1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 		struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71 
init_se_kmem_caches(void)72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
scsi_get_new_index(scsi_index_t type)187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
transport_subsystem_check_init(void)200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
transport_init_session(enum target_prot_op sup_prot_ops)227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 	struct se_session *se_sess;
230 
231 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 	if (!se_sess) {
233 		pr_err("Unable to allocate struct se_session from"
234 				" se_sess_cache\n");
235 		return ERR_PTR(-ENOMEM);
236 	}
237 	INIT_LIST_HEAD(&se_sess->sess_list);
238 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 	spin_lock_init(&se_sess->sess_cmd_lock);
242 	kref_init(&se_sess->sess_kref);
243 	se_sess->sup_prot_ops = sup_prot_ops;
244 
245 	return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248 
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)249 int transport_alloc_session_tags(struct se_session *se_sess,
250 			         unsigned int tag_num, unsigned int tag_size)
251 {
252 	int rc;
253 
254 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 	if (!se_sess->sess_cmd_map) {
257 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 		if (!se_sess->sess_cmd_map) {
259 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 			return -ENOMEM;
261 		}
262 	}
263 
264 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 	if (rc < 0) {
266 		pr_err("Unable to init se_sess->sess_tag_pool,"
267 			" tag_num: %u\n", tag_num);
268 		kvfree(se_sess->sess_cmd_map);
269 		se_sess->sess_cmd_map = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276 
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 					       unsigned int tag_size,
279 					       enum target_prot_op sup_prot_ops)
280 {
281 	struct se_session *se_sess;
282 	int rc;
283 
284 	se_sess = transport_init_session(sup_prot_ops);
285 	if (IS_ERR(se_sess))
286 		return se_sess;
287 
288 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289 	if (rc < 0) {
290 		transport_free_session(se_sess);
291 		return ERR_PTR(-ENOMEM);
292 	}
293 
294 	return se_sess;
295 }
296 EXPORT_SYMBOL(transport_init_session_tags);
297 
298 /*
299  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)301 void __transport_register_session(
302 	struct se_portal_group *se_tpg,
303 	struct se_node_acl *se_nacl,
304 	struct se_session *se_sess,
305 	void *fabric_sess_ptr)
306 {
307 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 	unsigned char buf[PR_REG_ISID_LEN];
309 
310 	se_sess->se_tpg = se_tpg;
311 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
312 	/*
313 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
314 	 *
315 	 * Only set for struct se_session's that will actually be moving I/O.
316 	 * eg: *NOT* discovery sessions.
317 	 */
318 	if (se_nacl) {
319 		/*
320 		 *
321 		 * Determine if fabric allows for T10-PI feature bits exposed to
322 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
323 		 *
324 		 * If so, then always save prot_type on a per se_node_acl node
325 		 * basis and re-instate the previous sess_prot_type to avoid
326 		 * disabling PI from below any previously initiator side
327 		 * registered LUNs.
328 		 */
329 		if (se_nacl->saved_prot_type)
330 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
331 		else if (tfo->tpg_check_prot_fabric_only)
332 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
333 					tfo->tpg_check_prot_fabric_only(se_tpg);
334 		/*
335 		 * If the fabric module supports an ISID based TransportID,
336 		 * save this value in binary from the fabric I_T Nexus now.
337 		 */
338 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
339 			memset(&buf[0], 0, PR_REG_ISID_LEN);
340 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
341 					&buf[0], PR_REG_ISID_LEN);
342 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
343 		}
344 		kref_get(&se_nacl->acl_kref);
345 
346 		spin_lock_irq(&se_nacl->nacl_sess_lock);
347 		/*
348 		 * The se_nacl->nacl_sess pointer will be set to the
349 		 * last active I_T Nexus for each struct se_node_acl.
350 		 */
351 		se_nacl->nacl_sess = se_sess;
352 
353 		list_add_tail(&se_sess->sess_acl_list,
354 			      &se_nacl->acl_sess_list);
355 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
356 	}
357 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
358 
359 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
360 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
361 }
362 EXPORT_SYMBOL(__transport_register_session);
363 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)364 void transport_register_session(
365 	struct se_portal_group *se_tpg,
366 	struct se_node_acl *se_nacl,
367 	struct se_session *se_sess,
368 	void *fabric_sess_ptr)
369 {
370 	unsigned long flags;
371 
372 	spin_lock_irqsave(&se_tpg->session_lock, flags);
373 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
374 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
375 }
376 EXPORT_SYMBOL(transport_register_session);
377 
target_release_session(struct kref * kref)378 static void target_release_session(struct kref *kref)
379 {
380 	struct se_session *se_sess = container_of(kref,
381 			struct se_session, sess_kref);
382 	struct se_portal_group *se_tpg = se_sess->se_tpg;
383 
384 	se_tpg->se_tpg_tfo->close_session(se_sess);
385 }
386 
target_get_session(struct se_session * se_sess)387 void target_get_session(struct se_session *se_sess)
388 {
389 	kref_get(&se_sess->sess_kref);
390 }
391 EXPORT_SYMBOL(target_get_session);
392 
target_put_session(struct se_session * se_sess)393 void target_put_session(struct se_session *se_sess)
394 {
395 	kref_put(&se_sess->sess_kref, target_release_session);
396 }
397 EXPORT_SYMBOL(target_put_session);
398 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)399 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
400 {
401 	struct se_session *se_sess;
402 	ssize_t len = 0;
403 
404 	spin_lock_bh(&se_tpg->session_lock);
405 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
406 		if (!se_sess->se_node_acl)
407 			continue;
408 		if (!se_sess->se_node_acl->dynamic_node_acl)
409 			continue;
410 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
411 			break;
412 
413 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
414 				se_sess->se_node_acl->initiatorname);
415 		len += 1; /* Include NULL terminator */
416 	}
417 	spin_unlock_bh(&se_tpg->session_lock);
418 
419 	return len;
420 }
421 EXPORT_SYMBOL(target_show_dynamic_sessions);
422 
target_complete_nacl(struct kref * kref)423 static void target_complete_nacl(struct kref *kref)
424 {
425 	struct se_node_acl *nacl = container_of(kref,
426 				struct se_node_acl, acl_kref);
427 
428 	complete(&nacl->acl_free_comp);
429 }
430 
target_put_nacl(struct se_node_acl * nacl)431 void target_put_nacl(struct se_node_acl *nacl)
432 {
433 	kref_put(&nacl->acl_kref, target_complete_nacl);
434 }
435 
transport_deregister_session_configfs(struct se_session * se_sess)436 void transport_deregister_session_configfs(struct se_session *se_sess)
437 {
438 	struct se_node_acl *se_nacl;
439 	unsigned long flags;
440 	/*
441 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
442 	 */
443 	se_nacl = se_sess->se_node_acl;
444 	if (se_nacl) {
445 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
446 		if (se_nacl->acl_stop == 0)
447 			list_del(&se_sess->sess_acl_list);
448 		/*
449 		 * If the session list is empty, then clear the pointer.
450 		 * Otherwise, set the struct se_session pointer from the tail
451 		 * element of the per struct se_node_acl active session list.
452 		 */
453 		if (list_empty(&se_nacl->acl_sess_list))
454 			se_nacl->nacl_sess = NULL;
455 		else {
456 			se_nacl->nacl_sess = container_of(
457 					se_nacl->acl_sess_list.prev,
458 					struct se_session, sess_acl_list);
459 		}
460 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
461 	}
462 }
463 EXPORT_SYMBOL(transport_deregister_session_configfs);
464 
transport_free_session(struct se_session * se_sess)465 void transport_free_session(struct se_session *se_sess)
466 {
467 	if (se_sess->sess_cmd_map) {
468 		percpu_ida_destroy(&se_sess->sess_tag_pool);
469 		kvfree(se_sess->sess_cmd_map);
470 	}
471 	kmem_cache_free(se_sess_cache, se_sess);
472 }
473 EXPORT_SYMBOL(transport_free_session);
474 
transport_deregister_session(struct se_session * se_sess)475 void transport_deregister_session(struct se_session *se_sess)
476 {
477 	struct se_portal_group *se_tpg = se_sess->se_tpg;
478 	const struct target_core_fabric_ops *se_tfo;
479 	struct se_node_acl *se_nacl;
480 	unsigned long flags;
481 	bool comp_nacl = true, drop_nacl = false;
482 
483 	if (!se_tpg) {
484 		transport_free_session(se_sess);
485 		return;
486 	}
487 	se_tfo = se_tpg->se_tpg_tfo;
488 
489 	spin_lock_irqsave(&se_tpg->session_lock, flags);
490 	list_del(&se_sess->sess_list);
491 	se_sess->se_tpg = NULL;
492 	se_sess->fabric_sess_ptr = NULL;
493 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
494 
495 	/*
496 	 * Determine if we need to do extra work for this initiator node's
497 	 * struct se_node_acl if it had been previously dynamically generated.
498 	 */
499 	se_nacl = se_sess->se_node_acl;
500 
501 	mutex_lock(&se_tpg->acl_node_mutex);
502 	if (se_nacl && se_nacl->dynamic_node_acl) {
503 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
504 			list_del(&se_nacl->acl_list);
505 			se_tpg->num_node_acls--;
506 			drop_nacl = true;
507 		}
508 	}
509 	mutex_unlock(&se_tpg->acl_node_mutex);
510 
511 	if (drop_nacl) {
512 		core_tpg_wait_for_nacl_pr_ref(se_nacl);
513 		core_free_device_list_for_node(se_nacl, se_tpg);
514 		kfree(se_nacl);
515 		comp_nacl = false;
516 	}
517 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
518 		se_tpg->se_tpg_tfo->get_fabric_name());
519 	/*
520 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
521 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
522 	 * removal context.
523 	 */
524 	if (se_nacl && comp_nacl)
525 		target_put_nacl(se_nacl);
526 
527 	transport_free_session(se_sess);
528 }
529 EXPORT_SYMBOL(transport_deregister_session);
530 
target_remove_from_state_list(struct se_cmd * cmd)531 static void target_remove_from_state_list(struct se_cmd *cmd)
532 {
533 	struct se_device *dev = cmd->se_dev;
534 	unsigned long flags;
535 
536 	if (!dev)
537 		return;
538 
539 	if (cmd->transport_state & CMD_T_BUSY)
540 		return;
541 
542 	spin_lock_irqsave(&dev->execute_task_lock, flags);
543 	if (cmd->state_active) {
544 		list_del(&cmd->state_list);
545 		cmd->state_active = false;
546 	}
547 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
548 }
549 
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)550 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
551 				    bool write_pending)
552 {
553 	unsigned long flags;
554 
555 	if (remove_from_lists) {
556 		target_remove_from_state_list(cmd);
557 
558 		/*
559 		 * Clear struct se_cmd->se_lun before the handoff to FE.
560 		 */
561 		cmd->se_lun = NULL;
562 	}
563 
564 	spin_lock_irqsave(&cmd->t_state_lock, flags);
565 	if (write_pending)
566 		cmd->t_state = TRANSPORT_WRITE_PENDING;
567 
568 	/*
569 	 * Determine if frontend context caller is requesting the stopping of
570 	 * this command for frontend exceptions.
