents = 0;
2208
2209 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2210 cmd->t_prot_sg = NULL;
2211 cmd->t_prot_nents = 0;
2212 }
2213
2214 /**
2215 * transport_put_cmd - release a reference to a command
2216 * @cmd: command to release
2217 *
2218 * This routine releases our reference to the command and frees it if possible.
2219 */
transport_put_cmd(struct se_cmd * cmd)2220 static int transport_put_cmd(struct se_cmd *cmd)
2221 {
2222 BUG_ON(!cmd->se_tfo);
2223 /*
2224 * If this cmd has been setup with target_get_sess_cmd(), drop
2225 * the kref and call ->release_cmd() in kref callback.
2226 */
2227 return target_put_sess_cmd(cmd);
2228 }
2229
transport_kmap_data_sg(struct se_cmd * cmd)2230 void *transport_kmap_data_sg(struct se_cmd *cmd)
2231 {
2232 struct scatterlist *sg = cmd->t_data_sg;
2233 struct page **pages;
2234 int i;
2235
2236 /*
2237 * We need to take into account a possible offset here for fabrics like
2238 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2239 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2240 */
2241 if (!cmd->t_data_nents)
2242 return NULL;
2243
2244 BUG_ON(!sg);
2245 if (cmd->t_data_nents == 1)
2246 return kmap(sg_page(sg)) + sg->offset;
2247
2248 /* >1 page. use vmap */
2249 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2250 if (!pages)
2251 return NULL;
2252
2253 /* convert sg[] to pages[] */
2254 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2255 pages[i] = sg_page(sg);
2256 }
2257
2258 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2259 kfree(pages);
2260 if (!cmd->t_data_vmap)
2261 return NULL;
2262
2263 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2264 }
2265 EXPORT_SYMBOL(transport_kmap_data_sg);
2266
transport_kunmap_data_sg(struct se_cmd * cmd)2267 void transport_kunmap_data_sg(struct se_cmd *cmd)
2268 {
2269 if (!cmd->t_data_nents) {
2270 return;
2271 } else if (cmd->t_data_nents == 1) {
2272 kunmap(sg_page(cmd->t_data_sg));
2273 return;
2274 }
2275
2276 vunmap(cmd->t_data_vmap);
2277 cmd->t_data_vmap = NULL;
2278 }
2279 EXPORT_SYMBOL(transport_kunmap_data_sg);
2280
2281 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page)2282 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2283 bool zero_page)
2284 {
2285 struct scatterlist *sg;
2286 struct page *page;
2287 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2288 unsigned int nent;
2289 int i = 0;
2290
2291 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2292 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2293 if (!sg)
2294 return -ENOMEM;
2295
2296 sg_init_table(sg, nent);
2297
2298 while (length) {
2299 u32 page_len = min_t(u32, length, PAGE_SIZE);
2300 page = alloc_page(GFP_KERNEL | zero_flag);
2301 if (!page)
2302 goto out;
2303
2304 sg_set_page(&sg[i], page, page_len, 0);
2305 length -= page_len;
2306 i++;
2307 }
2308 *sgl = sg;
2309 *nents = nent;
2310 return 0;
2311
2312 out:
2313 while (i > 0) {
2314 i--;
2315 __free_page(sg_page(&sg[i]));
2316 }
2317 kfree(sg);
2318 return -ENOMEM;
2319 }
2320
2321 /*
2322 * Allocate any required resources to execute the command. For writes we
2323 * might not have the payload yet, so notify the fabric via a call to
2324 * ->write_pending instead. Otherwise place it on the execution queue.
2325 */
2326 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2327 transport_generic_new_cmd(struct se_cmd *cmd)
2328 {
2329 int ret = 0;
2330 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2331
2332 /*
2333 * Determine is the TCM fabric module has already allocated physical
2334 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2335 * beforehand.
