1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/sec_bulk.c
37  *
38  * Author: Eric Mei <ericm@clusterfs.com>
39  */
40 
41 #define DEBUG_SUBSYSTEM S_SEC
42 
43 #include "../../include/linux/libcfs/libcfs.h"
44 #include <linux/crypto.h>
45 
46 #include "../include/obd.h"
47 #include "../include/obd_cksum.h"
48 #include "../include/obd_class.h"
49 #include "../include/obd_support.h"
50 #include "../include/lustre_net.h"
51 #include "../include/lustre_import.h"
52 #include "../include/lustre_dlm.h"
53 #include "../include/lustre_sec.h"
54 
55 #include "ptlrpc_internal.h"
56 
57 /****************************************
58  * bulk encryption page pools	   *
59  ****************************************/
60 
61 
62 #define POINTERS_PER_PAGE	(PAGE_CACHE_SIZE / sizeof(void *))
63 #define PAGES_PER_POOL		(POINTERS_PER_PAGE)
64 
65 #define IDLE_IDX_MAX	    (100)
66 #define IDLE_IDX_WEIGHT	 (3)
67 
68 #define CACHE_QUIESCENT_PERIOD  (20)
69 
70 static struct ptlrpc_enc_page_pool {
71 	/*
72 	 * constants
73 	 */
74 	unsigned long    epp_max_pages;   /* maximum pages can hold, const */
75 	unsigned int     epp_max_pools;   /* number of pools, const */
76 
77 	/*
78 	 * wait queue in case of not enough free pages.
79 	 */
80 	wait_queue_head_t      epp_waitq;       /* waiting threads */
81 	unsigned int     epp_waitqlen;    /* wait queue length */
82 	unsigned long    epp_pages_short; /* # of pages wanted of in-q users */
83 	unsigned int     epp_growing:1;   /* during adding pages */
84 
85 	/*
86 	 * indicating how idle the pools are, from 0 to MAX_IDLE_IDX
87 	 * this is counted based on each time when getting pages from
88 	 * the pools, not based on time. which means in case that system
89 	 * is idled for a while but the idle_idx might still be low if no
90 	 * activities happened in the pools.
91 	 */
92 	unsigned long    epp_idle_idx;
93 
94 	/* last shrink time due to mem tight */
95 	long	     epp_last_shrink;
96 	long	     epp_last_access;
97 
98 	/*
99 	 * in-pool pages bookkeeping
100 	 */
101 	spinlock_t	 epp_lock;	   /* protect following fields */
102 	unsigned long    epp_total_pages; /* total pages in pools */
103 	unsigned long    epp_free_pages;  /* current pages available */
104 
105 	/*
106 	 * statistics
107 	 */
108 	unsigned long    epp_st_max_pages;      /* # of pages ever reached */
109 	unsigned int     epp_st_grows;	  /* # of grows */
110 	unsigned int     epp_st_grow_fails;     /* # of add pages failures */
111 	unsigned int     epp_st_shrinks;	/* # of shrinks */
112 	unsigned long    epp_st_access;	 /* # of access */
113 	unsigned long    epp_st_missings;       /* # of cache missing */
114 	unsigned long    epp_st_lowfree;	/* lowest free pages reached */
115 	unsigned int     epp_st_max_wqlen;      /* highest waitqueue length */
116 	unsigned long       epp_st_max_wait;       /* in jiffies */
117 	/*
118 	 * pointers to pools
119 	 */
120 	struct page    ***epp_pools;
121 } page_pools;
122 
123 /*
124  * /proc/fs/lustre/sptlrpc/encrypt_page_pools
125  */
sptlrpc_proc_enc_pool_seq_show(struct seq_file * m,void * v)126 int sptlrpc_proc_enc_pool_seq_show(struct seq_file *m, void *v)
127 {
128 	spin_lock(&page_pools.epp_lock);
129 
130 	seq_printf(m,
131 		   "physical pages:	  %lu\n"
132 		   "pages per pool:	  %lu\n"
133 		   "max pages:	       %lu\n"
134 		   "max pools:	       %u\n"
135 		   "total pages:	     %lu\n"
136 		   "total free:	      %lu\n"
137 		   "idle index:	      %lu/100\n"
138 		   "last shrink:	     %lds\n"
139 		   "last access:	     %lds\n"
140 		   "max pages reached:       %lu\n"
141 		   "grows:		   %u\n"
142 		   "grows failure:	   %u\n"
143 		   "shrinks:		 %u\n"
144 		   "cache access:	    %lu\n"
145 		   "cache missing:	   %lu\n"
146 		   "low free mark:	   %lu\n"
147 		   "max waitqueue depth:     %u\n"
148 		   "max wait time:	   " CFS_TIME_T "/%u\n",
149 		   totalram_pages,