571 	 */
572 	if (cmd->transport_state & CMD_T_STOP) {
573 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
574 			__func__, __LINE__, cmd->tag);
575 
576 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577 
578 		complete_all(&cmd->t_transport_stop_comp);
579 		return 1;
580 	}
581 
582 	cmd->transport_state &= ~CMD_T_ACTIVE;
583 	if (remove_from_lists) {
584 		/*
585 		 * Some fabric modules like tcm_loop can release
586 		 * their internally allocated I/O reference now and
587 		 * struct se_cmd now.
588 		 *
589 		 * Fabric modules are expected to return '1' here if the
590 		 * se_cmd being passed is released at this point,
591 		 * or zero if not being released.
592 		 */
593 		if (cmd->se_tfo->check_stop_free != NULL) {
594 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595 			return cmd->se_tfo->check_stop_free(cmd);
596 		}
597 	}
598 
599 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
600 	return 0;
601 }
602 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)603 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
604 {
605 	return transport_cmd_check_stop(cmd, true, false);
606 }
607 
transport_lun_remove_cmd(struct se_cmd * cmd)608 static void transport_lun_remove_cmd(struct se_cmd *cmd)
609 {
610 	struct se_lun *lun = cmd->se_lun;
611 
612 	if (!lun)
613 		return;
614 
615 	if (cmpxchg(&cmd->lun_ref_active, true, false))
616 		percpu_ref_put(&lun->lun_ref);
617 }
618 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)619 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
620 {
621 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
622 
623 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
624 		transport_lun_remove_cmd(cmd);
625 	/*
626 	 * Allow the fabric driver to unmap any resources before
627 	 * releasing the descriptor via TFO->release_cmd()
628 	 */
629 	if (remove)
630 		cmd->se_tfo->aborted_task(cmd);
631 
632 	if (transport_cmd_check_stop_to_fabric(cmd))
633 		return;
634 	if (remove && ack_kref)
635 		transport_put_cmd(cmd);
636 }
637 
target_complete_failure_work(struct work_struct * work)638 static void target_complete_failure_work(struct work_struct *work)
639 {
640 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
641 
642 	transport_generic_request_failure(cmd,
643 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
644 }
645 
646 /*
647  * Used when asking transport to copy Sense Data from the underlying
648  * Linux/SCSI struct scsi_cmnd
649  */
transport_get_sense_buffer(struct se_cmd * cmd)650 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
651 {
652 	struct se_device *dev = cmd->se_dev;
653 
654 	WARN_ON(!cmd->se_lun);
655 
656 	if (!dev)
657 		return NULL;
658 
659 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
660 		return NULL;
661 
662 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
663 
664 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
665 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
666 	return cmd->sense_buffer;
667 }
668 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)669 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
670 {
671 	struct se_device *dev = cmd->se_dev;
672 	int success = scsi_status == GOOD;
673 	unsigned long flags;
674 
675 	cmd->scsi_status = scsi_status;
676 
677 
678 	spin_lock_irqsave(&cmd->t_state_lock, flags);
679 	cmd->transport_state &= ~CMD_T_BUSY;
680 
681 	if (dev && dev->transport->transport_complete) {
682 		dev->transport->transport_complete(cmd,
683 				cmd->t_data_sg,
684 				transport_get_sense_buffer(cmd));
685 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
686 			success = 1;
687 	}
688 
689 	/*
690 	 * See if we are waiting to complete for an exception condition.
691 	 */
692 	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
693 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
694 		complete(&cmd->task_stop_comp);
695 		return;
696 	}
697 
698 	/*
699 	 * Check for case where an explicit ABORT_TASK has been received
700 	 * and transport_wait_for_tasks() will be waiting for completion..
701 	 */
702 	if (cmd->transport_state & CMD_T_ABORTED ||
703 	    cmd->transport_state & CMD_T_STOP) {
704 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
705 		complete_all(&cmd->t_transport_stop_comp);
706 		return;
707 	} else if (!success) {
708 		INIT_WORK(&cmd->work, target_complete_failure_work);
709 	} else {
710 		INIT_WORK(&cmd->work, target_complete_ok_work);
711 	}
712 
713 	cmd->t_state = TRANSPORT_COMPLETE;
714 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
715 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716 
717 	queue_work(target_completion_wq, &cmd->work);
718 }
719 EXPORT_SYMBOL(target_complete_cmd);
720 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)721 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
722 {
723 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
724 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
725 			cmd->residual_count += cmd->data_length - length;
726 		} else {
727 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
728 			cmd->residual_count = cmd->data_length - length;
729 		}
730 
731 		cmd->data_length = length;
732 	}
733 
734 	target_complete_cmd(cmd, scsi_status);
735 }
736 EXPORT_SYMBOL(target_complete_cmd_with_length);
737 
target_add_to_state_list(struct se_cmd * cmd)738 static void target_add_to_state_list(struct se_cmd *cmd)
739 {
740 	struct se_device *dev = cmd->se_dev;
741 	unsigned long flags;
742 
743 	spin_lock_irqsave(&dev->execute_task_lock, flags);
744 	if (!cmd->state_active) {
745 		list_add_tail(&cmd->state_list, &dev->state_list);
746 		cmd->state_active = true;
747 	}
748 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
749 }
750 
751 /*
752  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
753  */
754 static void transport_write_pending_qf(struct se_cmd *cmd);
755 static void transport_complete_qf(struct se_cmd *cmd);
756 
target_qf_do_work(struct work_struct * work)757 void target_qf_do_work(struct work_struct *work)
758 {
759 	struct se_device *dev = container_of(work, struct se_device,
760 					qf_work_queue);
761 	LIST_HEAD(qf_cmd_list);
762 	struct se_cmd *cmd, *cmd_tmp;
763 
764 	spin_lock_irq(&dev->qf_cmd_lock);
765 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
766 	spin_unlock_irq(&dev->qf_cmd_lock);
767 
768 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
769 		list_del(&cmd->se_qf_node);
770 		atomic_dec_mb(&dev->dev_qf_count);
771 
772 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
773 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
774 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
775 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
776 			: "UNKNOWN");
777 
778 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
779 			transport_write_pending_qf(cmd);
780 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
781 			transport_complete_qf(cmd);
782 	}
783 }
784 
transport_dump_cmd_direction(struct se_cmd * cmd)785 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
786 {
787 	switch (cmd->data_direction) {
788 	case DMA_NONE:
789 		return "NONE";
790 	case DMA_FROM_DEVICE:
791 		return "READ";
792 	case DMA_TO_DEVICE:
793 		return "WRITE";
794 	case DMA_BIDIRECTIONAL:
795 		return "BIDI";
796 	default:
797 		break;
798 	}
799 
800 	return "UNKNOWN";
801 }
802 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)803 void transport_dump_dev_state(
804 	struct se_device *dev,
805 	char *b,
806 	int *bl)
807 {
808 	*bl += sprintf(b + *bl, "Status: ");
809 	if (dev->export_count)
810 		*bl += sprintf(b + *bl, "ACTIVATED");
811 	else
812 		*bl += sprintf(b + *bl, "DEACTIVATED");
813 
814 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
815 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
816 		dev->dev_attrib.block_size,
817 		dev->dev_attrib.hw_max_sectors);
818 	*bl += sprintf(b + *bl, "        ");
819 }
820 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)821 void transport_dump_vpd_proto_id(
822 	struct t10_vpd *vpd,
823 	unsigned char *p_buf,
824 	int p_buf_len)
825 {
826 	unsigned char buf[VPD_TMP_BUF_SIZE];
827 	int len;
828 
829 	memset(buf, 0, VPD_TMP_BUF_SIZE);
830 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
831 
832 	switch (vpd->protocol_identifier) {
833 	case 0x00:
834 		sprintf(buf+len, "Fibre Channel\n");
835 		break;
836 	case 0x10:
837 		sprintf(buf+len, "Parallel SCSI\n");
838 		break;
839 	case 0x20:
840 		sprintf(buf+len, "SSA\n");
841 		break;
842 	case 0x30:
843 		sprintf(buf+len, "IEEE 1394\n");
844 		break;
845 	case 0x40:
846 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
847 				" Protocol\n");
848 		break;
849 	case 0x50:
850 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
851 		break;
852 	case 0x60:
853 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
854 		break;
855 	case 0x70:
856 		sprintf(buf+len, "Automation/Drive Interface Transport"
857 				" Protocol\n");
858 		break;
859 	case 0x80:
860 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
861 		break;
862 	default:
863 		sprintf(buf+len, "Unknown 0x%02x\n",
864 				vpd->protocol_identifier);
865 		break;
866 	}
867 
868 	if (p_buf)
869 		strncpy(p_buf, buf, p_buf_len);
870 	else
871 		pr_debug("%s", buf);
872 }
873 
874 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)875 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
876 {
877 	/*
878 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
879 	 *
880 	 * from spc3r23.pdf section 7.5.1
881 	 */
882 	 if (page_83[1] & 0x80) {
883 		vpd->protocol_identifier = (page_83[0] & 0xf0);
884 		vpd->protocol_identifier_set = 1;
885 		transport_dump_vpd_proto_id(vpd, NULL, 0);
886 	}
887 }
888 EXPORT_SYMBOL(transport_set_vpd_proto_id);
889 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)890 int transport_dump_vpd_assoc(
891 	struct t10_vpd *vpd,
892 	unsigned char *p_buf,
893 	int p_buf_len)
894 {
895 	unsigned char buf[VPD_TMP_BUF_SIZE];
896 	int ret = 0;
897 	int len;
898 
899 	memset(buf, 0, VPD_TMP_BUF_SIZE);
900 	len = sprintf(buf, "T10 VPD Identifier Association: ");
901 
902 	switch (vpd->association) {
903 	case 0x00:
904 		sprintf(buf+len, "addressed logical unit\n");
905 		break;
906 	case 0x10:
907 		sprintf(buf+len, "target port\n");
908 		break;
909 	case 0x20:
910 		sprintf(buf+len, "SCSI target device\n");
911 		break;
912 	default:
913 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
914 		ret = -EINVAL;
915 		break;
916 	}
917 
918 	if (p_buf)
919 		strncpy(p_buf, buf, p_buf_len);
920 	else
921 		pr_debug("%s", buf);
922 
923 	return ret;
924 }
925 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)926 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
927 {
928 	/*
929 	 * The VPD identification association..
