1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #ifndef __LINUX_SPI_H
16 #define __LINUX_SPI_H
17 
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/slab.h>
21 #include <linux/kthread.h>
22 #include <linux/completion.h>
23 #include <linux/scatterlist.h>
24 
25 struct dma_chan;
26 
27 /*
28  * INTERFACES between SPI master-side drivers and SPI infrastructure.
29  * (There's no SPI slave support for Linux yet...)
30  */
31 extern struct bus_type spi_bus_type;
32 
33 /**
34  * struct spi_device - Master side proxy for an SPI slave device
35  * @dev: Driver model representation of the device.
36  * @master: SPI controller used with the device.
37  * @max_speed_hz: Maximum clock rate to be used with this chip
38  *	(on this board); may be changed by the device's driver.
39  *	The spi_transfer.speed_hz can override this for each transfer.
40  * @chip_select: Chipselect, distinguishing chips handled by @master.
41  * @mode: The spi mode defines how data is clocked out and in.
42  *	This may be changed by the device's driver.
43  *	The "active low" default for chipselect mode can be overridden
44  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
45  *	each word in a transfer (by specifying SPI_LSB_FIRST).
46  * @bits_per_word: Data transfers involve one or more words; word sizes
47  *	like eight or 12 bits are common.  In-memory wordsizes are
48  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
49  *	This may be changed by the device's driver, or left at the
50  *	default (0) indicating protocol words are eight bit bytes.
51  *	The spi_transfer.bits_per_word can override this for each transfer.
52  * @irq: Negative, or the number passed to request_irq() to receive
53  *	interrupts from this device.
54  * @controller_state: Controller's runtime state
55  * @controller_data: Board-specific definitions for controller, such as
56  *	FIFO initialization parameters; from board_info.controller_data
57  * @modalias: Name of the driver to use with this device, or an alias
58  *	for that name.  This appears in the sysfs "modalias" attribute
59  *	for driver coldplugging, and in uevents used for hotplugging
60  * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
61  *	when not using a GPIO line)
62  *
63  * A @spi_device is used to interchange data between an SPI slave
64  * (usually a discrete chip) and CPU memory.
65  *
66  * In @dev, the platform_data is used to hold information about this
67  * device that's meaningful to the device's protocol driver, but not
68  * to its controller.  One example might be an identifier for a chip
69  * variant with slightly different functionality; another might be
70  * information about how this particular board wires the chip's pins.
71  */
72 struct spi_device {
73 	struct device		dev;
74 	struct spi_master	*master;
75 	u32			max_speed_hz;
76 	u8			chip_select;
77 	u8			bits_per_word;
78 	u16			mode;
79 #define	SPI_CPHA	0x01			/* clock phase */
80 #define	SPI_CPOL	0x02			/* clock polarity */
81 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
82 #define	SPI_MODE_1	(0|SPI_CPHA)
83 #define	SPI_MODE_2	(SPI_CPOL|0)
84 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
85 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
86 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
87 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
88 #define	SPI_LOOP	0x20			/* loopback mode */
89 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
90 #define	SPI_READY	0x80			/* slave pulls low to pause */
91 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
92 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
93 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
94 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
95 	int			irq;
96 	void			*controller_state;
97 	void			*controller_data;
98 	char			modalias[SPI_NAME_SIZE];
99 	int			cs_gpio;	/* chip select gpio */
100 
101 	/*
102 	 * likely need more hooks for more protocol options affecting how
103 	 * the controller talks to each chip, like:
104 	 *  - memory packing (12 bit samples into low bits, others zeroed)
105 	 *  - priority
106 	 *  - drop chipselect after each word
107 	 *  - chipselect delays
108 	 *  - ...
109 	 */
110 };
111 
to_spi_device(struct device * dev)112 static inline struct spi_device *to_spi_device(struct device *dev)
113 {
114 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
115 }
116 
117 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)118 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
119 {
120 	return (spi && get_device(&spi->dev)) ? spi : NULL;
121 }
122 
spi_dev_put(struct spi_device * spi)123 static inline void spi_dev_put(struct spi_device *spi)
124 {
125 	if (spi)
126 		put_device(&spi->dev);
127 }
128 
129 /* ctldata is for the bus_master driver's runtime state */
spi_get_ctldata(struct spi_device * spi)130 static inline void *spi_get_ctldata(struct spi_device *spi)
131 {
132 	return spi->controller_state;
133 }
134 
spi_set_ctldata(struct spi_device * spi,void * state)135 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
136 {
137 	spi->controller_state = state;
138 }
139 
140 /* device driver data */
141 
spi_set_drvdata(struct spi_device * spi,void * data)142 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
143 {
144 	dev_set_drvdata(&spi->dev, data);
145 }
146 
spi_get_drvdata(struct spi_device * spi)147 static inline void *spi_get_drvdata(struct spi_device *spi)
148 {
149 	return dev_get_drvdata(&spi->dev);
150 }
151 
152 struct spi_message;
153 struct spi_transfer;
154 
155 /**
156  * struct spi_driver - Host side "protocol" driver
157  * @id_table: List of SPI devices supported by this driver
158  * @probe: Binds this driver to the spi device.  Drivers can verify
159  *	that the device is actually present, and may need to configure
160  *	characteristics (such as bits_per_word) which weren't needed for
161  *	the initial configuration done during system setup.
