1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_refcnt: reference count
154  *
155  *	This is the minimal network layer representation of sockets, the header
156  *	for struct sock and struct inet_timewait_sock.
157  */
158 struct sock_common {
159 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 	 * address on 64bit arches : cf INET_MATCH()
161 	 */
162 	union {
163 		__addrpair	skc_addrpair;
164 		struct {
165 			__be32	skc_daddr;
166 			__be32	skc_rcv_saddr;
167 		};
168 	};
169 	union  {
170 		unsigned int	skc_hash;
171 		__u16		skc_u16hashes[2];
172 	};
173 	/* skc_dport && skc_num must be grouped as well */
174 	union {
175 		__portpair	skc_portpair;
176 		struct {
177 			__be16	skc_dport;
178 			__u16	skc_num;
179 		};
180 	};
181 
182 	unsigned short		skc_family;
183 	volatile unsigned char	skc_state;
184 	unsigned char		skc_reuse:4;
185 	unsigned char		skc_reuseport:1;
186 	unsigned char		skc_ipv6only:1;
187 	int			skc_bound_dev_if;
188 	union {
189 		struct hlist_node	skc_bind_node;
190 		struct hlist_nulls_node skc_portaddr_node;
191 	};
192 	struct proto		*skc_prot;
193 	possible_net_t		skc_net;
194 
195 #if IS_ENABLED(CONFIG_IPV6)
196 	struct in6_addr		skc_v6_daddr;
197 	struct in6_addr		skc_v6_rcv_saddr;
198 #endif
199 
200 	atomic64_t		skc_cookie;
201 
202 	/*
203 	 * fields between dontcopy_begin/dontcopy_end
204 	 * are not copied in sock_copy()
205 	 */
206 	/* private: */
207 	int			skc_dontcopy_begin[0];
208 	/* public: */
209 	union {
210 		struct hlist_node	skc_node;
211 		struct hlist_nulls_node skc_nulls_node;
212 	};
213 	int			skc_tx_queue_mapping;
214 	atomic_t		skc_refcnt;
215 	/* private: */
216 	int                     skc_dontcopy_end[0];
217 	/* public: */
218 };
219 
220 struct cg_proto;
221 /**
222   *	struct sock - network layer representation of sockets
223   *	@__sk_common: shared layout with inet_timewait_sock
224   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
225   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
226   *	@sk_lock:	synchronizer
227   *	@sk_rcvbuf: size of receive buffer in bytes
228   *	@sk_wq: sock wait queue and async head
229   *	@sk_rx_dst: receive input route used by early demux
230   *	@sk_dst_cache: destination cache
231   *	@sk_dst_lock: destination cache lock
232   *	@sk_policy: flow policy
233   *	@sk_receive_queue: incoming packets
234   *	@sk_wmem_alloc: transmit queue bytes committed
235   *	@sk_write_queue: Packet sending queue
236   *	@sk_omem_alloc: "o" is "option" or "other"
237   *	@sk_wmem_queued: persistent queue size
238   *	@sk_forward_alloc: space allocated forward
239   *	@sk_napi_id: id of the last napi context to receive data for sk
240   *	@sk_ll_usec: usecs to busypoll when there is no data
241   *	@sk_allocation: allocation mode
242   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
243   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
244   *	@sk_sndbuf: size of send buffer in bytes
245   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
246   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
247   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
248   *	@sk_no_check_rx: allow zero checksum in RX packets
249   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
250   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
251   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
252   *	@sk_gso_max_size: Maximum GSO segment size to build
253   *	@sk_gso_max_segs: Maximum number of GSO segments
254   *	@sk_lingertime: %SO_LINGER l_linger setting
255   *	@sk_backlog: always used with the per-socket spinlock held
256   *	@sk_callback_lock: used with the callbacks in the end of this struct
257   *	@sk_error_queue: rarely used
258   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
259   *			  IPV6_ADDRFORM for instance)
260   *	@sk_err: last error
261   *	@sk_err_soft: errors that don't cause failure but are the cause of a
262   *		      persistent failure not just 'timed out'
263   *	@sk_drops: raw/udp drops counter
264   *	@sk_ack_backlog: current listen backlog
265   *	@sk_max_ack_backlog: listen backlog set in listen()
266   *	@sk_priority: %SO_PRIORITY setting
267   *	@sk_cgrp_prioidx: socket group's priority map index
268   *	@sk_type: socket type (%SOCK_STREAM, etc)
269   *	@sk_protocol: which protocol this socket belongs in this network family
270   *	@sk_peer_pid: &struct pid for this socket's peer
271   *	@sk_peer_cred: %SO_PEERCRED setting
272   *	@sk_rcvlowat: %SO_RCVLOWAT setting
273   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
274   *	@sk_sndtimeo: %SO_SNDTIMEO setting
275   *	@sk_rxhash: flow hash received from netif layer
276   *	@sk_incoming_cpu: record cpu processing incoming packets
277   *	@sk_txhash: computed flow hash for use on transmit
278   *	@sk_filter: socket filtering instructions
279   *	@sk_protinfo: private area, net family specific, when not using slab
280   *	@sk_timer: sock cleanup timer
281   *	@sk_stamp: time stamp of last packet received
282   *	@sk_tsflags: SO_TIMESTAMPING socket options
283   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
284   *	@sk_socket: Identd and reporting IO signals
285   *	@sk_user_data: RPC layer private data
286   *	@sk_frag: cached page frag
287   *	@sk_peek_off: current peek_offset value
288   *	@sk_send_head: front of stuff to transmit
289   *	@sk_security: used by security modules
290   *	@sk_mark: generic packet mark
291   *	@sk_classid: this socket's cgroup classid
292   *	@sk_cgrp: this socket's cgroup-specific proto data
293   *	@sk_write_pending: a write to stream socket waits to start
294   *	@sk_state_change: callback to indicate change in the state of the sock
295   *	@sk_data_ready: callback to indicate there is data to be processed
296   *	@sk_write_space: callback to indicate there is bf sending space available
297   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298   *	@sk_backlog_rcv: callback to process the backlog
299   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
300  */
301 struct sock {
302 	/*
303 	 * Now struct inet_timewait_sock also uses sock_common, so please just
304 	 * don't add nothing before this first member (__sk_common) --acme
305 	 */
306 	struct sock_common	__sk_common;
307 #define sk_node			__sk_common.skc_node
308 #define sk_nulls_node		__sk_common.skc_nulls_node
309 #define sk_refcnt		__sk_common.skc_refcnt
310 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
311 
312 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
314 #define sk_hash			__sk_common.skc_hash
315 #define sk_portpair		__sk_common.skc_portpair
316 #define sk_num			__sk_common.skc_num
317 #define sk_dport		__sk_common.skc_dport
318 #define sk_addrpair		__sk_common.skc_addrpair
319 #define sk_daddr		__sk_common.skc_daddr
320 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
321 #define sk_family		__sk_common.skc_family
322 #define sk_state		__sk_common.skc_state
323 #define sk_reuse		__sk_common.skc_reuse
324 #define sk_reuseport		__sk_common.skc_reuseport
325 #define sk_ipv6only		__sk_common.skc_ipv6only
326 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
327 #define sk_bind_node		__sk_common.skc_bind_node
328 #define sk_prot			__sk_common.skc_prot
329 #define sk_net			__sk_common.skc_net
330 #define sk_v6_daddr		__sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
332 #define sk_cookie		__sk_common.skc_cookie
333 
334 	socket_lock_t		sk_lock;
335 	struct sk_buff_head	sk_receive_queue;
336 	/*
337 	 * The backlog queue is special, it is always used with
338 	 * the per-socket spinlock held and requires low latency
339 	 * access. Therefore we special case it's implementation.