150 		   PAGES_PER_POOL,
151 		   page_pools.epp_max_pages,
152 		   page_pools.epp_max_pools,
153 		   page_pools.epp_total_pages,
154 		   page_pools.epp_free_pages,
155 		   page_pools.epp_idle_idx,
156 		   get_seconds() - page_pools.epp_last_shrink,
157 		   get_seconds() - page_pools.epp_last_access,
158 		   page_pools.epp_st_max_pages,
159 		   page_pools.epp_st_grows,
160 		   page_pools.epp_st_grow_fails,
161 		   page_pools.epp_st_shrinks,
162 		   page_pools.epp_st_access,
163 		   page_pools.epp_st_missings,
164 		   page_pools.epp_st_lowfree,
165 		   page_pools.epp_st_max_wqlen,
166 		   page_pools.epp_st_max_wait,
167 		   HZ);
168 
169 	spin_unlock(&page_pools.epp_lock);
170 
171 	return 0;
172 }
173 
enc_pools_release_free_pages(long npages)174 static void enc_pools_release_free_pages(long npages)
175 {
176 	int     p_idx, g_idx;
177 	int     p_idx_max1, p_idx_max2;
178 
179 	LASSERT(npages > 0);
180 	LASSERT(npages <= page_pools.epp_free_pages);
181 	LASSERT(page_pools.epp_free_pages <= page_pools.epp_total_pages);
182 
183 	/* max pool index before the release */
184 	p_idx_max2 = (page_pools.epp_total_pages - 1) / PAGES_PER_POOL;
185 
186 	page_pools.epp_free_pages -= npages;
187 	page_pools.epp_total_pages -= npages;
188 
189 	/* max pool index after the release */
190 	p_idx_max1 = page_pools.epp_total_pages == 0 ? -1 :
191 		     ((page_pools.epp_total_pages - 1) / PAGES_PER_POOL);
192 
193 	p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
194 	g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
195 	LASSERT(page_pools.epp_pools[p_idx]);
196 
197 	while (npages--) {
198 		LASSERT(page_pools.epp_pools[p_idx]);
199 		LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
200 
201 		__free_page(page_pools.epp_pools[p_idx][g_idx]);
202 		page_pools.epp_pools[p_idx][g_idx] = NULL;
203 
204 		if (++g_idx == PAGES_PER_POOL) {
205 			p_idx++;
206 			g_idx = 0;
207 		}
208 	}
209 
210 	/* free unused pools */
211 	while (p_idx_max1 < p_idx_max2) {
212 		LASSERT(page_pools.epp_pools[p_idx_max2]);
213 		OBD_FREE(page_pools.epp_pools[p_idx_max2], PAGE_CACHE_SIZE);
214 		page_pools.epp_pools[p_idx_max2] = NULL;
215 		p_idx_max2--;
216 	}
217 }
218 
219 /*
220  * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
221  */
enc_pools_shrink_count(struct shrinker * s,struct shrink_control * sc)222 static unsigned long enc_pools_shrink_count(struct shrinker *s,
223 					    struct shrink_control *sc)
224 {
225 	/*
226 	 * if no pool access for a long time, we consider it's fully idle.
227 	 * a little race here is fine.
228 	 */
229 	if (unlikely(get_seconds() - page_pools.epp_last_access >
230 		     CACHE_QUIESCENT_PERIOD)) {
231 		spin_lock(&page_pools.epp_lock);
232 		page_pools.epp_idle_idx = IDLE_IDX_MAX;
233 		spin_unlock(&page_pools.epp_lock);
234 	}
235 
236 	LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
237 	return max((int)page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES, 0) *
238 		(IDLE_IDX_MAX - page_pools.epp_idle_idx) / IDLE_IDX_MAX;
239 }
240 
241 /*
242  * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
243  */
enc_pools_shrink_scan(struct shrinker * s,struct shrink_control * sc)244 static unsigned long enc_pools_shrink_scan(struct shrinker *s,
245 					   struct shrink_control *sc)
246 {
247 	spin_lock(&page_pools.epp_lock);
248 	sc->nr_to_scan = min_t(unsigned long, sc->nr_to_scan,
249 			      page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES);
250 	if (sc->nr_to_scan > 0) {
251 		enc_pools_release_free_pages(sc->nr_to_scan);
252 		CDEBUG(D_SEC, "released %ld pages, %ld left\n",
253 		       (long)sc->nr_to_scan, page_pools.epp_free_pages);
254 
255 		page_pools.epp_st_shrinks++;
256 		page_pools.epp_last_shrink = get_seconds();
257 	}
258 	spin_unlock(&page_pools.epp_lock);
259 
260 	/*
261 	 * if no pool access for a long time, we consider it's fully idle.