2336 */
2337 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2338 cmd->data_length) {
2339
2340 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2341 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2342 u32 bidi_length;
2343
2344 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2345 bidi_length = cmd->t_task_nolb *
2346 cmd->se_dev->dev_attrib.block_size;
2347 else
2348 bidi_length = cmd->data_length;
2349
2350 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2351 &cmd->t_bidi_data_nents,
2352 bidi_length, zero_flag);
2353 if (ret < 0)
2354 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2355 }
2356
2357 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2358 ret = target_alloc_sgl(&cmd->t_prot_sg,
2359 &cmd->t_prot_nents,
2360 cmd->prot_length, true);
2361 if (ret < 0)
2362 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2363 }
2364
2365 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2366 cmd->data_length, zero_flag);
2367 if (ret < 0)
2368 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2369 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2370 cmd->data_length) {
2371 /*
2372 * Special case for COMPARE_AND_WRITE with fabrics
2373 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2374 */
2375 u32 caw_length = cmd->t_task_nolb *
2376 cmd->se_dev->dev_attrib.block_size;
2377
2378 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2379 &cmd->t_bidi_data_nents,
2380 caw_length, zero_flag);
2381 if (ret < 0)
2382 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2383 }
2384 /*
2385 * If this command is not a write we can execute it right here,
2386 * for write buffers we need to notify the fabric driver first
2387 * and let it call back once the write buffers are ready.
2388 */
2389 target_add_to_state_list(cmd);
2390 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2391 target_execute_cmd(cmd);
2392 return 0;
2393 }
2394 transport_cmd_check_stop(cmd, false, true);
2395
2396 ret = cmd->se_tfo->write_pending(cmd);
2397 if (ret == -EAGAIN || ret == -ENOMEM)
2398 goto queue_full;
2399
2400 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2401 WARN_ON(ret);
2402
2403 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2404
2405 queue_full:
2406 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2407 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2408 transport_handle_queue_full(cmd, cmd->se_dev);
2409 return 0;
2410 }
2411 EXPORT_SYMBOL(transport_generic_new_cmd);
2412
transport_write_pending_qf(struct se_cmd * cmd)2413 static void transport_write_pending_qf(struct se_cmd *cmd)
2414 {
2415 int ret;
2416
2417 ret = cmd->se_tfo->write_pending(cmd);
2418 if (ret == -EAGAIN || ret == -ENOMEM) {
2419 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2420 cmd);
2421 transport_handle_queue_full(cmd, cmd->se_dev);
2422 }
2423 }
2424
2425 static bool
2426 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2427 unsigned long *flags);
2428
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2429 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2430 {
2431 unsigned long flags;
2432
2433 spin_lock_irqsave(&cmd->t_state_lock, flags);
2434 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2435 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2436 }
2437
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2438 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2439 {
2440 int ret = 0;
2441 bool aborted = false, tas = false;
2442
2443 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2444 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2445 target_wait_free_cmd(cmd, &aborted, &tas);
2446
2447 if (!aborted || tas)
2448 ret = transport_put_cmd(cmd);
2449 } else {
2450 if (wait_for_tasks)
2451 target_wait_free_cmd(cmd, &aborted, &tas);
2452 /*
2453 * Handle WRITE failure case where transport_generic_new_cmd()
2454 * has already added se_cmd to state_list, but fabric has
2455 * failed command before I/O submission.
2456 */
2457 if (cmd->state_active)
2458 target_remove_from_state_list(cmd);
2459
2460 if (cmd->se_lun)
2461 transport_lun_remove_cmd(cmd);
2462
2463 if (!aborted || tas)
2464 ret = transport_put_cmd(cmd);
2465 }
2466 /*
2467 * If the task has been internally aborted due to TMR ABORT_TASK
2468 * or LUN_RESET, target_core_tmr.c is responsible for performing
2469 * the remaining calls to target_put_sess_cmd(), and not the
2470 * callers of this function.
2471 */
2472 if (aborted) {
2473 pr_debug("Detected CMD_T_ABORTED for ITT: %u\n",
2474 cmd->se_tfo->get_task_tag(cmd));
2475 wait_for_completion(&cmd->cmd_wait_comp);
2476 cmd->se_tfo->release_cmd(cmd);
2477 ret = 1;
2478 }
2479 return ret;
2480 }
2481 EXPORT_SYMBOL(transport_generic_free_cmd);
2482
2483 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2484 * @se_cmd: command descriptor to add
2485 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2486 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2487 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2488 {
2489 struct se_session *se_sess = se_cmd->se_sess;
2490 unsigned long flags;
2491 int ret = 0;
2492
2493 /*
2494 * Add a second kref if the fabric caller is expecting to handle
2495 * fabric acknowledgement that requires two target_put_sess_cmd()
2496 * invocations before se_cmd descriptor release.