340 	 * Note : rmem_alloc is in this structure to fill a hole
341 	 * on 64bit arches, not because its logically part of
342 	 * backlog.
343 	 */
344 	struct {
345 		atomic_t	rmem_alloc;
346 		int		len;
347 		struct sk_buff	*head;
348 		struct sk_buff	*tail;
349 	} sk_backlog;
350 #define sk_rmem_alloc sk_backlog.rmem_alloc
351 	int			sk_forward_alloc;
352 #ifdef CONFIG_RPS
353 	__u32			sk_rxhash;
354 #endif
355 	u16			sk_incoming_cpu;
356 	/* 16bit hole
357 	 * Warned : sk_incoming_cpu can be set from softirq,
358 	 * Do not use this hole without fully understanding possible issues.
359 	 */
360 
361 	__u32			sk_txhash;
362 #ifdef CONFIG_NET_RX_BUSY_POLL
363 	unsigned int		sk_napi_id;
364 	unsigned int		sk_ll_usec;
365 #endif
366 	atomic_t		sk_drops;
367 	int			sk_rcvbuf;
368 
369 	struct sk_filter __rcu	*sk_filter;
370 	struct socket_wq __rcu	*sk_wq;
371 
372 #ifdef CONFIG_XFRM
373 	struct xfrm_policy	*sk_policy[2];
374 #endif
375 	unsigned long 		sk_flags;
376 	struct dst_entry	*sk_rx_dst;
377 	struct dst_entry __rcu	*sk_dst_cache;
378 	spinlock_t		sk_dst_lock;
379 	atomic_t		sk_wmem_alloc;
380 	atomic_t		sk_omem_alloc;
381 	int			sk_sndbuf;
382 	struct sk_buff_head	sk_write_queue;
383 	kmemcheck_bitfield_begin(flags);
384 	unsigned int		sk_shutdown  : 2,
385 				sk_no_check_tx : 1,
386 				sk_no_check_rx : 1,
387 				sk_userlocks : 4,
388 				sk_protocol  : 8,
389 #define SK_PROTOCOL_MAX U8_MAX
390 				sk_type      : 16;
391 	kmemcheck_bitfield_end(flags);
392 	int			sk_wmem_queued;
393 	gfp_t			sk_allocation;
394 	u32			sk_pacing_rate; /* bytes per second */
395 	u32			sk_max_pacing_rate;
396 	netdev_features_t	sk_route_caps;
397 	netdev_features_t	sk_route_nocaps;
398 	int			sk_gso_type;
399 	unsigned int		sk_gso_max_size;
400 	u16			sk_gso_max_segs;
401 	int			sk_rcvlowat;
402 	unsigned long	        sk_lingertime;
403 	struct sk_buff_head	sk_error_queue;
404 	struct proto		*sk_prot_creator;
405 	rwlock_t		sk_callback_lock;
406 	int			sk_err,
407 				sk_err_soft;
408 	u32			sk_ack_backlog;
409 	u32			sk_max_ack_backlog;
410 	__u32			sk_priority;
411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412 	__u32			sk_cgrp_prioidx;
413 #endif
414 	struct pid		*sk_peer_pid;
415 	const struct cred	*sk_peer_cred;
416 	long			sk_rcvtimeo;
417 	long			sk_sndtimeo;
418 	void			*sk_protinfo;
419 	struct timer_list	sk_timer;
420 	ktime_t			sk_stamp;
421 	u16			sk_tsflags;
422 	u32			sk_tskey;
423 	struct socket		*sk_socket;
424 	void			*sk_user_data;
425 	struct page_frag	sk_frag;
426 	struct sk_buff		*sk_send_head;
427 	__s32			sk_peek_off;
428 	int			sk_write_pending;
429 #ifdef CONFIG_SECURITY
430 	void			*sk_security;
431 #endif
432 	__u32			sk_mark;
433 	u32			sk_classid;
434 	struct cg_proto		*sk_cgrp;
435 	void			(*sk_state_change)(struct sock *sk);
436 	void			(*sk_data_ready)(struct sock *sk);
437 	void			(*sk_write_space)(struct sock *sk);
438 	void			(*sk_error_report)(struct sock *sk);
439 	int			(*sk_backlog_rcv)(struct sock *sk,
440 						  struct sk_buff *skb);
441 	void                    (*sk_destruct)(struct sock *sk);
442 };
443 
444 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
445 
446 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
447 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
448 
449 /*
450  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
451  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
452  * on a socket means that the socket will reuse everybody else's port
453  * without looking at the other's sk_reuse value.
454  */
455 
456 #define SK_NO_REUSE	0
457 #define SK_CAN_REUSE	1
458 #define SK_FORCE_REUSE	2
459 
sk_peek_offset(struct sock * sk,int flags)460 static inline int sk_peek_offset(struct sock *sk, int flags)
461 {
462 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
463 		return sk->sk_peek_off;
464 	else
465 		return 0;
466 }
467 
sk_peek_offset_bwd(struct sock * sk,int val)468 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
469 {
470 	if (sk->sk_peek_off >= 0) {
471 		if (sk->sk_peek_off >= val)
472 			sk->sk_peek_off -= val;
473 		else
474 			sk->sk_peek_off = 0;
475 	}
476 }
477 
sk_peek_offset_fwd(struct sock * sk,int val)478 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
479 {
480 	if (sk->sk_peek_off >= 0)
481 		sk->sk_peek_off += val;
482 }
483 
484 /*
485  * Hashed lists helper routines
486  */
sk_entry(const struct hlist_node * node)487 static inline struct sock *sk_entry(const struct hlist_node *node)
488 {
489 	return hlist_entry(node, struct sock, sk_node);
490 }
491 
__sk_head(const struct hlist_head * head)492 static inline struct sock *__sk_head(const struct hlist_head *head)
493 {
494 	return hlist_entry(head->first, struct sock, sk_node);
495 }
496 
sk_head(const struct hlist_head * head)497 static inline struct sock *sk_head(const struct hlist_head *head)
498 {
499 	return hlist_empty(head) ? NULL : __sk_head(head);
500 }
501 
__sk_nulls_head(const struct hlist_nulls_head * head)502 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
503 {
504 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
505 }
506 
sk_nulls_head(const struct hlist_nulls_head * head)507 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
508 {
509 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
510 }
511 
sk_next(const struct sock * sk)512 static inline struct sock *sk_next(const struct sock *sk)
513 {
514 	return sk->sk_node.next ?