162  * @remove: Unbinds this driver from the spi device
163  * @shutdown: Standard shutdown callback used during system state
164  *	transitions such as powerdown/halt and kexec
165  * @driver: SPI device drivers should initialize the name and owner
166  *	field of this structure.
167  *
168  * This represents the kind of device driver that uses SPI messages to
169  * interact with the hardware at the other end of a SPI link.  It's called
170  * a "protocol" driver because it works through messages rather than talking
171  * directly to SPI hardware (which is what the underlying SPI controller
172  * driver does to pass those messages).  These protocols are defined in the
173  * specification for the device(s) supported by the driver.
174  *
175  * As a rule, those device protocols represent the lowest level interface
176  * supported by a driver, and it will support upper level interfaces too.
177  * Examples of such upper levels include frameworks like MTD, networking,
178  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
179  */
180 struct spi_driver {
181 	const struct spi_device_id *id_table;
182 	int			(*probe)(struct spi_device *spi);
183 	int			(*remove)(struct spi_device *spi);
184 	void			(*shutdown)(struct spi_device *spi);
185 	struct device_driver	driver;
186 };
187 
to_spi_driver(struct device_driver * drv)188 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
189 {
190 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
191 }
192 
193 extern int spi_register_driver(struct spi_driver *sdrv);
194 
195 /**
196  * spi_unregister_driver - reverse effect of spi_register_driver
197  * @sdrv: the driver to unregister
198  * Context: can sleep
199  */
spi_unregister_driver(struct spi_driver * sdrv)200 static inline void spi_unregister_driver(struct spi_driver *sdrv)
201 {
202 	if (sdrv)
203 		driver_unregister(&sdrv->driver);
204 }
205 
206 /**
207  * module_spi_driver() - Helper macro for registering a SPI driver
208  * @__spi_driver: spi_driver struct
209  *
210  * Helper macro for SPI drivers which do not do anything special in module
211  * init/exit. This eliminates a lot of boilerplate. Each module may only
212  * use this macro once, and calling it replaces module_init() and module_exit()
213  */
214 #define module_spi_driver(__spi_driver) \
215 	module_driver(__spi_driver, spi_register_driver, \
216 			spi_unregister_driver)
217 
218 /**
219  * struct spi_master - interface to SPI master controller
220  * @dev: device interface to this driver
221  * @list: link with the global spi_master list
222  * @bus_num: board-specific (and often SOC-specific) identifier for a
223  *	given SPI controller.
224  * @num_chipselect: chipselects are used to distinguish individual
225  *	SPI slaves, and are numbered from zero to num_chipselects.
226  *	each slave has a chipselect signal, but it's common that not
227  *	every chipselect is connected to a slave.
228  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
229  * @mode_bits: flags understood by this controller driver
230  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
231  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
232  *	supported. If set, the SPI core will reject any transfer with an
233  *	unsupported bits_per_word. If not set, this value is simply ignored,
234  *	and it's up to the individual driver to perform any validation.
235  * @min_speed_hz: Lowest supported transfer speed
236  * @max_speed_hz: Highest supported transfer speed
237  * @flags: other constraints relevant to this driver
238  * @bus_lock_spinlock: spinlock for SPI bus locking
239  * @bus_lock_mutex: mutex for SPI bus locking
240  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
241  * @setup: updates the device mode and clocking records used by a
242  *	device's SPI controller; protocol code may call this.  This
243  *	must fail if an unrecognized or unsupported mode is requested.
244  *	It's always safe to call this unless transfers are pending on
245  *	the device whose settings are being modified.
246  * @transfer: adds a message to the controller's transfer queue.
247  * @cleanup: frees controller-specific state
248  * @can_dma: determine whether this master supports DMA
249  * @queued: whether this master is providing an internal message queue
250  * @kworker: thread struct for message pump
251  * @kworker_task: pointer to task for message pump kworker thread
252  * @pump_messages: work struct for scheduling work to the message pump
253  * @queue_lock: spinlock to syncronise access to message queue
254  * @queue: message queue
255  * @idling: the device is entering idle state
256  * @cur_msg: the currently in-flight message
257  * @cur_msg_prepared: spi_prepare_message was called for the currently
258  *                    in-flight message
259  * @cur_msg_mapped: message has been mapped for DMA
260  * @xfer_completion: used by core transfer_one_message()
261  * @busy: message pump is busy
262  * @running: message pump is running
263  * @rt: whether this queue is set to run as a realtime task
264  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
265  *                   while the hardware is prepared, using the parent
266  *                   device for the spidev
267  * @max_dma_len: Maximum length of a DMA transfer for the device.
