1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #ifdef CONFIG_NET_RX_BUSY_POLL
47 #include <net/busy_poll.h>
48 #endif /* CONFIG_NET_RX_BUSY_POLL */
49 #ifdef CONFIG_CHELSIO_T4_FCOE
50 #include <scsi/fc/fc_fcoe.h>
51 #endif /* CONFIG_CHELSIO_T4_FCOE */
52 #include "cxgb4.h"
53 #include "t4_regs.h"
54 #include "t4_values.h"
55 #include "t4_msg.h"
56 #include "t4fw_api.h"
57
58 /*
59 * Rx buffer size. We use largish buffers if possible but settle for single
60 * pages under memory shortage.
61 */
62 #if PAGE_SHIFT >= 16
63 # define FL_PG_ORDER 0
64 #else
65 # define FL_PG_ORDER (16 - PAGE_SHIFT)
66 #endif
67
68 /* RX_PULL_LEN should be <= RX_COPY_THRES */
69 #define RX_COPY_THRES 256
70 #define RX_PULL_LEN 128
71
72 /*
73 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
74 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
75 */
76 #define RX_PKT_SKB_LEN 512
77
78 /*
79 * Max number of Tx descriptors we clean up at a time. Should be modest as
80 * freeing skbs isn't cheap and it happens while holding locks. We just need
81 * to free packets faster than they arrive, we eventually catch up and keep
82 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
83 */
84 #define MAX_TX_RECLAIM 16
85
86 /*
87 * Max number of Rx buffers we replenish at a time. Again keep this modest,
88 * allocating buffers isn't cheap either.
89 */
90 #define MAX_RX_REFILL 16U
91
92 /*
93 * Period of the Rx queue check timer. This timer is infrequent as it has
94 * something to do only when the system experiences severe memory shortage.
95 */
96 #define RX_QCHECK_PERIOD (HZ / 2)
97
98 /*
99 * Period of the Tx queue check timer.
100 */
101 #define TX_QCHECK_PERIOD (HZ / 2)
102
103 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
104 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
105 * State Machines in the same state for this amount of time (in HZ) then we'll
106 * issue a warning about a potential hang. We'll repeat the warning as the
107 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
108 * the situation clears. If the situation clears, we'll note that as well.
109 */
110 #define SGE_IDMA_WARN_THRESH (1 * HZ)
111 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
112
113 /*
114 * Max number of Tx descriptors to be reclaimed by the Tx timer.
115 */
116 #define MAX_TIMER_TX_RECLAIM 100
117
118 /*
119 * Timer index used when backing off due to memory shortage.
120 */
121 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
122
123 /*
124 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
125 * This is the same as calc_tx_descs() for a TSO packet with
126 * nr_frags == MAX_SKB_FRAGS.
127 */
128 #define ETHTXQ_STOP_THRES \
129 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
130
131 /*
132 * Suspension threshold for non-Ethernet Tx queues. We require enough room
133 * for a full sized WR.
134 */
135 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
136
137 /*
138 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
139 * into a WR.
140 */
141 #define MAX_IMM_TX_PKT_LEN 256
142
143 /*
144 * Max size of a WR sent through a control Tx queue.
145 */
146 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
147
148 struct tx_sw_desc { /* SW state per Tx descriptor */
149 struct sk_buff *skb;
150 struct ulptx_sgl *sgl;
151 };
152
153 struct rx_sw_desc { /* SW state per Rx descriptor */
154 struct page *page;
155 dma_addr_t dma_addr;
156 };
157
158 /*
159 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
160 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
161 * We could easily support more but there doesn't seem to be much need for
162 * that ...
163 */
164 #define FL_MTU_SMALL 1500
165 #define FL_MTU_LARGE 9000
166
fl_mtu_bufsize(struct adapter * adapter,unsigned int mtu)167 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
168 unsigned int mtu)
169 {
170 struct sge *s = &adapter->sge;
171
172 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
173 }
174
175 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
176 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
177
178 /*
179 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
180 * these to specify the buffer size as an index into the SGE Free List Buffer
181 * Size register array. We also use bit 4, when the buffer has been unmapped
182 * for DMA, but this is of course never sent to the hardware and is only used
183 * to prevent double unmappings. All of the above requires that the Free List
184 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
185 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
186 * Free List Buffer alignment is 32 bytes, this works out for us ...
187 */
188 enum {
189 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
190 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
191 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
192
193 /*
194 * XXX We shouldn't depend on being able to use these indices.
195 * XXX Especially when some other Master PF has initialized the
196 * XXX adapter or we use the Firmware Configuration File. We
197 * XXX should really search through the Host Buffer Size register
198 * XXX array for the appropriately sized buffer indices.
199 */
200 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
201 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
202
203 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
204 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
205 };
206
207 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
208 #define MIN_NAPI_WORK 1
209
get_buf_addr(const struct rx_sw_desc * d)210 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
211 {
212 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
213 }
214
is_buf_mapped(const struct rx_sw_desc * d)215 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
216 {
217 return !(d->dma_addr & RX_UNMAPPED_BUF);
218 }
219
220 /**
221 * txq_avail - return the number of available slots in a Tx queue
222 * @q: the Tx queue
223 *
224 * Returns the number of descriptors in a Tx queue available to write new
225 * packets.
226 */
txq_avail(const struct sge_txq * q)227 static inline unsigned int txq_avail(const struct sge_txq *q)
228 {
229 return q->size - 1 - q->in_use;
230 }
231
232 /**
233 * fl_cap - return the capacity of a free-buffer list
234 * @fl: the FL
235 *
236 * Returns the capacity of a free-buffer list. The capacity is less than
237 * the size because one descriptor needs to be left unpopulated, otherwise
238 * HW will think the FL is empty.
239 */
fl_cap(const struct sge_fl * fl)240 static inline unsigned int fl_cap(const struct sge_fl *fl)
241 {
242 return fl->size - 8; /* 1 descriptor = 8 buffers */
243 }
244
245 /**
246 * fl_starving - return whether a Free List is starving.
247 * @adapter: pointer to the adapter
248 * @fl: the Free List
249 *
250 * Tests specified Free List to see whether the number of buffers
251 * available to the hardware has falled below our "starvation"
252 * threshold.
253 */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)254 static inline bool fl_starving(const struct adapter *adapter,
255 const struct sge_fl *fl)
256 {
257 const struct sge *s = &adapter->sge;
258
259 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
260 }
261
map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)262 static int map_skb(struct device *dev, const struct sk_buff *skb,
263 dma_addr_t *addr)
264 {
265 const skb_frag_t *fp, *end;
266 const struct skb_shared_info *si;
267
268 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
269 if (dma_mapping_error(dev, *addr))
270 goto out_err;
271
272 si = skb_shinfo(skb);
273 end = &si->frags[si->nr_frags];
274
275 for (fp = si->frags; fp < end; fp++) {
276 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
277 DMA_TO_DEVICE);
278 if (dma_mapping_error(dev, *addr))
279 goto unwind;
280 }
281 return 0;
282
283 unwind:
284 while (fp-- > si->frags)
285 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
286
287 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
288 out_err:
289 return -ENOMEM;
290 }
291
292 #ifdef CONFIG_NEED_DMA_MAP_STATE
unmap_skb(struct device * dev,const struct sk_buff * skb,const dma_addr_t * addr)293 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
294 const dma_addr_t *addr)
295 {
296 const skb_frag_t *fp, *end;
297 const struct skb_shared_info *si;
298
299 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
300
301 si = skb_shinfo(skb);
302 end = &si->frags[si->nr_frags];
303 for (fp = si->frags; fp < end; fp++)
304 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
305 }
306
307 /**
308 * deferred_unmap_destructor - unmap a packet when it is freed
309 * @skb: the packet
310 *
311 * This is the packet destructor used for Tx packets that need to remain
312 * mapped until they are freed rather than until their Tx descriptors are
313 * freed.
314 */
deferred_unmap_destructor(struct sk_buff * skb)315 static void deferred_unmap_destructor(struct sk_buff *skb)
316 {
317 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
318 }
319 #endif
320
unmap_sgl(struct device * dev,const struct sk_buff * skb,const struct ulptx_sgl * sgl,const struct sge_txq * q)321 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
322 const struct ulptx_sgl *sgl, const struct sge_txq *q)
323 {
324 const struct ulptx_sge_pair *p;
325 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
326
327 if (likely(skb_headlen(skb)))
328 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
329 DMA_TO_DEVICE);
330 else {
331 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
332 DMA_TO_DEVICE);
333 nfrags--;
334 }
335
336 /*
337 * the complexity below is because of the possibility of a wrap-around
338 * in the middle of an SGL
339 */
340 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
341 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
342 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
343 ntohl(p->len[0]), DMA_TO_DEVICE);
344 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
345 ntohl(p->len[1]), DMA_TO_DEVICE);
346 p++;
347 } else if ((u8 *)p == (u8 *)q->stat) {
348 p = (const struct ulptx_sge_pair *)q->desc;
349 goto unmap;
350 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
351 const __be64 *addr = (const __be64 *)q->desc;
352
353 dma_unmap_page(dev, be64_to_cpu(addr[0]),
354 ntohl(p->len[0]), DMA_TO_DEVICE);
355 dma_unmap_page(dev, be64_to_cpu(addr[1]),
356 ntohl(p->len[1]), DMA_TO_DEVICE);
357 p = (const struct ulptx_sge_pair *)&addr[2];
358 } else {
359 const __be64 *addr = (const __be64 *)q->desc;
360
361 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
362 ntohl(p->len[0]), DMA_TO_DEVICE);
363 dma_unmap_page(dev, be64_to_cpu(addr[0]),
364 ntohl(p->len[1]), DMA_TO_DEVICE);
365 p = (const struct ulptx_sge_pair *)&addr[1];
366 }
367 }
368 if (nfrags) {
369 __be64 addr;
370
371 if ((u8 *)p == (u8 *)q->stat)
372 p = (const struct ulptx_sge_pair *)q->desc;
373 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
374 *(const __be64 *)q->desc;
375 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
376 DMA_TO_DEVICE);
377 }
378 }
379
380 /**
381 * free_tx_desc - reclaims Tx descriptors and their buffers
382 * @adapter: the adapter
383 * @q: the Tx queue to reclaim descriptors from
384 * @n: the number of descriptors to reclaim
385 * @unmap: whether the buffers should be unmapped for DMA
386 *
387 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
388 * Tx buffers. Called with the Tx queue lock held.
389 */
free_tx_desc(struct adapter * adap,struct sge_txq * q,unsigned int n,bool unmap)390 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
391 unsigned int n, bool unmap)
392 {
393 struct tx_sw_desc *d;
394 unsigned int cidx = q->cidx;
395 struct device *dev = adap->pdev_dev;
396
397 d = &q->sdesc[cidx];
398 while (n--) {
399 if (d->skb) { /* an SGL is present */
400 if (unmap)
401 unmap_sgl(dev, d->skb, d->sgl, q);
402 dev_consume_skb_any(d->skb);
403 d->skb = NULL;
404 }
405 ++d;
406 if (++cidx == q->size) {
407 cidx = 0;
408 d = q->sdesc;
409 }
410 }
411 q->cidx = cidx;
412 }
413
414 /*
415 * Return the number of reclaimable descriptors in a Tx queue.
416 */
reclaimable(const struct sge_txq * q)417 static inline int reclaimable(const struct sge_txq *q)
418 {
419 int hw_cidx = ntohs(q->stat->cidx);
420 hw_cidx -= q->cidx;
421 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
422 }
423
424 /**
425 * reclaim_completed_tx - reclaims completed Tx descriptors
426 * @adap: the adapter
427 * @q: the Tx queue to reclaim completed descriptors from
428 * @unmap: whether the buffers should be unmapped for DMA
429 *
430 * Reclaims Tx descriptors that the SGE has indicated it has processed,
431 * and frees the associated buffers if possible. Called with the Tx
432 * queue locked.
433 */
reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,bool unmap)434 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
435 bool unmap)
436 {
437 int avail = reclaimable(q);
438
439 if (avail) {
440 /*
441 * Limit the amount of clean up work we do at a time to keep
442 * the Tx lock hold time O(1).