515 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
516 }
517 
sk_nulls_next(const struct sock * sk)518 static inline struct sock *sk_nulls_next(const struct sock *sk)
519 {
520 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
521 		hlist_nulls_entry(sk->sk_nulls_node.next,
522 				  struct sock, sk_nulls_node) :
523 		NULL;
524 }
525 
sk_unhashed(const struct sock * sk)526 static inline bool sk_unhashed(const struct sock *sk)
527 {
528 	return hlist_unhashed(&sk->sk_node);
529 }
530 
sk_hashed(const struct sock * sk)531 static inline bool sk_hashed(const struct sock *sk)
532 {
533 	return !sk_unhashed(sk);
534 }
535 
sk_node_init(struct hlist_node * node)536 static inline void sk_node_init(struct hlist_node *node)
537 {
538 	node->pprev = NULL;
539 }
540 
sk_nulls_node_init(struct hlist_nulls_node * node)541 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
542 {
543 	node->pprev = NULL;
544 }
545 
__sk_del_node(struct sock * sk)546 static inline void __sk_del_node(struct sock *sk)
547 {
548 	__hlist_del(&sk->sk_node);
549 }
550 
551 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)552 static inline bool __sk_del_node_init(struct sock *sk)
553 {
554 	if (sk_hashed(sk)) {
555 		__sk_del_node(sk);
556 		sk_node_init(&sk->sk_node);
557 		return true;
558 	}
559 	return false;
560 }
561 
562 /* Grab socket reference count. This operation is valid only
563    when sk is ALREADY grabbed f.e. it is found in hash table
564    or a list and the lookup is made under lock preventing hash table
565    modifications.
566  */
567 
sock_hold(struct sock * sk)568 static inline void sock_hold(struct sock *sk)
569 {
570 	atomic_inc(&sk->sk_refcnt);
571 }
572 
573 /* Ungrab socket in the context, which assumes that socket refcnt
574    cannot hit zero, f.e. it is true in context of any socketcall.
575  */
__sock_put(struct sock * sk)576 static inline void __sock_put(struct sock *sk)
577 {
578 	atomic_dec(&sk->sk_refcnt);
579 }
580 
sk_del_node_init(struct sock * sk)581 static inline bool sk_del_node_init(struct sock *sk)
582 {
583 	bool rc = __sk_del_node_init(sk);
584 
585 	if (rc) {
586 		/* paranoid for a while -acme */
587 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
588 		__sock_put(sk);
589 	}
590 	return rc;
591 }
592 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
593 
__sk_nulls_del_node_init_rcu(struct sock * sk)594 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
595 {
596 	if (sk_hashed(sk)) {
597 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
598 		return true;
599 	}
600 	return false;
601 }
602 
sk_nulls_del_node_init_rcu(struct sock * sk)603 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
604 {
605 	bool rc = __sk_nulls_del_node_init_rcu(sk);
606 
607 	if (rc) {
608 		/* paranoid for a while -acme */
609 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
610 		__sock_put(sk);
611 	}
612 	return rc;
613 }
614 
__sk_add_node(struct sock * sk,struct hlist_head * list)615 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
616 {
617 	hlist_add_head(&sk->sk_node, list);
618 }
619 
sk_add_node(struct sock * sk,struct hlist_head * list)620 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
621 {
622 	sock_hold(sk);
623 	__sk_add_node(sk, list);
624 }
625 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)626 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
627 {
628 	sock_hold(sk);
629 	hlist_add_head_rcu(&sk->sk_node, list);
630 }
631 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)632 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
633 {
634 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
635 }
636 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)637 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
638 {
639 	sock_hold(sk);
640 	__sk_nulls_add_node_rcu(sk, list);
641 }
642 
__sk_del_bind_node(struct sock * sk)643 static inline void __sk_del_bind_node(struct sock *sk)
644 {
645 	__hlist_del(&sk->sk_bind_node);
646 }
647 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)648 static inline void sk_add_bind_node(struct sock *sk,
649 					struct hlist_head *list)
650 {
651 	hlist_add_head(&sk->sk_bind_node, list);
652 }
653 
654 #define sk_for_each(__sk, list) \
655 	hlist_for_each_entry(__sk, list, sk_node)
656 #define sk_for_each_rcu(__sk, list) \
657 	hlist_for_each_entry_rcu(__sk, list, sk_node)
658 #define sk_nulls_for_each(__sk, node, list) \
659 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
660 #define sk_nulls_for_each_rcu(__sk, node, list) \
661 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
662 #define sk_for_each_from(__sk) \
663 	hlist_for_each_entry_from(__sk, sk_node)
664 #define sk_nulls_for_each_from(__sk, node) \
665 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
666 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
667 #define sk_for_each_safe(__sk, tmp, list) \
668 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
669 #define sk_for_each_bound(__sk, list) \
670 	hlist_for_each_entry(__sk, list, sk_bind_node)
671 
672 /**
673  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
674  * @tpos:	the type * to use as a loop cursor.
675  * @pos:	the &struct hlist_node to use as a loop cursor.
676  * @head:	the head for your list.
677  * @offset:	offset of hlist_node within the struct.
678  *
679  */
680 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
681 	for (pos = (head)->first;					       \
682 	     (!is_a_nulls(pos)) &&					       \
683 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
684 	     pos = pos->next)
685 
sk_user_ns(struct sock * sk)686 static inline struct user_namespace *sk_user_ns(struct sock *sk)
687 {
688 	/* Careful only use this in a context where these parameters
689 	 * can not change and must all be valid, such as recvmsg from
690 	 * userspace.
691 	 */
692 	return sk->sk_socket->file->f_cred->user_ns;
693 }
694 
695 /* Sock flags */
696 enum sock_flags {
697 	SOCK_DEAD,
698 	SOCK_DONE,
699 	SOCK_URGINLINE,
700 	SOCK_KEEPOPEN,
701 	SOCK_LINGER,
702 	SOCK_DESTROY,
703 	SOCK_BROADCAST,
704 	SOCK_TIMESTAMP,
705 	SOCK_ZAPPED,
706 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
707 	SOCK_DBG, /* %SO_DEBUG setting */
708 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
709 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
710 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
711 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
712 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
713 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
714 	SOCK_FASYNC, /* fasync() active */
715 	SOCK_RXQ_OVFL,
716 	SOCK_ZEROCOPY, /* buffers from userspace */
717 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
718 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
719 		     * Will use last 4 bytes of packet sent from
720 		     * user-space instead.