262 	 * a little race here is fine.
263 	 */
264 	if (unlikely(get_seconds() - page_pools.epp_last_access >
265 		     CACHE_QUIESCENT_PERIOD)) {
266 		spin_lock(&page_pools.epp_lock);
267 		page_pools.epp_idle_idx = IDLE_IDX_MAX;
268 		spin_unlock(&page_pools.epp_lock);
269 	}
270 
271 	LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
272 	return sc->nr_to_scan;
273 }
274 
275 static inline
npages_to_npools(unsigned long npages)276 int npages_to_npools(unsigned long npages)
277 {
278 	return (int) ((npages + PAGES_PER_POOL - 1) / PAGES_PER_POOL);
279 }
280 
281 /*
282  * return how many pages cleaned up.
283  */
enc_pools_cleanup(struct page *** pools,int npools)284 static unsigned long enc_pools_cleanup(struct page ***pools, int npools)
285 {
286 	unsigned long cleaned = 0;
287 	int	   i, j;
288 
289 	for (i = 0; i < npools; i++) {
290 		if (pools[i]) {
291 			for (j = 0; j < PAGES_PER_POOL; j++) {
292 				if (pools[i][j]) {
293 					__free_page(pools[i][j]);
294 					cleaned++;
295 				}
296 			}
297 			OBD_FREE(pools[i], PAGE_CACHE_SIZE);
298 			pools[i] = NULL;
299 		}
300 	}
301 
302 	return cleaned;
303 }
304 
305 /*
306  * merge @npools pointed by @pools which contains @npages new pages
307  * into current pools.
308  *
309  * we have options to avoid most memory copy with some tricks. but we choose
310  * the simplest way to avoid complexity. It's not frequently called.
311  */
enc_pools_insert(struct page *** pools,int npools,int npages)312 static void enc_pools_insert(struct page ***pools, int npools, int npages)
313 {
314 	int     freeslot;
315 	int     op_idx, np_idx, og_idx, ng_idx;
316 	int     cur_npools, end_npools;
317 
318 	LASSERT(npages > 0);
319 	LASSERT(page_pools.epp_total_pages+npages <= page_pools.epp_max_pages);
320 	LASSERT(npages_to_npools(npages) == npools);
321 	LASSERT(page_pools.epp_growing);
322 
323 	spin_lock(&page_pools.epp_lock);
324 
325 	/*
326 	 * (1) fill all the free slots of current pools.
327 	 */
328 	/* free slots are those left by rent pages, and the extra ones with
329 	 * index >= total_pages, locate at the tail of last pool. */
330 	freeslot = page_pools.epp_total_pages % PAGES_PER_POOL;
331 	if (freeslot != 0)
332 		freeslot = PAGES_PER_POOL - freeslot;
333 	freeslot += page_pools.epp_total_pages - page_pools.epp_free_pages;
334 
335 	op_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
336 	og_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
337 	np_idx = npools - 1;
338 	ng_idx = (npages - 1) % PAGES_PER_POOL;
339 
340 	while (freeslot) {
341 		LASSERT(page_pools.epp_pools[op_idx][og_idx] == NULL);
342 		LASSERT(pools[np_idx][ng_idx] != NULL);
343 
344 		page_pools.epp_pools[op_idx][og_idx] = pools[np_idx][ng_idx];
345 		pools[np_idx][ng_idx] = NULL;
346 
347 		freeslot--;
348 
349 		if (++og_idx == PAGES_PER_POOL) {
350 			op_idx++;
351 			og_idx = 0;
352 		}
353 		if (--ng_idx < 0) {
354 			if (np_idx == 0)
355 				break;
356 			np_idx--;
357 			ng_idx = PAGES_PER_POOL - 1;
358 		}
359 	}
360 
361 	/*
362 	 * (2) add pools if needed.