443 */
444 if (avail > MAX_TX_RECLAIM)
445 avail = MAX_TX_RECLAIM;
446
447 free_tx_desc(adap, q, avail, unmap);
448 q->in_use -= avail;
449 }
450 }
451
get_buf_size(struct adapter * adapter,const struct rx_sw_desc * d)452 static inline int get_buf_size(struct adapter *adapter,
453 const struct rx_sw_desc *d)
454 {
455 struct sge *s = &adapter->sge;
456 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
457 int buf_size;
458
459 switch (rx_buf_size_idx) {
460 case RX_SMALL_PG_BUF:
461 buf_size = PAGE_SIZE;
462 break;
463
464 case RX_LARGE_PG_BUF:
465 buf_size = PAGE_SIZE << s->fl_pg_order;
466 break;
467
468 case RX_SMALL_MTU_BUF:
469 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
470 break;
471
472 case RX_LARGE_MTU_BUF:
473 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
474 break;
475
476 default:
477 BUG_ON(1);
478 }
479
480 return buf_size;
481 }
482
483 /**
484 * free_rx_bufs - free the Rx buffers on an SGE free list
485 * @adap: the adapter
486 * @q: the SGE free list to free buffers from
487 * @n: how many buffers to free
488 *
489 * Release the next @n buffers on an SGE free-buffer Rx queue. The
490 * buffers must be made inaccessible to HW before calling this function.
491 */
free_rx_bufs(struct adapter * adap,struct sge_fl * q,int n)492 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
493 {
494 while (n--) {
495 struct rx_sw_desc *d = &q->sdesc[q->cidx];
496
497 if (is_buf_mapped(d))
498 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
499 get_buf_size(adap, d),
500 PCI_DMA_FROMDEVICE);
501 put_page(d->page);
502 d->page = NULL;
503 if (++q->cidx == q->size)
504 q->cidx = 0;
505 q->avail--;
506 }
507 }
508
509 /**
510 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
511 * @adap: the adapter
512 * @q: the SGE free list
513 *
514 * Unmap the current buffer on an SGE free-buffer Rx queue. The
515 * buffer must be made inaccessible to HW before calling this function.
516 *
517 * This is similar to @free_rx_bufs above but does not free the buffer.
518 * Do note that the FL still loses any further access to the buffer.
519 */
unmap_rx_buf(struct adapter * adap,struct sge_fl * q)520 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
521 {
522 struct rx_sw_desc *d = &q->sdesc[q->cidx];
523
524 if (is_buf_mapped(d))
525 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
526 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
527 d->page = NULL;
528 if (++q->cidx == q->size)
529 q->cidx = 0;
530 q->avail--;
531 }
532
ring_fl_db(struct adapter * adap,struct sge_fl * q)533 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
534 {
535 u32 val;
536 if (q->pend_cred >= 8) {
537 if (is_t4(adap->params.chip))
538 val = PIDX_V(q->pend_cred / 8);
539 else
540 val = PIDX_T5_V(q->pend_cred / 8) |
541 DBTYPE_F;
542 val |= DBPRIO_F;
543 wmb();
544
545 /* If we don't have access to the new User Doorbell (T5+), use
546 * the old doorbell mechanism; otherwise use the new BAR2
547 * mechanism.
548 */
549 if (unlikely(q->bar2_addr == NULL)) {
550 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
551 val | QID_V(q->cntxt_id));
552 } else {
553 writel(val | QID_V(q->bar2_qid),
554 q->bar2_addr + SGE_UDB_KDOORBELL);
555
556 /* This Write memory Barrier will force the write to
557 * the User Doorbell area to be flushed.
558 */
559 wmb();
560 }
561 q->pend_cred &= 7;
562 }
563 }
564
set_rx_sw_desc(struct rx_sw_desc * sd,struct page * pg,dma_addr_t mapping)565 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
566 dma_addr_t mapping)
567 {
568 sd->page = pg;
569 sd->dma_addr = mapping; /* includes size low bits */
570 }
571
572 /**
573 * refill_fl - refill an SGE Rx buffer ring
574 * @adap: the adapter
575 * @q: the ring to refill
576 * @n: the number of new buffers to allocate
577 * @gfp: the gfp flags for the allocations
578 *
579 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
580 * allocated with the supplied gfp flags. The caller must assure that
581 * @n does not exceed the queue's capacity. If afterwards the queue is
582 * found critically low mark it as starving in the bitmap of starving FLs.
583 *
584 * Returns the number of buffers allocated.
585 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)586 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
587 gfp_t gfp)
588 {
589 struct sge *s = &adap->sge;
590 struct page *pg;
591 dma_addr_t mapping;
592 unsigned int cred = q->avail;
593 __be64 *d = &q->desc[q->pidx];
594 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
595 int node;
596
597 gfp |= __GFP_NOWARN;
598 node = dev_to_node(adap->pdev_dev);
599
600 if (s->fl_pg_order == 0)
601 goto alloc_small_pages;
602
603 /*
604 * Prefer large buffers
605 */
606 while (n) {
607 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
608 if (unlikely(!pg)) {
609 q->large_alloc_failed++;
610 break; /* fall back to single pages */
611 }
612
613 mapping = dma_map_page(adap->pdev_dev, pg, 0,
614 PAGE_SIZE << s->fl_pg_order,
615 PCI_DMA_FROMDEVICE);
616 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
617 __free_pages(pg, s->fl_pg_order);
618 goto out; /* do not try small pages for this error */
619 }
620 mapping |= RX_LARGE_PG_BUF;
621 *d++ = cpu_to_be64(mapping);
622
623 set_rx_sw_desc(sd, pg, mapping);
624 sd++;
625
626 q->avail++;
627 if (++q->pidx == q->size) {
628 q->pidx = 0;
629 sd = q->sdesc;
630 d = q->desc;
631 }
632 n--;
633 }
634
635 alloc_small_pages:
636 while (n--) {
637 pg = alloc_pages_node(node, gfp, 0);
638 if (unlikely(!pg)) {
639 q->alloc_failed++;
640 break;
641 }
642
643 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
644 PCI_DMA_FROMDEVICE);
645 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
646 put_page(pg);
647 goto out;
648 }
649 *d++ = cpu_to_be64(mapping);
650
651 set_rx_sw_desc(sd, pg, mapping);
652 sd++;
653
654 q->avail++;
655 if (++q->pidx == q->size) {
656 q->pidx = 0;
657 sd = q->sdesc;
658 d = q->desc;
659 }
660 }
661
662 out: cred = q->avail - cred;
663 q->pend_cred += cred;
664 ring_fl_db(adap, q);
665
666 if (unlikely(fl_starving(adap, q))) {
667 smp_wmb();
668 set_bit(q->cntxt_id - adap->sge.egr_start,
669 adap->sge.starving_fl);
670 }
671
672 return cred;
673 }
674
__refill_fl(struct adapter * adap,struct sge_fl * fl)675 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
676 {
677 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
678 GFP_ATOMIC);
679 }
680
681 /**
682 * alloc_ring - allocate resources for an SGE descriptor ring
683 * @dev: the PCI device's core device
684 * @nelem: the number of descriptors
685 * @elem_size: the size of each descriptor
686 * @sw_size: the size of the SW state associated with each ring element
687 * @phys: the physical address of the allocated ring
688 * @metadata: address of the array holding the SW state for the ring
689 * @stat_size: extra space in HW ring for status information
690 * @node: preferred node for memory allocations
691 *
692 * Allocates resources for an SGE descriptor ring, such as Tx queues,
693 * free buffer lists, or response queues. Each SGE ring requires
694 * space for its HW descriptors plus, optionally, space for the SW state
695 * associated with each HW entry (the metadata). The function returns
696 * three values: the virtual address for the HW ring (the return value
697 * of the function), the bus address of the HW ring, and the address
698 * of the SW ring.
699 */
alloc_ring(struct device * dev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata,size_t stat_size,int node)700 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
701 size_t sw_size, dma_addr_t *phys, void *metadata,
702 size_t stat_size, int node)
703 {
704 size_t len = nelem * elem_size + stat_size;
705 void *s = NULL;
706 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
707
708 if (!p)
709 return NULL;
710 if (sw_size) {
711 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
712
713 if (!s) {
714 dma_free_coherent(dev, len, p, *phys);
715 return NULL;
716 }
717 }
718 if (metadata)
719 *(void **)metadata = s;
720 memset(p, 0, len);
721 return p;
722 }
723
724 /**
725 * sgl_len - calculates the size of an SGL of the given capacity
726 * @n: the number of SGL entries
727 *
728 * Calculates the number of flits needed for a scatter/gather list that
729 * can hold the given number of entries.
730 */
sgl_len(unsigned int n)731 static inline unsigned int sgl_len(unsigned int n)
732 {
733 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
734 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
735 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
736 * repeated sequences of { Length[i], Length[i+1], Address[i],
737 * Address[i+1] } (this ensures that all addresses are on 64-bit
738 * boundaries). If N is even, then Length[N+1] should be set to 0 and
739 * Address[N+1] is omitted.
740 *
741 * The following calculation incorporates all of the above. It's
742 * somewhat hard to follow but, briefly: the "+2" accounts for the
743 * first two flits which include the DSGL header, Length0 and
744 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
745 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
746 * finally the "+((n-1)&1)" adds the one remaining flit needed if
747 * (n-1) is odd ...
748 */
749 n--;
750 return (3 * n) / 2 + (n & 1) + 2;
751 }
752
753 /**
754 * flits_to_desc - returns the num of Tx descriptors for the given flits
755 * @n: the number of flits
756 *
757 * Returns the number of Tx descriptors needed for the supplied number
758 * of flits.
759 */
flits_to_desc(unsigned int n)760 static inline unsigned int flits_to_desc(unsigned int n)
761 {
762 BUG_ON(n > SGE_MAX_WR_LEN / 8);
763 return DIV_ROUND_UP(n, 8);
764 }
765
766 /**
767 * is_eth_imm - can an Ethernet packet be sent as immediate data?
768 * @skb: the packet
769 *
770 * Returns whether an Ethernet packet is small enough to fit as
771 * immediate data. Return value corresponds to headroom required.
772 */
is_eth_imm(const struct sk_buff * skb)773 static inline int is_eth_imm(const struct sk_buff *skb)
774 {
775 int hdrlen = skb_shinfo(skb)->gso_size ?
776 sizeof(struct cpl_tx_pkt_lso_core) : 0;
777
778 hdrlen += sizeof(struct cpl_tx_pkt);
779 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
780 return hdrlen;
781 return 0;
782 }
783
784 /**
785 * calc_tx_flits - calculate the number of flits for a packet Tx WR
786 * @skb: the packet
787 *
788 * Returns the number of flits needed for a Tx WR for the given Ethernet
789 * packet, including the needed WR and CPL headers.
790 */
calc_tx_flits(const struct sk_buff * skb)791 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
792 {
793 unsigned int flits;
794 int hdrlen = is_eth_imm(skb);
795
796 /* If the skb is small enough, we can pump it out as a work request
797 * with only immediate data. In that case we just have to have the
798 * TX Packet header plus the skb data in the Work Request.
799 */
800
801 if (hdrlen)
802 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
803
804 /* Otherwise, we're going to have to construct a Scatter gather list
805 * of the skb body and fragments. We also include the flits necessary
806 * for the TX Packet Work Request and CPL. We always have a firmware
807 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
808 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
809 * message or, if we're doing a Large Send Offload, an LSO CPL message
810 * with an embedded TX Packet Write CPL message.
811 */
812 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
813 if (skb_shinfo(skb)->gso_size)
814 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
815 sizeof(struct cpl_tx_pkt_lso_core) +
816 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
817 else
818 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
819 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
820 return flits;
821 }
822
823 /**
824 * calc_tx_descs - calculate the number of Tx descriptors for a packet
825 * @skb: the packet
826 *
827 * Returns the number of Tx descriptors needed for the given Ethernet
828 * packet, including the needed WR and CPL headers.
829 */
calc_tx_descs(const struct sk_buff * skb)830 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
831 {
832 return flits_to_desc(calc_tx_flits(skb));
833 }
834
835 /**
836 * write_sgl - populate a scatter/gather list for a packet
837 * @skb: the packet
838 * @q: the Tx queue we are writing into
839 * @sgl: starting location for writing the SGL
840 * @end: points right after the end of the SGL
841 * @start: start offset into skb main-body data to include in the SGL
842 * @addr: the list of bus addresses for the SGL elements
843 *
844 * Generates a gather list for the buffers that make up a packet.
