1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <asm/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49 kuid_t uid;
50 kgid_t gid;
51 umode_t mode;
52 long max_hpages;
53 long nr_inodes;
54 struct hstate *hstate;
55 long min_hpages;
56 };
57
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
61 };
62
HUGETLBFS_I(struct inode * inode)63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
75 };
76
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
86 };
87
88 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
hugetlb_drop_vma_policy(struct vm_area_struct * vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
hugetlb_drop_vma_policy(struct vm_area_struct * vma)106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
huge_pagevec_release(struct pagevec * pvec)111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 struct inode *inode = file_inode(file);
124 loff_t len, vma_len;
125 int ret;
126 struct hstate *h = hstate_file(file);
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
140 return -EINVAL;
141
142 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
143
144 mutex_lock(&inode->i_mutex);
145 file_accessed(file);
146
147 ret = -ENOMEM;
148 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
149
150 if (hugetlb_reserve_pages(inode,
151 vma->vm_pgoff >> huge_page_order(h),
152 len >> huge_page_shift(h), vma,
153 vma->vm_flags))
154 goto out;
155
156 ret = 0;
157 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
158 inode->i_size = len;
159 out:
160 mutex_unlock(&inode->i_mutex);
161
162 return ret;
163 }
164
165 /*
166 * Called under down_write(mmap_sem).
167 */
168
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
170 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
172 unsigned long len, unsigned long pgoff, unsigned long flags)
173 {
174 struct mm_struct *mm = current->mm;
175 struct vm_area_struct *vma;
176 struct hstate *h = hstate_file(file);
177 struct vm_unmapped_area_info info;
178
179 if (len & ~huge_page_mask(h))
180 return -EINVAL;
181 if (len > TASK_SIZE)
182 return -ENOMEM;
183
184 if (flags & MAP_FIXED) {
185 if (prepare_hugepage_range(file, addr, len))
186 return -EINVAL;
187 return addr;
188 }
189
190 if (addr) {
191 addr = ALIGN(addr, huge_page_size(h));
192 vma = find_vma(mm, addr);
193 if (TASK_SIZE - len >= addr &&
194 (!vma || addr + len <= vma->vm_start))
195 return addr;
196 }
197
198 info.flags = 0;
199 info.length = len;
200 info.low_limit = TASK_UNMAPPED_BASE;
201 info.high_limit = TASK_SIZE;
202 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
203 info.align_offset = 0;
204 return vm_unmapped_area(&info);
205 }
206 #endif
207
208 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)209 hugetlbfs_read_actor(struct page *page, unsigned long offset,
210 struct iov_iter *to, unsigned long size)
211 {
212 size_t copied = 0;
213 int i, chunksize;
214
215 /* Find which 4k chunk and offset with in that chunk */
216 i = offset >> PAGE_CACHE_SHIFT;
217 offset = offset & ~PAGE_CACHE_MASK;
218
219 while (size) {
220 size_t n;
221 chunksize = PAGE_CACHE_SIZE;
222 if (offset)
223 chunksize -= offset;
224 if (chunksize > size)
225 chunksize = size;
226 n = copy_page_to_iter(&page[i], offset, chunksize, to);
227 copied += n;
228 if (n != chunksize)
229 return copied;
230 offset = 0;
231 size -= chunksize;
232 i++;
233 }
234 return copied;
235 }
236
237 /*
238 * Support for read() - Find the page attached to f_mapping and copy out the
239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240 * since it has PAGE_CACHE_SIZE assumptions.
241 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
243 {
244 struct file *file = iocb->ki_filp;
245 struct hstate *h = hstate_file(file);
246 struct address_space *mapping = file->f_mapping;
247 struct inode *inode = mapping->host;
248 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
249 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
250 unsigned long end_index;
251 loff_t isize;
252 ssize_t retval = 0;
253
254 while (iov_iter_count(to)) {
255 struct page *page;
256 size_t nr, copied;
257
258 /* nr is the maximum number of bytes to copy from this page */
259 nr = huge_page_size(h);
260 isize = i_size_read(inode);
261 if (!isize)
262 break;
263 end_index = (isize - 1) >> huge_page_shift(h);
264 if (index > end_index)
265 break;
266 if (index == end_index) {
267 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
268 if (nr <= offset)
269 break;
270 }
271 nr = nr - offset;
272
273 /* Find the page */
274 page = find_lock_page(mapping, index);
275 if (unlikely(page == NULL)) {
276 /*
277 * We have a HOLE, zero out the user-buffer for the
278 * length of the hole or request.
279 */
280 copied = iov_iter_zero(nr, to);
281 } else {
282 unlock_page(page);
283
284 /*
285 * We have the page, copy it to user space buffer.