930 	 *
931 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
932 	 */
933 	vpd->association = (page_83[1] & 0x30);
934 	return transport_dump_vpd_assoc(vpd, NULL, 0);
935 }
936 EXPORT_SYMBOL(transport_set_vpd_assoc);
937 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)938 int transport_dump_vpd_ident_type(
939 	struct t10_vpd *vpd,
940 	unsigned char *p_buf,
941 	int p_buf_len)
942 {
943 	unsigned char buf[VPD_TMP_BUF_SIZE];
944 	int ret = 0;
945 	int len;
946 
947 	memset(buf, 0, VPD_TMP_BUF_SIZE);
948 	len = sprintf(buf, "T10 VPD Identifier Type: ");
949 
950 	switch (vpd->device_identifier_type) {
951 	case 0x00:
952 		sprintf(buf+len, "Vendor specific\n");
953 		break;
954 	case 0x01:
955 		sprintf(buf+len, "T10 Vendor ID based\n");
956 		break;
957 	case 0x02:
958 		sprintf(buf+len, "EUI-64 based\n");
959 		break;
960 	case 0x03:
961 		sprintf(buf+len, "NAA\n");
962 		break;
963 	case 0x04:
964 		sprintf(buf+len, "Relative target port identifier\n");
965 		break;
966 	case 0x08:
967 		sprintf(buf+len, "SCSI name string\n");
968 		break;
969 	default:
970 		sprintf(buf+len, "Unsupported: 0x%02x\n",
971 				vpd->device_identifier_type);
972 		ret = -EINVAL;
973 		break;
974 	}
975 
976 	if (p_buf) {
977 		if (p_buf_len < strlen(buf)+1)
978 			return -EINVAL;
979 		strncpy(p_buf, buf, p_buf_len);
980 	} else {
981 		pr_debug("%s", buf);
982 	}
983 
984 	return ret;
985 }
986 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)987 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
988 {
989 	/*
990 	 * The VPD identifier type..
991 	 *
992 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
993 	 */
994 	vpd->device_identifier_type = (page_83[1] & 0x0f);
995 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
996 }
997 EXPORT_SYMBOL(transport_set_vpd_ident_type);
998 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)999 int transport_dump_vpd_ident(
1000 	struct t10_vpd *vpd,
1001 	unsigned char *p_buf,
1002 	int p_buf_len)
1003 {
1004 	unsigned char buf[VPD_TMP_BUF_SIZE];
1005 	int ret = 0;
1006 
1007 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1008 
1009 	switch (vpd->device_identifier_code_set) {
1010 	case 0x01: /* Binary */
1011 		snprintf(buf, sizeof(buf),
1012 			"T10 VPD Binary Device Identifier: %s\n",
1013 			&vpd->device_identifier[0]);
1014 		break;
1015 	case 0x02: /* ASCII */
1016 		snprintf(buf, sizeof(buf),
1017 			"T10 VPD ASCII Device Identifier: %s\n",
1018 			&vpd->device_identifier[0]);
1019 		break;
1020 	case 0x03: /* UTF-8 */
1021 		snprintf(buf, sizeof(buf),
1022 			"T10 VPD UTF-8 Device Identifier: %s\n",
1023 			&vpd->device_identifier[0]);
1024 		break;
1025 	default:
1026 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1027 			" 0x%02x", vpd->device_identifier_code_set);
1028 		ret = -EINVAL;
1029 		break;
1030 	}
1031 
1032 	if (p_buf)
1033 		strncpy(p_buf, buf, p_buf_len);
1034 	else
1035 		pr_debug("%s", buf);
1036 
1037 	return ret;
1038 }
1039 
1040 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1041 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1042 {
1043 	static const char hex_str[] = "0123456789abcdef";
1044 	int j = 0, i = 4; /* offset to start of the identifier */
1045 
1046 	/*
1047 	 * The VPD Code Set (encoding)
1048 	 *
1049 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1050 	 */
1051 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1052 	switch (vpd->device_identifier_code_set) {
1053 	case 0x01: /* Binary */
1054 		vpd->device_identifier[j++] =
1055 				hex_str[vpd->device_identifier_type];
1056 		while (i < (4 + page_83[3])) {
1057 			vpd->device_identifier[j++] =
1058 				hex_str[(page_83[i] & 0xf0) >> 4];
1059 			vpd->device_identifier[j++] =
1060 				hex_str[page_83[i] & 0x0f];
1061 			i++;
1062 		}
1063 		break;
1064 	case 0x02: /* ASCII */
1065 	case 0x03: /* UTF-8 */
1066 		while (i < (4 + page_83[3]))
1067 			vpd->device_identifier[j++] = page_83[i++];
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	return transport_dump_vpd_ident(vpd, NULL, 0);
1074 }
1075 EXPORT_SYMBOL(transport_set_vpd_ident);
1076 
1077 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1078 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1079 			       unsigned int size)
1080 {
1081 	u32 mtl;
1082 
1083 	if (!cmd->se_tfo->max_data_sg_nents)
1084 		return TCM_NO_SENSE;
1085 	/*
1086 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1087 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1088 	 * residual_count and reduce original cmd->data_length to maximum
1089 	 * length based on single PAGE_SIZE entry scatter-lists.
1090 	 */
1091 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1092 	if (cmd->data_length > mtl) {
1093 		/*
1094 		 * If an existing CDB overflow is present, calculate new residual
1095 		 * based on CDB size minus fabric maximum transfer length.
1096 		 *
1097 		 * If an existing CDB underflow is present, calculate new residual
1098 		 * based on original cmd->data_length minus fabric maximum transfer
1099 		 * length.
1100 		 *
1101 		 * Otherwise, set the underflow residual based on cmd->data_length
1102 		 * minus fabric maximum transfer length.
1103 		 */
1104 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1105 			cmd->residual_count = (size - mtl);
1106 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1107 			u32 orig_dl = size + cmd->residual_count;
1108 			cmd->residual_count = (orig_dl - mtl);
1109 		} else {
1110 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1111 			cmd->residual_count = (cmd->data_length - mtl);
1112 		}
1113 		cmd->data_length = mtl;
1114 		/*
1115 		 * Reset sbc_check_prot() calculated protection payload
1116 		 * length based upon the new smaller MTL.
1117 		 */
1118 		if (cmd->prot_length) {
1119 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1120 			cmd->prot_length = dev->prot_length * sectors;
1121 		}
1122 	}
1123 	return TCM_NO_SENSE;
1124 }
1125 
1126 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1127 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1128 {
1129 	struct se_device *dev = cmd->se_dev;
1130 
1131 	if (cmd->unknown_data_length) {
1132 		cmd->data_length = size;
1133 	} else if (size != cmd->data_length) {
1134 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1135 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1136 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1137 				cmd->data_length, size, cmd->t_task_cdb[0]);
1138 
1139 		if (cmd->data_direction == DMA_TO_DEVICE &&
1140 		    cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1141 			pr_err("Rejecting underflow/overflow WRITE data\n");
1142 			return TCM_INVALID_CDB_FIELD;
1143 		}
1144 		/*
1145 		 * Reject READ_* or WRITE_* with overflow/underflow for
1146 		 * type SCF_SCSI_DATA_CDB.
1147 		 */
1148 		if (dev->dev_attrib.block_size != 512)  {
1149 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1150 				" CDB on non 512-byte sector setup subsystem"
1151 				" plugin: %s\n", dev->transport->name);
1152 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1153 			return TCM_INVALID_CDB_FIELD;
1154 		}
1155 		/*
1156 		 * For the overflow case keep the existing fabric provided
1157 		 * ->data_length.  Otherwise for the underflow case, reset
1158 		 * ->data_length to the smaller SCSI expected data transfer
1159 		 * length.
1160 		 */
1161 		if (size > cmd->data_length) {
1162 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1163 			cmd->residual_count = (size - cmd->data_length);
1164 		} else {
1165 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1166 			cmd->residual_count = (cmd->data_length - size);
1167 			cmd->data_length = size;
1168 		}
1169 	}
1170 
1171 	return target_check_max_data_sg_nents(cmd, dev, size);
1172 
1173 }
1174 
1175 /*
1176  * Used by fabric modules containing a local struct se_cmd within their
1177  * fabric dependent per I/O descriptor.
1178  *
1179  * Preserves the value of @cmd->tag.
1180  */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1181 void transport_init_se_cmd(
1182 	struct se_cmd *cmd,
1183 	const struct target_core_fabric_ops *tfo,
1184 	struct se_session *se_sess,
1185 	u32 data_length,
1186 	int data_direction,
1187 	int task_attr,
1188 	unsigned char *sense_buffer)
1189 {
1190 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1191 	INIT_LIST_HEAD(&cmd->se_qf_node);
1192 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1193 	INIT_LIST_HEAD(&cmd->state_list);
1194 	init_completion(&cmd->t_transport_stop_comp);
1195 	init_completion(&cmd->cmd_wait_comp);
1196 	init_completion(&cmd->task_stop_comp);
1197 	spin_lock_init(&cmd->t_state_lock);
1198 	kref_init(&cmd->cmd_kref);
1199 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1200 
1201 	cmd->se_tfo = tfo;
1202 	cmd->se_sess = se_sess;
1203 	cmd->data_length = data_length;
1204 	cmd->data_direction = data_direction;
1205 	cmd->sam_task_attr = task_attr;
1206 	cmd->sense_buffer = sense_buffer;
1207 
1208 	cmd->state_active = false;
1209 }
1210 EXPORT_SYMBOL(transport_init_se_cmd);
1211 
1212 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1213 transport_check_alloc_task_attr(struct se_cmd *cmd)
1214 {
1215 	struct se_device *dev = cmd->se_dev;
1216 
1217 	/*
1218 	 * Check if SAM Task Attribute emulation is enabled for this
1219 	 * struct se_device storage object
1220 	 */
1221 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1222 		return 0;
1223 
1224 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1225 		pr_debug("SAM Task Attribute ACA"
1226 			" emulation is not supported\n");
1227 		return TCM_INVALID_CDB_FIELD;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1234 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1235 {
1236 	struct se_device *dev = cmd->se_dev;
1237 	sense_reason_t ret;
1238 
1239 	/*
1240 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1241 	 * for VARIABLE_LENGTH_CMD
1242 	 */
1243 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1244 		pr_err("Received SCSI CDB with command_size: %d that"
1245 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1246 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1247 		return TCM_INVALID_CDB_FIELD;
1248 	}
1249 	/*
1250 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1251 	 * allocate the additional extended CDB buffer now..  Otherwise
1252 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1253 	 */
1254 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1255 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1256 						GFP_KERNEL);
1257 		if (!cmd->t_task_cdb) {
1258 			pr_err("Unable to allocate cmd->t_task_cdb"
1259 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1260 				scsi_command_size(cdb),
1261 				(unsigned long)sizeof(cmd->__t_task_cdb));
1262 			return TCM_OUT_OF_RESOURCES;
1263 		}
1264 	} else
1265 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1266 	/*
1267 	 * Copy the original CDB into cmd->
1268 	 */
1269 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1270 
1271 	trace_target_sequencer_start(cmd);
1272 
1273 	/*
1274 	 * Check for an existing UNIT ATTENTION condition
1275 	 */
1276 	ret = target_scsi3_ua_check(cmd);
1277 	if (ret)
1278 		return ret;
1279 
1280 	ret = target_alua_state_check(cmd);
1281 	if (ret)
1282 		return ret;
1283 
1284 	ret = target_check_reservation(cmd);
1285 	if (ret) {
1286 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1287 		return ret;
1288 	}
1289 
1290 	ret = dev->transport->parse_cdb(cmd);
1291 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1292 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1293 				    cmd->se_tfo->get_fabric_name(),
1294 				    cmd->se_sess->se_node_acl->initiatorname,
1295 				    cmd->t_task_cdb[0]);
1296 	if (ret)
1297 		return ret;
1298 
1299 	ret = transport_check_alloc_task_attr(cmd);
1300 	if (ret)
1301 		return ret;
1302 
1303 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1304 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1308 
1309 /*
1310  * Used by fabric module frontends to queue tasks directly.