721 		     */
722 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
723 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
724 };
725 
726 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
727 
sock_copy_flags(struct sock * nsk,struct sock * osk)728 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
729 {
730 	nsk->sk_flags = osk->sk_flags;
731 }
732 
sock_set_flag(struct sock * sk,enum sock_flags flag)733 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
734 {
735 	__set_bit(flag, &sk->sk_flags);
736 }
737 
sock_reset_flag(struct sock * sk,enum sock_flags flag)738 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
739 {
740 	__clear_bit(flag, &sk->sk_flags);
741 }
742 
sock_flag(const struct sock * sk,enum sock_flags flag)743 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
744 {
745 	return test_bit(flag, &sk->sk_flags);
746 }
747 
748 #ifdef CONFIG_NET
749 extern struct static_key memalloc_socks;
sk_memalloc_socks(void)750 static inline int sk_memalloc_socks(void)
751 {
752 	return static_key_false(&memalloc_socks);
753 }
754 #else
755 
sk_memalloc_socks(void)756 static inline int sk_memalloc_socks(void)
757 {
758 	return 0;
759 }
760 
761 #endif
762 
sk_gfp_atomic(struct sock * sk,gfp_t gfp_mask)763 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
764 {
765 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
766 }
767 
sk_acceptq_removed(struct sock * sk)768 static inline void sk_acceptq_removed(struct sock *sk)
769 {
770 	sk->sk_ack_backlog--;
771 }
772 
sk_acceptq_added(struct sock * sk)773 static inline void sk_acceptq_added(struct sock *sk)
774 {
775 	sk->sk_ack_backlog++;
776 }
777 
sk_acceptq_is_full(const struct sock * sk)778 static inline bool sk_acceptq_is_full(const struct sock *sk)
779 {
780 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
781 }
782 
783 /*
784  * Compute minimal free write space needed to queue new packets.
785  */
sk_stream_min_wspace(const struct sock * sk)786 static inline int sk_stream_min_wspace(const struct sock *sk)
787 {
788 	return sk->sk_wmem_queued >> 1;
789 }
790 
sk_stream_wspace(const struct sock * sk)791 static inline int sk_stream_wspace(const struct sock *sk)
792 {
793 	return sk->sk_sndbuf - sk->sk_wmem_queued;
794 }
795 
796 void sk_stream_write_space(struct sock *sk);
797 
798 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)799 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
800 {
801 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
802 	skb_dst_force_safe(skb);
803 
804 	if (!sk->sk_backlog.tail)
805 		sk->sk_backlog.head = skb;
806 	else
807 		sk->sk_backlog.tail->next = skb;
808 
809 	sk->sk_backlog.tail = skb;
810 	skb->next = NULL;
811 }
812 
813 /*
814  * Take into account size of receive queue and backlog queue
815  * Do not take into account this skb truesize,
816  * to allow even a single big packet to come.
817  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)818 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
819 {
820 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
821 
822 	return qsize > limit;
823 }
824 
825 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)826 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
827 					      unsigned int limit)
828 {
829 	if (sk_rcvqueues_full(sk, limit))
830 		return -ENOBUFS;
831 
832 	/*
833 	 * If the skb was allocated from pfmemalloc reserves, only
834 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
835 	 * helping free memory
836 	 */
837 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
838 		return -ENOMEM;
839 
840 	__sk_add_backlog(sk, skb);
841 	sk->sk_backlog.len += skb->truesize;
842 	return 0;
843 }
844 
845 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
846 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)847 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
848 {
849 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
850 		return __sk_backlog_rcv(sk, skb);
851 
852 	return sk->sk_backlog_rcv(sk, skb);
853 }
854 
sk_incoming_cpu_update(struct sock * sk)855 static inline void sk_incoming_cpu_update(struct sock *sk)
856 {
857 	sk->sk_incoming_cpu = raw_smp_processor_id();
858 }
859 
sock_rps_record_flow_hash(__u32 hash)860 static inline void sock_rps_record_flow_hash(__u32 hash)
861 {
862 #ifdef CONFIG_RPS
863 	struct rps_sock_flow_table *sock_flow_table;
864 
865 	rcu_read_lock();
866 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
867 	rps_record_sock_flow(sock_flow_table, hash);
868 	rcu_read_unlock();
869 #endif
870 }
871 
sock_rps_record_flow(const struct sock * sk)872 static inline void sock_rps_record_flow(const struct sock *sk)
873 {
874 #ifdef CONFIG_RPS
875 	sock_rps_record_flow_hash(sk->sk_rxhash);
876 #endif
877 }
878 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)879 static inline void sock_rps_save_rxhash(struct sock *sk,
880 					const struct sk_buff *skb)
881 {
882 #ifdef CONFIG_RPS
883 	if (unlikely(sk->sk_rxhash != skb->hash))
884 		sk->sk_rxhash = skb->hash;
885 #endif
886 }
887 
sock_rps_reset_rxhash(struct sock * sk)888 static inline void sock_rps_reset_rxhash(struct sock *sk)
889 {
890 #ifdef CONFIG_RPS
891 	sk->sk_rxhash = 0;
892 #endif
893 }
894 
895 #define sk_wait_event(__sk, __timeo, __condition)			\
896 	({	int __rc;						\
897 		release_sock(__sk);					\
898 		__rc = __condition;					\
899 		if (!__rc) {						\
900 			*(__timeo) = schedule_timeout(*(__timeo));	\
901 		}							\
902 		sched_annotate_sleep();						\
903 		lock_sock(__sk);					\
904 		__rc = __condition;					\
905 		__rc;							\
906 	})
907 
908 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
909 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
910 void sk_stream_wait_close(struct sock *sk, long timeo_p);
911 int sk_stream_error(struct sock *sk, int flags, int err);
912 void sk_stream_kill_queues(struct sock *sk);
913 void sk_set_memalloc(struct sock *sk);
914 void sk_clear_memalloc(struct sock *sk);
915 
916 int sk_wait_data(struct sock *sk, long *timeo);
917 
918 struct request_sock_ops;
919 struct timewait_sock_ops;
920 struct inet_hashinfo;
921 struct raw_hashinfo;
922 struct module;
923 
924 /*
925  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
926  * un-modified. Special care is taken when initializing object to zero.
927  */
sk_prot_clear_nulls(struct sock * sk,int size)928 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
929 {
930 	if (offsetof(struct sock, sk_node.next) != 0)
931 		memset(sk, 0, offsetof(struct sock, sk_node.next));
932 	memset(&sk->sk_node.pprev, 0,
933 	       size - offsetof(struct sock, sk_node.pprev));
934 }
935 
936 /* Networking protocol blocks we attach to sockets.
