1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48 
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56 
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67 
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 		struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73 
init_se_kmem_caches(void)74 int init_se_kmem_caches(void)
75 {
76 	se_sess_cache = kmem_cache_create("se_sess_cache",
77 			sizeof(struct se_session), __alignof__(struct se_session),
78 			0, NULL);
79 	if (!se_sess_cache) {
80 		pr_err("kmem_cache_create() for struct se_session"
81 				" failed\n");
82 		goto out;
83 	}
84 	se_ua_cache = kmem_cache_create("se_ua_cache",
85 			sizeof(struct se_ua), __alignof__(struct se_ua),
86 			0, NULL);
87 	if (!se_ua_cache) {
88 		pr_err("kmem_cache_create() for struct se_ua failed\n");
89 		goto out_free_sess_cache;
90 	}
91 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 			sizeof(struct t10_pr_registration),
93 			__alignof__(struct t10_pr_registration), 0, NULL);
94 	if (!t10_pr_reg_cache) {
95 		pr_err("kmem_cache_create() for struct t10_pr_registration"
96 				" failed\n");
97 		goto out_free_ua_cache;
98 	}
99 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 			0, NULL);
102 	if (!t10_alua_lu_gp_cache) {
103 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 				" failed\n");
105 		goto out_free_pr_reg_cache;
106 	}
107 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 			sizeof(struct t10_alua_lu_gp_member),
109 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 	if (!t10_alua_lu_gp_mem_cache) {
111 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 				"cache failed\n");
113 		goto out_free_lu_gp_cache;
114 	}
115 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 			sizeof(struct t10_alua_tg_pt_gp),
117 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 	if (!t10_alua_tg_pt_gp_cache) {
119 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 				"cache failed\n");
121 		goto out_free_lu_gp_mem_cache;
122 	}
123 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 			"t10_alua_tg_pt_gp_mem_cache",
125 			sizeof(struct t10_alua_tg_pt_gp_member),
126 			__alignof__(struct t10_alua_tg_pt_gp_member),
127 			0, NULL);
128 	if (!t10_alua_tg_pt_gp_mem_cache) {
129 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 				"mem_t failed\n");
131 		goto out_free_tg_pt_gp_cache;
132 	}
133 	t10_alua_lba_map_cache = kmem_cache_create(
134 			"t10_alua_lba_map_cache",
135 			sizeof(struct t10_alua_lba_map),
136 			__alignof__(struct t10_alua_lba_map), 0, NULL);
137 	if (!t10_alua_lba_map_cache) {
138 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 				"cache failed\n");
140 		goto out_free_tg_pt_gp_mem_cache;
141 	}
142 	t10_alua_lba_map_mem_cache = kmem_cache_create(
143 			"t10_alua_lba_map_mem_cache",
144 			sizeof(struct t10_alua_lba_map_member),
145 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 	if (!t10_alua_lba_map_mem_cache) {
147 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 				"cache failed\n");
149 		goto out_free_lba_map_cache;
150 	}
151 
152 	target_completion_wq = alloc_workqueue("target_completion",
153 					       WQ_MEM_RECLAIM, 0);
154 	if (!target_completion_wq)
155 		goto out_free_lba_map_mem_cache;
156 
157 	return 0;
158 
159 out_free_lba_map_mem_cache:
160 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 	kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 	kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 	kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 	kmem_cache_destroy(se_sess_cache);
177 out:
178 	return -ENOMEM;
179 }
180 
release_se_kmem_caches(void)181 void release_se_kmem_caches(void)
182 {
183 	destroy_workqueue(target_completion_wq);
184 	kmem_cache_destroy(se_sess_cache);
185 	kmem_cache_destroy(se_ua_cache);
186 	kmem_cache_destroy(t10_pr_reg_cache);
187 	kmem_cache_destroy(t10_alua_lu_gp_cache);
188 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 	kmem_cache_destroy(t10_alua_lba_map_cache);
192 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194 
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198 
199 /*
200  * Allocate a new row index for the entry type specified
201  */
scsi_get_new_index(scsi_index_t type)202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204 	u32 new_index;
205 
206 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207 
208 	spin_lock(&scsi_mib_index_lock);
209 	new_index = ++scsi_mib_index[type];
210 	spin_unlock(&scsi_mib_index_lock);
211 
212 	return new_index;
213 }
214 
transport_subsystem_check_init(void)215 void transport_subsystem_check_init(void)
216 {
217 	int ret;
218 	static int sub_api_initialized;
219 
220 	if (sub_api_initialized)
221 		return;
222 
223 	ret = request_module("target_core_iblock");
224 	if (ret != 0)
225 		pr_err("Unable to load target_core_iblock\n");
226 
227 	ret = request_module("target_core_file");
228 	if (ret != 0)
229 		pr_err("Unable to load target_core_file\n");
230 
231 	ret = request_module("target_core_pscsi");
232 	if (ret != 0)
233 		pr_err("Unable to load target_core_pscsi\n");
234 
235 	ret = request_module("target_core_user");
236 	if (ret != 0)
237 		pr_err("Unable to load target_core_user\n");
238 
239 	sub_api_initialized = 1;
240 }
241 
transport_init_session(enum target_prot_op sup_prot_ops)242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
243 {
244 	struct se_session *se_sess;
245 
246 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
247 	if (!se_sess) {
248 		pr_err("Unable to allocate struct se_session from"
249 				" se_sess_cache\n");
250 		return ERR_PTR(-ENOMEM);
251 	}
252 	INIT_LIST_HEAD(&se_sess->sess_list);
253 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
254 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
255 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
256 	spin_lock_init(&se_sess->sess_cmd_lock);
257 	kref_init(&se_sess->sess_kref);
258 	se_sess->sup_prot_ops = sup_prot_ops;
259 
260 	return se_sess;
261 }
262 EXPORT_SYMBOL(transport_init_session);
263 
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)264 int transport_alloc_session_tags(struct se_session *se_sess,
265 			         unsigned int tag_num, unsigned int tag_size)
266 {
267 	int rc;
268 
269 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
270 					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
271 	if (!se_sess->sess_cmd_map) {
272 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
273 		if (!se_sess->sess_cmd_map) {
274 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275 			return -ENOMEM;
276 		}
277 	}
278 
279 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
280 	if (rc < 0) {
281 		pr_err("Unable to init se_sess->sess_tag_pool,"
282 			" tag_num: %u\n", tag_num);
283 		if (is_vmalloc_addr(se_sess->sess_cmd_map))
284 			vfree(se_sess->sess_cmd_map);
285 		else
286 			kfree(se_sess->sess_cmd_map);
287 		se_sess->sess_cmd_map = NULL;
288 		return -ENOMEM;
289 	}
290 
291 	return 0;
292 }
293 EXPORT_SYMBOL(transport_alloc_session_tags);
294 
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)295 struct se_session *transport_init_session_tags(unsigned int tag_num,
296 					       unsigned int tag_size,
297 					       enum target_prot_op sup_prot_ops)
298 {
299 	struct se_session *se_sess;
300 	int rc;
301 
302 	se_sess = transport_init_session(sup_prot_ops);
303 	if (IS_ERR(se_sess))
304 		return se_sess;
305 
306 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
307 	if (rc < 0) {
308 		transport_free_session(se_sess);
309 		return ERR_PTR(-ENOMEM);
310 	}
311 
312 	return se_sess;
313 }
314 EXPORT_SYMBOL(transport_init_session_tags);
315 
316 /*
317  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
318  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)319 void __transport_register_session(
320 	struct se_portal_group *se_tpg,
321 	struct se_node_acl *se_nacl,
322 	struct se_session *se_sess,
323 	void *fabric_sess_ptr)
324 {
325 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
326 	unsigned char buf[PR_REG_ISID_LEN];
327 
328 	se_sess->se_tpg = se_tpg;
329 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
330 	/*
331 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
332 	 *
333 	 * Only set for struct se_session's that will actually be moving I/O.
334 	 * eg: *NOT* discovery sessions.
335 	 */
336 	if (se_nacl) {
337 		/*
338 		 *
339 		 * Determine if fabric allows for T10-PI feature bits exposed to
340 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
341 		 *
342 		 * If so, then always save prot_type on a per se_node_acl node
343 		 * basis and re-instate the previous sess_prot_type to avoid
344 		 * disabling PI from below any previously initiator side
345 		 * registered LUNs.
346 		 */
347 		if (se_nacl->saved_prot_type)
348 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
349 		else if (tfo->tpg_check_prot_fabric_only)
350 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
351 					tfo->tpg_check_prot_fabric_only(se_tpg);
352 		/*
353 		 * If the fabric module supports an ISID based TransportID,
354 		 * save this value in binary from the fabric I_T Nexus now.
355 		 */
356 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
357 			memset(&buf[0], 0, PR_REG_ISID_LEN);
358 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
359 					&buf[0], PR_REG_ISID_LEN);
360 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
361 		}
362 		kref_get(&se_nacl->acl_kref);
363 
364 		spin_lock_irq(&se_nacl->nacl_sess_lock);
365 		/*
366 		 * The se_nacl->nacl_sess pointer will be set to the
367 		 * last active I_T Nexus for each struct se_node_acl.
368 		 */
369 		se_nacl->nacl_sess = se_sess;
370 
371 		list_add_tail(&se_sess->sess_acl_list,
372 			      &se_nacl->acl_sess_list);
373 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
374 	}
375 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
376 
377 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
378 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
379 }
380 EXPORT_SYMBOL(__transport_register_session);
381 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)382 void transport_register_session(
383 	struct se_portal_group *se_tpg,
384 	struct se_node_acl *se_nacl,
385 	struct se_session *se_sess,
386 	void *fabric_sess_ptr)
387 {
388 	unsigned long flags;
389 
390 	spin_lock_irqsave(&se_tpg->session_lock, flags);
391 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
392 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
393 }
394 EXPORT_SYMBOL(transport_register_session);
395 
target_release_session(struct kref * kref)396 static void target_release_session(struct kref *kref)
397 {
398 	struct se_session *se_sess = container_of(kref,
399 			struct se_session, sess_kref);
400 	struct se_portal_group *se_tpg = se_sess->se_tpg;
401 
402 	se_tpg->se_tpg_tfo->close_session(se_sess);
403 }
404 
target_get_session(struct se_session * se_sess)405 void target_get_session(struct se_session *se_sess)
406 {
407 	kref_get(&se_sess->sess_kref);
408 }
409 EXPORT_SYMBOL(target_get_session);
410 
target_put_session(struct se_session * se_sess)411 void target_put_session(struct se_session *se_sess)
412 {
413 	struct se_portal_group *tpg = se_sess->se_tpg;
414 
415 	if (tpg->se_tpg_tfo->put_session != NULL) {
416 		tpg->se_tpg_tfo->put_session(se_sess);
417 		return;
418 	}
419 	kref_put(&se_sess->sess_kref, target_release_session);
420 }
421 EXPORT_SYMBOL(target_put_session);
422 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)423 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
424 {
425 	struct se_session *se_sess;
426 	ssize_t len = 0;
427 
428 	spin_lock_bh(&se_tpg->session_lock);
429 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
430 		if (!se_sess->se_node_acl)
431 			continue;
432 		if (!se_sess->se_node_acl->dynamic_node_acl)
433 			continue;
434 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
435 			break;
436 
437 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
438 				se_sess->se_node_acl->initiatorname);
439 		len += 1; /* Include NULL terminator */
440 	}
441 	spin_unlock_bh(&se_tpg->session_lock);
442 
443 	return len;
444 }
445 EXPORT_SYMBOL(target_show_dynamic_sessions);
446 
target_complete_nacl(struct kref * kref)447 static void target_complete_nacl(struct kref *kref)
448 {
449 	struct se_node_acl *nacl = container_of(kref,
450 				struct se_node_acl, acl_kref);
451 
452 	complete(&nacl->acl_free_comp);
453 }
454 
target_put_nacl(struct se_node_acl * nacl)455 void target_put_nacl(struct se_node_acl *nacl)
456 {
457 	kref_put(&nacl->acl_kref, target_complete_nacl);
458 }
459 
transport_deregister_session_configfs(struct se_session * se_sess)460 void transport_deregister_session_configfs(struct se_session *se_sess)
461 {
462 	struct se_node_acl *se_nacl;
463 	unsigned long flags;
464 	/*
465 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
466 	 */
467 	se_nacl = se_sess->se_node_acl;
468 	if (se_nacl) {
469 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
470 		if (se_nacl->acl_stop == 0)
471 			list_del(&se_sess->sess_acl_list);
472 		/*
473 		 * If the session list is empty, then clear the pointer.
