1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ptlrpc/sec_bulk.c
37 *
38 * Author: Eric Mei <ericm@clusterfs.com>
39 */
40
41 #define DEBUG_SUBSYSTEM S_SEC
42
43 #include "../../include/linux/libcfs/libcfs.h"
44 #include <linux/crypto.h>
45
46 #include "../include/obd.h"
47 #include "../include/obd_cksum.h"
48 #include "../include/obd_class.h"
49 #include "../include/obd_support.h"
50 #include "../include/lustre_net.h"
51 #include "../include/lustre_import.h"
52 #include "../include/lustre_dlm.h"
53 #include "../include/lustre_sec.h"
54
55 #include "ptlrpc_internal.h"
56
57 /****************************************
58 * bulk encryption page pools *
59 ****************************************/
60
61
62 #define POINTERS_PER_PAGE (PAGE_CACHE_SIZE / sizeof(void *))
63 #define PAGES_PER_POOL (POINTERS_PER_PAGE)
64
65 #define IDLE_IDX_MAX (100)
66 #define IDLE_IDX_WEIGHT (3)
67
68 #define CACHE_QUIESCENT_PERIOD (20)
69
70 static struct ptlrpc_enc_page_pool {
71 /*
72 * constants
73 */
74 unsigned long epp_max_pages; /* maximum pages can hold, const */
75 unsigned int epp_max_pools; /* number of pools, const */
76
77 /*
78 * wait queue in case of not enough free pages.
79 */
80 wait_queue_head_t epp_waitq; /* waiting threads */
81 unsigned int epp_waitqlen; /* wait queue length */
82 unsigned long epp_pages_short; /* # of pages wanted of in-q users */
83 unsigned int epp_growing:1; /* during adding pages */
84
85 /*
86 * indicating how idle the pools are, from 0 to MAX_IDLE_IDX
87 * this is counted based on each time when getting pages from
88 * the pools, not based on time. which means in case that system
89 * is idled for a while but the idle_idx might still be low if no
90 * activities happened in the pools.
91 */
92 unsigned long epp_idle_idx;
93
94 /* last shrink time due to mem tight */
95 long epp_last_shrink;
96 long epp_last_access;
97
98 /*
99 * in-pool pages bookkeeping
100 */
101 spinlock_t epp_lock; /* protect following fields */
102 unsigned long epp_total_pages; /* total pages in pools */
103 unsigned long epp_free_pages; /* current pages available */
104
105 /*
106 * statistics
107 */
108 unsigned long epp_st_max_pages; /* # of pages ever reached */
109 unsigned int epp_st_grows; /* # of grows */
110 unsigned int epp_st_grow_fails; /* # of add pages failures */
111 unsigned int epp_st_shrinks; /* # of shrinks */
112 unsigned long epp_st_access; /* # of access */
113 unsigned long epp_st_missings; /* # of cache missing */
114 unsigned long epp_st_lowfree; /* lowest free pages reached */
115 unsigned int epp_st_max_wqlen; /* highest waitqueue length */
116 unsigned long epp_st_max_wait; /* in jiffies */
117 /*
118 * pointers to pools
119 */
120 struct page ***epp_pools;
121 } page_pools;
122
123 /*
124 * /proc/fs/lustre/sptlrpc/encrypt_page_pools
125 */
sptlrpc_proc_enc_pool_seq_show(struct seq_file * m,void * v)126 int sptlrpc_proc_enc_pool_seq_show(struct seq_file *m, void *v)
127 {
128 spin_lock(&page_pools.epp_lock);
129
130 seq_printf(m,
131 "physical pages: %lu\n"
132 "pages per pool: %lu\n"
133 "max pages: %lu\n"
134 "max pools: %u\n"
135 "total pages: %lu\n"
136 "total free: %lu\n"
137 "idle index: %lu/100\n"
138 "last shrink: %lds\n"