268  * @prepare_transfer_hardware: a message will soon arrive from the queue
269  *	so the subsystem requests the driver to prepare the transfer hardware
270  *	by issuing this call
271  * @transfer_one_message: the subsystem calls the driver to transfer a single
272  *	message while queuing transfers that arrive in the meantime. When the
273  *	driver is finished with this message, it must call
274  *	spi_finalize_current_message() so the subsystem can issue the next
275  *	message
276  * @unprepare_transfer_hardware: there are currently no more messages on the
277  *	queue so the subsystem notifies the driver that it may relax the
278  *	hardware by issuing this call
279  * @set_cs: set the logic level of the chip select line.  May be called
280  *          from interrupt context.
281  * @prepare_message: set up the controller to transfer a single message,
282  *                   for example doing DMA mapping.  Called from threaded
283  *                   context.
284  * @transfer_one: transfer a single spi_transfer.
285  *                  - return 0 if the transfer is finished,
286  *                  - return 1 if the transfer is still in progress. When
287  *                    the driver is finished with this transfer it must
288  *                    call spi_finalize_current_transfer() so the subsystem
289  *                    can issue the next transfer. Note: transfer_one and
290  *                    transfer_one_message are mutually exclusive; when both
291  *                    are set, the generic subsystem does not call your
292  *                    transfer_one callback.
293  * @handle_err: the subsystem calls the driver to handle an error that occurs
294  *		in the generic implementation of transfer_one_message().
295  * @unprepare_message: undo any work done by prepare_message().
296  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
297  *	number. Any individual value may be -ENOENT for CS lines that
298  *	are not GPIOs (driven by the SPI controller itself).
299  * @dma_tx: DMA transmit channel
300  * @dma_rx: DMA receive channel
301  * @dummy_rx: dummy receive buffer for full-duplex devices
302  * @dummy_tx: dummy transmit buffer for full-duplex devices
303  *
304  * Each SPI master controller can communicate with one or more @spi_device
305  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
306  * but not chip select signals.  Each device may be configured to use a
307  * different clock rate, since those shared signals are ignored unless
308  * the chip is selected.
309  *
310  * The driver for an SPI controller manages access to those devices through
311  * a queue of spi_message transactions, copying data between CPU memory and
312  * an SPI slave device.  For each such message it queues, it calls the
313  * message's completion function when the transaction completes.
314  */
315 struct spi_master {
316 	struct device	dev;
317 
318 	struct list_head list;
319 
320 	/* other than negative (== assign one dynamically), bus_num is fully
321 	 * board-specific.  usually that simplifies to being SOC-specific.
322 	 * example:  one SOC has three SPI controllers, numbered 0..2,
323 	 * and one board's schematics might show it using SPI-2.  software
324 	 * would normally use bus_num=2 for that controller.
325 	 */
326 	s16			bus_num;
327 
328 	/* chipselects will be integral to many controllers; some others
329 	 * might use board-specific GPIOs.
330 	 */
331 	u16			num_chipselect;
332 
333 	/* some SPI controllers pose alignment requirements on DMAable
334 	 * buffers; let protocol drivers know about these requirements.
335 	 */
336 	u16			dma_alignment;
337 
338 	/* spi_device.mode flags understood by this controller driver */
339 	u16			mode_bits;
340 
341 	/* bitmask of supported bits_per_word for transfers */
342 	u32			bits_per_word_mask;
343 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
344 #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
345 #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
346 
347 	/* limits on transfer speed */
348 	u32			min_speed_hz;
349 	u32			max_speed_hz;
350 
351 	/* other constraints relevant to this driver */
352 	u16			flags;
353 #define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
354 #define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
355 #define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
356 #define SPI_MASTER_MUST_RX      BIT(3)		/* requires rx */
357 #define SPI_MASTER_MUST_TX      BIT(4)		/* requires tx */
358 
359 	/* lock and mutex for SPI bus locking */
360 	spinlock_t		bus_lock_spinlock;
361 	struct mutex		bus_lock_mutex;
362 
363 	/* flag indicating that the SPI bus is locked for exclusive use */
364 	bool			bus_lock_flag;
365 
366 	/* Setup mode and clock, etc (spi driver may call many times).
367 	 *
368 	 * IMPORTANT:  this may be called when transfers to another
369 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
370 	 * which could break those transfers.
371 	 */
372 	int			(*setup)(struct spi_device *spi);
373 
374 	/* bidirectional bulk transfers
375 	 *
376 	 * + The transfer() method may not sleep; its main role is
377 	 *   just to add the message to the queue.