286 */
287 copied = hugetlbfs_read_actor(page, offset, to, nr);
288 page_cache_release(page);
289 }
290 offset += copied;
291 retval += copied;
292 if (copied != nr && iov_iter_count(to)) {
293 if (!retval)
294 retval = -EFAULT;
295 break;
296 }
297 index += offset >> huge_page_shift(h);
298 offset &= ~huge_page_mask(h);
299 }
300 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
301 return retval;
302 }
303
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)304 static int hugetlbfs_write_begin(struct file *file,
305 struct address_space *mapping,
306 loff_t pos, unsigned len, unsigned flags,
307 struct page **pagep, void **fsdata)
308 {
309 return -EINVAL;
310 }
311
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
313 loff_t pos, unsigned len, unsigned copied,
314 struct page *page, void *fsdata)
315 {
316 BUG();
317 return -EINVAL;
318 }
319
remove_huge_page(struct page * page)320 static void remove_huge_page(struct page *page)
321 {
322 ClearPageDirty(page);
323 ClearPageUptodate(page);
324 delete_from_page_cache(page);
325 }
326
327
328 /*
329 * remove_inode_hugepages handles two distinct cases: truncation and hole
330 * punch. There are subtle differences in operation for each case.
331
332 * truncation is indicated by end of range being LLONG_MAX
333 * In this case, we first scan the range and release found pages.
334 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
335 * maps and global counts. Page faults can not race with truncation
336 * in this routine. hugetlb_no_page() prevents page faults in the
337 * truncated range. It checks i_size before allocation, and again after
338 * with the page table lock for the page held. The same lock must be
339 * acquired to unmap a page.
340 * hole punch is indicated if end is not LLONG_MAX
341 * In the hole punch case we scan the range and release found pages.
342 * Only when releasing a page is the associated region/reserv map
343 * deleted. The region/reserv map for ranges without associated
344 * pages are not modified. Page faults can race with hole punch.
345 * This is indicated if we find a mapped page.
346 * Note: If the passed end of range value is beyond the end of file, but
347 * not LLONG_MAX this routine still performs a hole punch operation.
348 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)349 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
350 loff_t lend)
351 {
352 struct hstate *h = hstate_inode(inode);
353 struct address_space *mapping = &inode->i_data;
354 const pgoff_t start = lstart >> huge_page_shift(h);
355 const pgoff_t end = lend >> huge_page_shift(h);
356 struct vm_area_struct pseudo_vma;
357 struct pagevec pvec;
358 pgoff_t next;
359 int i, freed = 0;
360 long lookup_nr = PAGEVEC_SIZE;
361 bool truncate_op = (lend == LLONG_MAX);
362
363 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
364 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
365 pagevec_init(&pvec, 0);
366 next = start;
367 while (next < end) {
368 /*
369 * Don't grab more pages than the number left in the range.
370 */
371 if (end - next < lookup_nr)
372 lookup_nr = end - next;
373
374 /*
375 * When no more pages are found, we are done.
376 */
377 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
378 break;
379
380 for (i = 0; i < pagevec_count(&pvec); ++i) {
381 struct page *page = pvec.pages[i];
382 u32 hash;
383
384 /*
385 * The page (index) could be beyond end. This is
386 * only possible in the punch hole case as end is
387 * max page offset in the truncate case.
388 */
389 next = page->index;
390 if (next >= end)
391 break;
392
393 hash = hugetlb_fault_mutex_hash(h, current->mm,
394 &pseudo_vma,
395 mapping, next, 0);
396 mutex_lock(&hugetlb_fault_mutex_table[hash]);
397
398 lock_page(page);
399 if (likely(!page_mapped(page))) {
400 bool rsv_on_error = !PagePrivate(page);
401 /*
402 * We must free the huge page and remove
403 * from page cache (remove_huge_page) BEFORE
404 * removing the region/reserve map
405 * (hugetlb_unreserve_pages). In rare out
406 * of memory conditions, removal of the
407 * region/reserve map could fail. Before
408 * free'ing the page, note PagePrivate which
409 * is used in case of error.
410 */
411 remove_huge_page(page);
412 freed++;
413 if (!truncate_op) {
414 if (unlikely(hugetlb_unreserve_pages(
415 inode, next,
416 next + 1, 1)))
417 hugetlb_fix_reserve_counts(
418 inode, rsv_on_error);
419 }
420 } else {
421 /*
422 * If page is mapped, it was faulted in after
423 * being unmapped. It indicates a race between
424 * hole punch and page fault. Do nothing in
425 * this case. Getting here in a truncate
426 * operation is a bug.