474 		 * Otherwise, set the struct se_session pointer from the tail
475 		 * element of the per struct se_node_acl active session list.
476 		 */
477 		if (list_empty(&se_nacl->acl_sess_list))
478 			se_nacl->nacl_sess = NULL;
479 		else {
480 			se_nacl->nacl_sess = container_of(
481 					se_nacl->acl_sess_list.prev,
482 					struct se_session, sess_acl_list);
483 		}
484 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
485 	}
486 }
487 EXPORT_SYMBOL(transport_deregister_session_configfs);
488 
transport_free_session(struct se_session * se_sess)489 void transport_free_session(struct se_session *se_sess)
490 {
491 	if (se_sess->sess_cmd_map) {
492 		percpu_ida_destroy(&se_sess->sess_tag_pool);
493 		if (is_vmalloc_addr(se_sess->sess_cmd_map))
494 			vfree(se_sess->sess_cmd_map);
495 		else
496 			kfree(se_sess->sess_cmd_map);
497 	}
498 	kmem_cache_free(se_sess_cache, se_sess);
499 }
500 EXPORT_SYMBOL(transport_free_session);
501 
transport_deregister_session(struct se_session * se_sess)502 void transport_deregister_session(struct se_session *se_sess)
503 {
504 	struct se_portal_group *se_tpg = se_sess->se_tpg;
505 	const struct target_core_fabric_ops *se_tfo;
506 	struct se_node_acl *se_nacl;
507 	unsigned long flags;
508 	bool comp_nacl = true;
509 
510 	if (!se_tpg) {
511 		transport_free_session(se_sess);
512 		return;
513 	}
514 	se_tfo = se_tpg->se_tpg_tfo;
515 
516 	spin_lock_irqsave(&se_tpg->session_lock, flags);
517 	list_del(&se_sess->sess_list);
518 	se_sess->se_tpg = NULL;
519 	se_sess->fabric_sess_ptr = NULL;
520 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
521 
522 	/*
523 	 * Determine if we need to do extra work for this initiator node's
524 	 * struct se_node_acl if it had been previously dynamically generated.
525 	 */
526 	se_nacl = se_sess->se_node_acl;
527 
528 	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
529 	if (se_nacl && se_nacl->dynamic_node_acl) {
530 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
531 			list_del(&se_nacl->acl_list);
532 			se_tpg->num_node_acls--;
533 			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
534 			core_tpg_wait_for_nacl_pr_ref(se_nacl);
535 			core_free_device_list_for_node(se_nacl, se_tpg);
536 			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
537 
538 			comp_nacl = false;
539 			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
540 		}
541 	}
542 	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
543 
544 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
545 		se_tpg->se_tpg_tfo->get_fabric_name());
546 	/*
547 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
548 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
549 	 * removal context.
550 	 */
551 	if (se_nacl && comp_nacl)
552 		target_put_nacl(se_nacl);
553 
554 	transport_free_session(se_sess);
555 }
556 EXPORT_SYMBOL(transport_deregister_session);
557 
target_remove_from_state_list(struct se_cmd * cmd)558 static void target_remove_from_state_list(struct se_cmd *cmd)
559 {
560 	struct se_device *dev = cmd->se_dev;
561 	unsigned long flags;
562 
563 	if (!dev)
564 		return;
565 
566 	if (cmd->transport_state & CMD_T_BUSY)
567 		return;
568 
569 	spin_lock_irqsave(&dev->execute_task_lock, flags);
570 	if (cmd->state_active) {
571 		list_del(&cmd->state_list);
572 		cmd->state_active = false;
573 	}
574 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
575 }
576 
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)577 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
578 				    bool write_pending)
579 {
580 	unsigned long flags;
581 
582 	if (remove_from_lists) {
583 		target_remove_from_state_list(cmd);
584 
585 		/*
586 		 * Clear struct se_cmd->se_lun before the handoff to FE.
587 		 */
588 		cmd->se_lun = NULL;
589 	}
590 
591 	spin_lock_irqsave(&cmd->t_state_lock, flags);
592 	if (write_pending)
593 		cmd->t_state = TRANSPORT_WRITE_PENDING;
594 
595 	/*
596 	 * Determine if frontend context caller is requesting the stopping of
597 	 * this command for frontend exceptions.
598 	 */
599 	if (cmd->transport_state & CMD_T_STOP) {
600 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
601 			__func__, __LINE__,
602 			cmd->se_tfo->get_task_tag(cmd));
603 
604 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
605 
606 		complete_all(&cmd->t_transport_stop_comp);
607 		return 1;
608 	}
609 
610 	cmd->transport_state &= ~CMD_T_ACTIVE;
611 	if (remove_from_lists) {
612 		/*
613 		 * Some fabric modules like tcm_loop can release
614 		 * their internally allocated I/O reference now and
615 		 * struct se_cmd now.
616 		 *
617 		 * Fabric modules are expected to return '1' here if the
618 		 * se_cmd being passed is released at this point,
619 		 * or zero if not being released.
620 		 */
621 		if (cmd->se_tfo->check_stop_free != NULL) {
622 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
623 			return cmd->se_tfo->check_stop_free(cmd);
624 		}
625 	}
626 
627 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
628 	return 0;
629 }
630 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)631 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
632 {
633 	return transport_cmd_check_stop(cmd, true, false);
634 }
635 
transport_lun_remove_cmd(struct se_cmd * cmd)636 static void transport_lun_remove_cmd(struct se_cmd *cmd)
637 {
638 	struct se_lun *lun = cmd->se_lun;
639 
640 	if (!lun)
641 		return;
642 
643 	if (cmpxchg(&cmd->lun_ref_active, true, false))
644 		percpu_ref_put(&lun->lun_ref);
645 }
646 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)647 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
648 {
649 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
650 
651 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
652 		transport_lun_remove_cmd(cmd);
653 	/*
654 	 * Allow the fabric driver to unmap any resources before
655 	 * releasing the descriptor via TFO->release_cmd()
656 	 */
657 	if (remove)
658 		cmd->se_tfo->aborted_task(cmd);
659 
660 	if (transport_cmd_check_stop_to_fabric(cmd))
661 		return;
662 	if (remove && ack_kref)
663 		transport_put_cmd(cmd);
664 }
665 
target_complete_failure_work(struct work_struct * work)666 static void target_complete_failure_work(struct work_struct *work)
667 {
668 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
669 
670 	transport_generic_request_failure(cmd,
671 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
672 }
673 
674 /*
675  * Used when asking transport to copy Sense Data from the underlying
676  * Linux/SCSI struct scsi_cmnd
677  */
transport_get_sense_buffer(struct se_cmd * cmd)678 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
679 {
680 	struct se_device *dev = cmd->se_dev;
681 
682 	WARN_ON(!cmd->se_lun);
683 
684 	if (!dev)
685 		return NULL;
686 
687 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
688 		return NULL;
689 
690 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
691 
692 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
693 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
694 	return cmd->sense_buffer;
695 }
696 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)697 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
698 {
699 	struct se_device *dev = cmd->se_dev;
700 	int success = scsi_status == GOOD;
701 	unsigned long flags;
702 
703 	cmd->scsi_status = scsi_status;
704 
705 
706 	spin_lock_irqsave(&cmd->t_state_lock, flags);
707 	cmd->transport_state &= ~CMD_T_BUSY;
708 
709 	if (dev && dev->transport->transport_complete) {
710 		dev->transport->transport_complete(cmd,
711 				cmd->t_data_sg,
712 				transport_get_sense_buffer(cmd));
713 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
714 			success = 1;
715 	}
716 
717 	/*
718 	 * See if we are waiting to complete for an exception condition.
719 	 */
720 	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
721 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722 		complete(&cmd->task_stop_comp);
723 		return;
724 	}
725 
726 	/*
727 	 * Check for case where an explicit ABORT_TASK has been received
728 	 * and transport_wait_for_tasks() will be waiting for completion..
729 	 */
730 	if (cmd->transport_state & CMD_T_ABORTED ||
731 	    cmd->transport_state & CMD_T_STOP) {
732 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
733 		complete_all(&cmd->t_transport_stop_comp);
734 		return;
735 	} else if (!success) {
736 		INIT_WORK(&cmd->work, target_complete_failure_work);
737 	} else {
738 		INIT_WORK(&cmd->work, target_complete_ok_work);
739 	}
740 
741 	cmd->t_state = TRANSPORT_COMPLETE;
742 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
743 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
744 
745 	queue_work(target_completion_wq, &cmd->work);
746 }
747 EXPORT_SYMBOL(target_complete_cmd);
748 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)749 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
750 {
751 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
752 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
753 			cmd->residual_count += cmd->data_length - length;
754 		} else {
755 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
756 			cmd->residual_count = cmd->data_length - length;
757 		}
758 
759 		cmd->data_length = length;
760 	}
761 
762 	target_complete_cmd(cmd, scsi_status);
763 }
764 EXPORT_SYMBOL(target_complete_cmd_with_length);
765 
target_add_to_state_list(struct se_cmd * cmd)766 static void target_add_to_state_list(struct se_cmd *cmd)
767 {
768 	struct se_device *dev = cmd->se_dev;
769 	unsigned long flags;
770 
771 	spin_lock_irqsave(&dev->execute_task_lock, flags);
772 	if (!cmd->state_active) {
773 		list_add_tail(&cmd->state_list, &dev->state_list);
774 		cmd->state_active = true;
775 	}
776 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
777 }
778 
779 /*
780  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
781  */
782 static void transport_write_pending_qf(struct se_cmd *cmd);
783 static void transport_complete_qf(struct se_cmd *cmd);
784 
target_qf_do_work(struct work_struct * work)785 void target_qf_do_work(struct work_struct *work)
786 {
787 	struct se_device *dev = container_of(work, struct se_device,
788 					qf_work_queue);
789 	LIST_HEAD(qf_cmd_list);
790 	struct se_cmd *cmd, *cmd_tmp;
791 
792 	spin_lock_irq(&dev->qf_cmd_lock);
793 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
794 	spin_unlock_irq(&dev->qf_cmd_lock);
795 
796 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
797 		list_del(&cmd->se_qf_node);
798 		atomic_dec_mb(&dev->dev_qf_count);
799 
800 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
801 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
802 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
803 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
804 			: "UNKNOWN");
805 
806 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
807 			transport_write_pending_qf(cmd);
808 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
809 			transport_complete_qf(cmd);
810 	}
811 }
812 
transport_dump_cmd_direction(struct se_cmd * cmd)813 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
814 {
815 	switch (cmd->data_direction) {
816 	case DMA_NONE:
817 		return "NONE";
818 	case DMA_FROM_DEVICE:
819 		return "READ";
820 	case DMA_TO_DEVICE:
821 		return "WRITE";
822 	case DMA_BIDIRECTIONAL:
823 		return "BIDI";
824 	default:
825 		break;
826 	}
827 
828 	return "UNKNOWN";
829 }
830 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)831 void transport_dump_dev_state(
832 	struct se_device *dev,
833 	char *b,
834 	int *bl)
835 {
836 	*bl += sprintf(b + *bl, "Status: ");
837 	if (dev->export_count)
838 		*bl += sprintf(b + *bl, "ACTIVATED");
839 	else
840 		*bl += sprintf(b + *bl, "DEACTIVATED");
841 
842 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
843 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
844 		dev->dev_attrib.block_size,
845 		dev->dev_attrib.hw_max_sectors);
846 	*bl += sprintf(b + *bl, "        ");
847 }
848 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)849 void transport_dump_vpd_proto_id(
850 	struct t10_vpd *vpd,
851 	unsigned char *p_buf,
852 	int p_buf_len)
853 {
854 	unsigned char buf[VPD_TMP_BUF_SIZE];
855 	int len;
856 
857 	memset(buf, 0, VPD_TMP_BUF_SIZE);
858 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
859 
860 	switch (vpd->protocol_identifier) {
861 	case 0x00:
862 		sprintf(buf+len, "Fibre Channel\n");
863 		break;
864 	case 0x10:
865 		sprintf(buf+len, "Parallel SCSI\n");
866 		break;
867 	case 0x20:
868 		sprintf(buf+len, "SSA\n");
869 		break;
870 	case 0x30:
871 		sprintf(buf+len, "IEEE 1394\n");
872 		break;
873 	case 0x40:
874 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
875 				" Protocol\n");
876 		break;
877 	case 0x50:
878 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
879 		break;
880 	case 0x60:
881 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
882 		break;
883 	case 0x70:
884 		sprintf(buf+len, "Automation/Drive Interface Transport"
885 				" Protocol\n");
886 		break;
887 	case 0x80:
888 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
889 		break;
890 	default:
891 		sprintf(buf+len, "Unknown 0x%02x\n",
892 				vpd->protocol_identifier);
893 		break;
894 	}
895 
896 	if (p_buf)
897 		strncpy(p_buf, buf, p_buf_len);
898 	else
899 		pr_debug("%s", buf);
900 }
901 
902 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)903 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
904 {
905 	/*
906 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
907 	 *
908 	 * from spc3r23.pdf section 7.5.1
909 	 */
910 	 if (page_83[1] & 0x80) {
911 		vpd->protocol_identifier = (page_83[0] & 0xf0);
912 		vpd->protocol_identifier_set = 1;
913 		transport_dump_vpd_proto_id(vpd, NULL, 0);
914 	}
915 }
916 EXPORT_SYMBOL(transport_set_vpd_proto_id);
917 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)918 int transport_dump_vpd_assoc(
919 	struct t10_vpd *vpd,
920 	unsigned char *p_buf,
921 	int p_buf_len)
922 {
923 	unsigned char buf[VPD_TMP_BUF_SIZE];
924 	int ret = 0;
925 	int len;
926 
927 	memset(buf, 0, VPD_TMP_BUF_SIZE);
928 	len = sprintf(buf, "T10 VPD Identifier Association: ");
929 
930 	switch (vpd->association) {
931 	case 0x00:
932 		sprintf(buf+len, "addressed logical unit\n");
933 		break;
934 	case 0x10:
935 		sprintf(buf+len, "target port\n");
936 		break;
937 	case 0x20:
938 		sprintf(buf+len, "SCSI target device\n");
939 		break;
940 	default:
941 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
942 		ret = -EINVAL;
943 		break;
944 	}
945 
946 	if (p_buf)
947 		strncpy(p_buf, buf, p_buf_len);
948 	else
949 		pr_debug("%s", buf);
950 
951 	return ret;
952 }
953 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)954 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
955 {
956 	/*
957 	 * The VPD identification association..