378 	 * + For now there's no remove-from-queue operation, or
379 	 *   any other request management
380 	 * + To a given spi_device, message queueing is pure fifo
381 	 *
382 	 * + The master's main job is to process its message queue,
383 	 *   selecting a chip then transferring data
384 	 * + If there are multiple spi_device children, the i/o queue
385 	 *   arbitration algorithm is unspecified (round robin, fifo,
386 	 *   priority, reservations, preemption, etc)
387 	 *
388 	 * + Chipselect stays active during the entire message
389 	 *   (unless modified by spi_transfer.cs_change != 0).
390 	 * + The message transfers use clock and SPI mode parameters
391 	 *   previously established by setup() for this device
392 	 */
393 	int			(*transfer)(struct spi_device *spi,
394 						struct spi_message *mesg);
395 
396 	/* called on release() to free memory provided by spi_master */
397 	void			(*cleanup)(struct spi_device *spi);
398 
399 	/*
400 	 * Used to enable core support for DMA handling, if can_dma()
401 	 * exists and returns true then the transfer will be mapped
402 	 * prior to transfer_one() being called.  The driver should
403 	 * not modify or store xfer and dma_tx and dma_rx must be set
404 	 * while the device is prepared.
405 	 */
406 	bool			(*can_dma)(struct spi_master *master,
407 					   struct spi_device *spi,
408 					   struct spi_transfer *xfer);
409 
410 	/*
411 	 * These hooks are for drivers that want to use the generic
412 	 * master transfer queueing mechanism. If these are used, the
413 	 * transfer() function above must NOT be specified by the driver.
414 	 * Over time we expect SPI drivers to be phased over to this API.
415 	 */
416 	bool				queued;
417 	struct kthread_worker		kworker;
418 	struct task_struct		*kworker_task;
419 	struct kthread_work		pump_messages;
420 	spinlock_t			queue_lock;
421 	struct list_head		queue;
422 	struct spi_message		*cur_msg;
423 	bool				idling;
424 	bool				busy;
425 	bool				running;
426 	bool				rt;
427 	bool				auto_runtime_pm;
428 	bool                            cur_msg_prepared;
429 	bool				cur_msg_mapped;
430 	struct completion               xfer_completion;
431 	size_t				max_dma_len;
432 
433 	int (*prepare_transfer_hardware)(struct spi_master *master);
434 	int (*transfer_one_message)(struct spi_master *master,
435 				    struct spi_message *mesg);
436 	int (*unprepare_transfer_hardware)(struct spi_master *master);
437 	int (*prepare_message)(struct spi_master *master,
438 			       struct spi_message *message);
439 	int (*unprepare_message)(struct spi_master *master,
440 				 struct spi_message *message);
441 
442 	/*
443 	 * These hooks are for drivers that use a generic implementation
444 	 * of transfer_one_message() provied by the core.
445 	 */
446 	void (*set_cs)(struct spi_device *spi, bool enable);
447 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
448 			    struct spi_transfer *transfer);
449 	void (*handle_err)(struct spi_master *master,
450 			   struct spi_message *message);
451 
452 	/* gpio chip select */
453 	int			*cs_gpios;
454 
455 	/* DMA channels for use with core dmaengine helpers */
456 	struct dma_chan		*dma_tx;
457 	struct dma_chan		*dma_rx;
458 
459 	/* dummy data for full duplex devices */
460 	void			*dummy_rx;
461 	void			*dummy_tx;
462 };
463 
spi_master_get_devdata(struct spi_master * master)464 static inline void *spi_master_get_devdata(struct spi_master *master)
465 {
466 	return dev_get_drvdata(&master->dev);
467 }
468 
spi_master_set_devdata(struct spi_master * master,void * data)469 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
470 {
471 	dev_set_drvdata(&master->dev, data);
472 }
473 
spi_master_get(struct spi_master * master)474 static inline struct spi_master *spi_master_get(struct spi_master *master)
475 {
476 	if (!master || !get_device(&master->dev))
477 		return NULL;
478 	return master;
479 }
480 
spi_master_put(struct spi_master * master)481 static inline void spi_master_put(struct spi_master *master)
482 {
483 	if (master)
484 		put_device(&master->dev);
485 }
486 
487 /* PM calls that need to be issued by the driver */
488 extern int spi_master_suspend(struct spi_master *master);
489 extern int spi_master_resume(struct spi_master *master);
490 
491 /* Calls the driver make to interact with the message queue */
492 extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
493 extern void spi_finalize_current_message(struct spi_master *master);
494 extern void spi_finalize_current_transfer(struct spi_master *master);
495 
496 /* the spi driver core manages memory for the spi_master classdev */
497 extern struct spi_master *
498 spi_alloc_master(struct device *host, unsigned size);
499 
500 extern int spi_register_master(struct spi_master *master);
501 extern int devm_spi_register_master(struct device *dev,
502 				    struct spi_master *master);
503 extern void spi_unregister_master(struct spi_master *master);
504 
505 extern struct spi_master *spi_busnum_to_master(u16 busnum);
506 
507 /*---------------------------------------------------------------------------*/
508 
509 /*
510  * I/O INTERFACE between SPI controller and protocol drivers
511  *
512  * Protocol drivers use a queue of spi_messages, each transferring data
513  * between the controller and memory buffers.