427 */
428 BUG_ON(truncate_op);
429 }
430
431 unlock_page(page);
432 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
433 }
434 ++next;
435 huge_pagevec_release(&pvec);
436 cond_resched();
437 }
438
439 if (truncate_op)
440 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
441 }
442
hugetlbfs_evict_inode(struct inode * inode)443 static void hugetlbfs_evict_inode(struct inode *inode)
444 {
445 struct resv_map *resv_map;
446
447 remove_inode_hugepages(inode, 0, LLONG_MAX);
448 resv_map = (struct resv_map *)inode->i_mapping->private_data;
449 /* root inode doesn't have the resv_map, so we should check it */
450 if (resv_map)
451 resv_map_release(&resv_map->refs);
452 clear_inode(inode);
453 }
454
455 static inline void
hugetlb_vmdelete_list(struct rb_root * root,pgoff_t start,pgoff_t end)456 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
457 {
458 struct vm_area_struct *vma;
459
460 /*
461 * end == 0 indicates that the entire range after
462 * start should be unmapped.
463 */
464 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
465 unsigned long v_offset;
466 unsigned long v_end;
467
468 /*
469 * Can the expression below overflow on 32-bit arches?
470 * No, because the interval tree returns us only those vmas
471 * which overlap the truncated area starting at pgoff,
472 * and no vma on a 32-bit arch can span beyond the 4GB.
473 */
474 if (vma->vm_pgoff < start)
475 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
476 else
477 v_offset = 0;
478
479 if (!end)
480 v_end = vma->vm_end;
481 else {
482 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
483 + vma->vm_start;
484 if (v_end > vma->vm_end)
485 v_end = vma->vm_end;
486 }
487
488 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
489 NULL);
490 }
491 }
492
hugetlb_vmtruncate(struct inode * inode,loff_t offset)493 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
494 {
495 pgoff_t pgoff;
496 struct address_space *mapping = inode->i_mapping;
497 struct hstate *h = hstate_inode(inode);
498
499 BUG_ON(offset & ~huge_page_mask(h));
500 pgoff = offset >> PAGE_SHIFT;
501
502 i_size_write(inode, offset);
503 i_mmap_lock_write(mapping);
504 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
505 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
506 i_mmap_unlock_write(mapping);
507 remove_inode_hugepages(inode, offset, LLONG_MAX);
508 return 0;
509 }
510
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)511 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
512 {
513 struct hstate *h = hstate_inode(inode);
514 loff_t hpage_size = huge_page_size(h);
515 loff_t hole_start, hole_end;
516
517 /*
518 * For hole punch round up the beginning offset of the hole and
519 * round down the end.
520 */
521 hole_start = round_up(offset, hpage_size);
522 hole_end = round_down(offset + len, hpage_size);
523
524 if (hole_end > hole_start) {
525 struct address_space *mapping = inode->i_mapping;
526
527 mutex_lock(&inode->i_mutex);
528 i_mmap_lock_write(mapping);
529 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
530 hugetlb_vmdelete_list(&mapping->i_mmap,
531 hole_start >> PAGE_SHIFT,
532 hole_end >> PAGE_SHIFT);
533 i_mmap_unlock_write(mapping);
534 remove_inode_hugepages(inode, hole_start, hole_end);
535 mutex_unlock(&inode->i_mutex);
536 }
537
538 return 0;
539 }
540
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)541 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
542 loff_t len)
543 {
544 struct inode *inode = file_inode(file);
545 struct address_space *mapping = inode->i_mapping;
546 struct hstate *h = hstate_inode(inode);
547 struct vm_area_struct pseudo_vma;
548 struct mm_struct *mm = current->mm;
549 loff_t hpage_size = huge_page_size(h);
550 unsigned long hpage_shift = huge_page_shift(h);
551 pgoff_t start, index, end;
552 int error;
553 u32 hash;
554
555 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
556 return -EOPNOTSUPP;
557
558 if (mode & FALLOC_FL_PUNCH_HOLE)
559 return hugetlbfs_punch_hole(inode, offset, len);
560
561 /*
562 * Default preallocate case.
563 * For this range, start is rounded down and end is rounded up
564 * as well as being converted to page offsets.
565 */
566 start = offset >> hpage_shift;
567 end = (offset + len + hpage_size - 1) >> hpage_shift;
568
569 mutex_lock(&inode->i_mutex);
570
571 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
572 error = inode_newsize_ok(inode, offset + len);
573 if (error)
574 goto out;
575
576 /*
577 * Initialize a pseudo vma as this is required by the huge page
578 * allocation routines. If NUMA is configured, use page index
579 * as input to create an allocation policy.
580 */
581 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
582 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
583 pseudo_vma.vm_file = file;
584
585 for (index = start; index < end; index++) {
586 /*
587 * This is supposed to be the vaddr where the page is being
588 * faulted in, but we have no vaddr here.
589 */
590 struct page *page;
591 unsigned long addr;
592 int avoid_reserve = 0;
593
594 cond_resched();
595
596 /*
597 * fallocate(2) manpage permits EINTR; we may have been
598 * interrupted because we are using up too much memory.