958 	 *
959 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
960 	 */
961 	vpd->association = (page_83[1] & 0x30);
962 	return transport_dump_vpd_assoc(vpd, NULL, 0);
963 }
964 EXPORT_SYMBOL(transport_set_vpd_assoc);
965 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)966 int transport_dump_vpd_ident_type(
967 	struct t10_vpd *vpd,
968 	unsigned char *p_buf,
969 	int p_buf_len)
970 {
971 	unsigned char buf[VPD_TMP_BUF_SIZE];
972 	int ret = 0;
973 	int len;
974 
975 	memset(buf, 0, VPD_TMP_BUF_SIZE);
976 	len = sprintf(buf, "T10 VPD Identifier Type: ");
977 
978 	switch (vpd->device_identifier_type) {
979 	case 0x00:
980 		sprintf(buf+len, "Vendor specific\n");
981 		break;
982 	case 0x01:
983 		sprintf(buf+len, "T10 Vendor ID based\n");
984 		break;
985 	case 0x02:
986 		sprintf(buf+len, "EUI-64 based\n");
987 		break;
988 	case 0x03:
989 		sprintf(buf+len, "NAA\n");
990 		break;
991 	case 0x04:
992 		sprintf(buf+len, "Relative target port identifier\n");
993 		break;
994 	case 0x08:
995 		sprintf(buf+len, "SCSI name string\n");
996 		break;
997 	default:
998 		sprintf(buf+len, "Unsupported: 0x%02x\n",
999 				vpd->device_identifier_type);
1000 		ret = -EINVAL;
1001 		break;
1002 	}
1003 
1004 	if (p_buf) {
1005 		if (p_buf_len < strlen(buf)+1)
1006 			return -EINVAL;
1007 		strncpy(p_buf, buf, p_buf_len);
1008 	} else {
1009 		pr_debug("%s", buf);
1010 	}
1011 
1012 	return ret;
1013 }
1014 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1015 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1016 {
1017 	/*
1018 	 * The VPD identifier type..
1019 	 *
1020 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1021 	 */
1022 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1023 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1024 }
1025 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1026 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1027 int transport_dump_vpd_ident(
1028 	struct t10_vpd *vpd,
1029 	unsigned char *p_buf,
1030 	int p_buf_len)
1031 {
1032 	unsigned char buf[VPD_TMP_BUF_SIZE];
1033 	int ret = 0;
1034 
1035 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1036 
1037 	switch (vpd->device_identifier_code_set) {
1038 	case 0x01: /* Binary */
1039 		snprintf(buf, sizeof(buf),
1040 			"T10 VPD Binary Device Identifier: %s\n",
1041 			&vpd->device_identifier[0]);
1042 		break;
1043 	case 0x02: /* ASCII */
1044 		snprintf(buf, sizeof(buf),
1045 			"T10 VPD ASCII Device Identifier: %s\n",
1046 			&vpd->device_identifier[0]);
1047 		break;
1048 	case 0x03: /* UTF-8 */
1049 		snprintf(buf, sizeof(buf),
1050 			"T10 VPD UTF-8 Device Identifier: %s\n",
1051 			&vpd->device_identifier[0]);
1052 		break;
1053 	default:
1054 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1055 			" 0x%02x", vpd->device_identifier_code_set);
1056 		ret = -EINVAL;
1057 		break;
1058 	}
1059 
1060 	if (p_buf)
1061 		strncpy(p_buf, buf, p_buf_len);
1062 	else
1063 		pr_debug("%s", buf);
1064 
1065 	return ret;
1066 }
1067 
1068 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1069 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1070 {
1071 	static const char hex_str[] = "0123456789abcdef";
1072 	int j = 0, i = 4; /* offset to start of the identifier */
1073 
1074 	/*
1075 	 * The VPD Code Set (encoding)
1076 	 *
1077 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1078 	 */
1079 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1080 	switch (vpd->device_identifier_code_set) {
1081 	case 0x01: /* Binary */
1082 		vpd->device_identifier[j++] =
1083 				hex_str[vpd->device_identifier_type];
1084 		while (i < (4 + page_83[3])) {
1085 			vpd->device_identifier[j++] =
1086 				hex_str[(page_83[i] & 0xf0) >> 4];
1087 			vpd->device_identifier[j++] =
1088 				hex_str[page_83[i] & 0x0f];
1089 			i++;
1090 		}
1091 		break;
1092 	case 0x02: /* ASCII */
1093 	case 0x03: /* UTF-8 */
1094 		while (i < (4 + page_83[3]))
1095 			vpd->device_identifier[j++] = page_83[i++];
1096 		break;
1097 	default:
1098 		break;
1099 	}
1100 
1101 	return transport_dump_vpd_ident(vpd, NULL, 0);
1102 }
1103 EXPORT_SYMBOL(transport_set_vpd_ident);
1104 
1105 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1106 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1107 {
1108 	struct se_device *dev = cmd->se_dev;
1109 
1110 	if (cmd->unknown_data_length) {
1111 		cmd->data_length = size;
1112 	} else if (size != cmd->data_length) {
1113 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1114 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1115 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1116 				cmd->data_length, size, cmd->t_task_cdb[0]);
1117 
1118 		if (cmd->data_direction == DMA_TO_DEVICE) {
1119 			pr_err("Rejecting underflow/overflow"
1120 					" WRITE data\n");
1121 			return TCM_INVALID_CDB_FIELD;
1122 		}
1123 		/*
1124 		 * Reject READ_* or WRITE_* with overflow/underflow for
1125 		 * type SCF_SCSI_DATA_CDB.
1126 		 */
1127 		if (dev->dev_attrib.block_size != 512)  {
1128 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1129 				" CDB on non 512-byte sector setup subsystem"
1130 				" plugin: %s\n", dev->transport->name);
1131 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1132 			return TCM_INVALID_CDB_FIELD;
1133 		}
1134 		/*
1135 		 * For the overflow case keep the existing fabric provided
1136 		 * ->data_length.  Otherwise for the underflow case, reset
1137 		 * ->data_length to the smaller SCSI expected data transfer
1138 		 * length.
1139 		 */
1140 		if (size > cmd->data_length) {
1141 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1142 			cmd->residual_count = (size - cmd->data_length);
1143 		} else {
1144 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1145 			cmd->residual_count = (cmd->data_length - size);
1146 			cmd->data_length = size;
1147 		}
1148 	}
1149 
1150 	return 0;
1151 
1152 }
1153 
1154 /*
1155  * Used by fabric modules containing a local struct se_cmd within their
1156  * fabric dependent per I/O descriptor.
1157  */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1158 void transport_init_se_cmd(
1159 	struct se_cmd *cmd,
1160 	const struct target_core_fabric_ops *tfo,
1161 	struct se_session *se_sess,
1162 	u32 data_length,
1163 	int data_direction,
1164 	int task_attr,
1165 	unsigned char *sense_buffer)
1166 {
1167 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1168 	INIT_LIST_HEAD(&cmd->se_qf_node);
1169 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1170 	INIT_LIST_HEAD(&cmd->state_list);
1171 	init_completion(&cmd->t_transport_stop_comp);
1172 	init_completion(&cmd->cmd_wait_comp);
1173 	init_completion(&cmd->task_stop_comp);
1174 	spin_lock_init(&cmd->t_state_lock);
1175 	kref_init(&cmd->cmd_kref);
1176 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1177 
1178 	cmd->se_tfo = tfo;
1179 	cmd->se_sess = se_sess;
1180 	cmd->data_length = data_length;
1181 	cmd->data_direction = data_direction;
1182 	cmd->sam_task_attr = task_attr;
1183 	cmd->sense_buffer = sense_buffer;
1184 
1185 	cmd->state_active = false;
1186 }
1187 EXPORT_SYMBOL(transport_init_se_cmd);
1188 
1189 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1190 transport_check_alloc_task_attr(struct se_cmd *cmd)
1191 {
1192 	struct se_device *dev = cmd->se_dev;
1193 
1194 	/*
1195 	 * Check if SAM Task Attribute emulation is enabled for this
1196 	 * struct se_device storage object
1197 	 */
1198 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1199 		return 0;
1200 
1201 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1202 		pr_debug("SAM Task Attribute ACA"
1203 			" emulation is not supported\n");
1204 		return TCM_INVALID_CDB_FIELD;
1205 	}
1206 	/*
1207 	 * Used to determine when ORDERED commands should go from
1208 	 * Dormant to Active status.
1209 	 */
1210 	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1211 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1212 			cmd->se_ordered_id, cmd->sam_task_attr,
1213 			dev->transport->name);
1214 	return 0;
1215 }
1216 
1217 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1218 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1219 {
1220 	struct se_device *dev = cmd->se_dev;
1221 	sense_reason_t ret;
1222 
1223 	/*
1224 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1225 	 * for VARIABLE_LENGTH_CMD
1226 	 */
1227 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1228 		pr_err("Received SCSI CDB with command_size: %d that"
1229 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1230 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1231 		return TCM_INVALID_CDB_FIELD;
1232 	}
1233 	/*
1234 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1235 	 * allocate the additional extended CDB buffer now..  Otherwise
1236 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1237 	 */
1238 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1239 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1240 						GFP_KERNEL);
1241 		if (!cmd->t_task_cdb) {
1242 			pr_err("Unable to allocate cmd->t_task_cdb"
1243 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1244 				scsi_command_size(cdb),
1245 				(unsigned long)sizeof(cmd->__t_task_cdb));
1246 			return TCM_OUT_OF_RESOURCES;
1247 		}
1248 	} else
1249 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1250 	/*
1251 	 * Copy the original CDB into cmd->
1252 	 */
1253 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1254 
1255 	trace_target_sequencer_start(cmd);
1256 
1257 	/*
1258 	 * Check for an existing UNIT ATTENTION condition
1259 	 */
1260 	ret = target_scsi3_ua_check(cmd);
1261 	if (ret)
1262 		return ret;
1263 
1264 	ret = target_alua_state_check(cmd);
1265 	if (ret)
1266 		return ret;
1267 
1268 	ret = target_check_reservation(cmd);
1269 	if (ret) {
1270 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1271 		return ret;
1272 	}
1273 
1274 	ret = dev->transport->parse_cdb(cmd);
1275 	if (ret)
1276 		return ret;
1277 
1278 	ret = transport_check_alloc_task_attr(cmd);
1279 	if (ret)
1280 		return ret;
1281 
1282 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1283 
1284 	spin_lock(&cmd->se_lun->lun_sep_lock);
1285 	if (cmd->se_lun->lun_sep)
1286 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1287 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1288 	return 0;
1289 }
1290 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1291 
1292 /*
1293  * Used by fabric module frontends to queue tasks directly.