514  *
515  * The spi_messages themselves consist of a series of read+write transfer
516  * segments.  Those segments always read the same number of bits as they
517  * write; but one or the other is easily ignored by passing a null buffer
518  * pointer.  (This is unlike most types of I/O API, because SPI hardware
519  * is full duplex.)
520  *
521  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
522  * up to the protocol driver, which guarantees the integrity of both (as
523  * well as the data buffers) for as long as the message is queued.
524  */
525 
526 /**
527  * struct spi_transfer - a read/write buffer pair
528  * @tx_buf: data to be written (dma-safe memory), or NULL
529  * @rx_buf: data to be read (dma-safe memory), or NULL
530  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
531  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
532  * @tx_nbits: number of bits used for writing. If 0 the default
533  *      (SPI_NBITS_SINGLE) is used.
534  * @rx_nbits: number of bits used for reading. If 0 the default
535  *      (SPI_NBITS_SINGLE) is used.
536  * @len: size of rx and tx buffers (in bytes)
537  * @speed_hz: Select a speed other than the device default for this
538  *      transfer. If 0 the default (from @spi_device) is used.
539  * @bits_per_word: select a bits_per_word other than the device default
540  *      for this transfer. If 0 the default (from @spi_device) is used.
541  * @cs_change: affects chipselect after this transfer completes
542  * @delay_usecs: microseconds to delay after this transfer before
543  *	(optionally) changing the chipselect status, then starting
544  *	the next transfer or completing this @spi_message.
545  * @transfer_list: transfers are sequenced through @spi_message.transfers
546  * @tx_sg: Scatterlist for transmit, currently not for client use
547  * @rx_sg: Scatterlist for receive, currently not for client use
548  *
549  * SPI transfers always write the same number of bytes as they read.
550  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
551  * In some cases, they may also want to provide DMA addresses for
552  * the data being transferred; that may reduce overhead, when the
553  * underlying driver uses dma.
554  *
555  * If the transmit buffer is null, zeroes will be shifted out
556  * while filling @rx_buf.  If the receive buffer is null, the data
557  * shifted in will be discarded.  Only "len" bytes shift out (or in).
558  * It's an error to try to shift out a partial word.  (For example, by
559  * shifting out three bytes with word size of sixteen or twenty bits;
560  * the former uses two bytes per word, the latter uses four bytes.)
561  *
562  * In-memory data values are always in native CPU byte order, translated
563  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
564  * for example when bits_per_word is sixteen, buffers are 2N bytes long
565  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
566  *
567  * When the word size of the SPI transfer is not a power-of-two multiple
568  * of eight bits, those in-memory words include extra bits.  In-memory
569  * words are always seen by protocol drivers as right-justified, so the
570  * undefined (rx) or unused (tx) bits are always the most significant bits.
571  *
572  * All SPI transfers start with the relevant chipselect active.  Normally
573  * it stays selected until after the last transfer in a message.  Drivers
574  * can affect the chipselect signal using cs_change.
575  *
576  * (i) If the transfer isn't the last one in the message, this flag is
577  * used to make the chipselect briefly go inactive in the middle of the
578  * message.  Toggling chipselect in this way may be needed to terminate
579  * a chip command, letting a single spi_message perform all of group of
580  * chip transactions together.
581  *
582  * (ii) When the transfer is the last one in the message, the chip may
583  * stay selected until the next transfer.  On multi-device SPI busses
584  * with nothing blocking messages going to other devices, this is just
585  * a performance hint; starting a message to another device deselects
586  * this one.  But in other cases, this can be used to ensure correctness.
587  * Some devices need protocol transactions to be built from a series of
588  * spi_message submissions, where the content of one message is determined
589  * by the results of previous messages and where the whole transaction
590  * ends when the chipselect goes intactive.
591  *
592  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
593  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
594  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
595  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
596  *
597  * The code that submits an spi_message (and its spi_transfers)
598  * to the lower layers is responsible for managing its memory.
599  * Zero-initialize every field you don't set up explicitly, to
600  * insulate against future API updates.  After you submit a message
601  * and its transfers, ignore them until its completion callback.
602  */
603 struct spi_transfer {
604 	/* it's ok if tx_buf == rx_buf (right?)