599 */
600 if (signal_pending(current)) {
601 error = -EINTR;
602 break;
603 }
604
605 /* Set numa allocation policy based on index */
606 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
607
608 /* addr is the offset within the file (zero based) */
609 addr = index * hpage_size;
610
611 /* mutex taken here, fault path and hole punch */
612 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
613 index, addr);
614 mutex_lock(&hugetlb_fault_mutex_table[hash]);
615
616 /* See if already present in mapping to avoid alloc/free */
617 page = find_get_page(mapping, index);
618 if (page) {
619 put_page(page);
620 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
621 hugetlb_drop_vma_policy(&pseudo_vma);
622 continue;
623 }
624
625 /* Allocate page and add to page cache */
626 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
627 hugetlb_drop_vma_policy(&pseudo_vma);
628 if (IS_ERR(page)) {
629 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
630 error = PTR_ERR(page);
631 goto out;
632 }
633 clear_huge_page(page, addr, pages_per_huge_page(h));
634 __SetPageUptodate(page);
635 error = huge_add_to_page_cache(page, mapping, index);
636 if (unlikely(error)) {
637 put_page(page);
638 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
639 goto out;
640 }
641
642 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643
644 /*
645 * page_put due to reference from alloc_huge_page()
646 * unlock_page because locked by add_to_page_cache()
647 */
648 put_page(page);
649 unlock_page(page);
650 }
651
652 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
653 i_size_write(inode, offset + len);
654 inode->i_ctime = CURRENT_TIME;
655 out:
656 mutex_unlock(&inode->i_mutex);
657 return error;
658 }
659
hugetlbfs_setattr(struct dentry * dentry,struct iattr * attr)660 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
661 {
662 struct inode *inode = d_inode(dentry);
663 struct hstate *h = hstate_inode(inode);
664 int error;
665 unsigned int ia_valid = attr->ia_valid;
666
667 BUG_ON(!inode);
668
669 error = inode_change_ok(inode, attr);
670 if (error)
671 return error;
672
673 if (ia_valid & ATTR_SIZE) {
674 error = -EINVAL;
675 if (attr->ia_size & ~huge_page_mask(h))
676 return -EINVAL;
677 error = hugetlb_vmtruncate(inode, attr->ia_size);
678 if (error)
679 return error;
680 }
681
682 setattr_copy(inode, attr);
683 mark_inode_dirty(inode);
684 return 0;
685 }
686
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_config * config)687 static struct inode *hugetlbfs_get_root(struct super_block *sb,
688 struct hugetlbfs_config *config)
689 {
690 struct inode *inode;
691
692 inode = new_inode(sb);
693 if (inode) {
694 struct hugetlbfs_inode_info *info;
695 inode->i_ino = get_next_ino();
696 inode->i_mode = S_IFDIR | config->mode;
697 inode->i_uid = config->uid;
698 inode->i_gid = config->gid;
699 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
700 info = HUGETLBFS_I(inode);
701 mpol_shared_policy_init(&info->policy, NULL);
702 inode->i_op = &hugetlbfs_dir_inode_operations;
703 inode->i_fop = &simple_dir_operations;
704 /* directory inodes start off with i_nlink == 2 (for "." entry) */
705 inc_nlink(inode);
706 lockdep_annotate_inode_mutex_key(inode);
707 }
708 return inode;
709 }
710
711 /*
712 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
713 * be taken from reclaim -- unlike regular filesystems. This needs an
714 * annotation because huge_pmd_share() does an allocation under
715 * i_mmap_rwsem.
716 */
717 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
718
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)719 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
720 struct inode *dir,
721 umode_t mode, dev_t dev)
722 {
723 struct inode *inode;
724 struct resv_map *resv_map;
725
726 resv_map = resv_map_alloc();
727 if (!resv_map)
728 return NULL;
729
730 inode = new_inode(sb);
731 if (inode) {
732 struct hugetlbfs_inode_info *info;
733 inode->i_ino = get_next_ino();
734 inode_init_owner(inode, dir, mode);
735 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
736 &hugetlbfs_i_mmap_rwsem_key);
737 inode->i_mapping->a_ops = &hugetlbfs_aops;
738 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
739 inode->i_mapping->private_data = resv_map;
740 info = HUGETLBFS_I(inode);
741 /*
742 * The policy is initialized here even if we are creating a
743 * private inode because initialization simply creates an
744 * an empty rb tree and calls spin_lock_init(), later when we
745 * call mpol_free_shared_policy() it will just return because
746 * the rb tree will still be empty.
747 */
748 mpol_shared_policy_init(&info->policy, NULL);
749 switch (mode & S_IFMT) {
750 default:
751 init_special_inode(inode, mode, dev);
752 break;
753 case S_IFREG:
754 inode->i_op = &hugetlbfs_inode_operations;
755 inode->i_fop = &hugetlbfs_file_operations;
756 break;
757 case S_IFDIR:
758 inode->i_op = &hugetlbfs_dir_inode_operations;
759 inode->i_fop = &simple_dir_operations;
760
761 /* directory inodes start off with i_nlink == 2 (for "." entry) */
762 inc_nlink(inode);
763 break;
764 case S_IFLNK:
765 inode->i_op = &page_symlink_inode_operations;
766 break;
767 }
768 lockdep_annotate_inode_mutex_key(inode);
769 } else
770 kref_put(&resv_map->refs, resv_map_release);
771
772 return inode;
773 }
774
775 /*
776 * File creation. Allocate an inode, and we're done..