1311  * Many only be used from process context only
1312  */
transport_handle_cdb_direct(struct se_cmd * cmd)1313 int transport_handle_cdb_direct(
1314 	struct se_cmd *cmd)
1315 {
1316 	sense_reason_t ret;
1317 
1318 	if (!cmd->se_lun) {
1319 		dump_stack();
1320 		pr_err("cmd->se_lun is NULL\n");
1321 		return -EINVAL;
1322 	}
1323 	if (in_interrupt()) {
1324 		dump_stack();
1325 		pr_err("transport_generic_handle_cdb cannot be called"
1326 				" from interrupt context\n");
1327 		return -EINVAL;
1328 	}
1329 	/*
1330 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1331 	 * outstanding descriptors are handled correctly during shutdown via
1332 	 * transport_wait_for_tasks()
1333 	 *
1334 	 * Also, we don't take cmd->t_state_lock here as we only expect
1335 	 * this to be called for initial descriptor submission.
1336 	 */
1337 	cmd->t_state = TRANSPORT_NEW_CMD;
1338 	cmd->transport_state |= CMD_T_ACTIVE;
1339 
1340 	/*
1341 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1342 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1343 	 * and call transport_generic_request_failure() if necessary..
1344 	 */
1345 	ret = transport_generic_new_cmd(cmd);
1346 	if (ret)
1347 		transport_generic_request_failure(cmd, ret);
1348 	return 0;
1349 }
1350 EXPORT_SYMBOL(transport_handle_cdb_direct);
1351 
1352 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1353 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1354 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1355 {
1356 	if (!sgl || !sgl_count)
1357 		return 0;
1358 
1359 	/*
1360 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1361 	 * scatterlists already have been set to follow what the fabric
1362 	 * passes for the original expected data transfer length.
1363 	 */
1364 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1365 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1366 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1367 		return TCM_INVALID_CDB_FIELD;
1368 	}
1369 
1370 	cmd->t_data_sg = sgl;
1371 	cmd->t_data_nents = sgl_count;
1372 	cmd->t_bidi_data_sg = sgl_bidi;
1373 	cmd->t_bidi_data_nents = sgl_bidi_count;
1374 
1375 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1376 	return 0;
1377 }
1378 
1379 /*
1380  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1381  * 			 se_cmd + use pre-allocated SGL memory.
1382  *
1383  * @se_cmd: command descriptor to submit
1384  * @se_sess: associated se_sess for endpoint
1385  * @cdb: pointer to SCSI CDB
1386  * @sense: pointer to SCSI sense buffer
1387  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1388  * @data_length: fabric expected data transfer length
1389  * @task_addr: SAM task attribute
1390  * @data_dir: DMA data direction
1391  * @flags: flags for command submission from target_sc_flags_tables
1392  * @sgl: struct scatterlist memory for unidirectional mapping
1393  * @sgl_count: scatterlist count for unidirectional mapping
1394  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1395  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1396  * @sgl_prot: struct scatterlist memory protection information
1397  * @sgl_prot_count: scatterlist count for protection information
1398  *
1399  * Task tags are supported if the caller has set @se_cmd->tag.
1400  *
1401  * Returns non zero to signal active I/O shutdown failure.  All other
1402  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1403  * but still return zero here.
1404  *
1405  * This may only be called from process context, and also currently
1406  * assumes internal allocation of fabric payload buffer by target-core.
1407  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1408 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1409 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1410 		u32 data_length, int task_attr, int data_dir, int flags,
1411 		struct scatterlist *sgl, u32 sgl_count,
1412 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1413 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1414 {
1415 	struct se_portal_group *se_tpg;
1416 	sense_reason_t rc;
1417 	int ret;
1418 
1419 	se_tpg = se_sess->se_tpg;
1420 	BUG_ON(!se_tpg);
1421 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1422 	BUG_ON(in_interrupt());
1423 	/*
1424 	 * Initialize se_cmd for target operation.  From this point
1425 	 * exceptions are handled by sending exception status via
1426 	 * target_core_fabric_ops->queue_status() callback
1427 	 */
1428 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1429 				data_length, data_dir, task_attr, sense);
1430 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1431 		se_cmd->unknown_data_length = 1;
1432 	/*
1433 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1434 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1435 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1436 	 * kref_put() to happen during fabric packet acknowledgement.
1437 	 */
1438 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1439 	if (ret)
1440 		return ret;
1441 	/*
1442 	 * Signal bidirectional data payloads to target-core
1443 	 */
1444 	if (flags & TARGET_SCF_BIDI_OP)
1445 		se_cmd->se_cmd_flags |= SCF_BIDI;
1446 	/*
1447 	 * Locate se_lun pointer and attach it to struct se_cmd
1448 	 */
1449 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1450 	if (rc) {
1451 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1452 		target_put_sess_cmd(se_cmd);
1453 		return 0;
1454 	}
1455 
1456 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1457 	if (rc != 0) {
1458 		transport_generic_request_failure(se_cmd, rc);
1459 		return 0;
1460 	}
1461 
1462 	/*
1463 	 * Save pointers for SGLs containing protection information,
1464 	 * if present.
1465 	 */
1466 	if (sgl_prot_count) {
1467 		se_cmd->t_prot_sg = sgl_prot;
1468 		se_cmd->t_prot_nents = sgl_prot_count;
1469 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1470 	}
1471 
1472 	/*
1473 	 * When a non zero sgl_count has been passed perform SGL passthrough
1474 	 * mapping for pre-allocated fabric memory instead of having target
1475 	 * core perform an internal SGL allocation..
1476 	 */
1477 	if (sgl_count != 0) {
1478 		BUG_ON(!sgl);
1479 
1480 		/*
1481 		 * A work-around for tcm_loop as some userspace code via
1482 		 * scsi-generic do not memset their associated read buffers,
1483 		 * so go ahead and do that here for type non-data CDBs.  Also
1484 		 * note that this is currently guaranteed to be a single SGL
1485 		 * for this case by target core in target_setup_cmd_from_cdb()
1486 		 * -> transport_generic_cmd_sequencer().
1487 		 */
1488 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1489 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1490 			unsigned char *buf = NULL;
1491 
1492 			if (sgl)
1493 				buf = kmap(sg_page(sgl)) + sgl->offset;
1494 
1495 			if (buf) {
1496 				memset(buf, 0, sgl->length);
1497 				kunmap(sg_page(sgl));
1498 			}
1499 		}
1500 
1501 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1502 				sgl_bidi, sgl_bidi_count);
1503 		if (rc != 0) {
1504 			transport_generic_request_failure(se_cmd, rc);
1505 			return 0;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Check if we need to delay processing because of ALUA
1511 	 * Active/NonOptimized primary access state..
1512 	 */
1513 	core_alua_check_nonop_delay(se_cmd);
1514 
1515 	transport_handle_cdb_direct(se_cmd);
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1519 
1520 /*
1521  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1522  *
1523  * @se_cmd: command descriptor to submit
1524  * @se_sess: associated se_sess for endpoint
1525  * @cdb: pointer to SCSI CDB
1526  * @sense: pointer to SCSI sense buffer
1527  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1528  * @data_length: fabric expected data transfer length
1529  * @task_addr: SAM task attribute
1530  * @data_dir: DMA data direction
1531  * @flags: flags for command submission from target_sc_flags_tables
1532  *
1533  * Task tags are supported if the caller has set @se_cmd->tag.
1534  *
1535  * Returns non zero to signal active I/O shutdown failure.  All other
1536  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1537  * but still return zero here.
1538  *
1539  * This may only be called from process context, and also currently
1540  * assumes internal allocation of fabric payload buffer by target-core.
1541  *
1542  * It also assumes interal target core SGL memory allocation.
1543  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1544 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1545 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1546 		u32 data_length, int task_attr, int data_dir, int flags)
1547 {
1548 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1549 			unpacked_lun, data_length, task_attr, data_dir,
1550 			flags, NULL, 0, NULL, 0, NULL, 0);
1551 }
1552 EXPORT_SYMBOL(target_submit_cmd);
1553 
target_complete_tmr_failure(struct work_struct * work)1554 static void target_complete_tmr_failure(struct work_struct *work)
1555 {
1556 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1557 
1558 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1559 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1560 
1561 	transport_cmd_check_stop_to_fabric(se_cmd);
1562 }
1563 
1564 /**
1565  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1566  *                     for TMR CDBs
1567  *
1568  * @se_cmd: command descriptor to submit
1569  * @se_sess: associated se_sess for endpoint
1570  * @sense: pointer to SCSI sense buffer
1571  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1572  * @fabric_context: fabric context for TMR req
1573  * @tm_type: Type of TM request
1574  * @gfp: gfp type for caller
1575  * @tag: referenced task tag for TMR_ABORT_TASK
1576  * @flags: submit cmd flags
1577  *
1578  * Callable from all contexts.
1579  **/
1580 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1581 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1582 		unsigned char *sense, u64 unpacked_lun,
1583 		void *fabric_tmr_ptr, unsigned char tm_type,
1584 		gfp_t gfp, unsigned int tag, int flags)
1585 {
1586 	struct se_portal_group *se_tpg;
1587 	int ret;
1588 
1589 	se_tpg = se_sess->se_tpg;
1590 	BUG_ON(!se_tpg);
1591 
1592 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1593 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1594 	/*
1595 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1596 	 * allocation failure.
1597 	 */
1598 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1599 	if (ret < 0)
1600 		return -ENOMEM;
1601 
1602 	if (tm_type == TMR_ABORT_TASK)
1603 		se_cmd->se_tmr_req->ref_task_tag = tag;
1604 
1605 	/* See target_submit_cmd for commentary */
1606 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1607 	if (ret) {
1608 		core_tmr_release_req(se_cmd->se_tmr_req);
1609 		return ret;
1610 	}
1611 
1612 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1613 	if (ret) {
1614 		/*
1615 		 * For callback during failure handling, push this work off
1616 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1617 		 */
1618 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1619 		schedule_work(&se_cmd->work);
1620 		return 0;
1621 	}
1622 	transport_generic_handle_tmr(se_cmd);
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL(target_submit_tmr);
1626 
1627 /*
1628  * If the cmd is active, request it to be stopped and sleep until it
1629  * has completed.
1630  */
target_stop_cmd(struct se_cmd * cmd,unsigned long * flags)1631 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1632 	__releases(&cmd->t_state_lock)
1633 	__acquires(&cmd->t_state_lock)
1634 {
1635 	bool was_active = false;
1636 
1637 	if (cmd->transport_state & CMD_T_BUSY) {
1638 		cmd->transport_state |= CMD_T_REQUEST_STOP;
1639 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1640 
1641 		pr_debug("cmd %p waiting to complete\n", cmd);
1642 		wait_for_completion(&cmd->task_stop_comp);
1643 		pr_debug("cmd %p stopped successfully\n", cmd);
1644 
1645 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1646 		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1647 		cmd->transport_state &= ~CMD_T_BUSY;
1648 		was_active = true;
1649 	}
1650 
1651 	return was_active;
1652 }
1653 
1654 /*
1655  * Handle SAM-esque emulation for generic transport request failures.