363 	 */
364 	cur_npools = (page_pools.epp_total_pages + PAGES_PER_POOL - 1) /
365 		     PAGES_PER_POOL;
366 	end_npools = (page_pools.epp_total_pages + npages + PAGES_PER_POOL - 1)
367 		     / PAGES_PER_POOL;
368 	LASSERT(end_npools <= page_pools.epp_max_pools);
369 
370 	np_idx = 0;
371 	while (cur_npools < end_npools) {
372 		LASSERT(page_pools.epp_pools[cur_npools] == NULL);
373 		LASSERT(np_idx < npools);
374 		LASSERT(pools[np_idx] != NULL);
375 
376 		page_pools.epp_pools[cur_npools++] = pools[np_idx];
377 		pools[np_idx++] = NULL;
378 	}
379 
380 	page_pools.epp_total_pages += npages;
381 	page_pools.epp_free_pages += npages;
382 	page_pools.epp_st_lowfree = page_pools.epp_free_pages;
383 
384 	if (page_pools.epp_total_pages > page_pools.epp_st_max_pages)
385 		page_pools.epp_st_max_pages = page_pools.epp_total_pages;
386 
387 	CDEBUG(D_SEC, "add %d pages to total %lu\n", npages,
388 	       page_pools.epp_total_pages);
389 
390 	spin_unlock(&page_pools.epp_lock);
391 }
392 
enc_pools_add_pages(int npages)393 static int enc_pools_add_pages(int npages)
394 {
395 	static DEFINE_MUTEX(add_pages_mutex);
396 	struct page   ***pools;
397 	int	     npools, alloced = 0;
398 	int	     i, j, rc = -ENOMEM;
399 
400 	if (npages < PTLRPC_MAX_BRW_PAGES)
401 		npages = PTLRPC_MAX_BRW_PAGES;
402 
403 	mutex_lock(&add_pages_mutex);
404 
405 	if (npages + page_pools.epp_total_pages > page_pools.epp_max_pages)
406 		npages = page_pools.epp_max_pages - page_pools.epp_total_pages;
407 	LASSERT(npages > 0);
408 
409 	page_pools.epp_st_grows++;
410 
411 	npools = npages_to_npools(npages);
412 	OBD_ALLOC(pools, npools * sizeof(*pools));
413 	if (pools == NULL)
414 		goto out;
415 
416 	for (i = 0; i < npools; i++) {
417 		OBD_ALLOC(pools[i], PAGE_CACHE_SIZE);
418 		if (pools[i] == NULL)
419 			goto out_pools;
420 
421 		for (j = 0; j < PAGES_PER_POOL && alloced < npages; j++) {
422 			pools[i][j] = alloc_page(GFP_NOFS |
423 						     __GFP_HIGHMEM);
424 			if (pools[i][j] == NULL)
425 				goto out_pools;
426 
427 			alloced++;
428 		}
429 	}
430 	LASSERT(alloced == npages);
431 
432 	enc_pools_insert(pools, npools, npages);
433 	CDEBUG(D_SEC, "added %d pages into pools\n", npages);
434 	rc = 0;
435 
436 out_pools:
437 	enc_pools_cleanup(pools, npools);
438 	OBD_FREE(pools, npools * sizeof(*pools));
439 out:
440 	if (rc) {
441 		page_pools.epp_st_grow_fails++;
442 		CERROR("Failed to allocate %d enc pages\n", npages);
443 	}
444 
445 	mutex_unlock(&add_pages_mutex);
446 	return rc;
447 }
448 
enc_pools_wakeup(void)449 static inline void enc_pools_wakeup(void)
450 {
451 	assert_spin_locked(&page_pools.epp_lock);
452 	LASSERT(page_pools.epp_waitqlen >= 0);
453 
454 	if (unlikely(page_pools.epp_waitqlen)) {
455 		LASSERT(waitqueue_active(&page_pools.epp_waitq));
456 		wake_up_all(&page_pools.epp_waitq);
457 	}
458 }
459 
enc_pools_should_grow(int page_needed,long now)460 static int enc_pools_should_grow(int page_needed, long now)
461 {
462 	/* don't grow if someone else is growing the pools right now,
463 	 * or the pools has reached its full capacity
464 	 */
465 	if (page_pools.epp_growing ||
466 	    page_pools.epp_total_pages == page_pools.epp_max_pages)
467 		return 0;
468 
469 	/* if total pages is not enough, we need to grow */
470 	if (page_pools.epp_total_pages < page_needed)
471 		return 1;
472 
473 	/*
474 	 * we wanted to return 0 here if there was a shrink just happened
475 	 * moment ago, but this may cause deadlock if both client and ost
476 	 * live on single node.