845 * The caller must provide adequate space for the SGL that will be written.
846 * The SGL includes all of the packet's page fragments and the data in its
847 * main body except for the first @start bytes. @sgl must be 16-byte
848 * aligned and within a Tx descriptor with available space. @end points
849 * right after the end of the SGL but does not account for any potential
850 * wrap around, i.e., @end > @sgl.
851 */
write_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)852 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
853 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
854 const dma_addr_t *addr)
855 {
856 unsigned int i, len;
857 struct ulptx_sge_pair *to;
858 const struct skb_shared_info *si = skb_shinfo(skb);
859 unsigned int nfrags = si->nr_frags;
860 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
861
862 len = skb_headlen(skb) - start;
863 if (likely(len)) {
864 sgl->len0 = htonl(len);
865 sgl->addr0 = cpu_to_be64(addr[0] + start);
866 nfrags++;
867 } else {
868 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
869 sgl->addr0 = cpu_to_be64(addr[1]);
870 }
871
872 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
873 ULPTX_NSGE_V(nfrags));
874 if (likely(--nfrags == 0))
875 return;
876 /*
877 * Most of the complexity below deals with the possibility we hit the
878 * end of the queue in the middle of writing the SGL. For this case
879 * only we create the SGL in a temporary buffer and then copy it.
880 */
881 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
882
883 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
884 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
885 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
886 to->addr[0] = cpu_to_be64(addr[i]);
887 to->addr[1] = cpu_to_be64(addr[++i]);
888 }
889 if (nfrags) {
890 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
891 to->len[1] = cpu_to_be32(0);
892 to->addr[0] = cpu_to_be64(addr[i + 1]);
893 }
894 if (unlikely((u8 *)end > (u8 *)q->stat)) {
895 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
896
897 if (likely(part0))
898 memcpy(sgl->sge, buf, part0);
899 part1 = (u8 *)end - (u8 *)q->stat;
900 memcpy(q->desc, (u8 *)buf + part0, part1);
901 end = (void *)q->desc + part1;
902 }
903 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
904 *end = 0;
905 }
906
907 /* This function copies 64 byte coalesced work request to
908 * memory mapped BAR2 space. For coalesced WR SGE fetches
909 * data from the FIFO instead of from Host.
910 */
cxgb_pio_copy(u64 __iomem * dst,u64 * src)911 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
912 {
913 int count = 8;
914
915 while (count) {
916 writeq(*src, dst);
917 src++;
918 dst++;
919 count--;
920 }
921 }
922
923 /**
924 * ring_tx_db - check and potentially ring a Tx queue's doorbell
925 * @adap: the adapter
926 * @q: the Tx queue
927 * @n: number of new descriptors to give to HW
928 *
929 * Ring the doorbel for a Tx queue.
930 */
ring_tx_db(struct adapter * adap,struct sge_txq * q,int n)931 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
932 {
933 wmb(); /* write descriptors before telling HW */
934
935 /* If we don't have access to the new User Doorbell (T5+), use the old
936 * doorbell mechanism; otherwise use the new BAR2 mechanism.
937 */
938 if (unlikely(q->bar2_addr == NULL)) {
939 u32 val = PIDX_V(n);
940 unsigned long flags;
941
942 /* For T4 we need to participate in the Doorbell Recovery
943 * mechanism.
944 */
945 spin_lock_irqsave(&q->db_lock, flags);
946 if (!q->db_disabled)
947 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
948 QID_V(q->cntxt_id) | val);
949 else
950 q->db_pidx_inc += n;
951 q->db_pidx = q->pidx;
952 spin_unlock_irqrestore(&q->db_lock, flags);
953 } else {
954 u32 val = PIDX_T5_V(n);
955
956 /* T4 and later chips share the same PIDX field offset within
957 * the doorbell, but T5 and later shrank the field in order to
958 * gain a bit for Doorbell Priority. The field was absurdly
959 * large in the first place (14 bits) so we just use the T5
960 * and later limits and warn if a Queue ID is too large.
961 */
962 WARN_ON(val & DBPRIO_F);
963
964 /* If we're only writing a single TX Descriptor and we can use
965 * Inferred QID registers, we can use the Write Combining
966 * Gather Buffer; otherwise we use the simple doorbell.
967 */
968 if (n == 1 && q->bar2_qid == 0) {
969 int index = (q->pidx
970 ? (q->pidx - 1)
971 : (q->size - 1));
972 u64 *wr = (u64 *)&q->desc[index];
973
974 cxgb_pio_copy((u64 __iomem *)
975 (q->bar2_addr + SGE_UDB_WCDOORBELL),
976 wr);
977 } else {
978 writel(val | QID_V(q->bar2_qid),
979 q->bar2_addr + SGE_UDB_KDOORBELL);
980 }
981
982 /* This Write Memory Barrier will force the write to the User
983 * Doorbell area to be flushed. This is needed to prevent
984 * writes on different CPUs for the same queue from hitting
985 * the adapter out of order. This is required when some Work
986 * Requests take the Write Combine Gather Buffer path (user
987 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
988 * take the traditional path where we simply increment the
989 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
990 * hardware DMA read the actual Work Request.
991 */
992 wmb();
993 }
994 }
995
996 /**
997 * inline_tx_skb - inline a packet's data into Tx descriptors
998 * @skb: the packet
999 * @q: the Tx queue where the packet will be inlined
1000 * @pos: starting position in the Tx queue where to inline the packet
1001 *
1002 * Inline a packet's contents directly into Tx descriptors, starting at
1003 * the given position within the Tx DMA ring.
1004 * Most of the complexity of this operation is dealing with wrap arounds
1005 * in the middle of the packet we want to inline.
1006 */
inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * q,void * pos)1007 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
1008 void *pos)
1009 {
1010 u64 *p;
1011 int left = (void *)q->stat - pos;
1012
1013 if (likely(skb->len <= left)) {
1014 if (likely(!skb->data_len))
1015 skb_copy_from_linear_data(skb, pos, skb->len);
1016 else
1017 skb_copy_bits(skb, 0, pos, skb->len);
1018 pos += skb->len;
1019 } else {
1020 skb_copy_bits(skb, 0, pos, left);
1021 skb_copy_bits(skb, left, q->desc, skb->len - left);
1022 pos = (void *)q->desc + (skb->len - left);
1023 }
1024
1025 /* 0-pad to multiple of 16 */
1026 p = PTR_ALIGN(pos, 8);
1027 if ((uintptr_t)p & 8)
1028 *p = 0;
1029 }
1030
1031 /*
1032 * Figure out what HW csum a packet wants and return the appropriate control
1033 * bits.
1034 */
hwcsum(const struct sk_buff * skb)1035 static u64 hwcsum(const struct sk_buff *skb)
1036 {
1037 int csum_type;
1038 const struct iphdr *iph = ip_hdr(skb);
1039
1040 if (iph->version == 4) {
1041 if (iph->protocol == IPPROTO_TCP)
1042 csum_type = TX_CSUM_TCPIP;
1043 else if (iph->protocol == IPPROTO_UDP)
1044 csum_type = TX_CSUM_UDPIP;
1045 else {
1046 nocsum: /*
1047 * unknown protocol, disable HW csum
1048 * and hope a bad packet is detected
1049 */
1050 return TXPKT_L4CSUM_DIS;
1051 }
1052 } else {
1053 /*
1054 * this doesn't work with extension headers
1055 */
1056 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1057
1058 if (ip6h->nexthdr == IPPROTO_TCP)
1059 csum_type = TX_CSUM_TCPIP6;
1060 else if (ip6h->nexthdr == IPPROTO_UDP)
1061 csum_type = TX_CSUM_UDPIP6;
1062 else
1063 goto nocsum;
1064 }
1065
1066 if (likely(csum_type >= TX_CSUM_TCPIP))
1067 return TXPKT_CSUM_TYPE(csum_type) |
1068 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1069 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1070 else {
1071 int start = skb_transport_offset(skb);
1072
1073 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
1074 TXPKT_CSUM_LOC(start + skb->csum_offset);
1075 }
1076 }
1077
eth_txq_stop(struct sge_eth_txq * q)1078 static void eth_txq_stop(struct sge_eth_txq *q)
1079 {
1080 netif_tx_stop_queue(q->txq);
1081 q->q.stops++;
1082 }
1083
txq_advance(struct sge_txq * q,unsigned int n)1084 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1085 {
1086 q->in_use += n;
1087 q->pidx += n;
1088 if (q->pidx >= q->size)
1089 q->pidx -= q->size;
1090 }
1091
1092 #ifdef CONFIG_CHELSIO_T4_FCOE
1093 static inline int
cxgb_fcoe_offload(struct sk_buff * skb,struct adapter * adap,const struct port_info * pi,u64 * cntrl)1094 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1095 const struct port_info *pi, u64 *cntrl)
1096 {
1097 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1098
1099 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1100 return 0;
1101
1102 if (skb->protocol != htons(ETH_P_FCOE))
1103 return 0;
1104
1105 skb_reset_mac_header(skb);
1106 skb->mac_len = sizeof(struct ethhdr);
1107
1108 skb_set_network_header(skb, skb->mac_len);
1109 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1110
1111 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1112 return -ENOTSUPP;
1113
1114 /* FC CRC offload */
1115 *cntrl = TXPKT_CSUM_TYPE(TX_CSUM_FCOE) |
1116 TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS |
1117 TXPKT_CSUM_START(CXGB_FCOE_TXPKT_CSUM_START) |
1118 TXPKT_CSUM_END(CXGB_FCOE_TXPKT_CSUM_END) |
1119 TXPKT_CSUM_LOC(CXGB_FCOE_TXPKT_CSUM_END);
1120 return 0;
1121 }
1122 #endif /* CONFIG_CHELSIO_T4_FCOE */
1123
1124 /**
1125 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1126 * @skb: the packet
1127 * @dev: the egress net device
1128 *
1129 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1130 */
t4_eth_xmit(struct sk_buff * skb,struct net_device * dev)1131 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1132 {
1133 int len;
1134 u32 wr_mid;
1135 u64 cntrl, *end;
1136 int qidx, credits;
1137 unsigned int flits, ndesc;
1138 struct adapter *adap;
1139 struct sge_eth_txq *q;
1140 const struct port_info *pi;
1141 struct fw_eth_tx_pkt_wr *wr;
1142 struct cpl_tx_pkt_core *cpl;
1143 const struct skb_shared_info *ssi;
1144 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1145 bool immediate = false;
1146 #ifdef CONFIG_CHELSIO_T4_FCOE
1147 int err;
1148 #endif /* CONFIG_CHELSIO_T4_FCOE */
1149
1150 /*
1151 * The chip min packet length is 10 octets but play safe and reject
1152 * anything shorter than an Ethernet header.