605 	 * for MicroWire, one buffer must be null
606 	 * buffers must work with dma_*map_single() calls, unless
607 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
608 	 */
609 	const void	*tx_buf;
610 	void		*rx_buf;
611 	unsigned	len;
612 
613 	dma_addr_t	tx_dma;
614 	dma_addr_t	rx_dma;
615 	struct sg_table tx_sg;
616 	struct sg_table rx_sg;
617 
618 	unsigned	cs_change:1;
619 	unsigned	tx_nbits:3;
620 	unsigned	rx_nbits:3;
621 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
622 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
623 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
624 	u8		bits_per_word;
625 	u16		delay_usecs;
626 	u32		speed_hz;
627 
628 	struct list_head transfer_list;
629 };
630 
631 /**
632  * struct spi_message - one multi-segment SPI transaction
633  * @transfers: list of transfer segments in this transaction
634  * @spi: SPI device to which the transaction is queued
635  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
636  *	addresses for each transfer buffer
637  * @complete: called to report transaction completions
638  * @context: the argument to complete() when it's called
639  * @frame_length: the total number of bytes in the message
640  * @actual_length: the total number of bytes that were transferred in all
641  *	successful segments
642  * @status: zero for success, else negative errno
643  * @queue: for use by whichever driver currently owns the message
644  * @state: for use by whichever driver currently owns the message
645  *
646  * A @spi_message is used to execute an atomic sequence of data transfers,
647  * each represented by a struct spi_transfer.  The sequence is "atomic"
648  * in the sense that no other spi_message may use that SPI bus until that
649  * sequence completes.  On some systems, many such sequences can execute as
650  * as single programmed DMA transfer.  On all systems, these messages are
651  * queued, and might complete after transactions to other devices.  Messages
652  * sent to a given spi_device are always executed in FIFO order.
653  *
654  * The code that submits an spi_message (and its spi_transfers)
655  * to the lower layers is responsible for managing its memory.
656  * Zero-initialize every field you don't set up explicitly, to
657  * insulate against future API updates.  After you submit a message
658  * and its transfers, ignore them until its completion callback.
659  */
660 struct spi_message {
661 	struct list_head	transfers;
662 
663 	struct spi_device	*spi;
664 
665 	unsigned		is_dma_mapped:1;
666 
667 	/* REVISIT:  we might want a flag affecting the behavior of the
668 	 * last transfer ... allowing things like "read 16 bit length L"
669 	 * immediately followed by "read L bytes".  Basically imposing
670 	 * a specific message scheduling algorithm.
671 	 *
672 	 * Some controller drivers (message-at-a-time queue processing)
673 	 * could provide that as their default scheduling algorithm.  But
674 	 * others (with multi-message pipelines) could need a flag to
675 	 * tell them about such special cases.
676 	 */
677 
678 	/* completion is reported through a callback */
679 	void			(*complete)(void *context);
680 	void			*context;
681 	unsigned		frame_length;
682 	unsigned		actual_length;
683 	int			status;
684 
685 	/* for optional use by whatever driver currently owns the
686 	 * spi_message ...  between calls to spi_async and then later
687 	 * complete(), that's the spi_master controller driver.
688 	 */
689 	struct list_head	queue;
690 	void			*state;
691 };
692 
spi_message_init(struct spi_message * m)693 static inline void spi_message_init(struct spi_message *m)
694 {
695 	memset(m, 0, sizeof *m);
696 	INIT_LIST_HEAD(&m->transfers);
697 }
698 
699 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)700 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
701 {
702 	list_add_tail(&t->transfer_list, &m->transfers);
703 }
704 
705 static inline void
spi_transfer_del(struct spi_transfer * t)706 spi_transfer_del(struct spi_transfer *t)
707 {
708 	list_del(&t->transfer_list);
709 }
710 
711 /**
712  * spi_message_init_with_transfers - Initialize spi_message and append transfers
713  * @m: spi_message to be initialized
714  * @xfers: An array of spi transfers
715  * @num_xfers: Number of items in the xfer array
716  *
717  * This function initializes the given spi_message and adds each spi_transfer in
718  * the given array to the message.
719  */
720 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)721 spi_message_init_with_transfers(struct spi_message *m,
722 struct spi_transfer *xfers, unsigned int num_xfers)
723 {
724 	unsigned int i;
725 
726 	spi_message_init(m);
727 	for (i = 0; i < num_xfers; ++i)
728 		spi_message_add_tail(&xfers[i], m);
729 }
730 
731 /* It's fine to embed message and transaction structures in other data
732  * structures so long as you don't free them while they're in use.
733  */
734 
spi_message_alloc(unsigned ntrans,gfp_t flags)735 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
736 {
737 	struct spi_message *m;
738 
739 	m = kzalloc(sizeof(struct spi_message)
740 			+ ntrans * sizeof(struct spi_transfer),
741 			flags);
742 	if (m) {
743 		unsigned i;
744 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
745 
746 		INIT_LIST_HEAD(&m->transfers);
747 		for (i = 0; i < ntrans; i++, t++)
748 			spi_message_add_tail(t, m);
749 	}
750 	return m;
751 }
752 
spi_message_free(struct spi_message * m)753 static inline void spi_message_free(struct spi_message *m)
754 {
755 	kfree(m);
756 }
757 
758 extern int spi_setup(struct spi_device *spi);
759 extern int spi_async(struct spi_device *spi, struct spi_message *message);
760 extern int spi_async_locked(struct spi_device *spi,
761 			    struct spi_message *message);
762 
763 /*---------------------------------------------------------------------------*/
764 
765 /* All these synchronous SPI transfer routines are utilities layered
766  * over the core async transfer primitive.  Here, "synchronous" means
767  * they will sleep uninterruptibly until the async transfer completes.