139 "last access: %lds\n"
140 "max pages reached: %lu\n"
141 "grows: %u\n"
142 "grows failure: %u\n"
143 "shrinks: %u\n"
144 "cache access: %lu\n"
145 "cache missing: %lu\n"
146 "low free mark: %lu\n"
147 "max waitqueue depth: %u\n"
148 "max wait time: " CFS_TIME_T "/%u\n",
149 totalram_pages,
150 PAGES_PER_POOL,
151 page_pools.epp_max_pages,
152 page_pools.epp_max_pools,
153 page_pools.epp_total_pages,
154 page_pools.epp_free_pages,
155 page_pools.epp_idle_idx,
156 get_seconds() - page_pools.epp_last_shrink,
157 get_seconds() - page_pools.epp_last_access,
158 page_pools.epp_st_max_pages,
159 page_pools.epp_st_grows,
160 page_pools.epp_st_grow_fails,
161 page_pools.epp_st_shrinks,
162 page_pools.epp_st_access,
163 page_pools.epp_st_missings,
164 page_pools.epp_st_lowfree,
165 page_pools.epp_st_max_wqlen,
166 page_pools.epp_st_max_wait,
167 HZ);
168
169 spin_unlock(&page_pools.epp_lock);
170
171 return 0;
172 }
173
enc_pools_release_free_pages(long npages)174 static void enc_pools_release_free_pages(long npages)
175 {
176 int p_idx, g_idx;
177 int p_idx_max1, p_idx_max2;
178
179 LASSERT(npages > 0);
180 LASSERT(npages <= page_pools.epp_free_pages);
181 LASSERT(page_pools.epp_free_pages <= page_pools.epp_total_pages);
182
183 /* max pool index before the release */
184 p_idx_max2 = (page_pools.epp_total_pages - 1) / PAGES_PER_POOL;
185
186 page_pools.epp_free_pages -= npages;
187 page_pools.epp_total_pages -= npages;
188
189 /* max pool index after the release */
190 p_idx_max1 = page_pools.epp_total_pages == 0 ? -1 :
191 ((page_pools.epp_total_pages - 1) / PAGES_PER_POOL);
192
193 p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
194 g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
195 LASSERT(page_pools.epp_pools[p_idx]);
196
197 while (npages--) {
198 LASSERT(page_pools.epp_pools[p_idx]);
199 LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
200
201 __free_page(page_pools.epp_pools[p_idx][g_idx]);
202 page_pools.epp_pools[p_idx][g_idx] = NULL;
203
204 if (++g_idx == PAGES_PER_POOL) {
205 p_idx++;
206 g_idx = 0;
207 }
208 }
209
210 /* free unused pools */
211 while (p_idx_max1 < p_idx_max2) {
212 LASSERT(page_pools.epp_pools[p_idx_max2]);
213 OBD_FREE(page_pools.epp_pools[p_idx_max2], PAGE_CACHE_SIZE);
214 page_pools.epp_pools[p_idx_max2] = NULL;
215 p_idx_max2--;
216 }
217 }
218
219 /*
220 * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
221 */
enc_pools_shrink_count(struct shrinker * s,struct shrink_control * sc)222 static unsigned long enc_pools_shrink_count(struct shrinker *s,
223 struct shrink_control *sc)
224 {
225 /*
226 * if no pool access for a long time, we consider it's fully idle.
227 * a little race here is fine.
228 */
229 if (unlikely(get_seconds() - page_pools.epp_last_access >
230 CACHE_QUIESCENT_PERIOD)) {
231 spin_lock(&page_pools.epp_lock);
232 page_pools.epp_idle_idx = IDLE_IDX_MAX;
233 spin_unlock(&page_pools.epp_lock);
234 }
235
236 LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
237 return max((int)page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES, 0) *
238 (IDLE_IDX_MAX - page_pools.epp_idle_idx) / IDLE_IDX_MAX;
239 }
240
241 /*
242 * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool.