937  * socket layer -> transport layer interface
938  * transport -> network interface is defined by struct inet_proto
939  */
940 struct proto {
941 	void			(*close)(struct sock *sk,
942 					long timeout);
943 	int			(*connect)(struct sock *sk,
944 					struct sockaddr *uaddr,
945 					int addr_len);
946 	int			(*disconnect)(struct sock *sk, int flags);
947 
948 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
949 
950 	int			(*ioctl)(struct sock *sk, int cmd,
951 					 unsigned long arg);
952 	int			(*init)(struct sock *sk);
953 	void			(*destroy)(struct sock *sk);
954 	void			(*shutdown)(struct sock *sk, int how);
955 	int			(*setsockopt)(struct sock *sk, int level,
956 					int optname, char __user *optval,
957 					unsigned int optlen);
958 	int			(*getsockopt)(struct sock *sk, int level,
959 					int optname, char __user *optval,
960 					int __user *option);
961 #ifdef CONFIG_COMPAT
962 	int			(*compat_setsockopt)(struct sock *sk,
963 					int level,
964 					int optname, char __user *optval,
965 					unsigned int optlen);
966 	int			(*compat_getsockopt)(struct sock *sk,
967 					int level,
968 					int optname, char __user *optval,
969 					int __user *option);
970 	int			(*compat_ioctl)(struct sock *sk,
971 					unsigned int cmd, unsigned long arg);
972 #endif
973 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
974 					   size_t len);
975 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
976 					   size_t len, int noblock, int flags,
977 					   int *addr_len);
978 	int			(*sendpage)(struct sock *sk, struct page *page,
979 					int offset, size_t size, int flags);
980 	int			(*bind)(struct sock *sk,
981 					struct sockaddr *uaddr, int addr_len);
982 
983 	int			(*backlog_rcv) (struct sock *sk,
984 						struct sk_buff *skb);
985 
986 	void		(*release_cb)(struct sock *sk);
987 
988 	/* Keeping track of sk's, looking them up, and port selection methods. */
989 	void			(*hash)(struct sock *sk);
990 	void			(*unhash)(struct sock *sk);
991 	void			(*rehash)(struct sock *sk);
992 	int			(*get_port)(struct sock *sk, unsigned short snum);
993 	void			(*clear_sk)(struct sock *sk, int size);
994 
995 	/* Keeping track of sockets in use */
996 #ifdef CONFIG_PROC_FS
997 	unsigned int		inuse_idx;
998 #endif
999 
1000 	bool			(*stream_memory_free)(const struct sock *sk);
1001 	/* Memory pressure */
1002 	void			(*enter_memory_pressure)(struct sock *sk);
1003 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1004 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1005 	/*
1006 	 * Pressure flag: try to collapse.
1007 	 * Technical note: it is used by multiple contexts non atomically.
1008 	 * All the __sk_mem_schedule() is of this nature: accounting
1009 	 * is strict, actions are advisory and have some latency.
1010 	 */
1011 	int			*memory_pressure;
1012 	long			*sysctl_mem;
1013 	int			*sysctl_wmem;
1014 	int			*sysctl_rmem;
1015 	int			max_header;
1016 	bool			no_autobind;
1017 
1018 	struct kmem_cache	*slab;
1019 	unsigned int		obj_size;
1020 	int			slab_flags;
1021 
1022 	struct percpu_counter	*orphan_count;
1023 
1024 	struct request_sock_ops	*rsk_prot;
1025 	struct timewait_sock_ops *twsk_prot;
1026 
1027 	union {
1028 		struct inet_hashinfo	*hashinfo;
1029 		struct udp_table	*udp_table;
1030 		struct raw_hashinfo	*raw_hash;
1031 	} h;
1032 
1033 	struct module		*owner;
1034 
1035 	char			name[32];
1036 
1037 	struct list_head	node;
1038 #ifdef SOCK_REFCNT_DEBUG
1039 	atomic_t		socks;
1040 #endif
1041 #ifdef CONFIG_MEMCG_KMEM
1042 	/*
1043 	 * cgroup specific init/deinit functions. Called once for all
1044 	 * protocols that implement it, from cgroups populate function.
1045 	 * This function has to setup any files the protocol want to
1046 	 * appear in the kmem cgroup filesystem.
1047 	 */
1048 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1049 					       struct cgroup_subsys *ss);
1050 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1051 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1052 #endif
1053 };
1054 
1055 /*
1056  * Bits in struct cg_proto.flags
1057  */
1058 enum cg_proto_flags {
1059 	/* Currently active and new sockets should be assigned to cgroups */
1060 	MEMCG_SOCK_ACTIVE,
1061 	/* It was ever activated; we must disarm static keys on destruction */
1062 	MEMCG_SOCK_ACTIVATED,
1063 };
1064 
1065 struct cg_proto {
1066 	struct page_counter	memory_allocated;	/* Current allocated memory. */
1067 	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
1068 	int			memory_pressure;
1069 	long			sysctl_mem[3];
1070 	unsigned long		flags;
1071 	/*
1072 	 * memcg field is used to find which memcg we belong directly
1073 	 * Each memcg struct can hold more than one cg_proto, so container_of
1074 	 * won't really cut.
1075 	 *
1076 	 * The elegant solution would be having an inverse function to
1077 	 * proto_cgroup in struct proto, but that means polluting the structure
1078 	 * for everybody, instead of just for memcg users.
1079 	 */
1080 	struct mem_cgroup	*memcg;
1081 };
1082 
1083 int proto_register(struct proto *prot, int alloc_slab);
1084 void proto_unregister(struct proto *prot);
1085 
memcg_proto_active(struct cg_proto * cg_proto)1086 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1087 {
1088 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1089 }
1090 
1091 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1092 static inline void sk_refcnt_debug_inc(struct sock *sk)
1093 {
1094 	atomic_inc(&sk->sk_prot->socks);
1095 }
1096 
sk_refcnt_debug_dec(struct sock * sk)1097 static inline void sk_refcnt_debug_dec(struct sock *sk)
1098 {
1099 	atomic_dec(&sk->sk_prot->socks);
1100 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1101 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1102 }
1103 
sk_refcnt_debug_release(const struct sock * sk)1104 static inline void sk_refcnt_debug_release(const struct sock *sk)
1105 {
1106 	if (atomic_read(&sk->sk_refcnt) != 1)
1107 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1108 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1109 }
1110 #else /* SOCK_REFCNT_DEBUG */
1111 #define sk_refcnt_debug_inc(sk) do { } while (0)
1112 #define sk_refcnt_debug_dec(sk) do { } while (0)
1113 #define sk_refcnt_debug_release(sk) do { } while (0)
1114 #endif /* SOCK_REFCNT_DEBUG */
1115 
1116 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1117 extern struct static_key memcg_socket_limit_enabled;
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)1118 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1119 					       struct cg_proto *cg_proto)
1120 {
1121 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1122 }
1123 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1124 #else
1125 #define mem_cgroup_sockets_enabled 0
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)1126 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1127 					       struct cg_proto *cg_proto)
1128 {
1129 	return NULL;
1130 }
1131 #endif
1132 
sk_stream_memory_free(const struct sock * sk)1133 static inline bool sk_stream_memory_free(const struct sock *sk)
1134 {
1135 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1136 		return false;
1137 
1138 	return sk->sk_prot->stream_memory_free ?