1656  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1657 void transport_generic_request_failure(struct se_cmd *cmd,
1658 		sense_reason_t sense_reason)
1659 {
1660 	int ret = 0, post_ret = 0;
1661 
1662 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1663 		" CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1664 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1665 		cmd->se_tfo->get_cmd_state(cmd),
1666 		cmd->t_state, sense_reason);
1667 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1668 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1669 		(cmd->transport_state & CMD_T_STOP) != 0,
1670 		(cmd->transport_state & CMD_T_SENT) != 0);
1671 
1672 	/*
1673 	 * For SAM Task Attribute emulation for failed struct se_cmd
1674 	 */
1675 	transport_complete_task_attr(cmd);
1676 	/*
1677 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1678 	 * callback is expected to drop the per device ->caw_sem.
1679 	 */
1680 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1681 	     cmd->transport_complete_callback)
1682 		cmd->transport_complete_callback(cmd, false, &post_ret);
1683 
1684 	switch (sense_reason) {
1685 	case TCM_NON_EXISTENT_LUN:
1686 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1687 	case TCM_INVALID_CDB_FIELD:
1688 	case TCM_INVALID_PARAMETER_LIST:
1689 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1690 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1691 	case TCM_UNKNOWN_MODE_PAGE:
1692 	case TCM_WRITE_PROTECTED:
1693 	case TCM_ADDRESS_OUT_OF_RANGE:
1694 	case TCM_CHECK_CONDITION_ABORT_CMD:
1695 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1696 	case TCM_CHECK_CONDITION_NOT_READY:
1697 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1698 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1699 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1700 		break;
1701 	case TCM_OUT_OF_RESOURCES:
1702 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1703 		break;
1704 	case TCM_RESERVATION_CONFLICT:
1705 		/*
1706 		 * No SENSE Data payload for this case, set SCSI Status
1707 		 * and queue the response to $FABRIC_MOD.
1708 		 *
1709 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1710 		 */
1711 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1712 		/*
1713 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1714 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1715 		 * CONFLICT STATUS.
1716 		 *
1717 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1718 		 */
1719 		if (cmd->se_sess &&
1720 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1721 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1722 					       cmd->orig_fe_lun, 0x2C,
1723 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1724 		}
1725 		trace_target_cmd_complete(cmd);
1726 		ret = cmd->se_tfo->queue_status(cmd);
1727 		if (ret == -EAGAIN || ret == -ENOMEM)
1728 			goto queue_full;
1729 		goto check_stop;
1730 	default:
1731 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1732 			cmd->t_task_cdb[0], sense_reason);
1733 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1734 		break;
1735 	}
1736 
1737 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1738 	if (ret == -EAGAIN || ret == -ENOMEM)
1739 		goto queue_full;
1740 
1741 check_stop:
1742 	transport_lun_remove_cmd(cmd);
1743 	transport_cmd_check_stop_to_fabric(cmd);
1744 	return;
1745 
1746 queue_full:
1747 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1748 	transport_handle_queue_full(cmd, cmd->se_dev);
1749 }
1750 EXPORT_SYMBOL(transport_generic_request_failure);
1751 
__target_execute_cmd(struct se_cmd * cmd)1752 void __target_execute_cmd(struct se_cmd *cmd)
1753 {
1754 	sense_reason_t ret;
1755 
1756 	if (cmd->execute_cmd) {
1757 		ret = cmd->execute_cmd(cmd);
1758 		if (ret) {
1759 			spin_lock_irq(&cmd->t_state_lock);
1760 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1761 			spin_unlock_irq(&cmd->t_state_lock);
1762 
1763 			transport_generic_request_failure(cmd, ret);
1764 		}
1765 	}
1766 }
1767 
target_write_prot_action(struct se_cmd * cmd)1768 static int target_write_prot_action(struct se_cmd *cmd)
1769 {
1770 	u32 sectors;
1771 	/*
1772 	 * Perform WRITE_INSERT of PI using software emulation when backend
1773 	 * device has PI enabled, if the transport has not already generated
1774 	 * PI using hardware WRITE_INSERT offload.
1775 	 */
1776 	switch (cmd->prot_op) {
1777 	case TARGET_PROT_DOUT_INSERT:
1778 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1779 			sbc_dif_generate(cmd);
1780 		break;
1781 	case TARGET_PROT_DOUT_STRIP:
1782 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1783 			break;
1784 
1785 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1786 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1787 					     sectors, 0, cmd->t_prot_sg, 0);
1788 		if (unlikely(cmd->pi_err)) {
1789 			spin_lock_irq(&cmd->t_state_lock);
1790 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1791 			spin_unlock_irq(&cmd->t_state_lock);
1792 			transport_generic_request_failure(cmd, cmd->pi_err);
1793 			return -1;
1794 		}
1795 		break;
1796 	default:
1797 		break;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
target_handle_task_attr(struct se_cmd * cmd)1803 static bool target_handle_task_attr(struct se_cmd *cmd)
1804 {
1805 	struct se_device *dev = cmd->se_dev;
1806 
1807 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1808 		return false;
1809 
1810 	/*
1811 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1812 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1813 	 */
1814 	switch (cmd->sam_task_attr) {
1815 	case TCM_HEAD_TAG:
1816 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1817 			 cmd->t_task_cdb[0]);
1818 		return false;
1819 	case TCM_ORDERED_TAG:
1820 		atomic_inc_mb(&dev->dev_ordered_sync);
1821 
1822 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1823 			 cmd->t_task_cdb[0]);
1824 
1825 		/*
1826 		 * Execute an ORDERED command if no other older commands
1827 		 * exist that need to be completed first.
1828 		 */
1829 		if (!atomic_read(&dev->simple_cmds))
1830 			return false;
1831 		break;
1832 	default:
1833 		/*
1834 		 * For SIMPLE and UNTAGGED Task Attribute commands
1835 		 */
1836 		atomic_inc_mb(&dev->simple_cmds);
1837 		break;
1838 	}
1839 
1840 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1841 		return false;
1842 
1843 	spin_lock(&dev->delayed_cmd_lock);
1844 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1845 	spin_unlock(&dev->delayed_cmd_lock);
1846 
1847 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1848 		cmd->t_task_cdb[0], cmd->sam_task_attr);
1849 	return true;
1850 }
1851 
1852 static int __transport_check_aborted_status(struct se_cmd *, int);
1853 
target_execute_cmd(struct se_cmd * cmd)1854 void target_execute_cmd(struct se_cmd *cmd)
1855 {
1856 	/*
1857 	 * Determine if frontend context caller is requesting the stopping of
1858 	 * this command for frontend exceptions.
1859 	 *
1860 	 * If the received CDB has aleady been aborted stop processing it here.
1861 	 */
1862 	spin_lock_irq(&cmd->t_state_lock);
1863 	if (__transport_check_aborted_status(cmd, 1)) {
1864 		spin_unlock_irq(&cmd->t_state_lock);
1865 		return;
1866 	}
1867 	if (cmd->transport_state & CMD_T_STOP) {
1868 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1869 			__func__, __LINE__, cmd->tag);
1870 
1871 		spin_unlock_irq(&cmd->t_state_lock);
1872 		complete_all(&cmd->t_transport_stop_comp);
1873 		return;
1874 	}
1875 
1876 	cmd->t_state = TRANSPORT_PROCESSING;
1877 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1878 	spin_unlock_irq(&cmd->t_state_lock);
1879 
1880 	if (target_write_prot_action(cmd))
1881 		return;
1882 
1883 	if (target_handle_task_attr(cmd)) {
1884 		spin_lock_irq(&cmd->t_state_lock);
1885 		cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1886 		spin_unlock_irq(&cmd->t_state_lock);
1887 		return;
1888 	}
1889 
1890 	__target_execute_cmd(cmd);
1891 }
1892 EXPORT_SYMBOL(target_execute_cmd);
1893 
1894 /*
1895  * Process all commands up to the last received ORDERED task attribute which
1896  * requires another blocking boundary
1897  */
target_restart_delayed_cmds(struct se_device * dev)1898 static void target_restart_delayed_cmds(struct se_device *dev)
1899 {
1900 	for (;;) {
1901 		struct se_cmd *cmd;
1902 
1903 		spin_lock(&dev->delayed_cmd_lock);
1904 		if (list_empty(&dev->delayed_cmd_list)) {
1905 			spin_unlock(&dev->delayed_cmd_lock);
1906 			break;
1907 		}
1908 
1909 		cmd = list_entry(dev->delayed_cmd_list.next,
1910 				 struct se_cmd, se_delayed_node);
1911 		list_del(&cmd->se_delayed_node);
1912 		spin_unlock(&dev->delayed_cmd_lock);
1913 
1914 		__target_execute_cmd(cmd);
1915 
1916 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1917 			break;
1918 	}
1919 }
1920 
1921 /*
1922  * Called from I/O completion to determine which dormant/delayed
1923  * and ordered cmds need to have their tasks added to the execution queue.
1924  */
transport_complete_task_attr(struct se_cmd * cmd)1925 static void transport_complete_task_attr(struct se_cmd *cmd)
1926 {
1927 	struct se_device *dev = cmd->se_dev;
1928 
1929 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1930 		return;
1931 
1932 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1933 		atomic_dec_mb(&dev->simple_cmds);
1934 		dev->dev_cur_ordered_id++;
1935 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1936 			 dev->dev_cur_ordered_id);
1937 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1938 		dev->dev_cur_ordered_id++;
1939 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1940 			 dev->dev_cur_ordered_id);
1941 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1942 		atomic_dec_mb(&dev->dev_ordered_sync);
1943 
1944 		dev->dev_cur_ordered_id++;
1945 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1946 			 dev->dev_cur_ordered_id);
1947 	}
1948 
1949 	target_restart_delayed_cmds(dev);
1950 }
1951 
transport_complete_qf(struct se_cmd * cmd)1952 static void transport_complete_qf(struct se_cmd *cmd)
1953 {
1954 	int ret = 0;
1955 
1956 	transport_complete_task_attr(cmd);
1957 
1958 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1959 		trace_target_cmd_complete(cmd);
1960 		ret = cmd->se_tfo->queue_status(cmd);
1961 		goto out;
1962 	}
1963 
1964 	switch (cmd->data_direction) {
1965 	case DMA_FROM_DEVICE:
1966 		trace_target_cmd_complete(cmd);
1967 		ret = cmd->se_tfo->queue_data_in(cmd);
1968 		break;
1969 	case DMA_TO_DEVICE:
1970 		if (cmd->se_cmd_flags & SCF_BIDI) {
1971 			ret = cmd->se_tfo->queue_data_in(cmd);
1972 			break;
1973 		}
1974 		/* Fall through for DMA_TO_DEVICE */
1975 	case DMA_NONE:
1976 		trace_target_cmd_complete(cmd);
1977 		ret = cmd->se_tfo->queue_status(cmd);
1978 		break;
1979 	default:
1980 		break;
1981 	}
1982 
1983 out:
1984 	if (ret < 0) {
1985 		transport_handle_queue_full(cmd, cmd->se_dev);
1986 		return;
1987 	}
1988 	transport_lun_remove_cmd(cmd);
1989 	transport_cmd_check_stop_to_fabric(cmd);
1990 }
1991 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)1992 static void transport_handle_queue_full(
1993 	struct se_cmd *cmd,
1994 	struct se_device *dev)
1995 {
1996 	spin_lock_irq(&dev->qf_cmd_lock);
1997 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1998 	atomic_inc_mb(&dev->dev_qf_count);
1999 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2000 
2001 	schedule_work(&cmd->se_dev->qf_work_queue);
2002 }
2003 
target_read_prot_action(struct se_cmd * cmd)2004 static bool target_read_prot_action(struct se_cmd *cmd)
2005 {
2006 	switch (cmd->prot_op) {
2007 	case TARGET_PROT_DIN_STRIP:
2008 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2009 			u32 sectors = cmd->data_length >>
2010 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2011 
2012 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2013 						     sectors, 0, cmd->t_prot_sg,
2014 						     0);
2015 			if (cmd->pi_err)
2016 				return true;
2017 		}
2018 		break;
2019 	case TARGET_PROT_DIN_INSERT:
2020 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2021 			break;
2022 
2023 		sbc_dif_generate(cmd);
2024 		break;
2025 	default:
2026 		break;
2027 	}
2028 
2029 	return false;
2030 }
2031 
target_complete_ok_work(struct work_struct * work)2032 static void target_complete_ok_work(struct work_struct *work)
2033 {
2034 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2035 	int ret;
2036 
2037 	/*
2038 	 * Check if we need to move delayed/dormant tasks from cmds on the
2039 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2040 	 * Attribute.