1294  * Many only be used from process context only
1295  */
transport_handle_cdb_direct(struct se_cmd * cmd)1296 int transport_handle_cdb_direct(
1297 	struct se_cmd *cmd)
1298 {
1299 	sense_reason_t ret;
1300 
1301 	if (!cmd->se_lun) {
1302 		dump_stack();
1303 		pr_err("cmd->se_lun is NULL\n");
1304 		return -EINVAL;
1305 	}
1306 	if (in_interrupt()) {
1307 		dump_stack();
1308 		pr_err("transport_generic_handle_cdb cannot be called"
1309 				" from interrupt context\n");
1310 		return -EINVAL;
1311 	}
1312 	/*
1313 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1314 	 * outstanding descriptors are handled correctly during shutdown via
1315 	 * transport_wait_for_tasks()
1316 	 *
1317 	 * Also, we don't take cmd->t_state_lock here as we only expect
1318 	 * this to be called for initial descriptor submission.
1319 	 */
1320 	cmd->t_state = TRANSPORT_NEW_CMD;
1321 	cmd->transport_state |= CMD_T_ACTIVE;
1322 
1323 	/*
1324 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1325 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1326 	 * and call transport_generic_request_failure() if necessary..
1327 	 */
1328 	ret = transport_generic_new_cmd(cmd);
1329 	if (ret)
1330 		transport_generic_request_failure(cmd, ret);
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL(transport_handle_cdb_direct);
1334 
1335 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1336 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1337 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1338 {
1339 	if (!sgl || !sgl_count)
1340 		return 0;
1341 
1342 	/*
1343 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1344 	 * scatterlists already have been set to follow what the fabric
1345 	 * passes for the original expected data transfer length.
1346 	 */
1347 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1348 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1349 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1350 		return TCM_INVALID_CDB_FIELD;
1351 	}
1352 
1353 	cmd->t_data_sg = sgl;
1354 	cmd->t_data_nents = sgl_count;
1355 
1356 	if (sgl_bidi && sgl_bidi_count) {
1357 		cmd->t_bidi_data_sg = sgl_bidi;
1358 		cmd->t_bidi_data_nents = sgl_bidi_count;
1359 	}
1360 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1361 	return 0;
1362 }
1363 
1364 /*
1365  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1366  * 			 se_cmd + use pre-allocated SGL memory.
1367  *
1368  * @se_cmd: command descriptor to submit
1369  * @se_sess: associated se_sess for endpoint
1370  * @cdb: pointer to SCSI CDB
1371  * @sense: pointer to SCSI sense buffer
1372  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1373  * @data_length: fabric expected data transfer length
1374  * @task_addr: SAM task attribute
1375  * @data_dir: DMA data direction
1376  * @flags: flags for command submission from target_sc_flags_tables
1377  * @sgl: struct scatterlist memory for unidirectional mapping
1378  * @sgl_count: scatterlist count for unidirectional mapping
1379  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1380  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1381  * @sgl_prot: struct scatterlist memory protection information
1382  * @sgl_prot_count: scatterlist count for protection information
1383  *
1384  * Returns non zero to signal active I/O shutdown failure.  All other
1385  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1386  * but still return zero here.
1387  *
1388  * This may only be called from process context, and also currently
1389  * assumes internal allocation of fabric payload buffer by target-core.
1390  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1391 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1392 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1393 		u32 data_length, int task_attr, int data_dir, int flags,
1394 		struct scatterlist *sgl, u32 sgl_count,
1395 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1396 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1397 {
1398 	struct se_portal_group *se_tpg;
1399 	sense_reason_t rc;
1400 	int ret;
1401 
1402 	se_tpg = se_sess->se_tpg;
1403 	BUG_ON(!se_tpg);
1404 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1405 	BUG_ON(in_interrupt());
1406 	/*
1407 	 * Initialize se_cmd for target operation.  From this point
1408 	 * exceptions are handled by sending exception status via
1409 	 * target_core_fabric_ops->queue_status() callback
1410 	 */
1411 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1412 				data_length, data_dir, task_attr, sense);
1413 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1414 		se_cmd->unknown_data_length = 1;
1415 	/*
1416 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1417 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1418 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1419 	 * kref_put() to happen during fabric packet acknowledgement.
1420 	 */
1421 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1422 	if (ret)
1423 		return ret;
1424 	/*
1425 	 * Signal bidirectional data payloads to target-core
1426 	 */
1427 	if (flags & TARGET_SCF_BIDI_OP)
1428 		se_cmd->se_cmd_flags |= SCF_BIDI;
1429 	/*
1430 	 * Locate se_lun pointer and attach it to struct se_cmd
1431 	 */
1432 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1433 	if (rc) {
1434 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1435 		target_put_sess_cmd(se_cmd);
1436 		return 0;
1437 	}
1438 
1439 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1440 	if (rc != 0) {
1441 		transport_generic_request_failure(se_cmd, rc);
1442 		return 0;
1443 	}
1444 
1445 	/*
1446 	 * Save pointers for SGLs containing protection information,
1447 	 * if present.
1448 	 */
1449 	if (sgl_prot_count) {
1450 		se_cmd->t_prot_sg = sgl_prot;
1451 		se_cmd->t_prot_nents = sgl_prot_count;
1452 	}
1453 
1454 	/*
1455 	 * When a non zero sgl_count has been passed perform SGL passthrough
1456 	 * mapping for pre-allocated fabric memory instead of having target
1457 	 * core perform an internal SGL allocation..
1458 	 */
1459 	if (sgl_count != 0) {
1460 		BUG_ON(!sgl);
1461 
1462 		/*
1463 		 * A work-around for tcm_loop as some userspace code via
1464 		 * scsi-generic do not memset their associated read buffers,
1465 		 * so go ahead and do that here for type non-data CDBs.  Also
1466 		 * note that this is currently guaranteed to be a single SGL
1467 		 * for this case by target core in target_setup_cmd_from_cdb()
1468 		 * -> transport_generic_cmd_sequencer().
1469 		 */
1470 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1471 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1472 			unsigned char *buf = NULL;
1473 
1474 			if (sgl)
1475 				buf = kmap(sg_page(sgl)) + sgl->offset;
1476 
1477 			if (buf) {
1478 				memset(buf, 0, sgl->length);
1479 				kunmap(sg_page(sgl));
1480 			}
1481 		}
1482 
1483 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1484 				sgl_bidi, sgl_bidi_count);
1485 		if (rc != 0) {
1486 			transport_generic_request_failure(se_cmd, rc);
1487 			return 0;
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * Check if we need to delay processing because of ALUA
1493 	 * Active/NonOptimized primary access state..
1494 	 */
1495 	core_alua_check_nonop_delay(se_cmd);
1496 
1497 	transport_handle_cdb_direct(se_cmd);
1498 	return 0;
1499 }
1500 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1501 
1502 /*
1503  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1504  *
1505  * @se_cmd: command descriptor to submit
1506  * @se_sess: associated se_sess for endpoint
1507  * @cdb: pointer to SCSI CDB
1508  * @sense: pointer to SCSI sense buffer
1509  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1510  * @data_length: fabric expected data transfer length
1511  * @task_addr: SAM task attribute
1512  * @data_dir: DMA data direction
1513  * @flags: flags for command submission from target_sc_flags_tables
1514  *
1515  * Returns non zero to signal active I/O shutdown failure.  All other
1516  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1517  * but still return zero here.
1518  *
1519  * This may only be called from process context, and also currently
1520  * assumes internal allocation of fabric payload buffer by target-core.
1521  *
1522  * It also assumes interal target core SGL memory allocation.
1523  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1524 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1525 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1526 		u32 data_length, int task_attr, int data_dir, int flags)
1527 {
1528 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1529 			unpacked_lun, data_length, task_attr, data_dir,
1530 			flags, NULL, 0, NULL, 0, NULL, 0);
1531 }
1532 EXPORT_SYMBOL(target_submit_cmd);
1533 
target_complete_tmr_failure(struct work_struct * work)1534 static void target_complete_tmr_failure(struct work_struct *work)
1535 {
1536 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1537 
1538 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1539 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1540 
1541 	transport_cmd_check_stop_to_fabric(se_cmd);
1542 }
1543 
1544 /**
1545  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1546  *                     for TMR CDBs
1547  *
1548  * @se_cmd: command descriptor to submit
1549  * @se_sess: associated se_sess for endpoint
1550  * @sense: pointer to SCSI sense buffer
1551  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1552  * @fabric_context: fabric context for TMR req
1553  * @tm_type: Type of TM request
1554  * @gfp: gfp type for caller
1555  * @tag: referenced task tag for TMR_ABORT_TASK
1556  * @flags: submit cmd flags
1557  *
1558  * Callable from all contexts.
1559  **/
1560 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1561 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1562 		unsigned char *sense, u32 unpacked_lun,
1563 		void *fabric_tmr_ptr, unsigned char tm_type,
1564 		gfp_t gfp, unsigned int tag, int flags)
1565 {
1566 	struct se_portal_group *se_tpg;
1567 	int ret;
1568 
1569 	se_tpg = se_sess->se_tpg;
1570 	BUG_ON(!se_tpg);
1571 
1572 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1573 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1574 	/*
1575 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1576 	 * allocation failure.
1577 	 */
1578 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1579 	if (ret < 0)
1580 		return -ENOMEM;
1581 
1582 	if (tm_type == TMR_ABORT_TASK)
1583 		se_cmd->se_tmr_req->ref_task_tag = tag;
1584 
1585 	/* See target_submit_cmd for commentary */
1586 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1587 	if (ret) {
1588 		core_tmr_release_req(se_cmd->se_tmr_req);
1589 		return ret;
1590 	}
1591 
1592 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1593 	if (ret) {
1594 		/*
1595 		 * For callback during failure handling, push this work off
1596 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1597 		 */
1598 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1599 		schedule_work(&se_cmd->work);
1600 		return 0;
1601 	}
1602 	transport_generic_handle_tmr(se_cmd);
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL(target_submit_tmr);
1606 
1607 /*
1608  * If the cmd is active, request it to be stopped and sleep until it
1609  * has completed.
1610  */
target_stop_cmd(struct se_cmd * cmd,unsigned long * flags)1611 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1612 	__releases(&cmd->t_state_lock)
1613 	__acquires(&cmd->t_state_lock)
1614 {
1615 	bool was_active = false;
1616 
1617 	if (cmd->transport_state & CMD_T_BUSY) {
1618 		cmd->transport_state |= CMD_T_REQUEST_STOP;
1619 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1620 
1621 		pr_debug("cmd %p waiting to complete\n", cmd);
1622 		wait_for_completion(&cmd->task_stop_comp);
1623 		pr_debug("cmd %p stopped successfully\n", cmd);
1624 
1625 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1626 		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1627 		cmd->transport_state &= ~CMD_T_BUSY;
1628 		was_active = true;
1629 	}
1630 
1631 	return was_active;
1632 }
1633 
1634 /*
1635  * Handle SAM-esque emulation for generic transport request failures.