1139 		sk->sk_prot->stream_memory_free(sk) : true;
1140 }
1141 
sk_stream_is_writeable(const struct sock * sk)1142 static inline bool sk_stream_is_writeable(const struct sock *sk)
1143 {
1144 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1145 	       sk_stream_memory_free(sk);
1146 }
1147 
1148 
sk_has_memory_pressure(const struct sock * sk)1149 static inline bool sk_has_memory_pressure(const struct sock *sk)
1150 {
1151 	return sk->sk_prot->memory_pressure != NULL;
1152 }
1153 
sk_under_memory_pressure(const struct sock * sk)1154 static inline bool sk_under_memory_pressure(const struct sock *sk)
1155 {
1156 	if (!sk->sk_prot->memory_pressure)
1157 		return false;
1158 
1159 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1160 		return !!sk->sk_cgrp->memory_pressure;
1161 
1162 	return !!*sk->sk_prot->memory_pressure;
1163 }
1164 
sk_leave_memory_pressure(struct sock * sk)1165 static inline void sk_leave_memory_pressure(struct sock *sk)
1166 {
1167 	int *memory_pressure = sk->sk_prot->memory_pressure;
1168 
1169 	if (!memory_pressure)
1170 		return;
1171 
1172 	if (*memory_pressure)
1173 		*memory_pressure = 0;
1174 
1175 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1176 		struct cg_proto *cg_proto = sk->sk_cgrp;
1177 		struct proto *prot = sk->sk_prot;
1178 
1179 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1180 			cg_proto->memory_pressure = 0;
1181 	}
1182 
1183 }
1184 
sk_enter_memory_pressure(struct sock * sk)1185 static inline void sk_enter_memory_pressure(struct sock *sk)
1186 {
1187 	if (!sk->sk_prot->enter_memory_pressure)
1188 		return;
1189 
1190 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1191 		struct cg_proto *cg_proto = sk->sk_cgrp;
1192 		struct proto *prot = sk->sk_prot;
1193 
1194 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1195 			cg_proto->memory_pressure = 1;
1196 	}
1197 
1198 	sk->sk_prot->enter_memory_pressure(sk);
1199 }
1200 
sk_prot_mem_limits(const struct sock * sk,int index)1201 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1202 {
1203 	long *prot = sk->sk_prot->sysctl_mem;
1204 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1205 		prot = sk->sk_cgrp->sysctl_mem;
1206 	return prot[index];
1207 }
1208 
memcg_memory_allocated_add(struct cg_proto * prot,unsigned long amt,int * parent_status)1209 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1210 					      unsigned long amt,
1211 					      int *parent_status)
1212 {
1213 	page_counter_charge(&prot->memory_allocated, amt);
1214 
1215 	if (page_counter_read(&prot->memory_allocated) >
1216 	    prot->memory_allocated.limit)
1217 		*parent_status = OVER_LIMIT;
1218 }
1219 
memcg_memory_allocated_sub(struct cg_proto * prot,unsigned long amt)1220 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1221 					      unsigned long amt)
1222 {
1223 	page_counter_uncharge(&prot->memory_allocated, amt);
1224 }
1225 
1226 static inline long
sk_memory_allocated(const struct sock * sk)1227 sk_memory_allocated(const struct sock *sk)
1228 {
1229 	struct proto *prot = sk->sk_prot;
1230 
1231 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1232 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1233 
1234 	return atomic_long_read(prot->memory_allocated);
1235 }
1236 
1237 static inline long
sk_memory_allocated_add(struct sock * sk,int amt,int * parent_status)1238 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1239 {
1240 	struct proto *prot = sk->sk_prot;
1241 
1242 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1243 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1244 		/* update the root cgroup regardless */
1245 		atomic_long_add_return(amt, prot->memory_allocated);
1246 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1247 	}
1248 
1249 	return atomic_long_add_return(amt, prot->memory_allocated);
1250 }
1251 
1252 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1253 sk_memory_allocated_sub(struct sock *sk, int amt)
1254 {
1255 	struct proto *prot = sk->sk_prot;
1256 
1257 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1258 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1259 
1260 	atomic_long_sub(amt, prot->memory_allocated);
1261 }
1262 
sk_sockets_allocated_dec(struct sock * sk)1263 static inline void sk_sockets_allocated_dec(struct sock *sk)
1264 {
1265 	struct proto *prot = sk->sk_prot;
1266 
1267 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1268 		struct cg_proto *cg_proto = sk->sk_cgrp;
1269 
1270 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1271 			percpu_counter_dec(&cg_proto->sockets_allocated);
1272 	}
1273 
1274 	percpu_counter_dec(prot->sockets_allocated);
1275 }
1276 
sk_sockets_allocated_inc(struct sock * sk)1277 static inline void sk_sockets_allocated_inc(struct sock *sk)
1278 {
1279 	struct proto *prot = sk->sk_prot;
1280 
1281 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1282 		struct cg_proto *cg_proto = sk->sk_cgrp;
1283 
1284 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1285 			percpu_counter_inc(&cg_proto->sockets_allocated);
1286 	}
1287 
1288 	percpu_counter_inc(prot->sockets_allocated);
1289 }
1290 
1291 static inline int
sk_sockets_allocated_read_positive(struct sock * sk)1292 sk_sockets_allocated_read_positive(struct sock *sk)
1293 {
1294 	struct proto *prot = sk->sk_prot;
1295 
1296 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1297 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1298 
1299 	return percpu_counter_read_positive(prot->sockets_allocated);
1300 }
1301 
1302 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1303 proto_sockets_allocated_sum_positive(struct proto *prot)
1304 {
1305 	return percpu_counter_sum_positive(prot->sockets_allocated);
1306 }
1307 
1308 static inline long
proto_memory_allocated(struct proto * prot)1309 proto_memory_allocated(struct proto *prot)
1310 {
1311 	return atomic_long_read(prot->memory_allocated);
1312 }
1313 
1314 static inline bool
proto_memory_pressure(struct proto * prot)1315 proto_memory_pressure(struct proto *prot)
1316 {
1317 	if (!prot->memory_pressure)
1318 		return false;
1319 	return !!*prot->memory_pressure;
1320 }
1321 
1322 
1323 #ifdef CONFIG_PROC_FS
1324 /* Called with local bh disabled */
1325 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1326 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1327 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1328 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1329 		int inc)
1330 {
1331 }
1332 #endif
1333 
1334 
1335 /* With per-bucket locks this operation is not-atomic, so that
1336  * this version is not worse.