243 */
enc_pools_shrink_scan(struct shrinker * s,struct shrink_control * sc)244 static unsigned long enc_pools_shrink_scan(struct shrinker *s,
245 struct shrink_control *sc)
246 {
247 spin_lock(&page_pools.epp_lock);
248 sc->nr_to_scan = min_t(unsigned long, sc->nr_to_scan,
249 page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES);
250 if (sc->nr_to_scan > 0) {
251 enc_pools_release_free_pages(sc->nr_to_scan);
252 CDEBUG(D_SEC, "released %ld pages, %ld left\n",
253 (long)sc->nr_to_scan, page_pools.epp_free_pages);
254
255 page_pools.epp_st_shrinks++;
256 page_pools.epp_last_shrink = get_seconds();
257 }
258 spin_unlock(&page_pools.epp_lock);
259
260 /*
261 * if no pool access for a long time, we consider it's fully idle.
262 * a little race here is fine.
263 */
264 if (unlikely(get_seconds() - page_pools.epp_last_access >
265 CACHE_QUIESCENT_PERIOD)) {
266 spin_lock(&page_pools.epp_lock);
267 page_pools.epp_idle_idx = IDLE_IDX_MAX;
268 spin_unlock(&page_pools.epp_lock);
269 }
270
271 LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
272 return sc->nr_to_scan;
273 }
274
275 static inline
npages_to_npools(unsigned long npages)276 int npages_to_npools(unsigned long npages)
277 {
278 return (int) ((npages + PAGES_PER_POOL - 1) / PAGES_PER_POOL);
279 }
280
281 /*
282 * return how many pages cleaned up.
283 */
enc_pools_cleanup(struct page *** pools,int npools)284 static unsigned long enc_pools_cleanup(struct page ***pools, int npools)
285 {
286 unsigned long cleaned = 0;
287 int i, j;
288
289 for (i = 0; i < npools; i++) {
290 if (pools[i]) {
291 for (j = 0; j < PAGES_PER_POOL; j++) {
292 if (pools[i][j]) {
293 __free_page(pools[i][j]);
294 cleaned++;
295 }
296 }
297 OBD_FREE(pools[i], PAGE_CACHE_SIZE);
298 pools[i] = NULL;
299 }
300 }
301
302 return cleaned;
303 }
304
305 /*
306 * merge @npools pointed by @pools which contains @npages new pages
307 * into current pools.
308 *
309 * we have options to avoid most memory copy with some tricks. but we choose
310 * the simplest way to avoid complexity. It's not frequently called.
311 */
enc_pools_insert(struct page *** pools,int npools,int npages)312 static void enc_pools_insert(struct page ***pools, int npools, int npages)
313 {
314 int freeslot;
315 int op_idx, np_idx, og_idx, ng_idx;
316 int cur_npools, end_npools;
317
318 LASSERT(npages > 0);
319 LASSERT(page_pools.epp_total_pages+npages <= page_pools.epp_max_pages);
320 LASSERT(npages_to_npools(npages) == npools);
321 LASSERT(page_pools.epp_growing);
322
323 spin_lock(&page_pools.epp_lock);
324
325 /*
326 * (1) fill all the free slots of current pools.
327 */
328 /* free slots are those left by rent pages, and the extra ones with
329 * index >= total_pages, locate at the tail of last pool. */
330 freeslot = page_pools.epp_total_pages % PAGES_PER_POOL;
331 if (freeslot != 0)
332 freeslot = PAGES_PER_POOL - freeslot;
333 freeslot += page_pools.epp_total_pages - page_pools.epp_free_pages;
334
335 op_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
336 og_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
337 np_idx = npools - 1;
338 ng_idx = (npages - 1) % PAGES_PER_POOL;
339
340 while (freeslot) {
341 LASSERT(page_pools.epp_pools[op_idx][og_idx] == NULL);
342 LASSERT(pools[np_idx][ng_idx] != NULL);
343
344 page_pools.epp_pools[op_idx][og_idx] = pools[np_idx][ng_idx];
345 pools[np_idx][ng_idx] = NULL;
346
347 freeslot--;
348
349 if (++og_idx == PAGES_PER_POOL) {
350 op_idx++;
351 og_idx = 0;
352 }
353 if (--ng_idx < 0) {
354 if (np_idx == 0)
355 break;
356 np_idx--;
357 ng_idx = PAGES_PER_POOL - 1;
358 }
359 }
360
361 /*
362 * (2) add pools if needed.