1153 */
1154 if (unlikely(skb->len < ETH_HLEN)) {
1155 out_free: dev_kfree_skb_any(skb);
1156 return NETDEV_TX_OK;
1157 }
1158
1159 pi = netdev_priv(dev);
1160 adap = pi->adapter;
1161 qidx = skb_get_queue_mapping(skb);
1162 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1163
1164 reclaim_completed_tx(adap, &q->q, true);
1165 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1166
1167 #ifdef CONFIG_CHELSIO_T4_FCOE
1168 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1169 if (unlikely(err == -ENOTSUPP))
1170 goto out_free;
1171 #endif /* CONFIG_CHELSIO_T4_FCOE */
1172
1173 flits = calc_tx_flits(skb);
1174 ndesc = flits_to_desc(flits);
1175 credits = txq_avail(&q->q) - ndesc;
1176
1177 if (unlikely(credits < 0)) {
1178 eth_txq_stop(q);
1179 dev_err(adap->pdev_dev,
1180 "%s: Tx ring %u full while queue awake!\n",
1181 dev->name, qidx);
1182 return NETDEV_TX_BUSY;
1183 }
1184
1185 if (is_eth_imm(skb))
1186 immediate = true;
1187
1188 if (!immediate &&
1189 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1190 q->mapping_err++;
1191 goto out_free;
1192 }
1193
1194 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1195 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1196 eth_txq_stop(q);
1197 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1198 }
1199
1200 wr = (void *)&q->q.desc[q->q.pidx];
1201 wr->equiq_to_len16 = htonl(wr_mid);
1202 wr->r3 = cpu_to_be64(0);
1203 end = (u64 *)wr + flits;
1204
1205 len = immediate ? skb->len : 0;
1206 ssi = skb_shinfo(skb);
1207 if (ssi->gso_size) {
1208 struct cpl_tx_pkt_lso *lso = (void *)wr;
1209 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1210 int l3hdr_len = skb_network_header_len(skb);
1211 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1212
1213 len += sizeof(*lso);
1214 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1215 FW_WR_IMMDLEN_V(len));
1216 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1217 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1218 LSO_IPV6(v6) |
1219 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1220 LSO_IPHDR_LEN(l3hdr_len / 4) |
1221 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1222 lso->c.ipid_ofst = htons(0);
1223 lso->c.mss = htons(ssi->gso_size);
1224 lso->c.seqno_offset = htonl(0);
1225 if (is_t4(adap->params.chip))
1226 lso->c.len = htonl(skb->len);
1227 else
1228 lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
1229 cpl = (void *)(lso + 1);
1230 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1231 TXPKT_IPHDR_LEN(l3hdr_len) |
1232 TXPKT_ETHHDR_LEN(eth_xtra_len);
1233 q->tso++;
1234 q->tx_cso += ssi->gso_segs;
1235 } else {
1236 len += sizeof(*cpl);
1237 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1238 FW_WR_IMMDLEN_V(len));
1239 cpl = (void *)(wr + 1);
1240 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1241 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1242 q->tx_cso++;
1243 }
1244 }
1245
1246 if (skb_vlan_tag_present(skb)) {
1247 q->vlan_ins++;
1248 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
1249 #ifdef CONFIG_CHELSIO_T4_FCOE
1250 if (skb->protocol == htons(ETH_P_FCOE))
1251 cntrl |= TXPKT_VLAN(
1252 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1253 #endif /* CONFIG_CHELSIO_T4_FCOE */
1254 }
1255
1256 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1257 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1258 cpl->pack = htons(0);
1259 cpl->len = htons(skb->len);
1260 cpl->ctrl1 = cpu_to_be64(cntrl);
1261
1262 if (immediate) {
1263 inline_tx_skb(skb, &q->q, cpl + 1);
1264 dev_consume_skb_any(skb);
1265 } else {
1266 int last_desc;
1267
1268 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1269 addr);
1270 skb_orphan(skb);
1271
1272 last_desc = q->q.pidx + ndesc - 1;
1273 if (last_desc >= q->q.size)
1274 last_desc -= q->q.size;
1275 q->q.sdesc[last_desc].skb = skb;
1276 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1277 }
1278
1279 txq_advance(&q->q, ndesc);
1280
1281 ring_tx_db(adap, &q->q, ndesc);
1282 return NETDEV_TX_OK;
1283 }
1284
1285 /**
1286 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1287 * @q: the SGE control Tx queue
1288 *
1289 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1290 * that send only immediate data (presently just the control queues) and
1291 * thus do not have any sk_buffs to release.
1292 */
reclaim_completed_tx_imm(struct sge_txq * q)1293 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1294 {
1295 int hw_cidx = ntohs(q->stat->cidx);
1296 int reclaim = hw_cidx - q->cidx;
1297
1298 if (reclaim < 0)
1299 reclaim += q->size;
1300
1301 q->in_use -= reclaim;
1302 q->cidx = hw_cidx;
1303 }
1304
1305 /**
1306 * is_imm - check whether a packet can be sent as immediate data
1307 * @skb: the packet
1308 *
1309 * Returns true if a packet can be sent as a WR with immediate data.
1310 */
is_imm(const struct sk_buff * skb)1311 static inline int is_imm(const struct sk_buff *skb)
1312 {
1313 return skb->len <= MAX_CTRL_WR_LEN;
1314 }
1315
1316 /**
1317 * ctrlq_check_stop - check if a control queue is full and should stop
1318 * @q: the queue
1319 * @wr: most recent WR written to the queue
1320 *
1321 * Check if a control queue has become full and should be stopped.
1322 * We clean up control queue descriptors very lazily, only when we are out.
1323 * If the queue is still full after reclaiming any completed descriptors
1324 * we suspend it and have the last WR wake it up.
1325 */
ctrlq_check_stop(struct sge_ctrl_txq * q,struct fw_wr_hdr * wr)1326 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1327 {
1328 reclaim_completed_tx_imm(&q->q);
1329 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1330 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1331 q->q.stops++;
1332 q->full = 1;
1333 }
1334 }
1335
1336 /**
1337 * ctrl_xmit - send a packet through an SGE control Tx queue
1338 * @q: the control queue
1339 * @skb: the packet
1340 *
1341 * Send a packet through an SGE control Tx queue. Packets sent through
1342 * a control queue must fit entirely as immediate data.
1343 */
ctrl_xmit(struct sge_ctrl_txq * q,struct sk_buff * skb)1344 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1345 {
1346 unsigned int ndesc;
1347 struct fw_wr_hdr *wr;
1348
1349 if (unlikely(!is_imm(skb))) {
1350 WARN_ON(1);
1351 dev_kfree_skb(skb);
1352 return NET_XMIT_DROP;
1353 }
1354
1355 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1356 spin_lock(&q->sendq.lock);
1357
1358 if (unlikely(q->full)) {
1359 skb->priority = ndesc; /* save for restart */
1360 __skb_queue_tail(&q->sendq, skb);
1361 spin_unlock(&q->sendq.lock);
1362 return NET_XMIT_CN;
1363 }
1364
1365 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1366 inline_tx_skb(skb, &q->q, wr);
1367
1368 txq_advance(&q->q, ndesc);
1369 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1370 ctrlq_check_stop(q, wr);
1371
1372 ring_tx_db(q->adap, &q->q, ndesc);
1373 spin_unlock(&q->sendq.lock);
1374
1375 kfree_skb(skb);
1376 return NET_XMIT_SUCCESS;
1377 }
1378
1379 /**
1380 * restart_ctrlq - restart a suspended control queue
1381 * @data: the control queue to restart
1382 *
1383 * Resumes transmission on a suspended Tx control queue.
1384 */
restart_ctrlq(unsigned long data)1385 static void restart_ctrlq(unsigned long data)
1386 {
1387 struct sk_buff *skb;
1388 unsigned int written = 0;
1389 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1390
1391 spin_lock(&q->sendq.lock);
1392 reclaim_completed_tx_imm(&q->q);
1393 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1394
1395 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1396 struct fw_wr_hdr *wr;
1397 unsigned int ndesc = skb->priority; /* previously saved */
1398
1399 /*
1400 * Write descriptors and free skbs outside the lock to limit
1401 * wait times. q->full is still set so new skbs will be queued.
1402 */
1403 spin_unlock(&q->sendq.lock);
1404
1405 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1406 inline_tx_skb(skb, &q->q, wr);
1407 kfree_skb(skb);
1408
1409 written += ndesc;
1410 txq_advance(&q->q, ndesc);
1411 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1412 unsigned long old = q->q.stops;
1413
1414 ctrlq_check_stop(q, wr);
1415 if (q->q.stops != old) { /* suspended anew */
1416 spin_lock(&q->sendq.lock);
1417 goto ringdb;
1418 }
1419 }
1420 if (written > 16) {
1421 ring_tx_db(q->adap, &q->q, written);
1422 written = 0;
1423 }
1424 spin_lock(&q->sendq.lock);
1425 }
1426 q->full = 0;
1427 ringdb: if (written)
1428 ring_tx_db(q->adap, &q->q, written);
1429 spin_unlock(&q->sendq.lock);
1430 }
1431
1432 /**
1433 * t4_mgmt_tx - send a management message
1434 * @adap: the adapter
1435 * @skb: the packet containing the management message
1436 *
1437 * Send a management message through control queue 0.
1438 */
t4_mgmt_tx(struct adapter * adap,struct sk_buff * skb)1439 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1440 {
1441 int ret;
1442
1443 local_bh_disable();
1444 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1445 local_bh_enable();
1446 return ret;
1447 }
1448
1449 /**
1450 * is_ofld_imm - check whether a packet can be sent as immediate data
1451 * @skb: the packet
1452 *
1453 * Returns true if a packet can be sent as an offload WR with immediate
1454 * data. We currently use the same limit as for Ethernet packets.
1455 */
is_ofld_imm(const struct sk_buff * skb)1456 static inline int is_ofld_imm(const struct sk_buff *skb)
1457 {
1458 return skb->len <= MAX_IMM_TX_PKT_LEN;
1459 }
1460
1461 /**
1462 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1463 * @skb: the packet
1464 *
1465 * Returns the number of flits needed for the given offload packet.
1466 * These packets are already fully constructed and no additional headers
1467 * will be added.
1468 */
calc_tx_flits_ofld(const struct sk_buff * skb)1469 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1470 {
1471 unsigned int flits, cnt;
1472
1473 if (is_ofld_imm(skb))
1474 return DIV_ROUND_UP(skb->len, 8);
1475
1476 flits = skb_transport_offset(skb) / 8U; /* headers */
1477 cnt = skb_shinfo(skb)->nr_frags;
1478 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1479 cnt++;
1480 return flits + sgl_len(cnt);
1481 }
1482
1483 /**
1484 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1485 * @adap: the adapter
1486 * @q: the queue to stop
1487 *
1488 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1489 * inability to map packets. A periodic timer attempts to restart
1490 * queues so marked.
1491 */
txq_stop_maperr(struct sge_ofld_txq * q)1492 static void txq_stop_maperr(struct sge_ofld_txq *q)
1493 {
1494 q->mapping_err++;
1495 q->q.stops++;
1496 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1497 q->adap->sge.txq_maperr);
1498 }
1499
1500 /**
1501 * ofldtxq_stop - stop an offload Tx queue that has become full
1502 * @q: the queue to stop
1503 * @skb: the packet causing the queue to become full
1504 *
1505 * Stops an offload Tx queue that has become full and modifies the packet
1506 * being written to request a wakeup.
1507 */
ofldtxq_stop(struct sge_ofld_txq * q,struct sk_buff * skb)1508 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1509 {
1510 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1511
1512 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1513 q->q.stops++;
1514 q->full = 1;
1515 }
1516
1517 /**
1518 * service_ofldq - restart a suspended offload queue
1519 * @q: the offload queue
1520 *
1521 * Services an offload Tx queue by moving packets from its packet queue
1522 * to the HW Tx ring. The function starts and ends with the queue locked.
1523 */
service_ofldq(struct sge_ofld_txq * q)1524 static void service_ofldq(struct sge_ofld_txq *q)
1525 {
1526 u64 *pos;
1527 int credits;
1528 struct sk_buff *skb;
1529 unsigned int written = 0;
1530 unsigned int flits, ndesc;
1531
1532 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1533 /*
1534 * We drop the lock but leave skb on sendq, thus retaining
1535 * exclusive access to the state of the queue.
1536 */
1537 spin_unlock(&q->sendq.lock);
1538
1539 reclaim_completed_tx(q->adap, &q->q, false);
1540
1541 flits = skb->priority; /* previously saved */
1542 ndesc = flits_to_desc(flits);
1543 credits = txq_avail(&q->q) - ndesc;
1544 BUG_ON(credits < 0);
1545 if (unlikely(credits < TXQ_STOP_THRES))
1546 ofldtxq_stop(q, skb);
1547
1548 pos = (u64 *)&q->q.desc[q->q.pidx];
1549 if (is_ofld_imm(skb))
1550 inline_tx_skb(skb, &q->q, pos);
1551 else if (map_skb(q->adap->pdev_dev, skb,
1552 (dma_addr_t *)skb->head)) {
1553 txq_stop_maperr(q);
1554 spin_lock(&q->sendq.lock);
1555 break;
1556 } else {
1557 int last_desc, hdr_len = skb_transport_offset(skb);
1558
1559 memcpy(pos, skb->data, hdr_len);
1560 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1561 pos + flits, hdr_len,
1562 (dma_addr_t *)skb->head);
1563 #ifdef CONFIG_NEED_DMA_MAP_STATE
1564 skb->dev = q->adap->port[0];
1565 skb->destructor = deferred_unmap_destructor;
1566 #endif
1567 last_desc = q->q.pidx + ndesc - 1;
1568 if (last_desc >= q->q.size)
1569 last_desc -= q->q.size;
1570 q->q.sdesc[last_desc].skb = skb;
1571 }
1572
1573 txq_advance(&q->q, ndesc);
1574 written += ndesc;
1575 if (unlikely(written > 32)) {
1576 ring_tx_db(q->adap, &q->q, written);
1577 written = 0;
1578 }
1579
1580 spin_lock(&q->sendq.lock);
1581 __skb_unlink(skb, &q->sendq);
1582 if (is_ofld_imm(skb))
1583 kfree_skb(skb);
1584 }
1585 if (likely(written))
1586 ring_tx_db(q->adap, &q->q, written);
1587 }
1588
1589 /**
1590 * ofld_xmit - send a packet through an offload queue
1591 * @q: the Tx offload queue
1592 * @skb: the packet
1593 *
1594 * Send an offload packet through an SGE offload queue.