1636  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1637 void transport_generic_request_failure(struct se_cmd *cmd,
1638 		sense_reason_t sense_reason)
1639 {
1640 	int ret = 0, post_ret = 0;
1641 
1642 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1643 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1644 		cmd->t_task_cdb[0]);
1645 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1646 		cmd->se_tfo->get_cmd_state(cmd),
1647 		cmd->t_state, sense_reason);
1648 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1649 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1650 		(cmd->transport_state & CMD_T_STOP) != 0,
1651 		(cmd->transport_state & CMD_T_SENT) != 0);
1652 
1653 	/*
1654 	 * For SAM Task Attribute emulation for failed struct se_cmd
1655 	 */
1656 	transport_complete_task_attr(cmd);
1657 	/*
1658 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1659 	 * callback is expected to drop the per device ->caw_sem.
1660 	 */
1661 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1662 	     cmd->transport_complete_callback)
1663 		cmd->transport_complete_callback(cmd, false, &post_ret);
1664 
1665 	switch (sense_reason) {
1666 	case TCM_NON_EXISTENT_LUN:
1667 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1668 	case TCM_INVALID_CDB_FIELD:
1669 	case TCM_INVALID_PARAMETER_LIST:
1670 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1671 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1672 	case TCM_UNKNOWN_MODE_PAGE:
1673 	case TCM_WRITE_PROTECTED:
1674 	case TCM_ADDRESS_OUT_OF_RANGE:
1675 	case TCM_CHECK_CONDITION_ABORT_CMD:
1676 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1677 	case TCM_CHECK_CONDITION_NOT_READY:
1678 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1679 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1680 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1681 		break;
1682 	case TCM_OUT_OF_RESOURCES:
1683 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1684 		break;
1685 	case TCM_RESERVATION_CONFLICT:
1686 		/*
1687 		 * No SENSE Data payload for this case, set SCSI Status
1688 		 * and queue the response to $FABRIC_MOD.
1689 		 *
1690 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1691 		 */
1692 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1693 		/*
1694 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1695 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1696 		 * CONFLICT STATUS.
1697 		 *
1698 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1699 		 */
1700 		if (cmd->se_sess &&
1701 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1702 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1703 				cmd->orig_fe_lun, 0x2C,
1704 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1705 
1706 		trace_target_cmd_complete(cmd);
1707 		ret = cmd->se_tfo-> queue_status(cmd);
1708 		if (ret == -EAGAIN || ret == -ENOMEM)
1709 			goto queue_full;
1710 		goto check_stop;
1711 	default:
1712 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1713 			cmd->t_task_cdb[0], sense_reason);
1714 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1715 		break;
1716 	}
1717 
1718 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1719 	if (ret == -EAGAIN || ret == -ENOMEM)
1720 		goto queue_full;
1721 
1722 check_stop:
1723 	transport_lun_remove_cmd(cmd);
1724 	if (!transport_cmd_check_stop_to_fabric(cmd))
1725 		;
1726 	return;
1727 
1728 queue_full:
1729 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1730 	transport_handle_queue_full(cmd, cmd->se_dev);
1731 }
1732 EXPORT_SYMBOL(transport_generic_request_failure);
1733 
__target_execute_cmd(struct se_cmd * cmd)1734 void __target_execute_cmd(struct se_cmd *cmd)
1735 {
1736 	sense_reason_t ret;
1737 
1738 	if (cmd->execute_cmd) {
1739 		ret = cmd->execute_cmd(cmd);
1740 		if (ret) {
1741 			spin_lock_irq(&cmd->t_state_lock);
1742 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1743 			spin_unlock_irq(&cmd->t_state_lock);
1744 
1745 			transport_generic_request_failure(cmd, ret);
1746 		}
1747 	}
1748 }
1749 
target_write_prot_action(struct se_cmd * cmd)1750 static int target_write_prot_action(struct se_cmd *cmd)
1751 {
1752 	u32 sectors;
1753 	/*
1754 	 * Perform WRITE_INSERT of PI using software emulation when backend
1755 	 * device has PI enabled, if the transport has not already generated
1756 	 * PI using hardware WRITE_INSERT offload.
1757 	 */
1758 	switch (cmd->prot_op) {
1759 	case TARGET_PROT_DOUT_INSERT:
1760 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1761 			sbc_dif_generate(cmd);
1762 		break;
1763 	case TARGET_PROT_DOUT_STRIP:
1764 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1765 			break;
1766 
1767 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1768 		cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1769 						   sectors, 0, NULL, 0);
1770 		if (unlikely(cmd->pi_err)) {
1771 			spin_lock_irq(&cmd->t_state_lock);
1772 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1773 			spin_unlock_irq(&cmd->t_state_lock);
1774 			transport_generic_request_failure(cmd, cmd->pi_err);
1775 			return -1;
1776 		}
1777 		break;
1778 	default:
1779 		break;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
target_handle_task_attr(struct se_cmd * cmd)1785 static bool target_handle_task_attr(struct se_cmd *cmd)
1786 {
1787 	struct se_device *dev = cmd->se_dev;
1788 
1789 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1790 		return false;
1791 
1792 	/*
1793 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1794 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1795 	 */
1796 	switch (cmd->sam_task_attr) {
1797 	case TCM_HEAD_TAG:
1798 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1799 			 "se_ordered_id: %u\n",
1800 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1801 		return false;
1802 	case TCM_ORDERED_TAG:
1803 		atomic_inc_mb(&dev->dev_ordered_sync);
1804 
1805 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1806 			 " se_ordered_id: %u\n",
1807 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1808 
1809 		/*
1810 		 * Execute an ORDERED command if no other older commands
1811 		 * exist that need to be completed first.
1812 		 */
1813 		if (!atomic_read(&dev->simple_cmds))
1814 			return false;
1815 		break;
1816 	default:
1817 		/*
1818 		 * For SIMPLE and UNTAGGED Task Attribute commands
1819 		 */
1820 		atomic_inc_mb(&dev->simple_cmds);
1821 		break;
1822 	}
1823 
1824 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1825 		return false;
1826 
1827 	spin_lock(&dev->delayed_cmd_lock);
1828 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1829 	spin_unlock(&dev->delayed_cmd_lock);
1830 
1831 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1832 		" delayed CMD list, se_ordered_id: %u\n",
1833 		cmd->t_task_cdb[0], cmd->sam_task_attr,
1834 		cmd->se_ordered_id);
1835 	return true;
1836 }
1837 
1838 static int __transport_check_aborted_status(struct se_cmd *, int);
1839 
target_execute_cmd(struct se_cmd * cmd)1840 void target_execute_cmd(struct se_cmd *cmd)
1841 {
1842 	/*
1843 	 * Determine if frontend context caller is requesting the stopping of
1844 	 * this command for frontend exceptions.
1845 	 *
1846 	 * If the received CDB has aleady been aborted stop processing it here.
1847 	 */
1848 	spin_lock_irq(&cmd->t_state_lock);
1849 	if (__transport_check_aborted_status(cmd, 1)) {
1850 		spin_unlock_irq(&cmd->t_state_lock);
1851 		return;
1852 	}
1853 	if (cmd->transport_state & CMD_T_STOP) {
1854 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1855 			__func__, __LINE__,
1856 			cmd->se_tfo->get_task_tag(cmd));
1857 
1858 		spin_unlock_irq(&cmd->t_state_lock);
1859 		complete_all(&cmd->t_transport_stop_comp);
1860 		return;
1861 	}
1862 
1863 	cmd->t_state = TRANSPORT_PROCESSING;
1864 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1865 	spin_unlock_irq(&cmd->t_state_lock);
1866 
1867 	if (target_write_prot_action(cmd))
1868 		return;
1869 
1870 	if (target_handle_task_attr(cmd)) {
1871 		spin_lock_irq(&cmd->t_state_lock);
1872 		cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1873 		spin_unlock_irq(&cmd->t_state_lock);
1874 		return;
1875 	}
1876 
1877 	__target_execute_cmd(cmd);
1878 }
1879 EXPORT_SYMBOL(target_execute_cmd);
1880 
1881 /*
1882  * Process all commands up to the last received ORDERED task attribute which
1883  * requires another blocking boundary
1884  */
target_restart_delayed_cmds(struct se_device * dev)1885 static void target_restart_delayed_cmds(struct se_device *dev)
1886 {
1887 	for (;;) {
1888 		struct se_cmd *cmd;
1889 
1890 		spin_lock(&dev->delayed_cmd_lock);
1891 		if (list_empty(&dev->delayed_cmd_list)) {
1892 			spin_unlock(&dev->delayed_cmd_lock);
1893 			break;
1894 		}
1895 
1896 		cmd = list_entry(dev->delayed_cmd_list.next,
1897 				 struct se_cmd, se_delayed_node);
1898 		list_del(&cmd->se_delayed_node);
1899 		spin_unlock(&dev->delayed_cmd_lock);
1900 
1901 		__target_execute_cmd(cmd);
1902 
1903 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1904 			break;
1905 	}
1906 }
1907 
1908 /*
1909  * Called from I/O completion to determine which dormant/delayed
1910  * and ordered cmds need to have their tasks added to the execution queue.
1911  */
transport_complete_task_attr(struct se_cmd * cmd)1912 static void transport_complete_task_attr(struct se_cmd *cmd)
1913 {
1914 	struct se_device *dev = cmd->se_dev;
1915 
1916 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1917 		return;
1918 
1919 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1920 		atomic_dec_mb(&dev->simple_cmds);
1921 		dev->dev_cur_ordered_id++;
1922 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1923 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
1924 			cmd->se_ordered_id);
1925 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1926 		dev->dev_cur_ordered_id++;
1927 		pr_debug("Incremented dev_cur_ordered_id: %u for"
1928 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1929 			cmd->se_ordered_id);
1930 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1931 		atomic_dec_mb(&dev->dev_ordered_sync);
1932 
1933 		dev->dev_cur_ordered_id++;
1934 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1935 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1936 	}
1937 
1938 	target_restart_delayed_cmds(dev);
1939 }
1940 
transport_complete_qf(struct se_cmd * cmd)1941 static void transport_complete_qf(struct se_cmd *cmd)
1942 {
1943 	int ret = 0;
1944 
1945 	transport_complete_task_attr(cmd);
1946 
1947 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1948 		trace_target_cmd_complete(cmd);
1949 		ret = cmd->se_tfo->queue_status(cmd);
1950 		goto out;
1951 	}
1952 
1953 	switch (cmd->data_direction) {
1954 	case DMA_FROM_DEVICE:
1955 		trace_target_cmd_complete(cmd);
1956 		ret = cmd->se_tfo->queue_data_in(cmd);
1957 		break;
1958 	case DMA_TO_DEVICE:
1959 		if (cmd->se_cmd_flags & SCF_BIDI) {
1960 			ret = cmd->se_tfo->queue_data_in(cmd);
1961 			break;
1962 		}
1963 		/* Fall through for DMA_TO_DEVICE */
1964 	case DMA_NONE:
1965 		trace_target_cmd_complete(cmd);
1966 		ret = cmd->se_tfo->queue_status(cmd);
1967 		break;
1968 	default:
1969 		break;
1970 	}
1971 
1972 out:
1973 	if (ret < 0) {
1974 		transport_handle_queue_full(cmd, cmd->se_dev);
1975 		return;
1976 	}
1977 	transport_lun_remove_cmd(cmd);
1978 	transport_cmd_check_stop_to_fabric(cmd);
1979 }
1980 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)1981 static void transport_handle_queue_full(
1982 	struct se_cmd *cmd,
1983 	struct se_device *dev)
1984 {
1985 	spin_lock_irq(&dev->qf_cmd_lock);
1986 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1987 	atomic_inc_mb(&dev->dev_qf_count);
1988 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1989 
1990 	schedule_work(&cmd->se_dev->qf_work_queue);
1991 }
1992 
target_read_prot_action(struct se_cmd * cmd)1993 static bool target_read_prot_action(struct se_cmd *cmd)
1994 {
1995 	sense_reason_t rc;
1996 
1997 	switch (cmd->prot_op) {
1998 	case TARGET_PROT_DIN_STRIP:
1999 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2000 			rc = sbc_dif_read_strip(cmd);
2001 			if (rc) {
2002 				cmd->pi_err = rc;
2003 				return true;
2004 			}
2005 		}
2006 		break;
2007 	case TARGET_PROT_DIN_INSERT:
2008 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2009 			break;
2010 
2011 		sbc_dif_generate(cmd);
2012 		break;
2013 	default:
2014 		break;
2015 	}
2016 
2017 	return false;
2018 }
2019 
target_complete_ok_work(struct work_struct * work)2020 static void target_complete_ok_work(struct work_struct *work)
2021 {
2022 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2023 	int ret;
2024 
2025 	/*
2026 	 * Check if we need to move delayed/dormant tasks from cmds on the
2027 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2028 	 * Attribute.