2497 */
2498 if (ack_kref)
2499 kref_get(&se_cmd->cmd_kref);
2500
2501 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2502 if (se_sess->sess_tearing_down) {
2503 ret = -ESHUTDOWN;
2504 goto out;
2505 }
2506 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2507 out:
2508 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2509
2510 if (ret && ack_kref)
2511 target_put_sess_cmd(se_cmd);
2512
2513 return ret;
2514 }
2515 EXPORT_SYMBOL(target_get_sess_cmd);
2516
target_free_cmd_mem(struct se_cmd * cmd)2517 static void target_free_cmd_mem(struct se_cmd *cmd)
2518 {
2519 transport_free_pages(cmd);
2520
2521 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2522 core_tmr_release_req(cmd->se_tmr_req);
2523 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2524 kfree(cmd->t_task_cdb);
2525 }
2526
target_release_cmd_kref(struct kref * kref)2527 static void target_release_cmd_kref(struct kref *kref)
2528 __releases(&se_cmd->se_sess->sess_cmd_lock)
2529 {
2530 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2531 struct se_session *se_sess = se_cmd->se_sess;
2532 bool fabric_stop;
2533
2534 if (list_empty(&se_cmd->se_cmd_list)) {
2535 spin_unlock(&se_sess->sess_cmd_lock);
2536 target_free_cmd_mem(se_cmd);
2537 se_cmd->se_tfo->release_cmd(se_cmd);
2538 return;
2539 }
2540
2541 spin_lock(&se_cmd->t_state_lock);
2542 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2543 spin_unlock(&se_cmd->t_state_lock);
2544
2545 if (se_cmd->cmd_wait_set || fabric_stop) {
2546 list_del_init(&se_cmd->se_cmd_list);
2547 spin_unlock(&se_sess->sess_cmd_lock);
2548 target_free_cmd_mem(se_cmd);
2549 complete(&se_cmd->cmd_wait_comp);
2550 return;
2551 }
2552 list_del_init(&se_cmd->se_cmd_list);
2553 spin_unlock(&se_sess->sess_cmd_lock);
2554
2555 target_free_cmd_mem(se_cmd);
2556 se_cmd->se_tfo->release_cmd(se_cmd);
2557 }
2558
2559 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2560 * @se_cmd: command descriptor to drop
2561 */
target_put_sess_cmd(struct se_cmd * se_cmd)2562 int target_put_sess_cmd(struct se_cmd *se_cmd)
2563 {
2564 struct se_session *se_sess = se_cmd->se_sess;
2565
2566 if (!se_sess) {
2567 target_free_cmd_mem(se_cmd);
2568 se_cmd->se_tfo->release_cmd(se_cmd);
2569 return 1;
2570 }
2571 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2572 &se_sess->sess_cmd_lock);
2573 }
2574 EXPORT_SYMBOL(target_put_sess_cmd);
2575
2576 /* target_sess_cmd_list_set_waiting - Flag all commands in
2577 * sess_cmd_list to complete cmd_wait_comp. Set
2578 * sess_tearing_down so no more commands are queued.