1595 */
ofld_xmit(struct sge_ofld_txq * q,struct sk_buff * skb)1596 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1597 {
1598 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1599 spin_lock(&q->sendq.lock);
1600 __skb_queue_tail(&q->sendq, skb);
1601 if (q->sendq.qlen == 1)
1602 service_ofldq(q);
1603 spin_unlock(&q->sendq.lock);
1604 return NET_XMIT_SUCCESS;
1605 }
1606
1607 /**
1608 * restart_ofldq - restart a suspended offload queue
1609 * @data: the offload queue to restart
1610 *
1611 * Resumes transmission on a suspended Tx offload queue.
1612 */
restart_ofldq(unsigned long data)1613 static void restart_ofldq(unsigned long data)
1614 {
1615 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1616
1617 spin_lock(&q->sendq.lock);
1618 q->full = 0; /* the queue actually is completely empty now */
1619 service_ofldq(q);
1620 spin_unlock(&q->sendq.lock);
1621 }
1622
1623 /**
1624 * skb_txq - return the Tx queue an offload packet should use
1625 * @skb: the packet
1626 *
1627 * Returns the Tx queue an offload packet should use as indicated by bits
1628 * 1-15 in the packet's queue_mapping.
1629 */
skb_txq(const struct sk_buff * skb)1630 static inline unsigned int skb_txq(const struct sk_buff *skb)
1631 {
1632 return skb->queue_mapping >> 1;
1633 }
1634
1635 /**
1636 * is_ctrl_pkt - return whether an offload packet is a control packet
1637 * @skb: the packet
1638 *
1639 * Returns whether an offload packet should use an OFLD or a CTRL
1640 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1641 */
is_ctrl_pkt(const struct sk_buff * skb)1642 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1643 {
1644 return skb->queue_mapping & 1;
1645 }
1646
ofld_send(struct adapter * adap,struct sk_buff * skb)1647 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1648 {
1649 unsigned int idx = skb_txq(skb);
1650
1651 if (unlikely(is_ctrl_pkt(skb))) {
1652 /* Single ctrl queue is a requirement for LE workaround path */
1653 if (adap->tids.nsftids)
1654 idx = 0;
1655 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1656 }
1657 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1658 }
1659
1660 /**
1661 * t4_ofld_send - send an offload packet
1662 * @adap: the adapter
1663 * @skb: the packet
1664 *
1665 * Sends an offload packet. We use the packet queue_mapping to select the
1666 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1667 * should be sent as regular or control, bits 1-15 select the queue.
1668 */
t4_ofld_send(struct adapter * adap,struct sk_buff * skb)1669 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1670 {
1671 int ret;
1672
1673 local_bh_disable();
1674 ret = ofld_send(adap, skb);
1675 local_bh_enable();
1676 return ret;
1677 }
1678
1679 /**
1680 * cxgb4_ofld_send - send an offload packet
1681 * @dev: the net device
1682 * @skb: the packet
1683 *
1684 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1685 * intended for ULDs.
1686 */
cxgb4_ofld_send(struct net_device * dev,struct sk_buff * skb)1687 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1688 {
1689 return t4_ofld_send(netdev2adap(dev), skb);
1690 }
1691 EXPORT_SYMBOL(cxgb4_ofld_send);
1692
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)1693 static inline void copy_frags(struct sk_buff *skb,
1694 const struct pkt_gl *gl, unsigned int offset)
1695 {
1696 int i;
1697
1698 /* usually there's just one frag */
1699 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1700 gl->frags[0].offset + offset,
1701 gl->frags[0].size - offset);
1702 skb_shinfo(skb)->nr_frags = gl->nfrags;
1703 for (i = 1; i < gl->nfrags; i++)
1704 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1705 gl->frags[i].offset,
1706 gl->frags[i].size);
1707
1708 /* get a reference to the last page, we don't own it */
1709 get_page(gl->frags[gl->nfrags - 1].page);
1710 }
1711
1712 /**
1713 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1714 * @gl: the gather list
1715 * @skb_len: size of sk_buff main body if it carries fragments
1716 * @pull_len: amount of data to move to the sk_buff's main body
1717 *
1718 * Builds an sk_buff from the given packet gather list. Returns the
1719 * sk_buff or %NULL if sk_buff allocation failed.
1720 */
cxgb4_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)1721 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1722 unsigned int skb_len, unsigned int pull_len)
1723 {
1724 struct sk_buff *skb;
1725
1726 /*
1727 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1728 * size, which is expected since buffers are at least PAGE_SIZEd.
1729 * In this case packets up to RX_COPY_THRES have only one fragment.
1730 */
1731 if (gl->tot_len <= RX_COPY_THRES) {
1732 skb = dev_alloc_skb(gl->tot_len);
1733 if (unlikely(!skb))
1734 goto out;
1735 __skb_put(skb, gl->tot_len);
1736 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1737 } else {
1738 skb = dev_alloc_skb(skb_len);
1739 if (unlikely(!skb))
1740 goto out;
1741 __skb_put(skb, pull_len);
1742 skb_copy_to_linear_data(skb, gl->va, pull_len);
1743
1744 copy_frags(skb, gl, pull_len);
1745 skb->len = gl->tot_len;
1746 skb->data_len = skb->len - pull_len;
1747 skb->truesize += skb->data_len;
1748 }
1749 out: return skb;
1750 }
1751 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1752
1753 /**
1754 * t4_pktgl_free - free a packet gather list
1755 * @gl: the gather list
1756 *
1757 * Releases the pages of a packet gather list. We do not own the last
1758 * page on the list and do not free it.
1759 */
t4_pktgl_free(const struct pkt_gl * gl)1760 static void t4_pktgl_free(const struct pkt_gl *gl)
1761 {
1762 int n;
1763 const struct page_frag *p;
1764
1765 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1766 put_page(p->page);
1767 }
1768
1769 /*
1770 * Process an MPS trace packet. Give it an unused protocol number so it won't
1771 * be delivered to anyone and send it to the stack for capture.
1772 */
handle_trace_pkt(struct adapter * adap,const struct pkt_gl * gl)1773 static noinline int handle_trace_pkt(struct adapter *adap,
1774 const struct pkt_gl *gl)
1775 {
1776 struct sk_buff *skb;
1777
1778 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1779 if (unlikely(!skb)) {
1780 t4_pktgl_free(gl);
1781 return 0;
1782 }
1783
1784 if (is_t4(adap->params.chip))
1785 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1786 else
1787 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1788
1789 skb_reset_mac_header(skb);
1790 skb->protocol = htons(0xffff);
1791 skb->dev = adap->port[0];
1792 netif_receive_skb(skb);
1793 return 0;
1794 }
1795
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt)1796 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1797 const struct cpl_rx_pkt *pkt)
1798 {
1799 struct adapter *adapter = rxq->rspq.adap;
1800 struct sge *s = &adapter->sge;
1801 int ret;
1802 struct sk_buff *skb;
1803
1804 skb = napi_get_frags(&rxq->rspq.napi);
1805 if (unlikely(!skb)) {
1806 t4_pktgl_free(gl);
1807 rxq->stats.rx_drops++;
1808 return;
1809 }
1810
1811 copy_frags(skb, gl, s->pktshift);
1812 skb->len = gl->tot_len - s->pktshift;
1813 skb->data_len = skb->len;
1814 skb->truesize += skb->data_len;
1815 skb->ip_summed = CHECKSUM_UNNECESSARY;
1816 skb_record_rx_queue(skb, rxq->rspq.idx);
1817 skb_mark_napi_id(skb, &rxq->rspq.napi);
1818 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1819 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1820 PKT_HASH_TYPE_L3);
1821
1822 if (unlikely(pkt->vlan_ex)) {
1823 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1824 rxq->stats.vlan_ex++;
1825 }
1826 ret = napi_gro_frags(&rxq->rspq.napi);
1827 if (ret == GRO_HELD)
1828 rxq->stats.lro_pkts++;
1829 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1830 rxq->stats.lro_merged++;
1831 rxq->stats.pkts++;
1832 rxq->stats.rx_cso++;
1833 }
1834
1835 /**
1836 * t4_ethrx_handler - process an ingress ethernet packet
1837 * @q: the response queue that received the packet
1838 * @rsp: the response queue descriptor holding the RX_PKT message
1839 * @si: the gather list of packet fragments
1840 *
1841 * Process an ingress ethernet packet and deliver it to the stack.
1842 */
t4_ethrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)1843 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1844 const struct pkt_gl *si)
1845 {
1846 bool csum_ok;
1847 struct sk_buff *skb;
1848 const struct cpl_rx_pkt *pkt;
1849 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1850 struct sge *s = &q->adap->sge;
1851 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1852 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1853 #ifdef CONFIG_CHELSIO_T4_FCOE
1854 struct port_info *pi;
1855 #endif
1856
1857 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1858 return handle_trace_pkt(q->adap, si);
1859
1860 pkt = (const struct cpl_rx_pkt *)rsp;
1861 csum_ok = pkt->csum_calc && !pkt->err_vec &&
1862 (q->netdev->features & NETIF_F_RXCSUM);
1863 if ((pkt->l2info & htonl(RXF_TCP_F)) &&
1864 !(cxgb_poll_busy_polling(q)) &&
1865 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1866 do_gro(rxq, si, pkt);
1867 return 0;
1868 }
1869
1870 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1871 if (unlikely(!skb)) {
1872 t4_pktgl_free(si);
1873 rxq->stats.rx_drops++;
1874 return 0;
1875 }
1876
1877 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
1878 skb->protocol = eth_type_trans(skb, q->netdev);
1879 skb_record_rx_queue(skb, q->idx);
1880 if (skb->dev->features & NETIF_F_RXHASH)
1881 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1882 PKT_HASH_TYPE_L3);
1883
1884 rxq->stats.pkts++;
1885
1886 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
1887 if (!pkt->ip_frag) {
1888 skb->ip_summed = CHECKSUM_UNNECESSARY;
1889 rxq->stats.rx_cso++;
1890 } else if (pkt->l2info & htonl(RXF_IP_F)) {
1891 __sum16 c = (__force __sum16)pkt->csum;
1892 skb->csum = csum_unfold(c);
1893 skb->ip_summed = CHECKSUM_COMPLETE;
1894 rxq->stats.rx_cso++;
1895 }
1896 } else {
1897 skb_checksum_none_assert(skb);
1898 #ifdef CONFIG_CHELSIO_T4_FCOE
1899 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
1900 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
1901
1902 pi = netdev_priv(skb->dev);
1903 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
1904 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
1905 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
1906 if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
1907 skb->ip_summed = CHECKSUM_UNNECESSARY;
1908 }
1909 }
1910
1911 #undef CPL_RX_PKT_FLAGS
1912 #endif /* CONFIG_CHELSIO_T4_FCOE */
1913 }
1914
1915 if (unlikely(pkt->vlan_ex)) {
1916 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1917 rxq->stats.vlan_ex++;
1918 }
1919 skb_mark_napi_id(skb, &q->napi);
1920 netif_receive_skb(skb);
1921 return 0;
1922 }
1923
1924 /**
1925 * restore_rx_bufs - put back a packet's Rx buffers
1926 * @si: the packet gather list
1927 * @q: the SGE free list
1928 * @frags: number of FL buffers to restore
1929 *
1930 * Puts back on an FL the Rx buffers associated with @si. The buffers
1931 * have already been unmapped and are left unmapped, we mark them so to
1932 * prevent further unmapping attempts.