2041 	 */
2042 	transport_complete_task_attr(cmd);
2043 
2044 	/*
2045 	 * Check to schedule QUEUE_FULL work, or execute an existing
2046 	 * cmd->transport_qf_callback()
2047 	 */
2048 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2049 		schedule_work(&cmd->se_dev->qf_work_queue);
2050 
2051 	/*
2052 	 * Check if we need to send a sense buffer from
2053 	 * the struct se_cmd in question.
2054 	 */
2055 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2056 		WARN_ON(!cmd->scsi_status);
2057 		ret = transport_send_check_condition_and_sense(
2058 					cmd, 0, 1);
2059 		if (ret == -EAGAIN || ret == -ENOMEM)
2060 			goto queue_full;
2061 
2062 		transport_lun_remove_cmd(cmd);
2063 		transport_cmd_check_stop_to_fabric(cmd);
2064 		return;
2065 	}
2066 	/*
2067 	 * Check for a callback, used by amongst other things
2068 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2069 	 */
2070 	if (cmd->transport_complete_callback) {
2071 		sense_reason_t rc;
2072 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2073 		bool zero_dl = !(cmd->data_length);
2074 		int post_ret = 0;
2075 
2076 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2077 		if (!rc && !post_ret) {
2078 			if (caw && zero_dl)
2079 				goto queue_rsp;
2080 
2081 			return;
2082 		} else if (rc) {
2083 			ret = transport_send_check_condition_and_sense(cmd,
2084 						rc, 0);
2085 			if (ret == -EAGAIN || ret == -ENOMEM)
2086 				goto queue_full;
2087 
2088 			transport_lun_remove_cmd(cmd);
2089 			transport_cmd_check_stop_to_fabric(cmd);
2090 			return;
2091 		}
2092 	}
2093 
2094 queue_rsp:
2095 	switch (cmd->data_direction) {
2096 	case DMA_FROM_DEVICE:
2097 		atomic_long_add(cmd->data_length,
2098 				&cmd->se_lun->lun_stats.tx_data_octets);
2099 		/*
2100 		 * Perform READ_STRIP of PI using software emulation when
2101 		 * backend had PI enabled, if the transport will not be
2102 		 * performing hardware READ_STRIP offload.
2103 		 */
2104 		if (target_read_prot_action(cmd)) {
2105 			ret = transport_send_check_condition_and_sense(cmd,
2106 						cmd->pi_err, 0);
2107 			if (ret == -EAGAIN || ret == -ENOMEM)
2108 				goto queue_full;
2109 
2110 			transport_lun_remove_cmd(cmd);
2111 			transport_cmd_check_stop_to_fabric(cmd);
2112 			return;
2113 		}
2114 
2115 		trace_target_cmd_complete(cmd);
2116 		ret = cmd->se_tfo->queue_data_in(cmd);
2117 		if (ret == -EAGAIN || ret == -ENOMEM)
2118 			goto queue_full;
2119 		break;
2120 	case DMA_TO_DEVICE:
2121 		atomic_long_add(cmd->data_length,
2122 				&cmd->se_lun->lun_stats.rx_data_octets);
2123 		/*
2124 		 * Check if we need to send READ payload for BIDI-COMMAND
2125 		 */
2126 		if (cmd->se_cmd_flags & SCF_BIDI) {
2127 			atomic_long_add(cmd->data_length,
2128 					&cmd->se_lun->lun_stats.tx_data_octets);
2129 			ret = cmd->se_tfo->queue_data_in(cmd);
2130 			if (ret == -EAGAIN || ret == -ENOMEM)
2131 				goto queue_full;
2132 			break;
2133 		}
2134 		/* Fall through for DMA_TO_DEVICE */
2135 	case DMA_NONE:
2136 		trace_target_cmd_complete(cmd);
2137 		ret = cmd->se_tfo->queue_status(cmd);
2138 		if (ret == -EAGAIN || ret == -ENOMEM)
2139 			goto queue_full;
2140 		break;
2141 	default:
2142 		break;
2143 	}
2144 
2145 	transport_lun_remove_cmd(cmd);
2146 	transport_cmd_check_stop_to_fabric(cmd);
2147 	return;
2148 
2149 queue_full:
2150 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2151 		" data_direction: %d\n", cmd, cmd->data_direction);
2152 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2153 	transport_handle_queue_full(cmd, cmd->se_dev);
2154 }
2155 
transport_free_sgl(struct scatterlist * sgl,int nents)2156 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2157 {
2158 	struct scatterlist *sg;
2159 	int count;
2160 
2161 	for_each_sg(sgl, sg, nents, count)
2162 		__free_page(sg_page(sg));
2163 
2164 	kfree(sgl);
2165 }
2166 
transport_reset_sgl_orig(struct se_cmd * cmd)2167 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2168 {
2169 	/*
2170 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2171 	 * emulation, and free + reset pointers if necessary..
2172 	 */
2173 	if (!cmd->t_data_sg_orig)
2174 		return;
2175 
2176 	kfree(cmd->t_data_sg);
2177 	cmd->t_data_sg = cmd->t_data_sg_orig;
2178 	cmd->t_data_sg_orig = NULL;
2179 	cmd->t_data_nents = cmd->t_data_nents_orig;
2180 	cmd->t_data_nents_orig = 0;
2181 }
2182 
transport_free_pages(struct se_cmd * cmd)2183 static inline void transport_free_pages(struct se_cmd *cmd)
2184 {
2185 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2186 		transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2187 		cmd->t_prot_sg = NULL;
2188 		cmd->t_prot_nents = 0;
2189 	}
2190 
2191 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2192 		/*
2193 		 * Release special case READ buffer payload required for
2194 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2195 		 */
2196 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2197 			transport_free_sgl(cmd->t_bidi_data_sg,
2198 					   cmd->t_bidi_data_nents);
2199 			cmd->t_bidi_data_sg = NULL;
2200 			cmd->t_bidi_data_nents = 0;
2201 		}
2202 		transport_reset_sgl_orig(cmd);
2203 		return;
2204 	}
2205 	transport_reset_sgl_orig(cmd);
2206 
2207 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2208 	cmd->t_data_sg = NULL;
2209 	cmd->t_data_nents = 0;
2210 
2211 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2212 	cmd->t_bidi_data_sg = NULL;
2213 	cmd->t_bidi_data_nents = 0;
2214 }
2215 
2216 /**
2217  * transport_put_cmd - release a reference to a command
2218  * @cmd:       command to release
2219  *
2220  * This routine releases our reference to the command and frees it if possible.
2221  */
transport_put_cmd(struct se_cmd * cmd)2222 static int transport_put_cmd(struct se_cmd *cmd)
2223 {
2224 	BUG_ON(!cmd->se_tfo);
2225 	/*
2226 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2227 	 * the kref and call ->release_cmd() in kref callback.
2228 	 */
2229 	return target_put_sess_cmd(cmd);
2230 }
2231 
transport_kmap_data_sg(struct se_cmd * cmd)2232 void *transport_kmap_data_sg(struct se_cmd *cmd)
2233 {
2234 	struct scatterlist *sg = cmd->t_data_sg;
2235 	struct page **pages;
2236 	int i;
2237 
2238 	/*
2239 	 * We need to take into account a possible offset here for fabrics like
2240 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2241 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2242 	 */
2243 	if (!cmd->t_data_nents)
2244 		return NULL;
2245 
2246 	BUG_ON(!sg);
2247 	if (cmd->t_data_nents == 1)
2248 		return kmap(sg_page(sg)) + sg->offset;
2249 
2250 	/* >1 page. use vmap */
2251 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2252 	if (!pages)
2253 		return NULL;
2254 
2255 	/* convert sg[] to pages[] */
2256 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2257 		pages[i] = sg_page(sg);
2258 	}
2259 
2260 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2261 	kfree(pages);
2262 	if (!cmd->t_data_vmap)
2263 		return NULL;
2264 
2265 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2266 }
2267 EXPORT_SYMBOL(transport_kmap_data_sg);
2268 
transport_kunmap_data_sg(struct se_cmd * cmd)2269 void transport_kunmap_data_sg(struct se_cmd *cmd)
2270 {
2271 	if (!cmd->t_data_nents) {
2272 		return;
2273 	} else if (cmd->t_data_nents == 1) {
2274 		kunmap(sg_page(cmd->t_data_sg));
2275 		return;
2276 	}
2277 
2278 	vunmap(cmd->t_data_vmap);
2279 	cmd->t_data_vmap = NULL;
2280 }
2281 EXPORT_SYMBOL(transport_kunmap_data_sg);
2282 
2283 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page)2284 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2285 		 bool zero_page)
2286 {
2287 	struct scatterlist *sg;
2288 	struct page *page;
2289 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2290 	unsigned int nent;
2291 	int i = 0;
2292 
2293 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2294 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2295 	if (!sg)
2296 		return -ENOMEM;
2297 
2298 	sg_init_table(sg, nent);
2299 
2300 	while (length) {
2301 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2302 		page = alloc_page(GFP_KERNEL | zero_flag);
2303 		if (!page)
2304 			goto out;
2305 
2306 		sg_set_page(&sg[i], page, page_len, 0);
2307 		length -= page_len;
2308 		i++;
2309 	}
2310 	*sgl = sg;
2311 	*nents = nent;
2312 	return 0;
2313 
2314 out:
2315 	while (i > 0) {
2316 		i--;
2317 		__free_page(sg_page(&sg[i]));
2318 	}
2319 	kfree(sg);
2320 	return -ENOMEM;
2321 }
2322 
2323 /*
2324  * Allocate any required resources to execute the command.  For writes we
2325  * might not have the payload yet, so notify the fabric via a call to
2326  * ->write_pending instead. Otherwise place it on the execution queue.