768  */
769 
770 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
771 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
772 extern int spi_bus_lock(struct spi_master *master);
773 extern int spi_bus_unlock(struct spi_master *master);
774 
775 /**
776  * spi_write - SPI synchronous write
777  * @spi: device to which data will be written
778  * @buf: data buffer
779  * @len: data buffer size
780  * Context: can sleep
781  *
782  * This writes the buffer and returns zero or a negative error code.
783  * Callable only from contexts that can sleep.
784  */
785 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)786 spi_write(struct spi_device *spi, const void *buf, size_t len)
787 {
788 	struct spi_transfer	t = {
789 			.tx_buf		= buf,
790 			.len		= len,
791 		};
792 	struct spi_message	m;
793 
794 	spi_message_init(&m);
795 	spi_message_add_tail(&t, &m);
796 	return spi_sync(spi, &m);
797 }
798 
799 /**
800  * spi_read - SPI synchronous read
801  * @spi: device from which data will be read
802  * @buf: data buffer
803  * @len: data buffer size
804  * Context: can sleep
805  *
806  * This reads the buffer and returns zero or a negative error code.
807  * Callable only from contexts that can sleep.
808  */
809 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)810 spi_read(struct spi_device *spi, void *buf, size_t len)
811 {
812 	struct spi_transfer	t = {
813 			.rx_buf		= buf,
814 			.len		= len,
815 		};
816 	struct spi_message	m;
817 
818 	spi_message_init(&m);
819 	spi_message_add_tail(&t, &m);
820 	return spi_sync(spi, &m);
821 }
822 
823 /**
824  * spi_sync_transfer - synchronous SPI data transfer
825  * @spi: device with which data will be exchanged
826  * @xfers: An array of spi_transfers
827  * @num_xfers: Number of items in the xfer array
828  * Context: can sleep
829  *
830  * Does a synchronous SPI data transfer of the given spi_transfer array.
831  *
832  * For more specific semantics see spi_sync().
833  *
834  * It returns zero on success, else a negative error code.
835  */
836 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)837 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
838 	unsigned int num_xfers)
839 {
840 	struct spi_message msg;
841 
842 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
843 
844 	return spi_sync(spi, &msg);
845 }
846 
847 /* this copies txbuf and rxbuf data; for small transfers only! */
848 extern int spi_write_then_read(struct spi_device *spi,
849 		const void *txbuf, unsigned n_tx,
850 		void *rxbuf, unsigned n_rx);
851 
852 /**
853  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
854  * @spi: device with which data will be exchanged
855  * @cmd: command to be written before data is read back
856  * Context: can sleep
857  *
858  * This returns the (unsigned) eight bit number returned by the
859  * device, or else a negative error code.  Callable only from
860  * contexts that can sleep.
861  */
spi_w8r8(struct spi_device * spi,u8 cmd)862 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
863 {
864 	ssize_t			status;
865 	u8			result;
866 
867 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
868 
869 	/* return negative errno or unsigned value */
870 	return (status < 0) ? status : result;
871 }
872 
873 /**
874  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
875  * @spi: device with which data will be exchanged
876  * @cmd: command to be written before data is read back
877  * Context: can sleep
878  *
879  * This returns the (unsigned) sixteen bit number returned by the
880  * device, or else a negative error code.  Callable only from
881  * contexts that can sleep.
882  *
883  * The number is returned in wire-order, which is at least sometimes
884  * big-endian.
885  */
spi_w8r16(struct spi_device * spi,u8 cmd)886 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
887 {
888 	ssize_t			status;
889 	u16			result;
890 
891 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
892 
893 	/* return negative errno or unsigned value */
894 	return (status < 0) ? status : result;
895 }
896 
897 /**
898  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
899  * @spi: device with which data will be exchanged
900  * @cmd: command to be written before data is read back
901  * Context: can sleep
902  *
903  * This returns the (unsigned) sixteen bit number returned by the device in cpu
904  * endianness, or else a negative error code. Callable only from contexts that
905  * can sleep.
906  *
907  * This function is similar to spi_w8r16, with the exception that it will
908  * convert the read 16 bit data word from big-endian to native endianness.
909  *
910  */
spi_w8r16be(struct spi_device * spi,u8 cmd)911 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
912 
913 {
914 	ssize_t status;
915 	__be16 result;
916 
917 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
918 	if (status < 0)
919 		return status;
920 
921 	return be16_to_cpu(result);
922 }
923 
924 /*---------------------------------------------------------------------------*/
925 
926 /*
927  * INTERFACE between board init code and SPI infrastructure.