1933 *
1934 * This function undoes a series of @unmap_rx_buf calls when we find out
1935 * that the current packet can't be processed right away afterall and we
1936 * need to come back to it later. This is a very rare event and there's
1937 * no effort to make this particularly efficient.
1938 */
restore_rx_bufs(const struct pkt_gl * si,struct sge_fl * q,int frags)1939 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1940 int frags)
1941 {
1942 struct rx_sw_desc *d;
1943
1944 while (frags--) {
1945 if (q->cidx == 0)
1946 q->cidx = q->size - 1;
1947 else
1948 q->cidx--;
1949 d = &q->sdesc[q->cidx];
1950 d->page = si->frags[frags].page;
1951 d->dma_addr |= RX_UNMAPPED_BUF;
1952 q->avail++;
1953 }
1954 }
1955
1956 /**
1957 * is_new_response - check if a response is newly written
1958 * @r: the response descriptor
1959 * @q: the response queue
1960 *
1961 * Returns true if a response descriptor contains a yet unprocessed
1962 * response.
1963 */
is_new_response(const struct rsp_ctrl * r,const struct sge_rspq * q)1964 static inline bool is_new_response(const struct rsp_ctrl *r,
1965 const struct sge_rspq *q)
1966 {
1967 return RSPD_GEN(r->type_gen) == q->gen;
1968 }
1969
1970 /**
1971 * rspq_next - advance to the next entry in a response queue
1972 * @q: the queue
1973 *
1974 * Updates the state of a response queue to advance it to the next entry.
1975 */
rspq_next(struct sge_rspq * q)1976 static inline void rspq_next(struct sge_rspq *q)
1977 {
1978 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1979 if (unlikely(++q->cidx == q->size)) {
1980 q->cidx = 0;
1981 q->gen ^= 1;
1982 q->cur_desc = q->desc;
1983 }
1984 }
1985
1986 /**
1987 * process_responses - process responses from an SGE response queue
1988 * @q: the ingress queue to process
1989 * @budget: how many responses can be processed in this round
1990 *
1991 * Process responses from an SGE response queue up to the supplied budget.
1992 * Responses include received packets as well as control messages from FW
1993 * or HW.
1994 *
1995 * Additionally choose the interrupt holdoff time for the next interrupt
1996 * on this queue. If the system is under memory shortage use a fairly
1997 * long delay to help recovery.
1998 */
process_responses(struct sge_rspq * q,int budget)1999 static int process_responses(struct sge_rspq *q, int budget)
2000 {
2001 int ret, rsp_type;
2002 int budget_left = budget;
2003 const struct rsp_ctrl *rc;
2004 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2005 struct adapter *adapter = q->adap;
2006 struct sge *s = &adapter->sge;
2007
2008 while (likely(budget_left)) {
2009 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2010 if (!is_new_response(rc, q))
2011 break;
2012
2013 dma_rmb();
2014 rsp_type = RSPD_TYPE(rc->type_gen);
2015 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
2016 struct page_frag *fp;
2017 struct pkt_gl si;
2018 const struct rx_sw_desc *rsd;
2019 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
2020
2021 if (len & RSPD_NEWBUF) {
2022 if (likely(q->offset > 0)) {
2023 free_rx_bufs(q->adap, &rxq->fl, 1);
2024 q->offset = 0;
2025 }
2026 len = RSPD_LEN(len);
2027 }
2028 si.tot_len = len;
2029
2030 /* gather packet fragments */
2031 for (frags = 0, fp = si.frags; ; frags++, fp++) {
2032 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
2033 bufsz = get_buf_size(adapter, rsd);
2034 fp->page = rsd->page;
2035 fp->offset = q->offset;
2036 fp->size = min(bufsz, len);
2037 len -= fp->size;
2038 if (!len)
2039 break;
2040 unmap_rx_buf(q->adap, &rxq->fl);
2041 }
2042
2043 /*
2044 * Last buffer remains mapped so explicitly make it
2045 * coherent for CPU access.
2046 */
2047 dma_sync_single_for_cpu(q->adap->pdev_dev,
2048 get_buf_addr(rsd),
2049 fp->size, DMA_FROM_DEVICE);
2050
2051 si.va = page_address(si.frags[0].page) +
2052 si.frags[0].offset;
2053 prefetch(si.va);
2054
2055 si.nfrags = frags + 1;
2056 ret = q->handler(q, q->cur_desc, &si);
2057 if (likely(ret == 0))
2058 q->offset += ALIGN(fp->size, s->fl_align);
2059 else
2060 restore_rx_bufs(&si, &rxq->fl, frags);
2061 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
2062 ret = q->handler(q, q->cur_desc, NULL);
2063 } else {
2064 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
2065 }
2066
2067 if (unlikely(ret)) {
2068 /* couldn't process descriptor, back off for recovery */
2069 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
2070 break;
2071 }
2072
2073 rspq_next(q);
2074 budget_left--;
2075 }
2076
2077 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
2078 __refill_fl(q->adap, &rxq->fl);
2079 return budget - budget_left;
2080 }
2081
2082 #ifdef CONFIG_NET_RX_BUSY_POLL
cxgb_busy_poll(struct napi_struct * napi)2083 int cxgb_busy_poll(struct napi_struct *napi)
2084 {
2085 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2086 unsigned int params, work_done;
2087 u32 val;
2088
2089 if (!cxgb_poll_lock_poll(q))
2090 return LL_FLUSH_BUSY;
2091
2092 work_done = process_responses(q, 4);
2093 params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN;
2094 q->next_intr_params = params;
2095 val = CIDXINC_V(work_done) | SEINTARM_V(params);
2096
2097 /* If we don't have access to the new User GTS (T5+), use the old
2098 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2099 */
2100 if (unlikely(!q->bar2_addr))
2101 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2102 val | INGRESSQID_V((u32)q->cntxt_id));
2103 else {
2104 writel(val | INGRESSQID_V(q->bar2_qid),
2105 q->bar2_addr + SGE_UDB_GTS);
2106 wmb();
2107 }
2108
2109 cxgb_poll_unlock_poll(q);
2110 return work_done;
2111 }
2112 #endif /* CONFIG_NET_RX_BUSY_POLL */
2113
2114 /**
2115 * napi_rx_handler - the NAPI handler for Rx processing
2116 * @napi: the napi instance
2117 * @budget: how many packets we can process in this round
2118 *
2119 * Handler for new data events when using NAPI. This does not need any
2120 * locking or protection from interrupts as data interrupts are off at
2121 * this point and other adapter interrupts do not interfere (the latter
2122 * in not a concern at all with MSI-X as non-data interrupts then have
2123 * a separate handler).
2124 */
napi_rx_handler(struct napi_struct * napi,int budget)2125 static int napi_rx_handler(struct napi_struct *napi, int budget)
2126 {
2127 unsigned int params;
2128 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2129 int work_done;
2130 u32 val;
2131
2132 if (!cxgb_poll_lock_napi(q))
2133 return budget;
2134
2135 work_done = process_responses(q, budget);
2136 if (likely(work_done < budget)) {
2137 int timer_index;
2138
2139 napi_complete(napi);
2140 timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
2141
2142 if (q->adaptive_rx) {
2143 if (work_done > max(timer_pkt_quota[timer_index],
2144 MIN_NAPI_WORK))
2145 timer_index = (timer_index + 1);
2146 else
2147 timer_index = timer_index - 1;
2148
2149 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2150 q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
2151 V_QINTR_CNT_EN;
2152 params = q->next_intr_params;
2153 } else {
2154 params = q->next_intr_params;
2155 q->next_intr_params = q->intr_params;
2156 }
2157 } else
2158 params = QINTR_TIMER_IDX(7);
2159
2160 val = CIDXINC_V(work_done) | SEINTARM_V(params);
2161
2162 /* If we don't have access to the new User GTS (T5+), use the old
2163 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2164 */
2165 if (unlikely(q->bar2_addr == NULL)) {
2166 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2167 val | INGRESSQID_V((u32)q->cntxt_id));
2168 } else {
2169 writel(val | INGRESSQID_V(q->bar2_qid),
2170 q->bar2_addr + SGE_UDB_GTS);
2171 wmb();
2172 }
2173 cxgb_poll_unlock_napi(q);
2174 return work_done;
2175 }
2176
2177 /*
2178 * The MSI-X interrupt handler for an SGE response queue.
2179 */
t4_sge_intr_msix(int irq,void * cookie)2180 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2181 {
2182 struct sge_rspq *q = cookie;
2183
2184 napi_schedule(&q->napi);
2185 return IRQ_HANDLED;
2186 }
2187
2188 /*
2189 * Process the indirect interrupt entries in the interrupt queue and kick off
2190 * NAPI for each queue that has generated an entry.
2191 */
process_intrq(struct adapter * adap)2192 static unsigned int process_intrq(struct adapter *adap)
2193 {
2194 unsigned int credits;
2195 const struct rsp_ctrl *rc;
2196 struct sge_rspq *q = &adap->sge.intrq;
2197 u32 val;
2198
2199 spin_lock(&adap->sge.intrq_lock);
2200 for (credits = 0; ; credits++) {
2201 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2202 if (!is_new_response(rc, q))
2203 break;
2204
2205 dma_rmb();
2206 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
2207 unsigned int qid = ntohl(rc->pldbuflen_qid);
2208
2209 qid -= adap->sge.ingr_start;
2210 napi_schedule(&adap->sge.ingr_map[qid]->napi);
2211 }
2212
2213 rspq_next(q);
2214 }
2215
2216 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2217
2218 /* If we don't have access to the new User GTS (T5+), use the old
2219 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2220 */
2221 if (unlikely(q->bar2_addr == NULL)) {
2222 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2223 val | INGRESSQID_V(q->cntxt_id));
2224 } else {
2225 writel(val | INGRESSQID_V(q->bar2_qid),
2226 q->bar2_addr + SGE_UDB_GTS);
2227 wmb();
2228 }
2229 spin_unlock(&adap->sge.intrq_lock);
2230 return credits;
2231 }
2232
2233 /*
2234 * The MSI interrupt handler, which handles data events from SGE response queues
2235 * as well as error and other async events as they all use the same MSI vector.
2236 */
t4_intr_msi(int irq,void * cookie)2237 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2238 {
2239 struct adapter *adap = cookie;
2240
2241 if (adap->flags & MASTER_PF)
2242 t4_slow_intr_handler(adap);
2243 process_intrq(adap);
2244 return IRQ_HANDLED;
2245 }
2246
2247 /*
2248 * Interrupt handler for legacy INTx interrupts.
2249 * Handles data events from SGE response queues as well as error and other
2250 * async events as they all use the same interrupt line.
2251 */
t4_intr_intx(int irq,void * cookie)2252 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2253 {
2254 struct adapter *adap = cookie;
2255
2256 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2257 if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
2258 process_intrq(adap))
2259 return IRQ_HANDLED;
2260 return IRQ_NONE; /* probably shared interrupt */
2261 }
2262
2263 /**
2264 * t4_intr_handler - select the top-level interrupt handler
2265 * @adap: the adapter
2266 *
2267 * Selects the top-level interrupt handler based on the type of interrupts
2268 * (MSI-X, MSI, or INTx).
2269 */
t4_intr_handler(struct adapter * adap)2270 irq_handler_t t4_intr_handler(struct adapter *adap)
2271 {
2272 if (adap->flags & USING_MSIX)
2273 return t4_sge_intr_msix;
2274 if (adap->flags & USING_MSI)
2275 return t4_intr_msi;
2276 return t4_intr_intx;
2277 }
2278
sge_rx_timer_cb(unsigned long data)2279 static void sge_rx_timer_cb(unsigned long data)
2280 {
2281 unsigned long m;
2282 unsigned int i, idma_same_state_cnt[2];
2283 struct adapter *adap = (struct adapter *)data;
2284 struct sge *s = &adap->sge;
2285
2286 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2287 for (m = s->starving_fl[i]; m; m &= m - 1) {
2288 struct sge_eth_rxq *rxq;
2289 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2290 struct sge_fl *fl = s->egr_map[id];
2291
2292 clear_bit(id, s->starving_fl);
2293 smp_mb__after_atomic();
2294
2295 if (fl_starving(adap, fl)) {
2296 rxq = container_of(fl, struct sge_eth_rxq, fl);
2297 if (napi_reschedule(&rxq->rspq.napi))
2298 fl->starving++;
2299 else
2300 set_bit(id, s->starving_fl);
2301 }
2302 }
2303
2304 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13);
2305 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A);
2306 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2307
2308 for (i = 0; i < 2; i++) {
2309 u32 debug0, debug11;
2310
2311 /* If the Ingress DMA Same State Counter ("timer") is less
2312 * than 1s, then we can reset our synthesized Stall Timer and
2313 * continue. If we have previously emitted warnings about a
2314 * potential stalled Ingress Queue, issue a note indicating
2315 * that the Ingress Queue has resumed forward progress.