477 	 */
478 #if 0
479 	if (now - page_pools.epp_last_shrink < 2)
480 		return 0;
481 #endif
482 
483 	/*
484 	 * here we perhaps need consider other factors like wait queue
485 	 * length, idle index, etc. ?
486 	 */
487 
488 	/* grow the pools in any other cases */
489 	return 1;
490 }
491 
492 /*
493  * we allocate the requested pages atomically.
494  */
sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc * desc)495 int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc)
496 {
497 	wait_queue_t  waitlink;
498 	unsigned long   this_idle = -1;
499 	unsigned long      tick = 0;
500 	long	    now;
501 	int	     p_idx, g_idx;
502 	int	     i;
503 
504 	LASSERT(desc->bd_iov_count > 0);
505 	LASSERT(desc->bd_iov_count <= page_pools.epp_max_pages);
506 
507 	/* resent bulk, enc iov might have been allocated previously */
508 	if (desc->bd_enc_iov != NULL)
509 		return 0;
510 
511 	OBD_ALLOC(desc->bd_enc_iov,
512 		  desc->bd_iov_count * sizeof(*desc->bd_enc_iov));
513 	if (desc->bd_enc_iov == NULL)
514 		return -ENOMEM;
515 
516 	spin_lock(&page_pools.epp_lock);
517 
518 	page_pools.epp_st_access++;
519 again:
520 	if (unlikely(page_pools.epp_free_pages < desc->bd_iov_count)) {
521 		if (tick == 0)
522 			tick = cfs_time_current();
523 
524 		now = get_seconds();
525 
526 		page_pools.epp_st_missings++;
527 		page_pools.epp_pages_short += desc->bd_iov_count;
528 
529 		if (enc_pools_should_grow(desc->bd_iov_count, now)) {
530 			page_pools.epp_growing = 1;
531 
532 			spin_unlock(&page_pools.epp_lock);
533 			enc_pools_add_pages(page_pools.epp_pages_short / 2);
534 			spin_lock(&page_pools.epp_lock);
535 
536 			page_pools.epp_growing = 0;
537 
538 			enc_pools_wakeup();
539 		} else {
540 			if (++page_pools.epp_waitqlen >
541 			    page_pools.epp_st_max_wqlen)
542 				page_pools.epp_st_max_wqlen =
543 						page_pools.epp_waitqlen;
544 
545 			set_current_state(TASK_UNINTERRUPTIBLE);
546 			init_waitqueue_entry(&waitlink, current);
547 			add_wait_queue(&page_pools.epp_waitq, &waitlink);
548 
549 			spin_unlock(&page_pools.epp_lock);
550 			schedule();
551 			remove_wait_queue(&page_pools.epp_waitq, &waitlink);
552 			LASSERT(page_pools.epp_waitqlen > 0);
553 			spin_lock(&page_pools.epp_lock);
554 			page_pools.epp_waitqlen--;
555 		}
556 
557 		LASSERT(page_pools.epp_pages_short >= desc->bd_iov_count);
558 		page_pools.epp_pages_short -= desc->bd_iov_count;
559 
560 		this_idle = 0;
561 		goto again;
562 	}
563 
564 	/* record max wait time */
565 	if (unlikely(tick != 0)) {
566 		tick = cfs_time_current() - tick;
567 		if (tick > page_pools.epp_st_max_wait)
568 			page_pools.epp_st_max_wait = tick;
569 	}
570 
571 	/* proceed with rest of allocation */
572 	page_pools.epp_free_pages -= desc->bd_iov_count;
573 
574 	p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
575 	g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
576 
577 	for (i = 0; i < desc->bd_iov_count; i++) {
578 		LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
579 		desc->bd_enc_iov[i].kiov_page =
580 					page_pools.epp_pools[p_idx][g_idx];
581 		page_pools.epp_pools[p_idx][g_idx] = NULL;
582 
583 		if (++g_idx == PAGES_PER_POOL) {
584 			p_idx++;
585 			g_idx = 0;
586 		}
587 	}
588 
589 	if (page_pools.epp_free_pages < page_pools.epp_st_lowfree)
590 		page_pools.epp_st_lowfree = page_pools.epp_free_pages;
591 
592 	/*
593 	 * new idle index = (old * weight + new) / (weight + 1)
594 	 */
595 	if (this_idle == -1) {
596 		this_idle = page_pools.epp_free_pages * IDLE_IDX_MAX /