1337  */
__sk_prot_rehash(struct sock * sk)1338 static inline void __sk_prot_rehash(struct sock *sk)
1339 {
1340 	sk->sk_prot->unhash(sk);
1341 	sk->sk_prot->hash(sk);
1342 }
1343 
1344 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1345 
1346 /* About 10 seconds */
1347 #define SOCK_DESTROY_TIME (10*HZ)
1348 
1349 /* Sockets 0-1023 can't be bound to unless you are superuser */
1350 #define PROT_SOCK	1024
1351 
1352 #define SHUTDOWN_MASK	3
1353 #define RCV_SHUTDOWN	1
1354 #define SEND_SHUTDOWN	2
1355 
1356 #define SOCK_SNDBUF_LOCK	1
1357 #define SOCK_RCVBUF_LOCK	2
1358 #define SOCK_BINDADDR_LOCK	4
1359 #define SOCK_BINDPORT_LOCK	8
1360 
1361 struct socket_alloc {
1362 	struct socket socket;
1363 	struct inode vfs_inode;
1364 };
1365 
SOCKET_I(struct inode * inode)1366 static inline struct socket *SOCKET_I(struct inode *inode)
1367 {
1368 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1369 }
1370 
SOCK_INODE(struct socket * socket)1371 static inline struct inode *SOCK_INODE(struct socket *socket)
1372 {
1373 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1374 }
1375 
1376 /*
1377  * Functions for memory accounting
1378  */
1379 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1380 void __sk_mem_reclaim(struct sock *sk);
1381 
1382 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1383 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1384 #define SK_MEM_SEND	0
1385 #define SK_MEM_RECV	1
1386 
sk_mem_pages(int amt)1387 static inline int sk_mem_pages(int amt)
1388 {
1389 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1390 }
1391 
sk_has_account(struct sock * sk)1392 static inline bool sk_has_account(struct sock *sk)
1393 {
1394 	/* return true if protocol supports memory accounting */
1395 	return !!sk->sk_prot->memory_allocated;
1396 }
1397 
sk_wmem_schedule(struct sock * sk,int size)1398 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1399 {
1400 	if (!sk_has_account(sk))
1401 		return true;
1402 	return size <= sk->sk_forward_alloc ||
1403 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1404 }
1405 
1406 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1407 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1408 {
1409 	if (!sk_has_account(sk))
1410 		return true;
1411 	return size<= sk->sk_forward_alloc ||
1412 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1413 		skb_pfmemalloc(skb);
1414 }
1415 
sk_mem_reclaim(struct sock * sk)1416 static inline void sk_mem_reclaim(struct sock *sk)
1417 {
1418 	if (!sk_has_account(sk))
1419 		return;
1420 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1421 		__sk_mem_reclaim(sk);
1422 }
1423 
sk_mem_reclaim_partial(struct sock * sk)1424 static inline void sk_mem_reclaim_partial(struct sock *sk)
1425 {
1426 	if (!sk_has_account(sk))
1427 		return;
1428 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1429 		__sk_mem_reclaim(sk);
1430 }
1431 
sk_mem_charge(struct sock * sk,int size)1432 static inline void sk_mem_charge(struct sock *sk, int size)
1433 {
1434 	if (!sk_has_account(sk))
1435 		return;
1436 	sk->sk_forward_alloc -= size;
1437 }
1438 
sk_mem_uncharge(struct sock * sk,int size)1439 static inline void sk_mem_uncharge(struct sock *sk, int size)
1440 {
1441 	if (!sk_has_account(sk))
1442 		return;
1443 	sk->sk_forward_alloc += size;
1444 }
1445 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1446 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1447 {
1448 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1449 	sk->sk_wmem_queued -= skb->truesize;
1450 	sk_mem_uncharge(sk, skb->truesize);
1451 	__kfree_skb(skb);
1452 }
1453 
1454 /* Used by processes to "lock" a socket state, so that
1455  * interrupts and bottom half handlers won't change it
1456  * from under us. It essentially blocks any incoming
1457  * packets, so that we won't get any new data or any
1458  * packets that change the state of the socket.
1459  *
1460  * While locked, BH processing will add new packets to
1461  * the backlog queue.  This queue is processed by the
1462  * owner of the socket lock right before it is released.
1463  *
1464  * Since ~2.3.5 it is also exclusive sleep lock serializing
1465  * accesses from user process context.
1466  */
1467 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1468 
sock_release_ownership(struct sock * sk)1469 static inline void sock_release_ownership(struct sock *sk)
1470 {
1471 	sk->sk_lock.owned = 0;
1472 }
1473 
1474 /*
1475  * Macro so as to not evaluate some arguments when
1476  * lockdep is not enabled.
1477  *
1478  * Mark both the sk_lock and the sk_lock.slock as a
1479  * per-address-family lock class.
1480  */
1481 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1482 do {									\
1483 	sk->sk_lock.owned = 0;						\
1484 	init_waitqueue_head(&sk->sk_lock.wq);				\
1485 	spin_lock_init(&(sk)->sk_lock.slock);				\
1486 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1487 			sizeof((sk)->sk_lock));				\
1488 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1489 				(skey), (sname));				\
1490 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1491 } while (0)
1492 
1493 void lock_sock_nested(struct sock *sk, int subclass);
1494 
lock_sock(struct sock * sk)1495 static inline void lock_sock(struct sock *sk)
1496 {
1497 	lock_sock_nested(sk, 0);
1498 }
1499 
1500 void release_sock(struct sock *sk);
1501 
1502 /* BH context may only use the following locking interface. */
1503 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1504 #define bh_lock_sock_nested(__sk) \
1505 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1506 				SINGLE_DEPTH_NESTING)
1507 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1508 
1509 bool lock_sock_fast(struct sock *sk);
1510 /**
1511  * unlock_sock_fast - complement of lock_sock_fast
1512  * @sk: socket
1513  * @slow: slow mode
1514  *
1515  * fast unlock socket for user context.
1516  * If slow mode is on, we call regular release_sock()
1517  */
unlock_sock_fast(struct sock * sk,bool slow)1518 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1519 {
1520 	if (slow)
1521 		release_sock(sk);
1522 	else
1523 		spin_unlock_bh(&sk->sk_lock.slock);
1524 }
1525 
1526 
1527 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1528 		      struct proto *prot);
1529 void sk_free(struct sock *sk);
1530 void sk_release_kernel(struct sock *sk);
1531 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1532 
1533 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1534 			     gfp_t priority);
1535 void sock_wfree(struct sk_buff *skb);
1536 void skb_orphan_partial(struct sk_buff *skb);
1537 void sock_rfree(struct sk_buff *skb);
1538 void sock_efree(struct sk_buff *skb);
1539 #ifdef CONFIG_INET
1540 void sock_edemux(struct sk_buff *skb);
1541 #else
1542 #define sock_edemux(skb) sock_efree(skb)
1543 #endif
1544 
1545 int sock_setsockopt(struct socket *sock, int level, int op,
1546 		    char __user *optval, unsigned int optlen);
1547 
1548 int sock_getsockopt(struct socket *sock, int level, int op,
1549 		    char __user *optval, int __user *optlen);
1550 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1551 				    int noblock, int *errcode);
1552 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1553 				     unsigned long data_len, int noblock,
1554 				     int *errcode, int max_page_order);
1555 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1556 void sock_kfree_s(struct sock *sk, void *mem, int size);
1557 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1558 void sk_send_sigurg(struct sock *sk);
1559 
1560 /*
1561  * Functions to fill in entries in struct proto_ops when a protocol
1562  * does not implement a particular function.
1563  */
1564 int sock_no_bind(struct socket *, struct sockaddr *, int);
1565 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1566 int sock_no_socketpair(struct socket *, struct socket *);
1567 int sock_no_accept(struct socket *, struct socket *, int);
1568 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1569 unsigned int sock_no_poll(struct file *, struct socket *,
1570 			  struct poll_table_struct *);
1571 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1572 int sock_no_listen(struct socket *, int);
1573 int sock_no_shutdown(struct socket *, int);
1574 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1575 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1576 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1577 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1578 int sock_no_mmap(struct file *file, struct socket *sock,
1579 		 struct vm_area_struct *vma);
1580 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1581 			 size_t size, int flags);
1582 
1583 /*
1584  * Functions to fill in entries in struct proto_ops when a protocol
1585  * uses the inet style.