928  *
929  * No SPI driver ever sees these SPI device table segments, but
930  * it's how the SPI core (or adapters that get hotplugged) grows
931  * the driver model tree.
932  *
933  * As a rule, SPI devices can't be probed.  Instead, board init code
934  * provides a table listing the devices which are present, with enough
935  * information to bind and set up the device's driver.  There's basic
936  * support for nonstatic configurations too; enough to handle adding
937  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
938  */
939 
940 /**
941  * struct spi_board_info - board-specific template for a SPI device
942  * @modalias: Initializes spi_device.modalias; identifies the driver.
943  * @platform_data: Initializes spi_device.platform_data; the particular
944  *	data stored there is driver-specific.
945  * @controller_data: Initializes spi_device.controller_data; some
946  *	controllers need hints about hardware setup, e.g. for DMA.
947  * @irq: Initializes spi_device.irq; depends on how the board is wired.
948  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
949  *	from the chip datasheet and board-specific signal quality issues.
950  * @bus_num: Identifies which spi_master parents the spi_device; unused
951  *	by spi_new_device(), and otherwise depends on board wiring.
952  * @chip_select: Initializes spi_device.chip_select; depends on how
953  *	the board is wired.
954  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
955  *	wiring (some devices support both 3WIRE and standard modes), and
956  *	possibly presence of an inverter in the chipselect path.
957  *
958  * When adding new SPI devices to the device tree, these structures serve
959  * as a partial device template.  They hold information which can't always
960  * be determined by drivers.  Information that probe() can establish (such
961  * as the default transfer wordsize) is not included here.
962  *
963  * These structures are used in two places.  Their primary role is to
964  * be stored in tables of board-specific device descriptors, which are
965  * declared early in board initialization and then used (much later) to
966  * populate a controller's device tree after the that controller's driver
967  * initializes.  A secondary (and atypical) role is as a parameter to
968  * spi_new_device() call, which happens after those controller drivers
969  * are active in some dynamic board configuration models.
970  */
971 struct spi_board_info {
972 	/* the device name and module name are coupled, like platform_bus;
973 	 * "modalias" is normally the driver name.
974 	 *
975 	 * platform_data goes to spi_device.dev.platform_data,
976 	 * controller_data goes to spi_device.controller_data,
977 	 * irq is copied too
978 	 */
979 	char		modalias[SPI_NAME_SIZE];
980 	const void	*platform_data;
981 	void		*controller_data;
982 	int		irq;
983 
984 	/* slower signaling on noisy or low voltage boards */
985 	u32		max_speed_hz;
986 
987 
988 	/* bus_num is board specific and matches the bus_num of some
989 	 * spi_master that will probably be registered later.
990 	 *
991 	 * chip_select reflects how this chip is wired to that master;
992 	 * it's less than num_chipselect.
993 	 */
994 	u16		bus_num;
995 	u16		chip_select;
996 
997 	/* mode becomes spi_device.mode, and is essential for chips
998 	 * where the default of SPI_CS_HIGH = 0 is wrong.
999 	 */
1000 	u16		mode;
1001 
1002 	/* ... may need additional spi_device chip config data here.
1003 	 * avoid stuff protocol drivers can set; but include stuff
1004 	 * needed to behave without being bound to a driver:
1005 	 *  - quirks like clock rate mattering when not selected
1006 	 */
1007 };
1008 
1009 #ifdef	CONFIG_SPI
1010 extern int
1011 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1012 #else
1013 /* board init code may ignore whether SPI is configured or not */
1014 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1015 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1016 	{ return 0; }
1017 #endif
1018 
1019 
1020 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1021  * use spi_new_device() to describe each device.  You can also call
1022  * spi_unregister_device() to start making that device vanish, but
1023  * normally that would be handled by spi_unregister_master().
1024  *
1025  * You can also use spi_alloc_device() and spi_add_device() to use a two
1026  * stage registration sequence for each spi_device.  This gives the caller
1027  * some more control over the spi_device structure before it is registered,
1028  * but requires that caller to initialize fields that would otherwise
1029  * be defined using the board info.
1030  */
1031 extern struct spi_device *
1032 spi_alloc_device(struct spi_master *master);
1033 
1034 extern int
1035 spi_add_device(struct spi_device *spi);
1036 
1037 extern struct spi_device *
1038 spi_new_device(struct spi_master *, struct spi_board_info *);
1039 
1040 static inline void
spi_unregister_device(struct spi_device * spi)1041 spi_unregister_device(struct spi_device *spi)
1042 {
1043 	if (spi)
1044 		device_unregister(&spi->dev);
1045 }
1046 
1047 extern const struct spi_device_id *
1048 spi_get_device_id(const struct spi_device *sdev);
1049 
1050 static inline bool
spi_transfer_is_last(struct spi_master * master,struct spi_transfer * xfer)1051 spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
1052 {
1053 	return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
1054 }
1055 
1056 #endif /* __LINUX_SPI_H */
1057