597 			    page_pools.epp_total_pages;
598 	}
599 	page_pools.epp_idle_idx = (page_pools.epp_idle_idx * IDLE_IDX_WEIGHT +
600 				   this_idle) /
601 				  (IDLE_IDX_WEIGHT + 1);
602 
603 	page_pools.epp_last_access = get_seconds();
604 
605 	spin_unlock(&page_pools.epp_lock);
606 	return 0;
607 }
608 EXPORT_SYMBOL(sptlrpc_enc_pool_get_pages);
609 
sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc * desc)610 void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc)
611 {
612 	int     p_idx, g_idx;
613 	int     i;
614 
615 	if (desc->bd_enc_iov == NULL)
616 		return;
617 
618 	LASSERT(desc->bd_iov_count > 0);
619 
620 	spin_lock(&page_pools.epp_lock);
621 
622 	p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
623 	g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
624 
625 	LASSERT(page_pools.epp_free_pages + desc->bd_iov_count <=
626 		page_pools.epp_total_pages);
627 	LASSERT(page_pools.epp_pools[p_idx]);
628 
629 	for (i = 0; i < desc->bd_iov_count; i++) {
630 		LASSERT(desc->bd_enc_iov[i].kiov_page != NULL);
631 		LASSERT(g_idx != 0 || page_pools.epp_pools[p_idx]);
632 		LASSERT(page_pools.epp_pools[p_idx][g_idx] == NULL);
633 
634 		page_pools.epp_pools[p_idx][g_idx] =
635 					desc->bd_enc_iov[i].kiov_page;
636 
637 		if (++g_idx == PAGES_PER_POOL) {
638 			p_idx++;
639 			g_idx = 0;
640 		}
641 	}
642 
643 	page_pools.epp_free_pages += desc->bd_iov_count;
644 
645 	enc_pools_wakeup();
646 
647 	spin_unlock(&page_pools.epp_lock);
648 
649 	OBD_FREE(desc->bd_enc_iov,
650 		 desc->bd_iov_count * sizeof(*desc->bd_enc_iov));
651 	desc->bd_enc_iov = NULL;
652 }
653 EXPORT_SYMBOL(sptlrpc_enc_pool_put_pages);
654 
655 /*
656  * we don't do much stuff for add_user/del_user anymore, except adding some
657  * initial pages in add_user() if current pools are empty, rest would be
658  * handled by the pools's self-adaption.
659  */
sptlrpc_enc_pool_add_user(void)660 int sptlrpc_enc_pool_add_user(void)
661 {
662 	int     need_grow = 0;
663 
664 	spin_lock(&page_pools.epp_lock);
665 	if (page_pools.epp_growing == 0 && page_pools.epp_total_pages == 0) {
666 		page_pools.epp_growing = 1;
667 		need_grow = 1;
668 	}
669 	spin_unlock(&page_pools.epp_lock);
670 
671 	if (need_grow) {
672 		enc_pools_add_pages(PTLRPC_MAX_BRW_PAGES +
673 				    PTLRPC_MAX_BRW_PAGES);
674 
675 		spin_lock(&page_pools.epp_lock);
676 		page_pools.epp_growing = 0;
677 		enc_pools_wakeup();
678 		spin_unlock(&page_pools.epp_lock);
679 	}
680 	return 0;
681 }
682 EXPORT_SYMBOL(sptlrpc_enc_pool_add_user);
683 
sptlrpc_enc_pool_del_user(void)684 int sptlrpc_enc_pool_del_user(void)
685 {
686 	return 0;
687 }
688 EXPORT_SYMBOL(sptlrpc_enc_pool_del_user);
689 
enc_pools_alloc(void)690 static inline void enc_pools_alloc(void)
691 {
692 	LASSERT(page_pools.epp_max_pools);
693 	OBD_ALLOC_LARGE(page_pools.epp_pools,
694 			page_pools.epp_max_pools *
695 			sizeof(*page_pools.epp_pools));
696 }
697 
enc_pools_free(void)698 static inline void enc_pools_free(void)
699 {
700 	LASSERT(page_pools.epp_max_pools);
701 	LASSERT(page_pools.epp_pools);
702 
703 	OBD_FREE_LARGE(page_pools.epp_pools,
704 		       page_pools.epp_max_pools *
705 		       sizeof(*page_pools.epp_pools));
706 }
707 
708 static struct shrinker pools_shrinker = {
709 	.count_objects	= enc_pools_shrink_count,
710 	.scan_objects	= enc_pools_shrink_scan,
711 	.seeks		= DEFAULT_SEEKS,
712 };
713 
sptlrpc_enc_pool_init(void)714 int sptlrpc_enc_pool_init(void)
715 {
716 	/*
717 	 * maximum capacity is 1/8 of total physical memory.