363 */
364 cur_npools = (page_pools.epp_total_pages + PAGES_PER_POOL - 1) /
365 PAGES_PER_POOL;
366 end_npools = (page_pools.epp_total_pages + npages + PAGES_PER_POOL - 1)
367 / PAGES_PER_POOL;
368 LASSERT(end_npools <= page_pools.epp_max_pools);
369
370 np_idx = 0;
371 while (cur_npools < end_npools) {
372 LASSERT(page_pools.epp_pools[cur_npools] == NULL);
373 LASSERT(np_idx < npools);
374 LASSERT(pools[np_idx] != NULL);
375
376 page_pools.epp_pools[cur_npools++] = pools[np_idx];
377 pools[np_idx++] = NULL;
378 }
379
380 page_pools.epp_total_pages += npages;
381 page_pools.epp_free_pages += npages;
382 page_pools.epp_st_lowfree = page_pools.epp_free_pages;
383
384 if (page_pools.epp_total_pages > page_pools.epp_st_max_pages)
385 page_pools.epp_st_max_pages = page_pools.epp_total_pages;
386
387 CDEBUG(D_SEC, "add %d pages to total %lu\n", npages,
388 page_pools.epp_total_pages);
389
390 spin_unlock(&page_pools.epp_lock);
391 }
392
enc_pools_add_pages(int npages)393 static int enc_pools_add_pages(int npages)
394 {
395 static DEFINE_MUTEX(add_pages_mutex);
396 struct page ***pools;
397 int npools, alloced = 0;
398 int i, j, rc = -ENOMEM;
399
400 if (npages < PTLRPC_MAX_BRW_PAGES)
401 npages = PTLRPC_MAX_BRW_PAGES;
402
403 mutex_lock(&add_pages_mutex);
404
405 if (npages + page_pools.epp_total_pages > page_pools.epp_max_pages)
406 npages = page_pools.epp_max_pages - page_pools.epp_total_pages;
407 LASSERT(npages > 0);
408
409 page_pools.epp_st_grows++;
410
411 npools = npages_to_npools(npages);
412 OBD_ALLOC(pools, npools * sizeof(*pools));
413 if (pools == NULL)
414 goto out;
415
416 for (i = 0; i < npools; i++) {
417 OBD_ALLOC(pools[i], PAGE_CACHE_SIZE);
418 if (pools[i] == NULL)
419 goto out_pools;
420
421 for (j = 0; j < PAGES_PER_POOL && alloced < npages; j++) {
422 pools[i][j] = alloc_page(GFP_NOFS |
423 __GFP_HIGHMEM);
424 if (pools[i][j] == NULL)
425 goto out_pools;
426
427 alloced++;
428 }
429 }
430 LASSERT(alloced == npages);
431
432 enc_pools_insert(pools, npools, npages);
433 CDEBUG(D_SEC, "added %d pages into pools\n", npages);
434 rc = 0;
435
436 out_pools:
437 enc_pools_cleanup(pools, npools);
438 OBD_FREE(pools, npools * sizeof(*pools));
439 out:
440 if (rc) {
441 page_pools.epp_st_grow_fails++;
442 CERROR("Failed to allocate %d enc pages\n", npages);
443 }
444
445 mutex_unlock(&add_pages_mutex);
446 return rc;
447 }
448
enc_pools_wakeup(void)449 static inline void enc_pools_wakeup(void)
450 {
451 assert_spin_locked(&page_pools.epp_lock);
452 LASSERT(page_pools.epp_waitqlen >= 0);
453
454 if (unlikely(page_pools.epp_waitqlen)) {
455 LASSERT(waitqueue_active(&page_pools.epp_waitq));
456 wake_up_all(&page_pools.epp_waitq);
457 }
458 }
459
enc_pools_should_grow(int page_needed,long now)460 static int enc_pools_should_grow(int page_needed, long now)
461 {
462 /* don't grow if someone else is growing the pools right now,
463 * or the pools has reached its full capacity
464 */
465 if (page_pools.epp_growing ||
466 page_pools.epp_total_pages == page_pools.epp_max_pages)
467 return 0;
468
469 /* if total pages is not enough, we need to grow */
470 if (page_pools.epp_total_pages < page_needed)
471 return 1;
472
473 /*
474 * we wanted to return 0 here if there was a shrink just happened
475 * moment ago, but this may cause deadlock if both client and ost
476 * live on single node.