777 */
hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)778 static int hugetlbfs_mknod(struct inode *dir,
779 struct dentry *dentry, umode_t mode, dev_t dev)
780 {
781 struct inode *inode;
782 int error = -ENOSPC;
783
784 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
785 if (inode) {
786 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
787 d_instantiate(dentry, inode);
788 dget(dentry); /* Extra count - pin the dentry in core */
789 error = 0;
790 }
791 return error;
792 }
793
hugetlbfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)794 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
795 {
796 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
797 if (!retval)
798 inc_nlink(dir);
799 return retval;
800 }
801
hugetlbfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)802 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
803 {
804 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
805 }
806
hugetlbfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)807 static int hugetlbfs_symlink(struct inode *dir,
808 struct dentry *dentry, const char *symname)
809 {
810 struct inode *inode;
811 int error = -ENOSPC;
812
813 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
814 if (inode) {
815 int l = strlen(symname)+1;
816 error = page_symlink(inode, symname, l);
817 if (!error) {
818 d_instantiate(dentry, inode);
819 dget(dentry);
820 } else
821 iput(inode);
822 }
823 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
824
825 return error;
826 }
827
828 /*
829 * mark the head page dirty
830 */
hugetlbfs_set_page_dirty(struct page * page)831 static int hugetlbfs_set_page_dirty(struct page *page)
832 {
833 struct page *head = compound_head(page);
834
835 SetPageDirty(head);
836 return 0;
837 }
838
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)839 static int hugetlbfs_migrate_page(struct address_space *mapping,
840 struct page *newpage, struct page *page,
841 enum migrate_mode mode)
842 {
843 int rc;
844
845 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
846 if (rc != MIGRATEPAGE_SUCCESS)
847 return rc;
848 migrate_page_copy(newpage, page);
849
850 return MIGRATEPAGE_SUCCESS;
851 }
852
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)853 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
854 {
855 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
856 struct hstate *h = hstate_inode(d_inode(dentry));
857
858 buf->f_type = HUGETLBFS_MAGIC;
859 buf->f_bsize = huge_page_size(h);
860 if (sbinfo) {
861 spin_lock(&sbinfo->stat_lock);
862 /* If no limits set, just report 0 for max/free/used
863 * blocks, like simple_statfs() */
864 if (sbinfo->spool) {
865 long free_pages;
866
867 spin_lock(&sbinfo->spool->lock);
868 buf->f_blocks = sbinfo->spool->max_hpages;
869 free_pages = sbinfo->spool->max_hpages
870 - sbinfo->spool->used_hpages;
871 buf->f_bavail = buf->f_bfree = free_pages;
872 spin_unlock(&sbinfo->spool->lock);
873 buf->f_files = sbinfo->max_inodes;
874 buf->f_ffree = sbinfo->free_inodes;
875 }
876 spin_unlock(&sbinfo->stat_lock);
877 }
878 buf->f_namelen = NAME_MAX;
879 return 0;
880 }
881
hugetlbfs_put_super(struct super_block * sb)882 static void hugetlbfs_put_super(struct super_block *sb)
883 {
884 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
885
886 if (sbi) {
887 sb->s_fs_info = NULL;
888
889 if (sbi->spool)
890 hugepage_put_subpool(sbi->spool);
891
892 kfree(sbi);
893 }
894 }
895
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)896 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
897 {
898 if (sbinfo->free_inodes >= 0) {
899 spin_lock(&sbinfo->stat_lock);
900 if (unlikely(!sbinfo->free_inodes)) {
901 spin_unlock(&sbinfo->stat_lock);
902 return 0;
903 }
904 sbinfo->free_inodes--;
905 spin_unlock(&sbinfo->stat_lock);
906 }
907
908 return 1;
909 }
910
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)911 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
912 {
913 if (sbinfo->free_inodes >= 0) {
914 spin_lock(&sbinfo->stat_lock);
915 sbinfo->free_inodes++;
916 spin_unlock(&sbinfo->stat_lock);
917 }
918 }
919
920
921 static struct kmem_cache *hugetlbfs_inode_cachep;
922
hugetlbfs_alloc_inode(struct super_block * sb)923 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
924 {
925 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
926 struct hugetlbfs_inode_info *p;
927
928 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
929 return NULL;
930 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
931 if (unlikely(!p)) {
932 hugetlbfs_inc_free_inodes(sbinfo);
933 return NULL;
934 }
935 return &p->vfs_inode;
936 }
937
hugetlbfs_i_callback(struct rcu_head * head)938 static void hugetlbfs_i_callback(struct rcu_head *head)
939 {
940 struct inode *inode = container_of(head, struct inode, i_rcu);
941 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
942 }
943
hugetlbfs_destroy_inode(struct inode * inode)944 static void hugetlbfs_destroy_inode(struct inode *inode)