718 	 * is the 1/8 a good number?
719 	 */
720 	page_pools.epp_max_pages = totalram_pages / 8;
721 	page_pools.epp_max_pools = npages_to_npools(page_pools.epp_max_pages);
722 
723 	init_waitqueue_head(&page_pools.epp_waitq);
724 	page_pools.epp_waitqlen = 0;
725 	page_pools.epp_pages_short = 0;
726 
727 	page_pools.epp_growing = 0;
728 
729 	page_pools.epp_idle_idx = 0;
730 	page_pools.epp_last_shrink = get_seconds();
731 	page_pools.epp_last_access = get_seconds();
732 
733 	spin_lock_init(&page_pools.epp_lock);
734 	page_pools.epp_total_pages = 0;
735 	page_pools.epp_free_pages = 0;
736 
737 	page_pools.epp_st_max_pages = 0;
738 	page_pools.epp_st_grows = 0;
739 	page_pools.epp_st_grow_fails = 0;
740 	page_pools.epp_st_shrinks = 0;
741 	page_pools.epp_st_access = 0;
742 	page_pools.epp_st_missings = 0;
743 	page_pools.epp_st_lowfree = 0;
744 	page_pools.epp_st_max_wqlen = 0;
745 	page_pools.epp_st_max_wait = 0;
746 
747 	enc_pools_alloc();
748 	if (page_pools.epp_pools == NULL)
749 		return -ENOMEM;
750 
751 	register_shrinker(&pools_shrinker);
752 
753 	return 0;
754 }
755 
sptlrpc_enc_pool_fini(void)756 void sptlrpc_enc_pool_fini(void)
757 {
758 	unsigned long cleaned, npools;
759 
760 	LASSERT(page_pools.epp_pools);
761 	LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages);
762 
763 	unregister_shrinker(&pools_shrinker);
764 
765 	npools = npages_to_npools(page_pools.epp_total_pages);
766 	cleaned = enc_pools_cleanup(page_pools.epp_pools, npools);
767 	LASSERT(cleaned == page_pools.epp_total_pages);
768 
769 	enc_pools_free();
770 
771 	if (page_pools.epp_st_access > 0) {
772 		CDEBUG(D_SEC,
773 		       "max pages %lu, grows %u, grow fails %u, shrinks %u, access %lu, missing %lu, max qlen %u, max wait "
774 		       CFS_TIME_T"/%d\n",
775 		       page_pools.epp_st_max_pages, page_pools.epp_st_grows,
776 		       page_pools.epp_st_grow_fails,
777 		       page_pools.epp_st_shrinks, page_pools.epp_st_access,
778 		       page_pools.epp_st_missings, page_pools.epp_st_max_wqlen,
779 		       page_pools.epp_st_max_wait, HZ);
780 	}
781 }
782 
783 
784 static int cfs_hash_alg_id[] = {
785 	[BULK_HASH_ALG_NULL]	= CFS_HASH_ALG_NULL,
786 	[BULK_HASH_ALG_ADLER32]	= CFS_HASH_ALG_ADLER32,
787 	[BULK_HASH_ALG_CRC32]	= CFS_HASH_ALG_CRC32,
788 	[BULK_HASH_ALG_MD5]	= CFS_HASH_ALG_MD5,
789 	[BULK_HASH_ALG_SHA1]	= CFS_HASH_ALG_SHA1,
790 	[BULK_HASH_ALG_SHA256]	= CFS_HASH_ALG_SHA256,
791 	[BULK_HASH_ALG_SHA384]	= CFS_HASH_ALG_SHA384,
792 	[BULK_HASH_ALG_SHA512]	= CFS_HASH_ALG_SHA512,
793 };
sptlrpc_get_hash_name(__u8 hash_alg)794 const char *sptlrpc_get_hash_name(__u8 hash_alg)
795 {
796 	return cfs_crypto_hash_name(cfs_hash_alg_id[hash_alg]);
797 }
798 EXPORT_SYMBOL(sptlrpc_get_hash_name);
799 