2327  */
2328 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2329 transport_generic_new_cmd(struct se_cmd *cmd)
2330 {
2331 	int ret = 0;
2332 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2333 
2334 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2335 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2336 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2337 				       cmd->prot_length, true);
2338 		if (ret < 0)
2339 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2340 	}
2341 
2342 	/*
2343 	 * Determine is the TCM fabric module has already allocated physical
2344 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2345 	 * beforehand.
2346 	 */
2347 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2348 	    cmd->data_length) {
2349 
2350 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2351 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2352 			u32 bidi_length;
2353 
2354 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2355 				bidi_length = cmd->t_task_nolb *
2356 					      cmd->se_dev->dev_attrib.block_size;
2357 			else
2358 				bidi_length = cmd->data_length;
2359 
2360 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2361 					       &cmd->t_bidi_data_nents,
2362 					       bidi_length, zero_flag);
2363 			if (ret < 0)
2364 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2365 		}
2366 
2367 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2368 				       cmd->data_length, zero_flag);
2369 		if (ret < 0)
2370 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2371 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2372 		    cmd->data_length) {
2373 		/*
2374 		 * Special case for COMPARE_AND_WRITE with fabrics
2375 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2376 		 */
2377 		u32 caw_length = cmd->t_task_nolb *
2378 				 cmd->se_dev->dev_attrib.block_size;
2379 
2380 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2381 				       &cmd->t_bidi_data_nents,
2382 				       caw_length, zero_flag);
2383 		if (ret < 0)
2384 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2385 	}
2386 	/*
2387 	 * If this command is not a write we can execute it right here,
2388 	 * for write buffers we need to notify the fabric driver first
2389 	 * and let it call back once the write buffers are ready.
2390 	 */
2391 	target_add_to_state_list(cmd);
2392 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2393 		target_execute_cmd(cmd);
2394 		return 0;
2395 	}
2396 	transport_cmd_check_stop(cmd, false, true);
2397 
2398 	ret = cmd->se_tfo->write_pending(cmd);
2399 	if (ret == -EAGAIN || ret == -ENOMEM)
2400 		goto queue_full;
2401 
2402 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2403 	WARN_ON(ret);
2404 
2405 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2406 
2407 queue_full:
2408 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2409 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2410 	transport_handle_queue_full(cmd, cmd->se_dev);
2411 	return 0;
2412 }
2413 EXPORT_SYMBOL(transport_generic_new_cmd);
2414 
transport_write_pending_qf(struct se_cmd * cmd)2415 static void transport_write_pending_qf(struct se_cmd *cmd)
2416 {
2417 	int ret;
2418 
2419 	ret = cmd->se_tfo->write_pending(cmd);
2420 	if (ret == -EAGAIN || ret == -ENOMEM) {
2421 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2422 			 cmd);
2423 		transport_handle_queue_full(cmd, cmd->se_dev);
2424 	}
2425 }
2426 
2427 static bool
2428 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2429 			   unsigned long *flags);
2430 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2431 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2432 {
2433 	unsigned long flags;
2434 
2435 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2436 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2437 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2438 }
2439 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2440 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2441 {
2442 	int ret = 0;
2443 	bool aborted = false, tas = false;
2444 
2445 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2446 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2447 			target_wait_free_cmd(cmd, &aborted, &tas);
2448 
2449 		if (!aborted || tas)
2450 			ret = transport_put_cmd(cmd);
2451 	} else {
2452 		if (wait_for_tasks)
2453 			target_wait_free_cmd(cmd, &aborted, &tas);
2454 		/*
2455 		 * Handle WRITE failure case where transport_generic_new_cmd()
2456 		 * has already added se_cmd to state_list, but fabric has
2457 		 * failed command before I/O submission.
2458 		 */
2459 		if (cmd->state_active)
2460 			target_remove_from_state_list(cmd);
2461 
2462 		if (cmd->se_lun)
2463 			transport_lun_remove_cmd(cmd);
2464 
2465 		if (!aborted || tas)
2466 			ret = transport_put_cmd(cmd);
2467 	}
2468 	/*
2469 	 * If the task has been internally aborted due to TMR ABORT_TASK
2470 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2471 	 * the remaining calls to target_put_sess_cmd(), and not the
2472 	 * callers of this function.
2473 	 */
2474 	if (aborted) {
2475 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2476 		wait_for_completion(&cmd->cmd_wait_comp);
2477 		cmd->se_tfo->release_cmd(cmd);
2478 		ret = 1;
2479 	}
2480 	return ret;
2481 }
2482 EXPORT_SYMBOL(transport_generic_free_cmd);
2483 
2484 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2485  * @se_cmd:	command descriptor to add
2486  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2487  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2488 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2489 {
2490 	struct se_session *se_sess = se_cmd->se_sess;
2491 	unsigned long flags;
2492 	int ret = 0;
2493 
2494 	/*
2495 	 * Add a second kref if the fabric caller is expecting to handle
2496 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2497 	 * invocations before se_cmd descriptor release.
2498 	 */
2499 	if (ack_kref)
2500 		kref_get(&se_cmd->cmd_kref);
2501 
2502 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2503 	if (se_sess->sess_tearing_down) {
2504 		ret = -ESHUTDOWN;
2505 		goto out;
2506 	}
2507 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2508 out:
2509 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2510 
2511 	if (ret && ack_kref)
2512 		target_put_sess_cmd(se_cmd);
2513 
2514 	return ret;
2515 }
2516 EXPORT_SYMBOL(target_get_sess_cmd);
2517 
target_free_cmd_mem(struct se_cmd * cmd)2518 static void target_free_cmd_mem(struct se_cmd *cmd)
2519 {
2520 	transport_free_pages(cmd);
2521 
2522 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2523 		core_tmr_release_req(cmd->se_tmr_req);
2524 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2525 		kfree(cmd->t_task_cdb);
2526 }
2527 
target_release_cmd_kref(struct kref * kref)2528 static void target_release_cmd_kref(struct kref *kref)
2529 {
2530 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2531 	struct se_session *se_sess = se_cmd->se_sess;
2532 	unsigned long flags;
2533 	bool fabric_stop;
2534 
2535 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2536 	if (list_empty(&se_cmd->se_cmd_list)) {
2537 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2538 		target_free_cmd_mem(se_cmd);
2539 		se_cmd->se_tfo->release_cmd(se_cmd);
2540 		return;
2541 	}
2542 
2543 	spin_lock(&se_cmd->t_state_lock);
2544 	fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2545 	spin_unlock(&se_cmd->t_state_lock);
2546 
2547 	if (se_cmd->cmd_wait_set || fabric_stop) {
2548 		list_del_init(&se_cmd->se_cmd_list);
2549 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2550 		target_free_cmd_mem(se_cmd);
2551 		complete(&se_cmd->cmd_wait_comp);
2552 		return;
2553 	}
2554 	list_del_init(&se_cmd->se_cmd_list);
2555 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2556 
2557 	target_free_cmd_mem(se_cmd);
2558 	se_cmd->se_tfo->release_cmd(se_cmd);
2559 }
2560 
2561 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2562  * @se_cmd:	command descriptor to drop
2563  */
target_put_sess_cmd(struct se_cmd * se_cmd)2564 int target_put_sess_cmd(struct se_cmd *se_cmd)
2565 {
2566 	struct se_session *se_sess = se_cmd->se_sess;
2567 
2568 	if (!se_sess) {
2569 		target_free_cmd_mem(se_cmd);
2570 		se_cmd->se_tfo->release_cmd(se_cmd);
2571 		return 1;
2572 	}
2573 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2574 }
2575 EXPORT_SYMBOL(target_put_sess_cmd);
2576 
2577 /* target_sess_cmd_list_set_waiting - Flag all commands in
2578  *         sess_cmd_list to complete cmd_wait_comp.  Set
2579  *         sess_tearing_down so no more commands are queued.
2580  * @se_sess:	session to flag
2581  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2582 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2583 {
2584 	struct se_cmd *se_cmd;
2585 	unsigned long flags;
2586 	int rc;
2587 
2588 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2589 	if (se_sess->sess_tearing_down) {
2590 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2591 		return;
2592 	}
2593 	se_sess->sess_tearing_down = 1;
2594 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2595 
2596 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2597 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2598 		if (rc) {
2599 			se_cmd->cmd_wait_set = 1;
2600 			spin_lock(&se_cmd->t_state_lock);
2601 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2602 			spin_unlock(&se_cmd->t_state_lock);
2603 		}
2604 	}
2605 
2606 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2607 }
2608 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2609 
2610 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2611  * @se_sess:    session to wait for active I/O
2612  */
target_wait_for_sess_cmds(struct se_session * se_sess)2613 void target_wait_for_sess_cmds(struct se_session *se_sess)
2614 {
2615 	struct se_cmd *se_cmd, *tmp_cmd;
2616 	unsigned long flags;
2617 	bool tas;
2618 
2619 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2620 				&se_sess->sess_wait_list, se_cmd_list) {
2621 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2622 			" %d\n", se_cmd, se_cmd->t_state,
2623 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2624 
2625 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2626 		tas = (se_cmd->transport_state & CMD_T_TAS);
2627 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2628 
2629 		if (!target_put_sess_cmd(se_cmd)) {
2630 			if (tas)
2631 				target_put_sess_cmd(se_cmd);
2632 		}
2633 
2634 		wait_for_completion(&se_cmd->cmd_wait_comp);
2635 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2636 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2637 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2638 
2639 		se_cmd->se_tfo->release_cmd(se_cmd);
2640 	}
2641 
2642 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2643 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2644 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2645 
2646 }
2647 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2648 
transport_clear_lun_ref(struct se_lun * lun)2649 void transport_clear_lun_ref(struct se_lun *lun)
2650 {
2651 	percpu_ref_kill(&lun->lun_ref);
2652 	wait_for_completion(&lun->lun_ref_comp);
2653 }
2654 
2655 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2656 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2657 			   bool *aborted, bool *tas, unsigned long *flags)
2658 	__releases(&cmd->t_state_lock)
2659 	__acquires(&cmd->t_state_lock)
2660 {
2661 
2662 	assert_spin_locked(&cmd->t_state_lock);
2663 	WARN_ON_ONCE(!irqs_disabled());
2664 
2665 	if (fabric_stop)
2666 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2667 
2668 	if (cmd->transport_state & CMD_T_ABORTED)
2669 		*aborted = true;
2670 
2671 	if (cmd->transport_state & CMD_T_TAS)
2672 		*tas = true;
2673 
2674 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2675 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2676 		return false;
2677 
2678 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2679 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2680 		return false;
2681 
2682 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2683 		return false;
2684 
2685 	if (fabric_stop && *aborted)
2686 		return false;
2687 
2688 	cmd->transport_state |= CMD_T_STOP;
2689 
2690 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2691 		 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2692 		 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2693 
2694 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2695 
2696 	wait_for_completion(&cmd->t_transport_stop_comp);
2697 
2698 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2699 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2700 
2701 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2702 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2703 
2704 	return true;
2705 }
2706 
2707 /**
2708  * transport_wait_for_tasks - wait for completion to occur
2709  * @cmd:	command to wait
2710  *
2711  * Called from frontend fabric context to wait for storage engine
2712  * to pause and/or release frontend generated struct se_cmd.