2029 	 */
2030 	transport_complete_task_attr(cmd);
2031 
2032 	/*
2033 	 * Check to schedule QUEUE_FULL work, or execute an existing
2034 	 * cmd->transport_qf_callback()
2035 	 */
2036 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2037 		schedule_work(&cmd->se_dev->qf_work_queue);
2038 
2039 	/*
2040 	 * Check if we need to send a sense buffer from
2041 	 * the struct se_cmd in question.
2042 	 */
2043 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2044 		WARN_ON(!cmd->scsi_status);
2045 		ret = transport_send_check_condition_and_sense(
2046 					cmd, 0, 1);
2047 		if (ret == -EAGAIN || ret == -ENOMEM)
2048 			goto queue_full;
2049 
2050 		transport_lun_remove_cmd(cmd);
2051 		transport_cmd_check_stop_to_fabric(cmd);
2052 		return;
2053 	}
2054 	/*
2055 	 * Check for a callback, used by amongst other things
2056 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2057 	 */
2058 	if (cmd->transport_complete_callback) {
2059 		sense_reason_t rc;
2060 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2061 		bool zero_dl = !(cmd->data_length);
2062 		int post_ret = 0;
2063 
2064 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2065 		if (!rc && !post_ret) {
2066 			if (caw && zero_dl)
2067 				goto queue_rsp;
2068 
2069 			return;
2070 		} else if (rc) {
2071 			ret = transport_send_check_condition_and_sense(cmd,
2072 						rc, 0);
2073 			if (ret == -EAGAIN || ret == -ENOMEM)
2074 				goto queue_full;
2075 
2076 			transport_lun_remove_cmd(cmd);
2077 			transport_cmd_check_stop_to_fabric(cmd);
2078 			return;
2079 		}
2080 	}
2081 
2082 queue_rsp:
2083 	switch (cmd->data_direction) {
2084 	case DMA_FROM_DEVICE:
2085 		spin_lock(&cmd->se_lun->lun_sep_lock);
2086 		if (cmd->se_lun->lun_sep) {
2087 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2088 					cmd->data_length;
2089 		}
2090 		spin_unlock(&cmd->se_lun->lun_sep_lock);
2091 		/*
2092 		 * Perform READ_STRIP of PI using software emulation when
2093 		 * backend had PI enabled, if the transport will not be
2094 		 * performing hardware READ_STRIP offload.
2095 		 */
2096 		if (target_read_prot_action(cmd)) {
2097 			ret = transport_send_check_condition_and_sense(cmd,
2098 						cmd->pi_err, 0);
2099 			if (ret == -EAGAIN || ret == -ENOMEM)
2100 				goto queue_full;
2101 
2102 			transport_lun_remove_cmd(cmd);
2103 			transport_cmd_check_stop_to_fabric(cmd);
2104 			return;
2105 		}
2106 
2107 		trace_target_cmd_complete(cmd);
2108 		ret = cmd->se_tfo->queue_data_in(cmd);
2109 		if (ret == -EAGAIN || ret == -ENOMEM)
2110 			goto queue_full;
2111 		break;
2112 	case DMA_TO_DEVICE:
2113 		spin_lock(&cmd->se_lun->lun_sep_lock);
2114 		if (cmd->se_lun->lun_sep) {
2115 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2116 				cmd->data_length;
2117 		}
2118 		spin_unlock(&cmd->se_lun->lun_sep_lock);
2119 		/*
2120 		 * Check if we need to send READ payload for BIDI-COMMAND
2121 		 */
2122 		if (cmd->se_cmd_flags & SCF_BIDI) {
2123 			spin_lock(&cmd->se_lun->lun_sep_lock);
2124 			if (cmd->se_lun->lun_sep) {
2125 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2126 					cmd->data_length;
2127 			}
2128 			spin_unlock(&cmd->se_lun->lun_sep_lock);
2129 			ret = cmd->se_tfo->queue_data_in(cmd);
2130 			if (ret == -EAGAIN || ret == -ENOMEM)
2131 				goto queue_full;
2132 			break;
2133 		}
2134 		/* Fall through for DMA_TO_DEVICE */
2135 	case DMA_NONE:
2136 		trace_target_cmd_complete(cmd);
2137 		ret = cmd->se_tfo->queue_status(cmd);
2138 		if (ret == -EAGAIN || ret == -ENOMEM)
2139 			goto queue_full;
2140 		break;
2141 	default:
2142 		break;
2143 	}
2144 
2145 	transport_lun_remove_cmd(cmd);
2146 	transport_cmd_check_stop_to_fabric(cmd);
2147 	return;
2148 
2149 queue_full:
2150 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2151 		" data_direction: %d\n", cmd, cmd->data_direction);
2152 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2153 	transport_handle_queue_full(cmd, cmd->se_dev);
2154 }
2155 
transport_free_sgl(struct scatterlist * sgl,int nents)2156 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2157 {
2158 	struct scatterlist *sg;
2159 	int count;
2160 
2161 	for_each_sg(sgl, sg, nents, count)
2162 		__free_page(sg_page(sg));
2163 
2164 	kfree(sgl);
2165 }
2166 
transport_reset_sgl_orig(struct se_cmd * cmd)2167 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2168 {
2169 	/*
2170 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2171 	 * emulation, and free + reset pointers if necessary..
2172 	 */
2173 	if (!cmd->t_data_sg_orig)
2174 		return;
2175 
2176 	kfree(cmd->t_data_sg);
2177 	cmd->t_data_sg = cmd->t_data_sg_orig;
2178 	cmd->t_data_sg_orig = NULL;
2179 	cmd->t_data_nents = cmd->t_data_nents_orig;
2180 	cmd->t_data_nents_orig = 0;
2181 }
2182 
transport_free_pages(struct se_cmd * cmd)2183 static inline void transport_free_pages(struct se_cmd *cmd)
2184 {
2185 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2186 		/*
2187 		 * Release special case READ buffer payload required for
2188 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2189 		 */
2190 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2191 			transport_free_sgl(cmd->t_bidi_data_sg,
2192 					   cmd->t_bidi_data_nents);
2193 			cmd->t_bidi_data_sg = NULL;
2194 			cmd->t_bidi_data_nents = 0;
2195 		}
2196 		transport_reset_sgl_orig(cmd);
2197 		return;
2198 	}
2199 	transport_reset_sgl_orig(cmd);
2200 
2201 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2202 	cmd->t_data_sg = NULL;
2203 	cmd->t_data_nents = 0;
2204 
2205 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2206 	cmd->t_bidi_data_sg = NULL;
2207 	cmd->t_bidi_data_nents = 0;
2208 
2209 	transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2210 	cmd->t_prot_sg = NULL;
2211 	cmd->t_prot_nents = 0;
2212 }
2213 
2214 /**
2215  * transport_put_cmd - release a reference to a command
2216  * @cmd:       command to release
2217  *
2218  * This routine releases our reference to the command and frees it if possible.
2219  */
transport_put_cmd(struct se_cmd * cmd)2220 static int transport_put_cmd(struct se_cmd *cmd)
2221 {
2222 	BUG_ON(!cmd->se_tfo);
2223 	/*
2224 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2225 	 * the kref and call ->release_cmd() in kref callback.
2226 	 */
2227 	return target_put_sess_cmd(cmd);
2228 }
2229 
transport_kmap_data_sg(struct se_cmd * cmd)2230 void *transport_kmap_data_sg(struct se_cmd *cmd)
2231 {
2232 	struct scatterlist *sg = cmd->t_data_sg;
2233 	struct page **pages;
2234 	int i;
2235 
2236 	/*
2237 	 * We need to take into account a possible offset here for fabrics like
2238 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2239 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2240 	 */
2241 	if (!cmd->t_data_nents)
2242 		return NULL;
2243 
2244 	BUG_ON(!sg);
2245 	if (cmd->t_data_nents == 1)
2246 		return kmap(sg_page(sg)) + sg->offset;
2247 
2248 	/* >1 page. use vmap */
2249 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2250 	if (!pages)
2251 		return NULL;
2252 
2253 	/* convert sg[] to pages[] */
2254 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2255 		pages[i] = sg_page(sg);
2256 	}
2257 
2258 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2259 	kfree(pages);
2260 	if (!cmd->t_data_vmap)
2261 		return NULL;
2262 
2263 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2264 }
2265 EXPORT_SYMBOL(transport_kmap_data_sg);
2266 
transport_kunmap_data_sg(struct se_cmd * cmd)2267 void transport_kunmap_data_sg(struct se_cmd *cmd)
2268 {
2269 	if (!cmd->t_data_nents) {
2270 		return;
2271 	} else if (cmd->t_data_nents == 1) {
2272 		kunmap(sg_page(cmd->t_data_sg));
2273 		return;
2274 	}
2275 
2276 	vunmap(cmd->t_data_vmap);
2277 	cmd->t_data_vmap = NULL;
2278 }
2279 EXPORT_SYMBOL(transport_kunmap_data_sg);
2280 
2281 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page)2282 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2283 		 bool zero_page)
2284 {
2285 	struct scatterlist *sg;
2286 	struct page *page;
2287 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2288 	unsigned int nent;
2289 	int i = 0;
2290 
2291 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2292 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2293 	if (!sg)
2294 		return -ENOMEM;
2295 
2296 	sg_init_table(sg, nent);
2297 
2298 	while (length) {
2299 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2300 		page = alloc_page(GFP_KERNEL | zero_flag);
2301 		if (!page)
2302 			goto out;
2303 
2304 		sg_set_page(&sg[i], page, page_len, 0);
2305 		length -= page_len;
2306 		i++;
2307 	}
2308 	*sgl = sg;
2309 	*nents = nent;
2310 	return 0;
2311 
2312 out:
2313 	while (i > 0) {
2314 		i--;
2315 		__free_page(sg_page(&sg[i]));
2316 	}
2317 	kfree(sg);
2318 	return -ENOMEM;
2319 }
2320 
2321 /*
2322  * Allocate any required resources to execute the command.  For writes we
2323  * might not have the payload yet, so notify the fabric via a call to
2324  * ->write_pending instead. Otherwise place it on the execution queue.
2325  */
2326 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2327 transport_generic_new_cmd(struct se_cmd *cmd)
2328 {
2329 	int ret = 0;
2330 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2331 
2332 	/*
2333 	 * Determine is the TCM fabric module has already allocated physical
2334 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2335 	 * beforehand.
2336 	 */
2337 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2338 	    cmd->data_length) {
2339 
2340 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2341 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2342 			u32 bidi_length;
2343 
2344 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2345 				bidi_length = cmd->t_task_nolb *
2346 					      cmd->se_dev->dev_attrib.block_size;
2347 			else
2348 				bidi_length = cmd->data_length;
2349 
2350 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2351 					       &cmd->t_bidi_data_nents,
2352 					       bidi_length, zero_flag);
2353 			if (ret < 0)
2354 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2355 		}
2356 
2357 		if (cmd->prot_op != TARGET_PROT_NORMAL) {
2358 			ret = target_alloc_sgl(&cmd->t_prot_sg,
2359 					       &cmd->t_prot_nents,
2360 					       cmd->prot_length, true);
2361 			if (ret < 0)
2362 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2363 		}
2364 
2365 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2366 				       cmd->data_length, zero_flag);
2367 		if (ret < 0)
2368 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2369 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2370 		    cmd->data_length) {
2371 		/*
2372 		 * Special case for COMPARE_AND_WRITE with fabrics
2373 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2374 		 */
2375 		u32 caw_length = cmd->t_task_nolb *
2376 				 cmd->se_dev->dev_attrib.block_size;
2377 
2378 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2379 				       &cmd->t_bidi_data_nents,
2380 				       caw_length, zero_flag);
2381 		if (ret < 0)
2382 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2383 	}
2384 	/*
2385 	 * If this command is not a write we can execute it right here,
2386 	 * for write buffers we need to notify the fabric driver first
2387 	 * and let it call back once the write buffers are ready.