2579 * @se_sess: session to flag
2580 */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2581 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2582 {
2583 struct se_cmd *se_cmd;
2584 unsigned long flags;
2585 int rc;
2586
2587 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2588 if (se_sess->sess_tearing_down) {
2589 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2590 return;
2591 }
2592 se_sess->sess_tearing_down = 1;
2593 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2594
2595 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2596 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2597 if (rc) {
2598 se_cmd->cmd_wait_set = 1;
2599 spin_lock(&se_cmd->t_state_lock);
2600 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2601 spin_unlock(&se_cmd->t_state_lock);
2602 }
2603 }
2604
2605 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2606 }
2607 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2608
2609 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2610 * @se_sess: session to wait for active I/O
2611 */
target_wait_for_sess_cmds(struct se_session * se_sess)2612 void target_wait_for_sess_cmds(struct se_session *se_sess)
2613 {
2614 struct se_cmd *se_cmd, *tmp_cmd;
2615 unsigned long flags;
2616 bool tas;
2617
2618 list_for_each_entry_safe(se_cmd, tmp_cmd,
2619 &se_sess->sess_wait_list, se_cmd_list) {
2620 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2621 " %d\n", se_cmd, se_cmd->t_state,
2622 se_cmd->se_tfo->get_cmd_state(se_cmd));
2623
2624 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2625 tas = (se_cmd->transport_state & CMD_T_TAS);
2626 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2627
2628 if (!target_put_sess_cmd(se_cmd)) {
2629 if (tas)
2630 target_put_sess_cmd(se_cmd);
2631 }
2632
2633 wait_for_completion(&se_cmd->cmd_wait_comp);
2634 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2635 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2636 se_cmd->se_tfo->get_cmd_state(se_cmd));
2637
2638 se_cmd->se_tfo->release_cmd(se_cmd);
2639 }
2640
2641 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2642 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2643 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2644
2645 }
2646 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2647
transport_clear_lun_ref_thread(void * p)2648 static int transport_clear_lun_ref_thread(void *p)
2649 {
2650 struct se_lun *lun = p;
2651
2652 percpu_ref_kill(&lun->lun_ref);
2653
2654 wait_for_completion(&lun->lun_ref_comp);
2655 complete(&lun->lun_shutdown_comp);
2656
2657 return 0;
2658 }
2659
transport_clear_lun_ref(struct se_lun * lun)2660 int transport_clear_lun_ref(struct se_lun *lun)
2661 {
2662 struct task_struct *kt;
2663
2664 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2665 "tcm_cl_%u", lun->unpacked_lun);
2666 if (IS_ERR(kt)) {
2667 pr_err("Unable to start clear_lun thread\n");
2668 return PTR_ERR(kt);
2669 }
2670 wait_for_completion(&lun->lun_shutdown_comp);
2671
2672 return 0;
2673 }
2674
2675 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2676 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2677 bool *aborted, bool *tas, unsigned long *flags)
2678 __releases(&cmd->t_state_lock)
2679 __acquires(&cmd->t_state_lock)
2680 {
2681
2682 assert_spin_locked(&cmd->t_state_lock);
2683 WARN_ON_ONCE(!irqs_disabled());
2684
2685 if (fabric_stop)
2686 cmd->transport_state |= CMD_T_FABRIC_STOP;
2687
2688 if (cmd->transport_state & CMD_T_ABORTED)
2689 *aborted = true;
2690
2691 if (cmd->transport_state & CMD_T_TAS)
2692 *tas = true;
2693
2694 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2695 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2696 return false;
2697
2698 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2699 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2700 return false;
2701
2702 if (!(cmd->transport_state & CMD_T_ACTIVE))
2703 return false;
2704
2705 if (fabric_stop && *aborted)
2706 return false;
2707
2708 cmd->transport_state |= CMD_T_STOP;
2709
2710 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2711 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2712 cmd, cmd->se_tfo->get_task_tag(cmd),
2713 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2714
2715 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2716
2717 wait_for_completion(&cmd->t_transport_stop_comp);
2718
2719 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2720 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2721
2722 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2723 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2724 cmd->se_tfo->get_task_tag(cmd));
2725
2726 return true;
2727 }
2728
2729 /**
2730 * transport_wait_for_tasks - wait for completion to occur
2731 * @cmd: command to wait
2732 *
2733 * Called from frontend fabric context to wait for storage engine
2734 * to pause and/or release frontend generated struct se_cmd.