2316 */
2317 if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2318 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2319 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2320 i, s->idma_qid[i],
2321 s->idma_stalled[i]/HZ);
2322 s->idma_stalled[i] = 0;
2323 continue;
2324 }
2325
2326 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2327 * domain. The first time we get here it'll be because we
2328 * passed the 1s Threshold; each additional time it'll be
2329 * because the RX Timer Callback is being fired on its regular
2330 * schedule.
2331 *
2332 * If the stall is below our Potential Hung Ingress Queue
2333 * Warning Threshold, continue.
2334 */
2335 if (s->idma_stalled[i] == 0)
2336 s->idma_stalled[i] = HZ;
2337 else
2338 s->idma_stalled[i] += RX_QCHECK_PERIOD;
2339
2340 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2341 continue;
2342
2343 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2344 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2345 continue;
2346
2347 /* Read and save the SGE IDMA State and Queue ID information.
2348 * We do this every time in case it changes across time ...
2349 */
2350 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0);
2351 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2352 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2353
2354 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11);
2355 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2356 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2357
2358 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2359 i, s->idma_qid[i], s->idma_state[i],
2360 s->idma_stalled[i]/HZ, debug0, debug11);
2361 t4_sge_decode_idma_state(adap, s->idma_state[i]);
2362 }
2363
2364 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2365 }
2366
sge_tx_timer_cb(unsigned long data)2367 static void sge_tx_timer_cb(unsigned long data)
2368 {
2369 unsigned long m;
2370 unsigned int i, budget;
2371 struct adapter *adap = (struct adapter *)data;
2372 struct sge *s = &adap->sge;
2373
2374 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2375 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2376 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2377 struct sge_ofld_txq *txq = s->egr_map[id];
2378
2379 clear_bit(id, s->txq_maperr);
2380 tasklet_schedule(&txq->qresume_tsk);
2381 }
2382
2383 budget = MAX_TIMER_TX_RECLAIM;
2384 i = s->ethtxq_rover;
2385 do {
2386 struct sge_eth_txq *q = &s->ethtxq[i];
2387
2388 if (q->q.in_use &&
2389 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2390 __netif_tx_trylock(q->txq)) {
2391 int avail = reclaimable(&q->q);
2392
2393 if (avail) {
2394 if (avail > budget)
2395 avail = budget;
2396
2397 free_tx_desc(adap, &q->q, avail, true);
2398 q->q.in_use -= avail;
2399 budget -= avail;
2400 }
2401 __netif_tx_unlock(q->txq);
2402 }
2403
2404 if (++i >= s->ethqsets)
2405 i = 0;
2406 } while (budget && i != s->ethtxq_rover);
2407 s->ethtxq_rover = i;
2408 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2409 }
2410
2411 /**
2412 * bar2_address - return the BAR2 address for an SGE Queue's Registers
2413 * @adapter: the adapter
2414 * @qid: the SGE Queue ID
2415 * @qtype: the SGE Queue Type (Egress or Ingress)
2416 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2417 *
2418 * Returns the BAR2 address for the SGE Queue Registers associated with
2419 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2420 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2421 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2422 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2423 */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)2424 static void __iomem *bar2_address(struct adapter *adapter,
2425 unsigned int qid,
2426 enum t4_bar2_qtype qtype,
2427 unsigned int *pbar2_qid)
2428 {
2429 u64 bar2_qoffset;
2430 int ret;
2431
2432 ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
2433 &bar2_qoffset, pbar2_qid);
2434 if (ret)
2435 return NULL;
2436
2437 return adapter->bar2 + bar2_qoffset;
2438 }
2439
t4_sge_alloc_rxq(struct adapter * adap,struct sge_rspq * iq,bool fwevtq,struct net_device * dev,int intr_idx,struct sge_fl * fl,rspq_handler_t hnd)2440 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2441 struct net_device *dev, int intr_idx,
2442 struct sge_fl *fl, rspq_handler_t hnd)
2443 {
2444 int ret, flsz = 0;
2445 struct fw_iq_cmd c;
2446 struct sge *s = &adap->sge;
2447 struct port_info *pi = netdev_priv(dev);
2448
2449 /* Size needs to be multiple of 16, including status entry. */
2450 iq->size = roundup(iq->size, 16);
2451
2452 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2453 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2454 if (!iq->desc)
2455 return -ENOMEM;
2456
2457 memset(&c, 0, sizeof(c));
2458 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2459 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2460 FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
2461 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2462 FW_LEN16(c));
2463 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2464 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2465 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
2466 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2467 -intr_idx - 1));
2468 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2469 FW_IQ_CMD_IQGTSMODE_F |
2470 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2471 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2472 c.iqsize = htons(iq->size);
2473 c.iqaddr = cpu_to_be64(iq->phys_addr);
2474
2475 if (fl) {
2476 fl->size = roundup(fl->size, 8);
2477 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2478 sizeof(struct rx_sw_desc), &fl->addr,
2479 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2480 if (!fl->desc)
2481 goto fl_nomem;
2482
2483 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2484 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
2485 FW_IQ_CMD_FL0FETCHRO_F |
2486 FW_IQ_CMD_FL0DATARO_F |
2487 FW_IQ_CMD_FL0PADEN_F);
2488 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
2489 FW_IQ_CMD_FL0FBMAX_V(3));
2490 c.fl0size = htons(flsz);
2491 c.fl0addr = cpu_to_be64(fl->addr);
2492 }
2493
2494 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2495 if (ret)
2496 goto err;
2497
2498 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2499 napi_hash_add(&iq->napi);
2500 iq->cur_desc = iq->desc;
2501 iq->cidx = 0;
2502 iq->gen = 1;
2503 iq->next_intr_params = iq->intr_params;
2504 iq->cntxt_id = ntohs(c.iqid);
2505 iq->abs_id = ntohs(c.physiqid);
2506 iq->bar2_addr = bar2_address(adap,
2507 iq->cntxt_id,
2508 T4_BAR2_QTYPE_INGRESS,
2509 &iq->bar2_qid);
2510 iq->size--; /* subtract status entry */
2511 iq->netdev = dev;
2512 iq->handler = hnd;
2513
2514 /* set offset to -1 to distinguish ingress queues without FL */
2515 iq->offset = fl ? 0 : -1;
2516
2517 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2518
2519 if (fl) {
2520 fl->cntxt_id = ntohs(c.fl0id);
2521 fl->avail = fl->pend_cred = 0;
2522 fl->pidx = fl->cidx = 0;
2523 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2524 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2525
2526 /* Note, we must initialize the BAR2 Free List User Doorbell
2527 * information before refilling the Free List!
2528 */
2529 fl->bar2_addr = bar2_address(adap,
2530 fl->cntxt_id,
2531 T4_BAR2_QTYPE_EGRESS,
2532 &fl->bar2_qid);
2533 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2534 }
2535 return 0;
2536
2537 fl_nomem:
2538 ret = -ENOMEM;
2539 err:
2540 if (iq->desc) {
2541 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2542 iq->desc, iq->phys_addr);
2543 iq->desc = NULL;
2544 }
2545 if (fl && fl->desc) {
2546 kfree(fl->sdesc);
2547 fl->sdesc = NULL;
2548 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2549 fl->desc, fl->addr);
2550 fl->desc = NULL;
2551 }
2552 return ret;
2553 }
2554
init_txq(struct adapter * adap,struct sge_txq * q,unsigned int id)2555 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2556 {
2557 q->cntxt_id = id;
2558 q->bar2_addr = bar2_address(adap,
2559 q->cntxt_id,
2560 T4_BAR2_QTYPE_EGRESS,
2561 &q->bar2_qid);
2562 q->in_use = 0;
2563 q->cidx = q->pidx = 0;
2564 q->stops = q->restarts = 0;
2565 q->stat = (void *)&q->desc[q->size];
2566 spin_lock_init(&q->db_lock);
2567 adap->sge.egr_map[id - adap->sge.egr_start] = q;
2568 }
2569
t4_sge_alloc_eth_txq(struct adapter * adap,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * netdevq,unsigned int iqid)2570 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2571 struct net_device *dev, struct netdev_queue *netdevq,
2572 unsigned int iqid)
2573 {
2574 int ret, nentries;
2575 struct fw_eq_eth_cmd c;
2576 struct sge *s = &adap->sge;
2577 struct port_info *pi = netdev_priv(dev);
2578
2579 /* Add status entries */
2580 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2581
2582 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2583 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2584 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2585 netdev_queue_numa_node_read(netdevq));
2586 if (!txq->q.desc)
2587 return -ENOMEM;
2588
2589 memset(&c, 0, sizeof(c));
2590 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2591 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2592 FW_EQ_ETH_CMD_PFN_V(adap->fn) |
2593 FW_EQ_ETH_CMD_VFN_V(0));
2594 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2595 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2596 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2597 FW_EQ_ETH_CMD_VIID_V(pi->viid));
2598 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
2599 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2600 FW_EQ_ETH_CMD_FETCHRO_V(1) |
2601 FW_EQ_ETH_CMD_IQID_V(iqid));
2602 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
2603 FW_EQ_ETH_CMD_FBMAX_V(3) |
2604 FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
2605 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2606 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2607
2608 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2609 if (ret) {
2610 kfree(txq->q.sdesc);
2611 txq->q.sdesc = NULL;
2612 dma_free_coherent(adap->pdev_dev,
2613 nentries * sizeof(struct tx_desc),
2614 txq->q.desc, txq->q.phys_addr);
2615 txq->q.desc = NULL;
2616 return ret;
2617 }
2618
2619 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2620 txq->txq = netdevq;
2621 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2622 txq->mapping_err = 0;
2623 return 0;
2624 }
2625
t4_sge_alloc_ctrl_txq(struct adapter * adap,struct sge_ctrl_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int cmplqid)2626 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2627 struct net_device *dev, unsigned int iqid,
2628 unsigned int cmplqid)
2629 {
2630 int ret, nentries;
2631 struct fw_eq_ctrl_cmd c;
2632 struct sge *s = &adap->sge;
2633 struct port_info *pi = netdev_priv(dev);
2634
2635 /* Add status entries */
2636 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2637
2638 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2639 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2640 NULL, 0, NUMA_NO_NODE);
2641 if (!txq->q.desc)
2642 return -ENOMEM;
2643
2644 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2645 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2646 FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
2647 FW_EQ_CTRL_CMD_VFN_V(0));
2648 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2649 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2650 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2651 c.physeqid_pkd = htonl(0);
2652 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
2653 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2654 FW_EQ_CTRL_CMD_FETCHRO_F |
2655 FW_EQ_CTRL_CMD_IQID_V(iqid));
2656 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
2657 FW_EQ_CTRL_CMD_FBMAX_V(3) |
2658 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
2659 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2660 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2661
2662 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2663 if (ret) {
2664 dma_free_coherent(adap->pdev_dev,
2665 nentries * sizeof(struct tx_desc),
2666 txq->q.desc, txq->q.phys_addr);
2667 txq->q.desc = NULL;
2668 return ret;
2669 }
2670
2671 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2672 txq->adap = adap;
2673 skb_queue_head_init(&txq->sendq);
2674 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2675 txq->full = 0;
2676 return 0;
2677 }
2678
t4_sge_alloc_ofld_txq(struct adapter * adap,struct sge_ofld_txq * txq,struct net_device * dev,unsigned int iqid)2679 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2680 struct net_device *dev, unsigned int iqid)
2681 {
2682 int ret, nentries;
2683 struct fw_eq_ofld_cmd c;
2684 struct sge *s = &adap->sge;
2685 struct port_info *pi = netdev_priv(dev);
2686
2687 /* Add status entries */
2688 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2689
2690 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2691 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2692 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2693 NUMA_NO_NODE);
2694 if (!txq->q.desc)
2695 return -ENOMEM;
2696
2697 memset(&c, 0, sizeof(c));
2698 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2699 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2700 FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
2701 FW_EQ_OFLD_CMD_VFN_V(0));
2702 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2703 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2704 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
2705 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2706 FW_EQ_OFLD_CMD_FETCHRO_F |
2707 FW_EQ_OFLD_CMD_IQID_V(iqid));
2708 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
2709 FW_EQ_OFLD_CMD_FBMAX_V(3) |
2710 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
2711 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2712 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2713
2714 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2715 if (ret) {
2716 kfree(txq->q.sdesc);
2717 txq->q.sdesc = NULL;
2718 dma_free_coherent(adap->pdev_dev,
2719 nentries * sizeof(struct tx_desc),
2720 txq->q.desc, txq->q.phys_addr);
2721 txq->q.desc = NULL;
2722 return ret;
2723 }
2724
2725 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2726 txq->adap = adap;
2727 skb_queue_head_init(&txq->sendq);
2728 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2729 txq->full = 0;
2730 txq->mapping_err = 0;
2731 return 0;
2732 }
2733
free_txq(struct adapter * adap,struct sge_txq * q)2734 static void free_txq(struct adapter *adap, struct sge_txq *q)
2735 {
2736 struct sge *s = &adap->sge;
2737
2738 dma_free_coherent(adap->pdev_dev,
2739 q->size * sizeof(struct tx_desc) + s->stat_len,
2740 q->desc, q->phys_addr);
2741 q->cntxt_id = 0;
2742 q->sdesc = NULL;
2743 q->desc = NULL;
2744 }
2745
free_rspq_fl(struct adapter * adap,struct sge_rspq * rq,struct sge_fl * fl)2746 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2747 struct sge_fl *fl)
2748 {
2749 struct sge *s = &adap->sge;
2750 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2751
2752 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2753 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2754 rq->cntxt_id, fl_id, 0xffff);
2755 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2756 rq->desc, rq->phys_addr);
2757 napi_hash_del(&rq->napi);
2758 netif_napi_del(&rq->napi);
2759 rq->netdev = NULL;
2760 rq->cntxt_id = rq->abs_id = 0;
2761 rq->desc = NULL;
2762
2763 if (fl) {
2764 free_rx_bufs(adap, fl, fl->avail);
2765 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2766 fl->desc, fl->addr);
2767 kfree(fl->sdesc);
2768 fl->sdesc = NULL;
2769 fl->cntxt_id = 0;
2770 fl->desc = NULL;
2771 }
2772 }
2773
2774 /**
2775 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
2776 * @adap: the adapter
2777 * @n: number of queues
2778 * @q: pointer to first queue
2779 *
2780 * Release the resources of a consecutive block of offload Rx queues.