sptlrpc_get_hash_alg(const char * algname)800 __u8 sptlrpc_get_hash_alg(const char *algname)
801 {
802 	return cfs_crypto_hash_alg(algname);
803 }
804 EXPORT_SYMBOL(sptlrpc_get_hash_alg);
805 
bulk_sec_desc_unpack(struct lustre_msg * msg,int offset,int swabbed)806 int bulk_sec_desc_unpack(struct lustre_msg *msg, int offset, int swabbed)
807 {
808 	struct ptlrpc_bulk_sec_desc *bsd;
809 	int			  size = msg->lm_buflens[offset];
810 
811 	bsd = lustre_msg_buf(msg, offset, sizeof(*bsd));
812 	if (bsd == NULL) {
813 		CERROR("Invalid bulk sec desc: size %d\n", size);
814 		return -EINVAL;
815 	}
816 
817 	if (swabbed)
818 		__swab32s(&bsd->bsd_nob);
819 
820 	if (unlikely(bsd->bsd_version != 0)) {
821 		CERROR("Unexpected version %u\n", bsd->bsd_version);
822 		return -EPROTO;
823 	}
824 
825 	if (unlikely(bsd->bsd_type >= SPTLRPC_BULK_MAX)) {
826 		CERROR("Invalid type %u\n", bsd->bsd_type);
827 		return -EPROTO;
828 	}
829 
830 	/* FIXME more sanity check here */
831 
832 	if (unlikely(bsd->bsd_svc != SPTLRPC_BULK_SVC_NULL &&
833 		     bsd->bsd_svc != SPTLRPC_BULK_SVC_INTG &&
834 		     bsd->bsd_svc != SPTLRPC_BULK_SVC_PRIV)) {
835 		CERROR("Invalid svc %u\n", bsd->bsd_svc);
836 		return -EPROTO;
837 	}
838 
839 	return 0;
840 }
841 EXPORT_SYMBOL(bulk_sec_desc_unpack);
842 
sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc * desc,__u8 alg,void * buf,int buflen)843 int sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u8 alg,
844 			      void *buf, int buflen)
845 {
846 	struct cfs_crypto_hash_desc	*hdesc;
847 	int				hashsize;
848 	char				hashbuf[64];
849 	unsigned int			bufsize;
850 	int				i, err;
851 
852 	LASSERT(alg > BULK_HASH_ALG_NULL && alg < BULK_HASH_ALG_MAX);
853 	LASSERT(buflen >= 4);
854 
855 	hdesc = cfs_crypto_hash_init(cfs_hash_alg_id[alg], NULL, 0);
856 	if (IS_ERR(hdesc)) {
857 		CERROR("Unable to initialize checksum hash %s\n",
858 		       cfs_crypto_hash_name(cfs_hash_alg_id[alg]));
859 		return PTR_ERR(hdesc);
860 	}
861 
862 	hashsize = cfs_crypto_hash_digestsize(cfs_hash_alg_id[alg]);
863 
864 	for (i = 0; i < desc->bd_iov_count; i++) {
865 		cfs_crypto_hash_update_page(hdesc, desc->bd_iov[i].kiov_page,
866 				  desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK,
867 				  desc->bd_iov[i].kiov_len);
868 	}
869 	if (hashsize > buflen) {
870 		bufsize = sizeof(hashbuf);
871 		err = cfs_crypto_hash_final(hdesc, (unsigned char *)hashbuf,
872 					    &bufsize);
873 		memcpy(buf, hashbuf, buflen);
874 	} else {
875 		bufsize = buflen;
876 		err = cfs_crypto_hash_final(hdesc, (unsigned char *)buf,
877 					    &bufsize);
878 	}
879 
880 	if (err)
881 		cfs_crypto_hash_final(hdesc, NULL, NULL);
882 	return err;
883 }
884 EXPORT_SYMBOL(sptlrpc_get_bulk_checksum);
885