2735 */
transport_wait_for_tasks(struct se_cmd * cmd)2736 bool transport_wait_for_tasks(struct se_cmd *cmd)
2737 {
2738 unsigned long flags;
2739 bool ret, aborted = false, tas = false;
2740
2741 spin_lock_irqsave(&cmd->t_state_lock, flags);
2742 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2743 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2744
2745 return ret;
2746 }
2747 EXPORT_SYMBOL(transport_wait_for_tasks);
2748
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)2749 static int transport_get_sense_codes(
2750 struct se_cmd *cmd,
2751 u8 *asc,
2752 u8 *ascq)
2753 {
2754 *asc = cmd->scsi_asc;
2755 *ascq = cmd->scsi_ascq;
2756
2757 return 0;
2758 }
2759
2760 static
transport_err_sector_info(unsigned char * buffer,sector_t bad_sector)2761 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2762 {
2763 /* Place failed LBA in sense data information descriptor 0. */
2764 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2765 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2766 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2767 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2768
2769 /* Descriptor Information: failing sector */
2770 put_unaligned_be64(bad_sector, &buffer[12]);
2771 }
2772
2773 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)2774 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2775 sense_reason_t reason, int from_transport)
2776 {
2777 unsigned char *buffer = cmd->sense_buffer;
2778 unsigned long flags;
2779 u8 asc = 0, ascq = 0;
2780
2781 spin_lock_irqsave(&cmd->t_state_lock, flags);
2782 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2783 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2784 return 0;
2785 }
2786 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2787 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2788
2789 if (!reason && from_transport)
2790 goto after_reason;
2791
2792 if (!from_transport)
2793 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2794
2795 /*
2796 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2797 * SENSE KEY values from include/scsi/scsi.h
2798 */
2799 switch (reason) {
2800 case TCM_NO_SENSE:
2801 /* CURRENT ERROR */
2802 buffer[0] = 0x70;
2803 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2804 /* Not Ready */
2805 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2806 /* NO ADDITIONAL SENSE INFORMATION */
2807 buffer[SPC_ASC_KEY_OFFSET] = 0;
2808 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2809 break;
2810 case TCM_NON_EXISTENT_LUN:
2811 /* CURRENT ERROR */
2812 buffer[0] = 0x70;
2813 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2814 /* ILLEGAL REQUEST */
2815 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2816 /* LOGICAL UNIT NOT SUPPORTED */
2817 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2818 break;
2819 case TCM_UNSUPPORTED_SCSI_OPCODE:
2820 case TCM_SECTOR_COUNT_TOO_MANY:
2821 /* CURRENT ERROR */
2822 buffer[0] = 0x70;
2823 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2824 /* ILLEGAL REQUEST */
2825 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2826 /* INVALID COMMAND OPERATION CODE */
2827 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2828 break;
2829 case TCM_UNKNOWN_MODE_PAGE:
2830 /* CURRENT ERROR */
2831 buffer[0] = 0x70;
2832 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2833 /* ILLEGAL REQUEST */
2834 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2835 /* INVALID FIELD IN CDB */
2836 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2837 break;
2838 case TCM_CHECK_CONDITION_ABORT_CMD:
2839 /* CURRENT ERROR */
2840 buffer[0] = 0x70;
2841 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2842 /* ABORTED COMMAND */
2843 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2844 /* BUS DEVICE RESET FUNCTION OCCURRED */
2845 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2846 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2847 break;
2848 case TCM_INCORRECT_AMOUNT_OF_DATA:
2849 /* CURRENT ERROR */
2850 buffer[0] = 0x70;
2851 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2852 /* ABORTED COMMAND */
2853 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2854 /* WRITE ERROR */
2855 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2856 /* NOT ENOUGH UNSOLICITED DATA */
2857 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2858 break;
2859 case TCM_INVALID_CDB_FIELD:
2860 /* CURRENT ERROR */
2861 buffer[0] = 0x70;
2862 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2863 /* ILLEGAL REQUEST */
2864 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2865 /* INVALID FIELD IN CDB */
2866 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2867 break;
2868 case TCM_INVALID_PARAMETER_LIST:
2869 /* CURRENT ERROR */
2870 buffer[0] = 0x70;
2871 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2872 /* ILLEGAL REQUEST */
2873 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2874 /* INVALID FIELD IN PARAMETER LIST */
2875 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2876 break;
2877 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2878 /* CURRENT ERROR */
2879 buffer[0] = 0x70;
2880 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2881 /* ILLEGAL REQUEST */
2882 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2883 /* PARAMETER LIST LENGTH ERROR */
2884 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2885 break;