2388 	 */
2389 	target_add_to_state_list(cmd);
2390 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2391 		target_execute_cmd(cmd);
2392 		return 0;
2393 	}
2394 	transport_cmd_check_stop(cmd, false, true);
2395 
2396 	ret = cmd->se_tfo->write_pending(cmd);
2397 	if (ret == -EAGAIN || ret == -ENOMEM)
2398 		goto queue_full;
2399 
2400 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2401 	WARN_ON(ret);
2402 
2403 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2404 
2405 queue_full:
2406 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2407 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2408 	transport_handle_queue_full(cmd, cmd->se_dev);
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(transport_generic_new_cmd);
2412 
transport_write_pending_qf(struct se_cmd * cmd)2413 static void transport_write_pending_qf(struct se_cmd *cmd)
2414 {
2415 	int ret;
2416 
2417 	ret = cmd->se_tfo->write_pending(cmd);
2418 	if (ret == -EAGAIN || ret == -ENOMEM) {
2419 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2420 			 cmd);
2421 		transport_handle_queue_full(cmd, cmd->se_dev);
2422 	}
2423 }
2424 
2425 static bool
2426 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2427 			   unsigned long *flags);
2428 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2429 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2430 {
2431 	unsigned long flags;
2432 
2433 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2434 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2435 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2436 }
2437 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2438 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2439 {
2440 	int ret = 0;
2441 	bool aborted = false, tas = false;
2442 
2443 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2444 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2445 			target_wait_free_cmd(cmd, &aborted, &tas);
2446 
2447 		if (!aborted || tas)
2448 			ret = transport_put_cmd(cmd);
2449 	} else {
2450 		if (wait_for_tasks)
2451 			target_wait_free_cmd(cmd, &aborted, &tas);
2452 		/*
2453 		 * Handle WRITE failure case where transport_generic_new_cmd()
2454 		 * has already added se_cmd to state_list, but fabric has
2455 		 * failed command before I/O submission.
2456 		 */
2457 		if (cmd->state_active)
2458 			target_remove_from_state_list(cmd);
2459 
2460 		if (cmd->se_lun)
2461 			transport_lun_remove_cmd(cmd);
2462 
2463 		if (!aborted || tas)
2464 			ret = transport_put_cmd(cmd);
2465 	}
2466 	/*
2467 	 * If the task has been internally aborted due to TMR ABORT_TASK
2468 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2469 	 * the remaining calls to target_put_sess_cmd(), and not the
2470 	 * callers of this function.
2471 	 */
2472 	if (aborted) {
2473 		pr_debug("Detected CMD_T_ABORTED for ITT: %u\n",
2474 			cmd->se_tfo->get_task_tag(cmd));
2475 		wait_for_completion(&cmd->cmd_wait_comp);
2476 		cmd->se_tfo->release_cmd(cmd);
2477 		ret = 1;
2478 	}
2479 	return ret;
2480 }
2481 EXPORT_SYMBOL(transport_generic_free_cmd);
2482 
2483 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2484  * @se_cmd:	command descriptor to add
2485  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2486  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2487 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2488 {
2489 	struct se_session *se_sess = se_cmd->se_sess;
2490 	unsigned long flags;
2491 	int ret = 0;
2492 
2493 	/*
2494 	 * Add a second kref if the fabric caller is expecting to handle
2495 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2496 	 * invocations before se_cmd descriptor release.
2497 	 */
2498 	if (ack_kref)
2499 		kref_get(&se_cmd->cmd_kref);
2500 
2501 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2502 	if (se_sess->sess_tearing_down) {
2503 		ret = -ESHUTDOWN;
2504 		goto out;
2505 	}
2506 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2507 out:
2508 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2509 
2510 	if (ret && ack_kref)
2511 		target_put_sess_cmd(se_cmd);
2512 
2513 	return ret;
2514 }
2515 EXPORT_SYMBOL(target_get_sess_cmd);
2516 
target_free_cmd_mem(struct se_cmd * cmd)2517 static void target_free_cmd_mem(struct se_cmd *cmd)
2518 {
2519 	transport_free_pages(cmd);
2520 
2521 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2522 		core_tmr_release_req(cmd->se_tmr_req);
2523 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2524 		kfree(cmd->t_task_cdb);
2525 }
2526 
target_release_cmd_kref(struct kref * kref)2527 static void target_release_cmd_kref(struct kref *kref)
2528 		__releases(&se_cmd->se_sess->sess_cmd_lock)
2529 {
2530 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2531 	struct se_session *se_sess = se_cmd->se_sess;
2532 	bool fabric_stop;
2533 
2534 	if (list_empty(&se_cmd->se_cmd_list)) {
2535 		spin_unlock(&se_sess->sess_cmd_lock);
2536 		target_free_cmd_mem(se_cmd);
2537 		se_cmd->se_tfo->release_cmd(se_cmd);
2538 		return;
2539 	}
2540 
2541 	spin_lock(&se_cmd->t_state_lock);
2542 	fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP);
2543 	spin_unlock(&se_cmd->t_state_lock);
2544 
2545 	if (se_cmd->cmd_wait_set || fabric_stop) {
2546 		list_del_init(&se_cmd->se_cmd_list);
2547 		spin_unlock(&se_sess->sess_cmd_lock);
2548 		target_free_cmd_mem(se_cmd);
2549 		complete(&se_cmd->cmd_wait_comp);
2550 		return;
2551 	}
2552 	list_del_init(&se_cmd->se_cmd_list);
2553 	spin_unlock(&se_sess->sess_cmd_lock);
2554 
2555 	target_free_cmd_mem(se_cmd);
2556 	se_cmd->se_tfo->release_cmd(se_cmd);
2557 }
2558 
2559 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2560  * @se_cmd:	command descriptor to drop
2561  */
target_put_sess_cmd(struct se_cmd * se_cmd)2562 int target_put_sess_cmd(struct se_cmd *se_cmd)
2563 {
2564 	struct se_session *se_sess = se_cmd->se_sess;
2565 
2566 	if (!se_sess) {
2567 		target_free_cmd_mem(se_cmd);
2568 		se_cmd->se_tfo->release_cmd(se_cmd);
2569 		return 1;
2570 	}
2571 	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2572 			&se_sess->sess_cmd_lock);
2573 }
2574 EXPORT_SYMBOL(target_put_sess_cmd);
2575 
2576 /* target_sess_cmd_list_set_waiting - Flag all commands in
2577  *         sess_cmd_list to complete cmd_wait_comp.  Set
2578  *         sess_tearing_down so no more commands are queued.
2579  * @se_sess:	session to flag
2580  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2581 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2582 {
2583 	struct se_cmd *se_cmd;
2584 	unsigned long flags;
2585 	int rc;
2586 
2587 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2588 	if (se_sess->sess_tearing_down) {
2589 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2590 		return;
2591 	}
2592 	se_sess->sess_tearing_down = 1;
2593 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2594 
2595 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2596 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2597 		if (rc) {
2598 			se_cmd->cmd_wait_set = 1;
2599 			spin_lock(&se_cmd->t_state_lock);
2600 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2601 			spin_unlock(&se_cmd->t_state_lock);
2602 		}
2603 	}
2604 
2605 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2606 }
2607 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2608 
2609 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2610  * @se_sess:    session to wait for active I/O
2611  */
target_wait_for_sess_cmds(struct se_session * se_sess)2612 void target_wait_for_sess_cmds(struct se_session *se_sess)
2613 {
2614 	struct se_cmd *se_cmd, *tmp_cmd;
2615 	unsigned long flags;
2616 	bool tas;
2617 
2618 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2619 				&se_sess->sess_wait_list, se_cmd_list) {
2620 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2621 			" %d\n", se_cmd, se_cmd->t_state,
2622 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2623 
2624 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2625 		tas = (se_cmd->transport_state & CMD_T_TAS);
2626 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2627 
2628 		if (!target_put_sess_cmd(se_cmd)) {
2629 			if (tas)
2630 				target_put_sess_cmd(se_cmd);
2631 		}
2632 
2633 		wait_for_completion(&se_cmd->cmd_wait_comp);
2634 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2635 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2636 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2637 
2638 		se_cmd->se_tfo->release_cmd(se_cmd);
2639 	}
2640 
2641 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2642 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2643 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2644 
2645 }
2646 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2647 
transport_clear_lun_ref_thread(void * p)2648 static int transport_clear_lun_ref_thread(void *p)
2649 {
2650 	struct se_lun *lun = p;
2651 
2652 	percpu_ref_kill(&lun->lun_ref);
2653 
2654 	wait_for_completion(&lun->lun_ref_comp);
2655 	complete(&lun->lun_shutdown_comp);
2656 
2657 	return 0;
2658 }
2659 
transport_clear_lun_ref(struct se_lun * lun)2660 int transport_clear_lun_ref(struct se_lun *lun)
2661 {
2662 	struct task_struct *kt;
2663 
2664 	kt = kthread_run(transport_clear_lun_ref_thread, lun,
2665 			"tcm_cl_%u", lun->unpacked_lun);
2666 	if (IS_ERR(kt)) {
2667 		pr_err("Unable to start clear_lun thread\n");
2668 		return PTR_ERR(kt);
2669 	}
2670 	wait_for_completion(&lun->lun_shutdown_comp);
2671 
2672 	return 0;
2673 }
2674 
2675 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2676 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2677 			   bool *aborted, bool *tas, unsigned long *flags)
2678 	__releases(&cmd->t_state_lock)
2679 	__acquires(&cmd->t_state_lock)
2680 {
2681 
2682 	assert_spin_locked(&cmd->t_state_lock);
2683 	WARN_ON_ONCE(!irqs_disabled());
2684 
2685 	if (fabric_stop)
2686 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2687 
2688 	if (cmd->transport_state & CMD_T_ABORTED)
2689 		*aborted = true;
2690 
2691 	if (cmd->transport_state & CMD_T_TAS)
2692 		*tas = true;
2693 
2694 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2695 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2696 		return false;
2697 
2698 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2699 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2700 		return false;
2701 
2702 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2703 		return false;
2704 
2705 	if (fabric_stop && *aborted)
2706 		return false;
2707 
2708 	cmd->transport_state |= CMD_T_STOP;
2709 
2710 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2711 		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2712 		cmd, cmd->se_tfo->get_task_tag(cmd),
2713 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2714 
2715 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2716 
2717 	wait_for_completion(&cmd->t_transport_stop_comp);
2718 
2719 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2720 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2721 
2722 	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2723 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2724 		cmd->se_tfo->get_task_tag(cmd));
2725 
2726 	return true;
2727 }
2728 
2729 /**
2730  * transport_wait_for_tasks - wait for completion to occur
2731  * @cmd:	command to wait
2732  *
2733  * Called from frontend fabric context to wait for storage engine
2734  * to pause and/or release frontend generated struct se_cmd.