2713  */
transport_wait_for_tasks(struct se_cmd * cmd)2714 bool transport_wait_for_tasks(struct se_cmd *cmd)
2715 {
2716 	unsigned long flags;
2717 	bool ret, aborted = false, tas = false;
2718 
2719 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2720 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2721 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2722 
2723 	return ret;
2724 }
2725 EXPORT_SYMBOL(transport_wait_for_tasks);
2726 
2727 struct sense_info {
2728 	u8 key;
2729 	u8 asc;
2730 	u8 ascq;
2731 	bool add_sector_info;
2732 };
2733 
2734 static const struct sense_info sense_info_table[] = {
2735 	[TCM_NO_SENSE] = {
2736 		.key = NOT_READY
2737 	},
2738 	[TCM_NON_EXISTENT_LUN] = {
2739 		.key = ILLEGAL_REQUEST,
2740 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2741 	},
2742 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
2743 		.key = ILLEGAL_REQUEST,
2744 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2745 	},
2746 	[TCM_SECTOR_COUNT_TOO_MANY] = {
2747 		.key = ILLEGAL_REQUEST,
2748 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2749 	},
2750 	[TCM_UNKNOWN_MODE_PAGE] = {
2751 		.key = ILLEGAL_REQUEST,
2752 		.asc = 0x24, /* INVALID FIELD IN CDB */
2753 	},
2754 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
2755 		.key = ABORTED_COMMAND,
2756 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2757 		.ascq = 0x03,
2758 	},
2759 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
2760 		.key = ABORTED_COMMAND,
2761 		.asc = 0x0c, /* WRITE ERROR */
2762 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2763 	},
2764 	[TCM_INVALID_CDB_FIELD] = {
2765 		.key = ILLEGAL_REQUEST,
2766 		.asc = 0x24, /* INVALID FIELD IN CDB */
2767 	},
2768 	[TCM_INVALID_PARAMETER_LIST] = {
2769 		.key = ILLEGAL_REQUEST,
2770 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2771 	},
2772 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2773 		.key = ILLEGAL_REQUEST,
2774 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2775 	},
2776 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2777 		.key = ILLEGAL_REQUEST,
2778 		.asc = 0x0c, /* WRITE ERROR */
2779 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2780 	},
2781 	[TCM_SERVICE_CRC_ERROR] = {
2782 		.key = ABORTED_COMMAND,
2783 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2784 		.ascq = 0x05, /* N/A */
2785 	},
2786 	[TCM_SNACK_REJECTED] = {
2787 		.key = ABORTED_COMMAND,
2788 		.asc = 0x11, /* READ ERROR */
2789 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2790 	},
2791 	[TCM_WRITE_PROTECTED] = {
2792 		.key = DATA_PROTECT,
2793 		.asc = 0x27, /* WRITE PROTECTED */
2794 	},
2795 	[TCM_ADDRESS_OUT_OF_RANGE] = {
2796 		.key = ILLEGAL_REQUEST,
2797 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2798 	},
2799 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2800 		.key = UNIT_ATTENTION,
2801 	},
2802 	[TCM_CHECK_CONDITION_NOT_READY] = {
2803 		.key = NOT_READY,
2804 	},
2805 	[TCM_MISCOMPARE_VERIFY] = {
2806 		.key = MISCOMPARE,
2807 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2808 		.ascq = 0x00,
2809 	},
2810 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2811 		.key = ABORTED_COMMAND,
2812 		.asc = 0x10,
2813 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2814 		.add_sector_info = true,
2815 	},
2816 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2817 		.key = ABORTED_COMMAND,
2818 		.asc = 0x10,
2819 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2820 		.add_sector_info = true,
2821 	},
2822 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2823 		.key = ABORTED_COMMAND,
2824 		.asc = 0x10,
2825 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2826 		.add_sector_info = true,
2827 	},
2828 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2829 		/*
2830 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2831 		 * Solaris initiators.  Returning NOT READY instead means the
2832 		 * operations will be retried a finite number of times and we
2833 		 * can survive intermittent errors.
2834 		 */
2835 		.key = NOT_READY,
2836 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2837 	},
2838 };
2839 
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)2840 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2841 {
2842 	const struct sense_info *si;
2843 	u8 *buffer = cmd->sense_buffer;
2844 	int r = (__force int)reason;
2845 	u8 asc, ascq;
2846 	bool desc_format = target_sense_desc_format(cmd->se_dev);
2847 
2848 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2849 		si = &sense_info_table[r];
2850 	else
2851 		si = &sense_info_table[(__force int)
2852 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2853 
2854 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2855 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2856 		WARN_ON_ONCE(asc == 0);
2857 	} else if (si->asc == 0) {
2858 		WARN_ON_ONCE(cmd->scsi_asc == 0);
2859 		asc = cmd->scsi_asc;
2860 		ascq = cmd->scsi_ascq;
2861 	} else {
2862 		asc = si->asc;
2863 		ascq = si->ascq;
2864 	}
2865 
2866 	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2867 	if (si->add_sector_info)
2868 		return scsi_set_sense_information(buffer,
2869 						  cmd->scsi_sense_length,
2870 						  cmd->bad_sector);
2871 
2872 	return 0;
2873 }
2874 
2875 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)2876 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2877 		sense_reason_t reason, int from_transport)
2878 {
2879 	unsigned long flags;
2880 
2881 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2882 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2883 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2884 		return 0;
2885 	}
2886 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2887 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2888 
2889 	if (!from_transport) {
2890 		int rc;
2891 
2892 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2893 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2894 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2895 		rc = translate_sense_reason(cmd, reason);
2896 		if (rc)
2897 			return rc;
2898 	}
2899 
2900 	trace_target_cmd_complete(cmd);
2901 	return cmd->se_tfo->queue_status(cmd);
2902 }
2903 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2904 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)2905 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2906 	__releases(&cmd->t_state_lock)
2907 	__acquires(&cmd->t_state_lock)
2908 {
2909 	assert_spin_locked(&cmd->t_state_lock);
2910 	WARN_ON_ONCE(!irqs_disabled());
2911 
2912 	if (!(cmd->transport_state & CMD_T_ABORTED))
2913 		return 0;
2914 	/*
2915 	 * If cmd has been aborted but either no status is to be sent or it has
2916 	 * already been sent, just return
2917 	 */
2918 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2919 		if (send_status)
2920 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2921 		return 1;
2922 	}
2923 
2924 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2925 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2926 
2927 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2928 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2929 	trace_target_cmd_complete(cmd);
2930 
2931 	spin_unlock_irq(&cmd->t_state_lock);
2932 	cmd->se_tfo->queue_status(cmd);
2933 	spin_lock_irq(&cmd->t_state_lock);
2934 
2935 	return 1;
2936 }
2937 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)2938 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2939 {
2940 	int ret;
2941 
2942 	spin_lock_irq(&cmd->t_state_lock);
2943 	ret = __transport_check_aborted_status(cmd, send_status);
2944 	spin_unlock_irq(&cmd->t_state_lock);
2945 
2946 	return ret;
2947 }
2948 EXPORT_SYMBOL(transport_check_aborted_status);
2949 
transport_send_task_abort(struct se_cmd * cmd)2950 void transport_send_task_abort(struct se_cmd *cmd)
2951 {
2952 	unsigned long flags;
2953 
2954 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2955 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2956 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2957 		return;
2958 	}
2959 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2960 
2961 	/*
2962 	 * If there are still expected incoming fabric WRITEs, we wait
2963 	 * until until they have completed before sending a TASK_ABORTED
2964 	 * response.  This response with TASK_ABORTED status will be
2965 	 * queued back to fabric module by transport_check_aborted_status().
2966 	 */
2967 	if (cmd->data_direction == DMA_TO_DEVICE) {
2968 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2969 			spin_lock_irqsave(&cmd->t_state_lock, flags);
2970 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
2971 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2972 				goto send_abort;
2973 			}
2974 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2975 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2976 			return;
2977 		}
2978 	}
2979 send_abort:
2980 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2981 
2982 	transport_lun_remove_cmd(cmd);
2983 
2984 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
2985 		 cmd->t_task_cdb[0], cmd->tag);
2986 
2987 	trace_target_cmd_complete(cmd);
2988 	cmd->se_tfo->queue_status(cmd);
2989 }
2990 
target_tmr_work(struct work_struct * work)2991 static void target_tmr_work(struct work_struct *work)
2992 {
2993 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2994 	struct se_device *dev = cmd->se_dev;
2995 	struct se_tmr_req *tmr = cmd->se_tmr_req;
2996 	unsigned long flags;
2997 	int ret;
2998 
2999 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3000 	if (cmd->transport_state & CMD_T_ABORTED) {
3001 		tmr->response = TMR_FUNCTION_REJECTED;
3002 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3003 		goto check_stop;
3004 	}
3005 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3006 
3007 	switch (tmr->function) {
3008 	case TMR_ABORT_TASK:
3009 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3010 		break;
3011 	case TMR_ABORT_TASK_SET:
3012 	case TMR_CLEAR_ACA:
3013 	case TMR_CLEAR_TASK_SET:
3014 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3015 		break;
3016 	case TMR_LUN_RESET:
3017 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3018 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3019 					 TMR_FUNCTION_REJECTED;
3020 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3021 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3022 					       cmd->orig_fe_lun, 0x29,
3023 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3024 		}
3025 		break;
3026 	case TMR_TARGET_WARM_RESET:
3027 		tmr->response = TMR_FUNCTION_REJECTED;
3028 		break;
3029 	case TMR_TARGET_COLD_RESET:
3030 		tmr->response = TMR_FUNCTION_REJECTED;
3031 		break;
3032 	default:
3033 		pr_err("Uknown TMR function: 0x%02x.\n",
3034 				tmr->function);
3035 		tmr->response = TMR_FUNCTION_REJECTED;
3036 		break;
3037 	}
3038 
3039 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3040 	if (cmd->transport_state & CMD_T_ABORTED) {
3041 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3042 		goto check_stop;
3043 	}
3044 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3045 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3046 
3047 	cmd->se_tfo->queue_tm_rsp(cmd);
3048 
3049 check_stop:
3050 	transport_cmd_check_stop_to_fabric(cmd);
3051 }
3052 
transport_generic_handle_tmr(struct se_cmd * cmd)3053 int transport_generic_handle_tmr(
3054 	struct se_cmd *cmd)
3055 {
3056 	unsigned long flags;
3057 
3058 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3059 	cmd->transport_state |= CMD_T_ACTIVE;
3060 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3061 
3062 	INIT_WORK(&cmd->work, target_tmr_work);
3063 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3064 	return 0;
3065 }
3066 EXPORT_SYMBOL(transport_generic_handle_tmr);
3067 
3068 bool
target_check_wce(struct se_device * dev)3069 target_check_wce(struct se_device *dev)
3070 {
3071 	bool wce = false;
3072 
3073 	if (dev->transport->get_write_cache)
3074 		wce = dev->transport->get_write_cache(dev);
3075 	else if (dev->dev_attrib.emulate_write_cache > 0)
3076 		wce = true;
3077 
3078 	return wce;
3079 }
3080 
3081 bool
target_check_fua(struct se_device * dev)3082 target_check_fua(struct se_device *dev)
3083 {
3084 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3085 }
3086