945 {
946 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
947 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
948 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
949 }
950
951 static const struct address_space_operations hugetlbfs_aops = {
952 .write_begin = hugetlbfs_write_begin,
953 .write_end = hugetlbfs_write_end,
954 .set_page_dirty = hugetlbfs_set_page_dirty,
955 .migratepage = hugetlbfs_migrate_page,
956 };
957
958
init_once(void * foo)959 static void init_once(void *foo)
960 {
961 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
962
963 inode_init_once(&ei->vfs_inode);
964 }
965
966 const struct file_operations hugetlbfs_file_operations = {
967 .read_iter = hugetlbfs_read_iter,
968 .mmap = hugetlbfs_file_mmap,
969 .fsync = noop_fsync,
970 .get_unmapped_area = hugetlb_get_unmapped_area,
971 .llseek = default_llseek,
972 .fallocate = hugetlbfs_fallocate,
973 };
974
975 static const struct inode_operations hugetlbfs_dir_inode_operations = {
976 .create = hugetlbfs_create,
977 .lookup = simple_lookup,
978 .link = simple_link,
979 .unlink = simple_unlink,
980 .symlink = hugetlbfs_symlink,
981 .mkdir = hugetlbfs_mkdir,
982 .rmdir = simple_rmdir,
983 .mknod = hugetlbfs_mknod,
984 .rename = simple_rename,
985 .setattr = hugetlbfs_setattr,
986 };
987
988 static const struct inode_operations hugetlbfs_inode_operations = {
989 .setattr = hugetlbfs_setattr,
990 };
991
992 static const struct super_operations hugetlbfs_ops = {
993 .alloc_inode = hugetlbfs_alloc_inode,
994 .destroy_inode = hugetlbfs_destroy_inode,
995 .evict_inode = hugetlbfs_evict_inode,
996 .statfs = hugetlbfs_statfs,
997 .put_super = hugetlbfs_put_super,
998 .show_options = generic_show_options,
999 };
1000
1001 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1002
1003 /*
1004 * Convert size option passed from command line to number of huge pages
1005 * in the pool specified by hstate. Size option could be in bytes
1006 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1007 */
1008 static long long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,int val_type)1009 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1010 int val_type)
1011 {
1012 if (val_type == NO_SIZE)
1013 return -1;
1014
1015 if (val_type == SIZE_PERCENT) {
1016 size_opt <<= huge_page_shift(h);
1017 size_opt *= h->max_huge_pages;
1018 do_div(size_opt, 100);
1019 }
1020
1021 size_opt >>= huge_page_shift(h);
1022 return size_opt;
1023 }
1024
1025 static int
hugetlbfs_parse_options(char * options,struct hugetlbfs_config * pconfig)1026 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1027 {
1028 char *p, *rest;
1029 substring_t args[MAX_OPT_ARGS];
1030 int option;
1031 unsigned long long max_size_opt = 0, min_size_opt = 0;
1032 int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1033
1034 if (!options)
1035 return 0;
1036
1037 while ((p = strsep(&options, ",")) != NULL) {
1038 int token;
1039 if (!*p)
1040 continue;
1041
1042 token = match_token(p, tokens, args);
1043 switch (token) {
1044 case Opt_uid:
1045 if (match_int(&args[0], &option))
1046 goto bad_val;
1047 pconfig->uid = make_kuid(current_user_ns(), option);
1048 if (!uid_valid(pconfig->uid))
1049 goto bad_val;
1050 break;
1051
1052 case Opt_gid:
1053 if (match_int(&args[0], &option))
1054 goto bad_val;
1055 pconfig->gid = make_kgid(current_user_ns(), option);
1056 if (!gid_valid(pconfig->gid))
1057 goto bad_val;
1058 break;
1059
1060 case Opt_mode:
1061 if (match_octal(&args[0], &option))
1062 goto bad_val;
1063 pconfig->mode = option & 01777U;
1064 break;
1065
1066 case Opt_size: {
1067 /* memparse() will accept a K/M/G without a digit */
1068 if (!isdigit(*args[0].from))
1069 goto bad_val;
1070 max_size_opt = memparse(args[0].from, &rest);
1071 max_val_type = SIZE_STD;
1072 if (*rest == '%')
1073 max_val_type = SIZE_PERCENT;
1074 break;
1075 }
1076
1077 case Opt_nr_inodes:
1078 /* memparse() will accept a K/M/G without a digit */
1079 if (!isdigit(*args[0].from))
1080 goto bad_val;
1081 pconfig->nr_inodes = memparse(args[0].from, &rest);
1082 break;
1083
1084 case Opt_pagesize: {
1085 unsigned long ps;
1086 ps = memparse(args[0].from, &rest);
1087 pconfig->hstate = size_to_hstate(ps);
1088 if (!pconfig->hstate) {
1089 pr_err("Unsupported page size %lu MB\n",
1090 ps >> 20);
1091 return -EINVAL;
1092 }
1093 break;
1094 }
1095
1096 case Opt_min_size: {
1097 /* memparse() will accept a K/M/G without a digit */
1098 if (!isdigit(*args[0].from))
1099 goto bad_val;
1100 min_size_opt = memparse(args[0].from, &rest);
1101 min_val_type = SIZE_STD;
1102 if (*rest == '%')
1103 min_val_type = SIZE_PERCENT;
1104 break;
1105 }
1106
1107 default:
1108 pr_err("Bad mount option: \"%s\"\n", p);
1109 return -EINVAL;
1110 break;
1111 }
1112 }
1113
1114 /*
1115 * Use huge page pool size (in hstate) to convert the size
1116 * options to number of huge pages. If NO_SIZE, -1 is returned.