477 */
478 #if 0
479 if (now - page_pools.epp_last_shrink < 2)
480 return 0;
481 #endif
482
483 /*
484 * here we perhaps need consider other factors like wait queue
485 * length, idle index, etc. ?
486 */
487
488 /* grow the pools in any other cases */
489 return 1;
490 }
491
492 /*
493 * we allocate the requested pages atomically.
494 */
sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc * desc)495 int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc)
496 {
497 wait_queue_t waitlink;
498 unsigned long this_idle = -1;
499 unsigned long tick = 0;
500 long now;
501 int p_idx, g_idx;
502 int i;
503
504 LASSERT(desc->bd_iov_count > 0);
505 LASSERT(desc->bd_iov_count <= page_pools.epp_max_pages);
506
507 /* resent bulk, enc iov might have been allocated previously */
508 if (desc->bd_enc_iov != NULL)
509 return 0;
510
511 OBD_ALLOC(desc->bd_enc_iov,
512 desc->bd_iov_count * sizeof(*desc->bd_enc_iov));
513 if (desc->bd_enc_iov == NULL)
514 return -ENOMEM;
515
516 spin_lock(&page_pools.epp_lock);
517
518 page_pools.epp_st_access++;
519 again:
520 if (unlikely(page_pools.epp_free_pages < desc->bd_iov_count)) {
521 if (tick == 0)
522 tick = cfs_time_current();
523
524 now = get_seconds();
525
526 page_pools.epp_st_missings++;
527 page_pools.epp_pages_short += desc->bd_iov_count;
528
529 if (enc_pools_should_grow(desc->bd_iov_count, now)) {
530 page_pools.epp_growing = 1;
531
532 spin_unlock(&page_pools.epp_lock);
533 enc_pools_add_pages(page_pools.epp_pages_short / 2);
534 spin_lock(&page_pools.epp_lock);
535
536 page_pools.epp_growing = 0;
537
538 enc_pools_wakeup();
539 } else {
540 if (++page_pools.epp_waitqlen >
541 page_pools.epp_st_max_wqlen)
542 page_pools.epp_st_max_wqlen =
543 page_pools.epp_waitqlen;
544
545 set_current_state(TASK_UNINTERRUPTIBLE);
546 init_waitqueue_entry(&waitlink, current);
547 add_wait_queue(&page_pools.epp_waitq, &waitlink);
548
549 spin_unlock(&page_pools.epp_lock);
550 schedule();
551 remove_wait_queue(&page_pools.epp_waitq, &waitlink);
552 LASSERT(page_pools.epp_waitqlen > 0);
553 spin_lock(&page_pools.epp_lock);
554 page_pools.epp_waitqlen--;
555 }
556
557 LASSERT(page_pools.epp_pages_short >= desc->bd_iov_count);
558 page_pools.epp_pages_short -= desc->bd_iov_count;
559
560 this_idle = 0;
561 goto again;
562 }
563
564 /* record max wait time */
565 if (unlikely(tick != 0)) {
566 tick = cfs_time_current() - tick;
567 if (tick > page_pools.epp_st_max_wait)
568 page_pools.epp_st_max_wait = tick;
569 }
570
571 /* proceed with rest of allocation */
572 page_pools.epp_free_pages -= desc->bd_iov_count;
573
574 p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
575 g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
576
577 for (i = 0; i < desc->bd_iov_count; i++) {
578 LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
579 desc->bd_enc_iov[i].kiov_page =
580 page_pools.epp_pools[p_idx][g_idx];
581 page_pools.epp_pools[p_idx][g_idx] = NULL;
582
583 if (++g_idx == PAGES_PER_POOL) {
584 p_idx++;
585 g_idx = 0;
586 }
587 }
588
589 if (page_pools.epp_free_pages < page_pools.epp_st_lowfree)
590 page_pools.epp_st_lowfree = page_pools.epp_free_pages;
591
592 /*
593 * new idle index = (old * weight + new) / (weight + 1)
594 */
595 if (this_idle == -1) {
596 this_idle = page_pools.epp_free_pages * IDLE_IDX_MAX /
597 page_pools.epp_total_pages;