2781 */
t4_free_ofld_rxqs(struct adapter * adap,int n,struct sge_ofld_rxq * q)2782 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2783 {
2784 for ( ; n; n--, q++)
2785 if (q->rspq.desc)
2786 free_rspq_fl(adap, &q->rspq,
2787 q->fl.size ? &q->fl : NULL);
2788 }
2789
2790 /**
2791 * t4_free_sge_resources - free SGE resources
2792 * @adap: the adapter
2793 *
2794 * Frees resources used by the SGE queue sets.
2795 */
t4_free_sge_resources(struct adapter * adap)2796 void t4_free_sge_resources(struct adapter *adap)
2797 {
2798 int i;
2799 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2800 struct sge_eth_txq *etq = adap->sge.ethtxq;
2801
2802 /* clean up Ethernet Tx/Rx queues */
2803 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2804 if (eq->rspq.desc)
2805 free_rspq_fl(adap, &eq->rspq,
2806 eq->fl.size ? &eq->fl : NULL);
2807 if (etq->q.desc) {
2808 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2809 etq->q.cntxt_id);
2810 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2811 kfree(etq->q.sdesc);
2812 free_txq(adap, &etq->q);
2813 }
2814 }
2815
2816 /* clean up RDMA and iSCSI Rx queues */
2817 t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2818 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2819 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2820
2821 /* clean up offload Tx queues */
2822 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2823 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2824
2825 if (q->q.desc) {
2826 tasklet_kill(&q->qresume_tsk);
2827 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2828 q->q.cntxt_id);
2829 free_tx_desc(adap, &q->q, q->q.in_use, false);
2830 kfree(q->q.sdesc);
2831 __skb_queue_purge(&q->sendq);
2832 free_txq(adap, &q->q);
2833 }
2834 }
2835
2836 /* clean up control Tx queues */
2837 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2838 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2839
2840 if (cq->q.desc) {
2841 tasklet_kill(&cq->qresume_tsk);
2842 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2843 cq->q.cntxt_id);
2844 __skb_queue_purge(&cq->sendq);
2845 free_txq(adap, &cq->q);
2846 }
2847 }
2848
2849 if (adap->sge.fw_evtq.desc)
2850 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2851
2852 if (adap->sge.intrq.desc)
2853 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2854
2855 /* clear the reverse egress queue map */
2856 memset(adap->sge.egr_map, 0,
2857 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
2858 }
2859
t4_sge_start(struct adapter * adap)2860 void t4_sge_start(struct adapter *adap)
2861 {
2862 adap->sge.ethtxq_rover = 0;
2863 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2864 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2865 }
2866
2867 /**
2868 * t4_sge_stop - disable SGE operation
2869 * @adap: the adapter
2870 *
2871 * Stop tasklets and timers associated with the DMA engine. Note that
2872 * this is effective only if measures have been taken to disable any HW
2873 * events that may restart them.
2874 */
t4_sge_stop(struct adapter * adap)2875 void t4_sge_stop(struct adapter *adap)
2876 {
2877 int i;
2878 struct sge *s = &adap->sge;
2879
2880 if (in_interrupt()) /* actions below require waiting */
2881 return;
2882
2883 if (s->rx_timer.function)
2884 del_timer_sync(&s->rx_timer);
2885 if (s->tx_timer.function)
2886 del_timer_sync(&s->tx_timer);
2887
2888 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2889 struct sge_ofld_txq *q = &s->ofldtxq[i];
2890
2891 if (q->q.desc)
2892 tasklet_kill(&q->qresume_tsk);
2893 }
2894 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2895 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2896
2897 if (cq->q.desc)
2898 tasklet_kill(&cq->qresume_tsk);
2899 }
2900 }
2901
2902 /**
2903 * t4_sge_init_soft - grab core SGE values needed by SGE code
2904 * @adap: the adapter
2905 *
2906 * We need to grab the SGE operating parameters that we need to have
2907 * in order to do our job and make sure we can live with them.
2908 */
2909
t4_sge_init_soft(struct adapter * adap)2910 static int t4_sge_init_soft(struct adapter *adap)
2911 {
2912 struct sge *s = &adap->sge;
2913 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2914 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2915 u32 ingress_rx_threshold;
2916
2917 /*
2918 * Verify that CPL messages are going to the Ingress Queue for
2919 * process_responses() and that only packet data is going to the
2920 * Free Lists.
2921 */
2922 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
2923 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2924 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2925 return -EINVAL;
2926 }
2927
2928 /*
2929 * Validate the Host Buffer Register Array indices that we want to
2930 * use ...
2931 *
2932 * XXX Note that we should really read through the Host Buffer Size
2933 * XXX register array and find the indices of the Buffer Sizes which
2934 * XXX meet our needs!
2935 */
2936 #define READ_FL_BUF(x) \
2937 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
2938
2939 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2940 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2941 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2942 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2943
2944 /* We only bother using the Large Page logic if the Large Page Buffer
2945 * is larger than our Page Size Buffer.
2946 */
2947 if (fl_large_pg <= fl_small_pg)
2948 fl_large_pg = 0;
2949
2950 #undef READ_FL_BUF
2951
2952 /* The Page Size Buffer must be exactly equal to our Page Size and the
2953 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2954 */
2955 if (fl_small_pg != PAGE_SIZE ||
2956 (fl_large_pg & (fl_large_pg-1)) != 0) {
2957 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2958 fl_small_pg, fl_large_pg);
2959 return -EINVAL;
2960 }
2961 if (fl_large_pg)
2962 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2963
2964 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2965 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2966 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2967 fl_small_mtu, fl_large_mtu);
2968 return -EINVAL;
2969 }
2970
2971 /*
2972 * Retrieve our RX interrupt holdoff timer values and counter
2973 * threshold values from the SGE parameters.
2974 */
2975 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
2976 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
2977 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
2978 s->timer_val[0] = core_ticks_to_us(adap,
2979 TIMERVALUE0_G(timer_value_0_and_1));
2980 s->timer_val[1] = core_ticks_to_us(adap,
2981 TIMERVALUE1_G(timer_value_0_and_1));
2982 s->timer_val[2] = core_ticks_to_us(adap,
2983 TIMERVALUE2_G(timer_value_2_and_3));
2984 s->timer_val[3] = core_ticks_to_us(adap,
2985 TIMERVALUE3_G(timer_value_2_and_3));
2986 s->timer_val[4] = core_ticks_to_us(adap,
2987 TIMERVALUE4_G(timer_value_4_and_5));
2988 s->timer_val[5] = core_ticks_to_us(adap,
2989 TIMERVALUE5_G(timer_value_4_and_5));
2990
2991 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
2992 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
2993 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
2994 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
2995 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
2996
2997 return 0;
2998 }
2999
3000 /**
3001 * t4_sge_init - initialize SGE
3002 * @adap: the adapter
3003 *
3004 * Perform low-level SGE code initialization needed every time after a
3005 * chip reset.
3006 */
t4_sge_init(struct adapter * adap)3007 int t4_sge_init(struct adapter *adap)
3008 {
3009 struct sge *s = &adap->sge;
3010 u32 sge_control, sge_control2, sge_conm_ctrl;
3011 unsigned int ingpadboundary, ingpackboundary;
3012 int ret, egress_threshold;
3013
3014 /*
3015 * Ingress Padding Boundary and Egress Status Page Size are set up by
3016 * t4_fixup_host_params().
3017 */
3018 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
3019 s->pktshift = PKTSHIFT_G(sge_control);
3020 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
3021
3022 /* T4 uses a single control field to specify both the PCIe Padding and
3023 * Packing Boundary. T5 introduced the ability to specify these
3024 * separately. The actual Ingress Packet Data alignment boundary
3025 * within Packed Buffer Mode is the maximum of these two
3026 * specifications.
3027 */
3028 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
3029 INGPADBOUNDARY_SHIFT_X);
3030 if (is_t4(adap->params.chip)) {
3031 s->fl_align = ingpadboundary;
3032 } else {
3033 /* T5 has a different interpretation of one of the PCIe Packing
3034 * Boundary values.
3035 */
3036 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
3037 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
3038 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
3039 ingpackboundary = 16;
3040 else
3041 ingpackboundary = 1 << (ingpackboundary +
3042 INGPACKBOUNDARY_SHIFT_X);
3043
3044 s->fl_align = max(ingpadboundary, ingpackboundary);
3045 }
3046
3047 ret = t4_sge_init_soft(adap);
3048 if (ret < 0)
3049 return ret;
3050
3051 /*
3052 * A FL with <= fl_starve_thres buffers is starving and a periodic
3053 * timer will attempt to refill it. This needs to be larger than the
3054 * SGE's Egress Congestion Threshold. If it isn't, then we can get
3055 * stuck waiting for new packets while the SGE is waiting for us to
3056 * give it more Free List entries. (Note that the SGE's Egress
3057 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
3058 * there was only a single field to control this. For T5 there's the
3059 * original field which now only applies to Unpacked Mode Free List
3060 * buffers and a new field which only applies to Packed Mode Free List
3061 * buffers.
3062 */
3063 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
3064 if (is_t4(adap->params.chip))
3065 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
3066 else
3067 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
3068 s->fl_starve_thres = 2*egress_threshold + 1;
3069
3070 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
3071 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
3072 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
3073 s->idma_stalled[0] = 0;
3074 s->idma_stalled[1] = 0;
3075 spin_lock_init(&s->intrq_lock);
3076
3077 return 0;
3078 }
3079