2886 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2887 /* CURRENT ERROR */
2888 buffer[0] = 0x70;
2889 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2890 /* ABORTED COMMAND */
2891 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2892 /* WRITE ERROR */
2893 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2894 /* UNEXPECTED_UNSOLICITED_DATA */
2895 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2896 break;
2897 case TCM_SERVICE_CRC_ERROR:
2898 /* CURRENT ERROR */
2899 buffer[0] = 0x70;
2900 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2901 /* ABORTED COMMAND */
2902 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2903 /* PROTOCOL SERVICE CRC ERROR */
2904 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2905 /* N/A */
2906 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2907 break;
2908 case TCM_SNACK_REJECTED:
2909 /* CURRENT ERROR */
2910 buffer[0] = 0x70;
2911 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2912 /* ABORTED COMMAND */
2913 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2914 /* READ ERROR */
2915 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2916 /* FAILED RETRANSMISSION REQUEST */
2917 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2918 break;
2919 case TCM_WRITE_PROTECTED:
2920 /* CURRENT ERROR */
2921 buffer[0] = 0x70;
2922 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2923 /* DATA PROTECT */
2924 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2925 /* WRITE PROTECTED */
2926 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2927 break;
2928 case TCM_ADDRESS_OUT_OF_RANGE:
2929 /* CURRENT ERROR */
2930 buffer[0] = 0x70;
2931 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2932 /* ILLEGAL REQUEST */
2933 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2934 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2935 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2936 break;
2937 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2938 /* CURRENT ERROR */
2939 buffer[0] = 0x70;
2940 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2941 /* UNIT ATTENTION */
2942 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2943 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2944 buffer[SPC_ASC_KEY_OFFSET] = asc;
2945 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2946 break;
2947 case TCM_CHECK_CONDITION_NOT_READY:
2948 /* CURRENT ERROR */
2949 buffer[0] = 0x70;
2950 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2951 /* Not Ready */
2952 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2953 transport_get_sense_codes(cmd, &asc, &ascq);
2954 buffer[SPC_ASC_KEY_OFFSET] = asc;
2955 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2956 break;
2957 case TCM_MISCOMPARE_VERIFY:
2958 /* CURRENT ERROR */
2959 buffer[0] = 0x70;
2960 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2961 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2962 /* MISCOMPARE DURING VERIFY OPERATION */
2963 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2964 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2965 break;
2966 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2967 /* CURRENT ERROR */
2968 buffer[0] = 0x70;
2969 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2970 /* ILLEGAL REQUEST */
2971 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2972 /* LOGICAL BLOCK GUARD CHECK FAILED */
2973 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2974 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2975 transport_err_sector_info(buffer, cmd->bad_sector);
2976 break;
2977 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2978 /* CURRENT ERROR */
2979 buffer[0] = 0x70;
2980 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2981 /* ILLEGAL REQUEST */
2982 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2983 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2984 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2985 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2986 transport_err_sector_info(buffer, cmd->bad_sector);
2987 break;
2988 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2989 /* CURRENT ERROR */
2990 buffer[0] = 0x70;
2991 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2992 /* ILLEGAL REQUEST */
2993 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2994 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2995 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2996 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2997 transport_err_sector_info(buffer, cmd->bad_sector);
2998 break;
2999 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
3000 default:
3001 /* CURRENT ERROR */
3002 buffer[0] = 0x70;
3003 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
3004 /*
3005 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3006 * Solaris initiators. Returning NOT READY instead means the
3007 * operations will be retried a finite number of times and we
3008 * can survive intermittent errors.
3009 */
3010 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
3011 /* LOGICAL UNIT COMMUNICATION FAILURE */
3012 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
3013 break;
3014 }
3015 /*
3016 * This code uses linux/include/scsi/scsi.h SAM status codes!
3017 */
3018 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3019 /*
3020 * Automatically padded, this value is encoded in the fabric's
3021 * data_length response PDU containing the SCSI defined sense data.