598 }
599 page_pools.epp_idle_idx = (page_pools.epp_idle_idx * IDLE_IDX_WEIGHT +
600 this_idle) /
601 (IDLE_IDX_WEIGHT + 1);
602
603 page_pools.epp_last_access = get_seconds();
604
605 spin_unlock(&page_pools.epp_lock);
606 return 0;
607 }
608 EXPORT_SYMBOL(sptlrpc_enc_pool_get_pages);
609
sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc * desc)610 void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc)
611 {
612 int p_idx, g_idx;
613 int i;
614
615 if (desc->bd_enc_iov == NULL)
616 return;
617
618 LASSERT(desc->bd_iov_count > 0);
619
620 spin_lock(&page_pools.epp_lock);
621
622 p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
623 g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
624
625 LASSERT(page_pools.epp_free_pages + desc->bd_iov_count <=
626 page_pools.epp_total_pages);
627 LASSERT(page_pools.epp_pools[p_idx]);
628
629 for (i = 0; i < desc->bd_iov_count; i++) {
630 LASSERT(desc->bd_enc_iov[i].kiov_page != NULL);
631 LASSERT(g_idx != 0 || page_pools.epp_pools[p_idx]);
632 LASSERT(page_pools.epp_pools[p_idx][g_idx] == NULL);
633
634 page_pools.epp_pools[p_idx][g_idx] =
635 desc->bd_enc_iov[i].kiov_page;
636
637 if (++g_idx == PAGES_PER_POOL) {
638 p_idx++;
639 g_idx = 0;
640 }
641 }
642
643 page_pools.epp_free_pages += desc->bd_iov_count;
644
645 enc_pools_wakeup();
646
647 spin_unlock(&page_pools.epp_lock);
648
649 OBD_FREE(desc->bd_enc_iov,
650 desc->bd_iov_count * sizeof(*desc->bd_enc_iov));
651 desc->bd_enc_iov = NULL;
652 }
653 EXPORT_SYMBOL(sptlrpc_enc_pool_put_pages);
654
655 /*
656 * we don't do much stuff for add_user/del_user anymore, except adding some
657 * initial pages in add_user() if current pools are empty, rest would be
658 * handled by the pools's self-adaption.
659 */
sptlrpc_enc_pool_add_user(void)660 int sptlrpc_enc_pool_add_user(void)
661 {
662 int need_grow = 0;
663
664 spin_lock(&page_pools.epp_lock);
665 if (page_pools.epp_growing == 0 && page_pools.epp_total_pages == 0) {
666 page_pools.epp_growing = 1;
667 need_grow = 1;
668 }
669 spin_unlock(&page_pools.epp_lock);
670
671 if (need_grow) {
672 enc_pools_add_pages(PTLRPC_MAX_BRW_PAGES +
673 PTLRPC_MAX_BRW_PAGES);
674
675 spin_lock(&page_pools.epp_lock);
676 page_pools.epp_growing = 0;
677 enc_pools_wakeup();
678 spin_unlock(&page_pools.epp_lock);
679 }
680 return 0;
681 }
682 EXPORT_SYMBOL(sptlrpc_enc_pool_add_user);
683
sptlrpc_enc_pool_del_user(void)684 int sptlrpc_enc_pool_del_user(void)
685 {
686 return 0;
687 }
688 EXPORT_SYMBOL(sptlrpc_enc_pool_del_user);
689
enc_pools_alloc(void)690 static inline void enc_pools_alloc(void)
691 {
692 LASSERT(page_pools.epp_max_pools);
693 OBD_ALLOC_LARGE(page_pools.epp_pools,
694 page_pools.epp_max_pools *
695 sizeof(*page_pools.epp_pools));
696 }
697
enc_pools_free(void)698 static inline void enc_pools_free(void)
699 {
700 LASSERT(page_pools.epp_max_pools);
701 LASSERT(page_pools.epp_pools);
702
703 OBD_FREE_LARGE(page_pools.epp_pools,
704 page_pools.epp_max_pools *
705 sizeof(*page_pools.epp_pools));
706 }
707
708 static struct shrinker pools_shrinker = {
709 .count_objects = enc_pools_shrink_count,
710 .scan_objects = enc_pools_shrink_scan,
711 .seeks = DEFAULT_SEEKS,
712 };
713
sptlrpc_enc_pool_init(void)714 int sptlrpc_enc_pool_init(void)
715 {
716 /*
717 * maximum capacity is 1/8 of total physical memory.