2735  */
transport_wait_for_tasks(struct se_cmd * cmd)2736 bool transport_wait_for_tasks(struct se_cmd *cmd)
2737 {
2738 	unsigned long flags;
2739 	bool ret, aborted = false, tas = false;
2740 
2741 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2742 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2743 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL(transport_wait_for_tasks);
2748 
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)2749 static int transport_get_sense_codes(
2750 	struct se_cmd *cmd,
2751 	u8 *asc,
2752 	u8 *ascq)
2753 {
2754 	*asc = cmd->scsi_asc;
2755 	*ascq = cmd->scsi_ascq;
2756 
2757 	return 0;
2758 }
2759 
2760 static
transport_err_sector_info(unsigned char * buffer,sector_t bad_sector)2761 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2762 {
2763 	/* Place failed LBA in sense data information descriptor 0. */
2764 	buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2765 	buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2766 	buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2767 	buffer[SPC_VALIDITY_OFFSET] = 0x80;
2768 
2769 	/* Descriptor Information: failing sector */
2770 	put_unaligned_be64(bad_sector, &buffer[12]);
2771 }
2772 
2773 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)2774 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2775 		sense_reason_t reason, int from_transport)
2776 {
2777 	unsigned char *buffer = cmd->sense_buffer;
2778 	unsigned long flags;
2779 	u8 asc = 0, ascq = 0;
2780 
2781 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2782 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2783 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2784 		return 0;
2785 	}
2786 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2787 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2788 
2789 	if (!reason && from_transport)
2790 		goto after_reason;
2791 
2792 	if (!from_transport)
2793 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2794 
2795 	/*
2796 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2797 	 * SENSE KEY values from include/scsi/scsi.h
2798 	 */
2799 	switch (reason) {
2800 	case TCM_NO_SENSE:
2801 		/* CURRENT ERROR */
2802 		buffer[0] = 0x70;
2803 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2804 		/* Not Ready */
2805 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2806 		/* NO ADDITIONAL SENSE INFORMATION */
2807 		buffer[SPC_ASC_KEY_OFFSET] = 0;
2808 		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2809 		break;
2810 	case TCM_NON_EXISTENT_LUN:
2811 		/* CURRENT ERROR */
2812 		buffer[0] = 0x70;
2813 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2814 		/* ILLEGAL REQUEST */
2815 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2816 		/* LOGICAL UNIT NOT SUPPORTED */
2817 		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2818 		break;
2819 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2820 	case TCM_SECTOR_COUNT_TOO_MANY:
2821 		/* CURRENT ERROR */
2822 		buffer[0] = 0x70;
2823 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2824 		/* ILLEGAL REQUEST */
2825 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2826 		/* INVALID COMMAND OPERATION CODE */
2827 		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2828 		break;
2829 	case TCM_UNKNOWN_MODE_PAGE:
2830 		/* CURRENT ERROR */
2831 		buffer[0] = 0x70;
2832 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2833 		/* ILLEGAL REQUEST */
2834 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2835 		/* INVALID FIELD IN CDB */
2836 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2837 		break;
2838 	case TCM_CHECK_CONDITION_ABORT_CMD:
2839 		/* CURRENT ERROR */
2840 		buffer[0] = 0x70;
2841 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2842 		/* ABORTED COMMAND */
2843 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2844 		/* BUS DEVICE RESET FUNCTION OCCURRED */
2845 		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2846 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2847 		break;
2848 	case TCM_INCORRECT_AMOUNT_OF_DATA:
2849 		/* CURRENT ERROR */
2850 		buffer[0] = 0x70;
2851 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2852 		/* ABORTED COMMAND */
2853 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2854 		/* WRITE ERROR */
2855 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2856 		/* NOT ENOUGH UNSOLICITED DATA */
2857 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2858 		break;
2859 	case TCM_INVALID_CDB_FIELD:
2860 		/* CURRENT ERROR */
2861 		buffer[0] = 0x70;
2862 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2863 		/* ILLEGAL REQUEST */
2864 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2865 		/* INVALID FIELD IN CDB */
2866 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2867 		break;
2868 	case TCM_INVALID_PARAMETER_LIST:
2869 		/* CURRENT ERROR */
2870 		buffer[0] = 0x70;
2871 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2872 		/* ILLEGAL REQUEST */
2873 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2874 		/* INVALID FIELD IN PARAMETER LIST */
2875 		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2876 		break;
2877 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2878 		/* CURRENT ERROR */
2879 		buffer[0] = 0x70;
2880 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2881 		/* ILLEGAL REQUEST */
2882 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2883 		/* PARAMETER LIST LENGTH ERROR */
2884 		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2885 		break;
2886 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
2887 		/* CURRENT ERROR */
2888 		buffer[0] = 0x70;
2889 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2890 		/* ABORTED COMMAND */
2891 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2892 		/* WRITE ERROR */
2893 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2894 		/* UNEXPECTED_UNSOLICITED_DATA */
2895 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2896 		break;
2897 	case TCM_SERVICE_CRC_ERROR:
2898 		/* CURRENT ERROR */
2899 		buffer[0] = 0x70;
2900 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2901 		/* ABORTED COMMAND */
2902 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2903 		/* PROTOCOL SERVICE CRC ERROR */
2904 		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2905 		/* N/A */
2906 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2907 		break;
2908 	case TCM_SNACK_REJECTED:
2909 		/* CURRENT ERROR */
2910 		buffer[0] = 0x70;
2911 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2912 		/* ABORTED COMMAND */
2913 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2914 		/* READ ERROR */
2915 		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2916 		/* FAILED RETRANSMISSION REQUEST */
2917 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2918 		break;
2919 	case TCM_WRITE_PROTECTED:
2920 		/* CURRENT ERROR */
2921 		buffer[0] = 0x70;
2922 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2923 		/* DATA PROTECT */
2924 		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2925 		/* WRITE PROTECTED */
2926 		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2927 		break;
2928 	case TCM_ADDRESS_OUT_OF_RANGE:
2929 		/* CURRENT ERROR */
2930 		buffer[0] = 0x70;
2931 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2932 		/* ILLEGAL REQUEST */
2933 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2934 		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2935 		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2936 		break;
2937 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2938 		/* CURRENT ERROR */
2939 		buffer[0] = 0x70;
2940 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2941 		/* UNIT ATTENTION */
2942 		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2943 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2944 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2945 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2946 		break;
2947 	case TCM_CHECK_CONDITION_NOT_READY:
2948 		/* CURRENT ERROR */
2949 		buffer[0] = 0x70;
2950 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2951 		/* Not Ready */
2952 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2953 		transport_get_sense_codes(cmd, &asc, &ascq);
2954 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2955 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2956 		break;
2957 	case TCM_MISCOMPARE_VERIFY:
2958 		/* CURRENT ERROR */
2959 		buffer[0] = 0x70;
2960 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2961 		buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2962 		/* MISCOMPARE DURING VERIFY OPERATION */
2963 		buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2964 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2965 		break;
2966 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2967 		/* CURRENT ERROR */
2968 		buffer[0] = 0x70;
2969 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2970 		/* ILLEGAL REQUEST */
2971 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2972 		/* LOGICAL BLOCK GUARD CHECK FAILED */
2973 		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2974 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2975 		transport_err_sector_info(buffer, cmd->bad_sector);
2976 		break;
2977 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2978 		/* CURRENT ERROR */
2979 		buffer[0] = 0x70;
2980 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2981 		/* ILLEGAL REQUEST */
2982 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2983 		/* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2984 		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2985 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2986 		transport_err_sector_info(buffer, cmd->bad_sector);
2987 		break;
2988 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2989 		/* CURRENT ERROR */
2990 		buffer[0] = 0x70;
2991 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2992 		/* ILLEGAL REQUEST */
2993 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2994 		/* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2995 		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2996 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2997 		transport_err_sector_info(buffer, cmd->bad_sector);
2998 		break;
2999 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
3000 	default:
3001 		/* CURRENT ERROR */
3002 		buffer[0] = 0x70;
3003 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
3004 		/*
3005 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3006 		 * Solaris initiators.  Returning NOT READY instead means the
3007 		 * operations will be retried a finite number of times and we
3008 		 * can survive intermittent errors.
3009 		 */
3010 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
3011 		/* LOGICAL UNIT COMMUNICATION FAILURE */
3012 		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
3013 		break;
3014 	}
3015 	/*
3016 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
3017 	 */
3018 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3019 	/*
3020 	 * Automatically padded, this value is encoded in the fabric's
3021 	 * data_length response PDU containing the SCSI defined sense data.
3022 	 */
3023 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3024 
3025 after_reason:
3026 	trace_target_cmd_complete(cmd);
3027 	return cmd->se_tfo->queue_status(cmd);
3028 }
3029 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3030 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3031 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3032 	__releases(&cmd->t_state_lock)
3033 	__acquires(&cmd->t_state_lock)
3034 {
3035 	assert_spin_locked(&cmd->t_state_lock);
3036 	WARN_ON_ONCE(!irqs_disabled());
3037 
3038 	if (!(cmd->transport_state & CMD_T_ABORTED))
3039 		return 0;
3040 
3041 	/*
3042 	 * If cmd has been aborted but either no status is to be sent or it has
3043 	 * already been sent, just return
3044 	 */
3045 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3046 		if (send_status)
3047 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3048 		return 1;
3049 	}
3050 
3051 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3052 		" 0x%02x ITT: 0x%08x\n", cmd->t_task_cdb[0],
3053 		cmd->se_tfo->get_task_tag(cmd));
3054 
3055 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3056 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3057 	trace_target_cmd_complete(cmd);
3058 
3059 	spin_unlock_irq(&cmd->t_state_lock);
3060 	cmd->se_tfo->queue_status(cmd);
3061 	spin_lock_irq(&cmd->t_state_lock);
3062 
3063 	return 1;
3064 }
3065 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3066 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3067 {
3068 	int ret;
3069 
3070 	spin_lock_irq(&cmd->t_state_lock);
3071 	ret = __transport_check_aborted_status(cmd, send_status);
3072 	spin_unlock_irq(&cmd->t_state_lock);
3073 
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL(transport_check_aborted_status);
3077 
transport_send_task_abort(struct se_cmd * cmd)3078 void transport_send_task_abort(struct se_cmd *cmd)
3079 {
3080 	unsigned long flags;
3081 
3082 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3083 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3084 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3085 		return;
3086 	}
3087 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3088 
3089 	/*
3090 	 * If there are still expected incoming fabric WRITEs, we wait
3091 	 * until until they have completed before sending a TASK_ABORTED
3092 	 * response.  This response with TASK_ABORTED status will be
3093 	 * queued back to fabric module by transport_check_aborted_status().
3094 	 */
3095 	if (cmd->data_direction == DMA_TO_DEVICE) {
3096 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3097 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3098 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3099 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3100 				goto send_abort;
3101 			}
3102 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3103 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3104 			return;
3105 		}
3106 	}
3107 send_abort:
3108 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3109 
3110 	transport_lun_remove_cmd(cmd);
3111 
3112 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3113 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
3114 		cmd->se_tfo->get_task_tag(cmd));
3115 
3116 	trace_target_cmd_complete(cmd);
3117 	cmd->se_tfo->queue_status(cmd);
3118 }
3119 
target_tmr_work(struct work_struct * work)3120 static void target_tmr_work(struct work_struct *work)
3121 {
3122 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3123 	struct se_device *dev = cmd->se_dev;
3124 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3125 	unsigned long flags;
3126 	int ret;
3127 
3128 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3129 	if (cmd->transport_state & CMD_T_ABORTED) {
3130 		tmr->response = TMR_FUNCTION_REJECTED;
3131 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3132 		goto check_stop;
3133 	}
3134 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3135 
3136 	switch (tmr->function) {
3137 	case TMR_ABORT_TASK:
3138 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3139 		break;
3140 	case TMR_ABORT_TASK_SET:
3141 	case TMR_CLEAR_ACA:
3142 	case TMR_CLEAR_TASK_SET:
3143 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3144 		break;
3145 	case TMR_LUN_RESET:
3146 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3147 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3148 					 TMR_FUNCTION_REJECTED;
3149 		break;
3150 	case TMR_TARGET_WARM_RESET:
3151 		tmr->response = TMR_FUNCTION_REJECTED;
3152 		break;
3153 	case TMR_TARGET_COLD_RESET:
3154 		tmr->response = TMR_FUNCTION_REJECTED;
3155 		break;
3156 	default:
3157 		pr_err("Uknown TMR function: 0x%02x.\n",
3158 				tmr->function);
3159 		tmr->response = TMR_FUNCTION_REJECTED;
3160 		break;
3161 	}
3162 
3163 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3164 	if (cmd->transport_state & CMD_T_ABORTED) {
3165 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3166 		goto check_stop;
3167 	}
3168 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3169 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3170 
3171 	cmd->se_tfo->queue_tm_rsp(cmd);
3172 
3173 check_stop:
3174 	transport_cmd_check_stop_to_fabric(cmd);
3175 }
3176 
transport_generic_handle_tmr(struct se_cmd * cmd)3177 int transport_generic_handle_tmr(
3178 	struct se_cmd *cmd)
3179 {
3180 	unsigned long flags;
3181 
3182 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3183 	cmd->transport_state |= CMD_T_ACTIVE;
3184 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3185 
3186 	INIT_WORK(&cmd->work, target_tmr_work);
3187 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL(transport_generic_handle_tmr);
3191