1117 */
1118 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1119 max_size_opt, max_val_type);
1120 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1121 min_size_opt, min_val_type);
1122
1123 /*
1124 * If max_size was specified, then min_size must be smaller
1125 */
1126 if (max_val_type > NO_SIZE &&
1127 pconfig->min_hpages > pconfig->max_hpages) {
1128 pr_err("minimum size can not be greater than maximum size\n");
1129 return -EINVAL;
1130 }
1131
1132 return 0;
1133
1134 bad_val:
1135 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1136 return -EINVAL;
1137 }
1138
1139 static int
hugetlbfs_fill_super(struct super_block * sb,void * data,int silent)1140 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1141 {
1142 int ret;
1143 struct hugetlbfs_config config;
1144 struct hugetlbfs_sb_info *sbinfo;
1145
1146 save_mount_options(sb, data);
1147
1148 config.max_hpages = -1; /* No limit on size by default */
1149 config.nr_inodes = -1; /* No limit on number of inodes by default */
1150 config.uid = current_fsuid();
1151 config.gid = current_fsgid();
1152 config.mode = 0755;
1153 config.hstate = &default_hstate;
1154 config.min_hpages = -1; /* No default minimum size */
1155 ret = hugetlbfs_parse_options(data, &config);
1156 if (ret)
1157 return ret;
1158
1159 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1160 if (!sbinfo)
1161 return -ENOMEM;
1162 sb->s_fs_info = sbinfo;
1163 sbinfo->hstate = config.hstate;
1164 spin_lock_init(&sbinfo->stat_lock);
1165 sbinfo->max_inodes = config.nr_inodes;
1166 sbinfo->free_inodes = config.nr_inodes;
1167 sbinfo->spool = NULL;
1168 /*
1169 * Allocate and initialize subpool if maximum or minimum size is
1170 * specified. Any needed reservations (for minimim size) are taken
1171 * taken when the subpool is created.
1172 */
1173 if (config.max_hpages != -1 || config.min_hpages != -1) {
1174 sbinfo->spool = hugepage_new_subpool(config.hstate,
1175 config.max_hpages,
1176 config.min_hpages);
1177 if (!sbinfo->spool)
1178 goto out_free;
1179 }
1180 sb->s_maxbytes = MAX_LFS_FILESIZE;
1181 sb->s_blocksize = huge_page_size(config.hstate);
1182 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1183 sb->s_magic = HUGETLBFS_MAGIC;
1184 sb->s_op = &hugetlbfs_ops;
1185 sb->s_time_gran = 1;
1186 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1187 if (!sb->s_root)
1188 goto out_free;
1189 return 0;
1190 out_free:
1191 kfree(sbinfo->spool);
1192 kfree(sbinfo);
1193 return -ENOMEM;
1194 }
1195
hugetlbfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1196 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1197 int flags, const char *dev_name, void *data)
1198 {
1199 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1200 }
1201
1202 static struct file_system_type hugetlbfs_fs_type = {
1203 .name = "hugetlbfs",
1204 .mount = hugetlbfs_mount,
1205 .kill_sb = kill_litter_super,
1206 };
1207 MODULE_ALIAS_FS("hugetlbfs");
1208
1209 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1210
can_do_hugetlb_shm(void)1211 static int can_do_hugetlb_shm(void)
1212 {
1213 kgid_t shm_group;
1214 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1215 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1216 }
1217
get_hstate_idx(int page_size_log)1218 static int get_hstate_idx(int page_size_log)
1219 {
1220 struct hstate *h = hstate_sizelog(page_size_log);
1221
1222 if (!h)
1223 return -1;
1224 return h - hstates;
1225 }
1226
1227 static const struct dentry_operations anon_ops = {
1228 .d_dname = simple_dname
1229 };
1230
1231 /*
1232 * Note that size should be aligned to proper hugepage size in caller side,
1233 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1234 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct user_struct ** user,int creat_flags,int page_size_log)1235 struct file *hugetlb_file_setup(const char *name, size_t size,
1236 vm_flags_t acctflag, struct user_struct **user,