718 * is the 1/8 a good number?
719 */
720 page_pools.epp_max_pages = totalram_pages / 8;
721 page_pools.epp_max_pools = npages_to_npools(page_pools.epp_max_pages);
722
723 init_waitqueue_head(&page_pools.epp_waitq);
724 page_pools.epp_waitqlen = 0;
725 page_pools.epp_pages_short = 0;
726
727 page_pools.epp_growing = 0;
728
729 page_pools.epp_idle_idx = 0;
730 page_pools.epp_last_shrink = get_seconds();
731 page_pools.epp_last_access = get_seconds();
732
733 spin_lock_init(&page_pools.epp_lock);
734 page_pools.epp_total_pages = 0;
735 page_pools.epp_free_pages = 0;
736
737 page_pools.epp_st_max_pages = 0;
738 page_pools.epp_st_grows = 0;
739 page_pools.epp_st_grow_fails = 0;
740 page_pools.epp_st_shrinks = 0;
741 page_pools.epp_st_access = 0;
742 page_pools.epp_st_missings = 0;
743 page_pools.epp_st_lowfree = 0;
744 page_pools.epp_st_max_wqlen = 0;
745 page_pools.epp_st_max_wait = 0;
746
747 enc_pools_alloc();
748 if (page_pools.epp_pools == NULL)
749 return -ENOMEM;
750
751 register_shrinker(&pools_shrinker);
752
753 return 0;
754 }
755
sptlrpc_enc_pool_fini(void)756 void sptlrpc_enc_pool_fini(void)
757 {
758 unsigned long cleaned, npools;
759
760 LASSERT(page_pools.epp_pools);
761 LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages);
762
763 unregister_shrinker(&pools_shrinker);
764
765 npools = npages_to_npools(page_pools.epp_total_pages);
766 cleaned = enc_pools_cleanup(page_pools.epp_pools, npools);
767 LASSERT(cleaned == page_pools.epp_total_pages);
768
769 enc_pools_free();
770
771 if (page_pools.epp_st_access > 0) {
772 CDEBUG(D_SEC,
773 "max pages %lu, grows %u, grow fails %u, shrinks %u, access %lu, missing %lu, max qlen %u, max wait "
774 CFS_TIME_T"/%d\n",
775 page_pools.epp_st_max_pages, page_pools.epp_st_grows,
776 page_pools.epp_st_grow_fails,
777 page_pools.epp_st_shrinks, page_pools.epp_st_access,
778 page_pools.epp_st_missings, page_pools.epp_st_max_wqlen,
779 page_pools.epp_st_max_wait, HZ);
780 }
781 }
782
783
784 static int cfs_hash_alg_id[] = {
785 [BULK_HASH_ALG_NULL] = CFS_HASH_ALG_NULL,
786 [BULK_HASH_ALG_ADLER32] = CFS_HASH_ALG_ADLER32,
787 [BULK_HASH_ALG_CRC32] = CFS_HASH_ALG_CRC32,
788 [BULK_HASH_ALG_MD5] = CFS_HASH_ALG_MD5,
789 [BULK_HASH_ALG_SHA1] = CFS_HASH_ALG_SHA1,
790 [BULK_HASH_ALG_SHA256] = CFS_HASH_ALG_SHA256,
791 [BULK_HASH_ALG_SHA384] = CFS_HASH_ALG_SHA384,
792 [BULK_HASH_ALG_SHA512] = CFS_HASH_ALG_SHA512,
793 };
sptlrpc_get_hash_name(__u8 hash_alg)794 const char *sptlrpc_get_hash_name(__u8 hash_alg)
795 {
796 return cfs_crypto_hash_name(cfs_hash_alg_id[hash_alg]);
797 }
798 EXPORT_SYMBOL(sptlrpc_get_hash_name);