3022 */
3023 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3024
3025 after_reason:
3026 trace_target_cmd_complete(cmd);
3027 return cmd->se_tfo->queue_status(cmd);
3028 }
3029 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3030
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3031 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3032 __releases(&cmd->t_state_lock)
3033 __acquires(&cmd->t_state_lock)
3034 {
3035 assert_spin_locked(&cmd->t_state_lock);
3036 WARN_ON_ONCE(!irqs_disabled());
3037
3038 if (!(cmd->transport_state & CMD_T_ABORTED))
3039 return 0;
3040
3041 /*
3042 * If cmd has been aborted but either no status is to be sent or it has
3043 * already been sent, just return
3044 */
3045 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3046 if (send_status)
3047 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3048 return 1;
3049 }
3050
3051 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3052 " 0x%02x ITT: 0x%08x\n", cmd->t_task_cdb[0],
3053 cmd->se_tfo->get_task_tag(cmd));
3054
3055 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3056 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3057 trace_target_cmd_complete(cmd);
3058
3059 spin_unlock_irq(&cmd->t_state_lock);
3060 cmd->se_tfo->queue_status(cmd);
3061 spin_lock_irq(&cmd->t_state_lock);
3062
3063 return 1;
3064 }
3065
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3066 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3067 {
3068 int ret;
3069
3070 spin_lock_irq(&cmd->t_state_lock);
3071 ret = __transport_check_aborted_status(cmd, send_status);
3072 spin_unlock_irq(&cmd->t_state_lock);
3073
3074 return ret;
3075 }
3076 EXPORT_SYMBOL(transport_check_aborted_status);
3077
transport_send_task_abort(struct se_cmd * cmd)3078 void transport_send_task_abort(struct se_cmd *cmd)
3079 {
3080 unsigned long flags;
3081
3082 spin_lock_irqsave(&cmd->t_state_lock, flags);
3083 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3084 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3085 return;
3086 }
3087 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3088
3089 /*
3090 * If there are still expected incoming fabric WRITEs, we wait
3091 * until until they have completed before sending a TASK_ABORTED
3092 * response. This response with TASK_ABORTED status will be
3093 * queued back to fabric module by transport_check_aborted_status().
3094 */
3095 if (cmd->data_direction == DMA_TO_DEVICE) {
3096 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3097 spin_lock_irqsave(&cmd->t_state_lock, flags);
3098 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3099 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3100 goto send_abort;
3101 }
3102 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3103 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3104 return;
3105 }
3106 }
3107 send_abort:
3108 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3109
3110 transport_lun_remove_cmd(cmd);
3111
3112 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3113 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3114 cmd->se_tfo->get_task_tag(cmd));
3115
3116 trace_target_cmd_complete(cmd);
3117 cmd->se_tfo->queue_status(cmd);
3118 }
3119
target_tmr_work(struct work_struct * work)3120 static void target_tmr_work(struct work_struct *work)
3121 {
3122 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3123 struct se_device *dev = cmd->se_dev;
3124 struct se_tmr_req *tmr = cmd->se_tmr_req;
3125 unsigned long flags;
3126 int ret;
3127
3128 spin_lock_irqsave(&cmd->t_state_lock, flags);
3129 if (cmd->transport_state & CMD_T_ABORTED) {
3130 tmr->response = TMR_FUNCTION_REJECTED;
3131 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3132 goto check_stop;
3133 }
3134 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3135
3136 switch (tmr->function) {
3137 case TMR_ABORT_TASK:
3138 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3139 break;
3140 case TMR_ABORT_TASK_SET:
3141 case TMR_CLEAR_ACA:
3142 case TMR_CLEAR_TASK_SET:
3143 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3144 break;
3145 case TMR_LUN_RESET:
3146 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3147 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3148 TMR_FUNCTION_REJECTED;
3149 break;
3150 case TMR_TARGET_WARM_RESET:
3151 tmr->response = TMR_FUNCTION_REJECTED;
3152 break;
3153 case TMR_TARGET_COLD_RESET:
3154 tmr->response = TMR_FUNCTION_REJECTED;
3155 break;
3156 default:
3157 pr_err("Uknown TMR function: 0x%02x.\n",
3158 tmr->function);
3159 tmr->response = TMR_FUNCTION_REJECTED;
3160 break;
3161 }
3162
3163 spin_lock_irqsave(&cmd->t_state_lock, flags);
3164 if (cmd->transport_state & CMD_T_ABORTED) {
3165 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3166 goto check_stop;
3167 }
3168 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3169 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3170
3171 cmd->se_tfo->queue_tm_rsp(cmd);
3172
3173 check_stop:
3174 transport_cmd_check_stop_to_fabric(cmd);
3175 }
3176
transport_generic_handle_tmr(struct se_cmd * cmd)3177 int transport_generic_handle_tmr(
3178 struct se_cmd *cmd)
3179 {
3180 unsigned long flags;
3181
3182 spin_lock_irqsave(&cmd->t_state_lock, flags);
3183 cmd->transport_state |= CMD_T_ACTIVE;
3184 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3185
3186 INIT_WORK(&cmd->work, target_tmr_work);
3187 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3188 return 0;
3189 }
3190 EXPORT_SYMBOL(transport_generic_handle_tmr);
3191