1237 int creat_flags, int page_size_log)
1238 {
1239 struct file *file = ERR_PTR(-ENOMEM);
1240 struct inode *inode;
1241 struct path path;
1242 struct super_block *sb;
1243 struct qstr quick_string;
1244 int hstate_idx;
1245
1246 hstate_idx = get_hstate_idx(page_size_log);
1247 if (hstate_idx < 0)
1248 return ERR_PTR(-ENODEV);
1249
1250 *user = NULL;
1251 if (!hugetlbfs_vfsmount[hstate_idx])
1252 return ERR_PTR(-ENOENT);
1253
1254 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1255 *user = current_user();
1256 if (user_shm_lock(size, *user)) {
1257 task_lock(current);
1258 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1259 current->comm, current->pid);
1260 task_unlock(current);
1261 } else {
1262 *user = NULL;
1263 return ERR_PTR(-EPERM);
1264 }
1265 }
1266
1267 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1268 quick_string.name = name;
1269 quick_string.len = strlen(quick_string.name);
1270 quick_string.hash = 0;
1271 path.dentry = d_alloc_pseudo(sb, &quick_string);
1272 if (!path.dentry)
1273 goto out_shm_unlock;
1274
1275 d_set_d_op(path.dentry, &anon_ops);
1276 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1277 file = ERR_PTR(-ENOSPC);
1278 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1279 if (!inode)
1280 goto out_dentry;
1281 if (creat_flags == HUGETLB_SHMFS_INODE)
1282 inode->i_flags |= S_PRIVATE;
1283
1284 file = ERR_PTR(-ENOMEM);
1285 if (hugetlb_reserve_pages(inode, 0,
1286 size >> huge_page_shift(hstate_inode(inode)), NULL,
1287 acctflag))
1288 goto out_inode;
1289
1290 d_instantiate(path.dentry, inode);
1291 inode->i_size = size;
1292 clear_nlink(inode);
1293
1294 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1295 &hugetlbfs_file_operations);
1296 if (IS_ERR(file))
1297 goto out_dentry; /* inode is already attached */
1298
1299 return file;
1300
1301 out_inode:
1302 iput(inode);
1303 out_dentry:
1304 path_put(&path);
1305 out_shm_unlock:
1306 if (*user) {
1307 user_shm_unlock(size, *user);
1308 *user = NULL;
1309 }
1310 return file;
1311 }
1312
init_hugetlbfs_fs(void)1313 static int __init init_hugetlbfs_fs(void)
1314 {
1315 struct hstate *h;
1316 int error;
1317 int i;
1318
1319 if (!hugepages_supported()) {
1320 pr_info("disabling because there are no supported hugepage sizes\n");
1321 return -ENOTSUPP;
1322 }
1323
1324 error = -ENOMEM;
1325 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1326 sizeof(struct hugetlbfs_inode_info),
1327 0, 0, init_once);
1328 if (hugetlbfs_inode_cachep == NULL)
1329 goto out2;
1330
1331 error = register_filesystem(&hugetlbfs_fs_type);
1332 if (error)
1333 goto out;
1334
1335 i = 0;
1336 for_each_hstate(h) {
1337 char buf[50];
1338 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1339
1340 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1341 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1342 buf);
1343
1344 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1345 pr_err("Cannot mount internal hugetlbfs for "
1346 "page size %uK", ps_kb);
1347 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1348 hugetlbfs_vfsmount[i] = NULL;
1349 }
1350 i++;
1351 }
1352 /* Non default hstates are optional */
1353 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1354 return 0;
1355
1356 out:
1357 kmem_cache_destroy(hugetlbfs_inode_cachep);
1358 out2:
1359 return error;
1360 }
1361
exit_hugetlbfs_fs(void)1362 static void __exit exit_hugetlbfs_fs(void)
1363 {
1364 struct hstate *h;
1365 int i;
1366
1367
1368 /*
1369 * Make sure all delayed rcu free inodes are flushed before we
1370 * destroy cache.
1371 */
1372 rcu_barrier();
1373 kmem_cache_destroy(hugetlbfs_inode_cachep);
1374 i = 0;
1375 for_each_hstate(h)
1376 kern_unmount(hugetlbfs_vfsmount[i++]);
1377 unregister_filesystem(&hugetlbfs_fs_type);
1378 }
1379
1380 module_init(init_hugetlbfs_fs)
1381 module_exit(exit_hugetlbfs_fs)
1382
1383 MODULE_LICENSE("GPL");
1384