799
sptlrpc_get_hash_alg(const char * algname)800 __u8 sptlrpc_get_hash_alg(const char *algname)
801 {
802 return cfs_crypto_hash_alg(algname);
803 }
804 EXPORT_SYMBOL(sptlrpc_get_hash_alg);
805
bulk_sec_desc_unpack(struct lustre_msg * msg,int offset,int swabbed)806 int bulk_sec_desc_unpack(struct lustre_msg *msg, int offset, int swabbed)
807 {
808 struct ptlrpc_bulk_sec_desc *bsd;
809 int size = msg->lm_buflens[offset];
810
811 bsd = lustre_msg_buf(msg, offset, sizeof(*bsd));
812 if (bsd == NULL) {
813 CERROR("Invalid bulk sec desc: size %d\n", size);
814 return -EINVAL;
815 }
816
817 if (swabbed)
818 __swab32s(&bsd->bsd_nob);
819
820 if (unlikely(bsd->bsd_version != 0)) {
821 CERROR("Unexpected version %u\n", bsd->bsd_version);
822 return -EPROTO;
823 }
824
825 if (unlikely(bsd->bsd_type >= SPTLRPC_BULK_MAX)) {
826 CERROR("Invalid type %u\n", bsd->bsd_type);
827 return -EPROTO;
828 }
829
830 /* FIXME more sanity check here */
831
832 if (unlikely(bsd->bsd_svc != SPTLRPC_BULK_SVC_NULL &&
833 bsd->bsd_svc != SPTLRPC_BULK_SVC_INTG &&
834 bsd->bsd_svc != SPTLRPC_BULK_SVC_PRIV)) {
835 CERROR("Invalid svc %u\n", bsd->bsd_svc);
836 return -EPROTO;
837 }
838
839 return 0;
840 }
841 EXPORT_SYMBOL(bulk_sec_desc_unpack);
842
sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc * desc,__u8 alg,void * buf,int buflen)843 int sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u8 alg,
844 void *buf, int buflen)
845 {
846 struct cfs_crypto_hash_desc *hdesc;
847 int hashsize;
848 char hashbuf[64];
849 unsigned int bufsize;
850 int i, err;
851
852 LASSERT(alg > BULK_HASH_ALG_NULL && alg < BULK_HASH_ALG_MAX);
853 LASSERT(buflen >= 4);
854
855 hdesc = cfs_crypto_hash_init(cfs_hash_alg_id[alg], NULL, 0);
856 if (IS_ERR(hdesc)) {
857 CERROR("Unable to initialize checksum hash %s\n",
858 cfs_crypto_hash_name(cfs_hash_alg_id[alg]));
859 return PTR_ERR(hdesc);
860 }
861
862 hashsize = cfs_crypto_hash_digestsize(cfs_hash_alg_id[alg]);
863
864 for (i = 0; i < desc->bd_iov_count; i++) {
865 cfs_crypto_hash_update_page(hdesc, desc->bd_iov[i].kiov_page,
866 desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK,
867 desc->bd_iov[i].kiov_len);
868 }
869 if (hashsize > buflen) {
870 bufsize = sizeof(hashbuf);
871 err = cfs_crypto_hash_final(hdesc, (unsigned char *)hashbuf,
872 &bufsize);
873 memcpy(buf, hashbuf, buflen);
874 } else {
875 bufsize = buflen;
876 err = cfs_crypto_hash_final(hdesc, (unsigned char *)buf,
877 &bufsize);
878 }
879
880 if (err)
881 cfs_crypto_hash_final(hdesc, NULL, NULL);
882 return err;
883 }
884 EXPORT_SYMBOL(sptlrpc_get_bulk_checksum);
885