1586  */
1587 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1588 				  char __user *optval, int __user *optlen);
1589 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1590 			int flags);
1591 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1592 				  char __user *optval, unsigned int optlen);
1593 int compat_sock_common_getsockopt(struct socket *sock, int level,
1594 		int optname, char __user *optval, int __user *optlen);
1595 int compat_sock_common_setsockopt(struct socket *sock, int level,
1596 		int optname, char __user *optval, unsigned int optlen);
1597 
1598 void sk_common_release(struct sock *sk);
1599 
1600 /*
1601  *	Default socket callbacks and setup code
1602  */
1603 
1604 /* Initialise core socket variables */
1605 void sock_init_data(struct socket *sock, struct sock *sk);
1606 
1607 /*
1608  * Socket reference counting postulates.
1609  *
1610  * * Each user of socket SHOULD hold a reference count.
1611  * * Each access point to socket (an hash table bucket, reference from a list,
1612  *   running timer, skb in flight MUST hold a reference count.
1613  * * When reference count hits 0, it means it will never increase back.
1614  * * When reference count hits 0, it means that no references from
1615  *   outside exist to this socket and current process on current CPU
1616  *   is last user and may/should destroy this socket.
1617  * * sk_free is called from any context: process, BH, IRQ. When
1618  *   it is called, socket has no references from outside -> sk_free
1619  *   may release descendant resources allocated by the socket, but
1620  *   to the time when it is called, socket is NOT referenced by any
1621  *   hash tables, lists etc.
1622  * * Packets, delivered from outside (from network or from another process)
1623  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1624  *   when they sit in queue. Otherwise, packets will leak to hole, when
1625  *   socket is looked up by one cpu and unhasing is made by another CPU.
1626  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1627  *   (leak to backlog). Packet socket does all the processing inside
1628  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1629  *   use separate SMP lock, so that they are prone too.
1630  */
1631 
1632 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1633 static inline void sock_put(struct sock *sk)
1634 {
1635 	if (atomic_dec_and_test(&sk->sk_refcnt))
1636 		sk_free(sk);
1637 }
1638 /* Generic version of sock_put(), dealing with all sockets
1639  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1640  */
1641 void sock_gen_put(struct sock *sk);
1642 
1643 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1644 
sk_tx_queue_set(struct sock * sk,int tx_queue)1645 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1646 {
1647 	sk->sk_tx_queue_mapping = tx_queue;
1648 }
1649 
sk_tx_queue_clear(struct sock * sk)1650 static inline void sk_tx_queue_clear(struct sock *sk)
1651 {
1652 	sk->sk_tx_queue_mapping = -1;
1653 }
1654 
sk_tx_queue_get(const struct sock * sk)1655 static inline int sk_tx_queue_get(const struct sock *sk)
1656 {
1657 	return sk ? sk->sk_tx_queue_mapping : -1;
1658 }
1659 
sk_set_socket(struct sock * sk,struct socket * sock)1660 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1661 {
1662 	sk_tx_queue_clear(sk);
1663 	sk->sk_socket = sock;
1664 }
1665 
sk_sleep(struct sock * sk)1666 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1667 {
1668 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1669 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1670 }
1671 /* Detach socket from process context.
1672  * Announce socket dead, detach it from wait queue and inode.
1673  * Note that parent inode held reference count on this struct sock,
1674  * we do not release it in this function, because protocol
1675  * probably wants some additional cleanups or even continuing
1676  * to work with this socket (TCP).
1677  */
sock_orphan(struct sock * sk)1678 static inline void sock_orphan(struct sock *sk)
1679 {
1680 	write_lock_bh(&sk->sk_callback_lock);
1681 	sock_set_flag(sk, SOCK_DEAD);
1682 	sk_set_socket(sk, NULL);
1683 	sk->sk_wq  = NULL;
1684 	write_unlock_bh(&sk->sk_callback_lock);
1685 }
1686 
sock_graft(struct sock * sk,struct socket * parent)1687 static inline void sock_graft(struct sock *sk, struct socket *parent)
1688 {
1689 	write_lock_bh(&sk->sk_callback_lock);
1690 	sk->sk_wq = parent->wq;
1691 	parent->sk = sk;
1692 	sk_set_socket(sk, parent);
1693 	security_sock_graft(sk, parent);
1694 	write_unlock_bh(&sk->sk_callback_lock);
1695 }
1696 
1697 kuid_t sock_i_uid(struct sock *sk);
1698 unsigned long sock_i_ino(struct sock *sk);
1699 
1700 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1701 __sk_dst_get(struct sock *sk)
1702 {
1703 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1704 						       lockdep_is_held(&sk->sk_lock.slock));
1705 }
1706 
1707 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1708 sk_dst_get(struct sock *sk)
1709 {
1710 	struct dst_entry *dst;
1711 
1712 	rcu_read_lock();
1713 	dst = rcu_dereference(sk->sk_dst_cache);
1714 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1715 		dst = NULL;
1716 	rcu_read_unlock();
1717 	return dst;
1718 }
1719 
dst_negative_advice(struct sock * sk)1720 static inline void dst_negative_advice(struct sock *sk)
1721 {
1722 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1723 
1724 	if (dst && dst->ops->negative_advice) {
1725 		ndst = dst->ops->negative_advice(dst);
1726 
1727 		if (ndst != dst) {
1728 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1729 			sk_tx_queue_clear(sk);
1730 		}
1731 	}
1732 }
1733 
1734 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1735 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1736 {
1737 	struct dst_entry *old_dst;
1738 
1739 	sk_tx_queue_clear(sk);
1740 	/*
1741 	 * This can be called while sk is owned by the caller only,
1742 	 * with no state that can be checked in a rcu_dereference_check() cond
1743 	 */
1744 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1745 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1746 	dst_release(old_dst);
1747 }
1748 
1749 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1750 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1751 {
1752 	struct dst_entry *old_dst;
1753 
1754 	sk_tx_queue_clear(sk);
1755 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1756 	dst_release(old_dst);
1757 }
1758 
1759 static inline void
__sk_dst_reset(struct sock * sk)1760 __sk_dst_reset(struct sock *sk)
1761 {
1762 	__sk_dst_set(sk, NULL);
1763 }
1764 
1765 static inline void
sk_dst_reset(struct sock * sk)1766 sk_dst_reset(struct sock *sk)
1767 {
1768 	sk_dst_set(sk, NULL);
1769 }
1770 
1771 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1772 
1773 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1774 
1775 bool sk_mc_loop(struct sock *sk);
1776 
sk_can_gso(const struct sock * sk)1777 static inline bool sk_can_gso(const struct sock *sk)
1778 {
1779 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1780 }
1781 
1782 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1783 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1784 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1785 {
1786 	sk->sk_route_nocaps |= flags;
1787 	sk->sk_route_caps &= ~flags;
1788 }
1789 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1790 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1791 					   struct iov_iter *from, char *to,
1792 					   int copy, int offset)
1793 {
1794 	if (skb->ip_summed == CHECKSUM_NONE) {
1795 		__wsum csum = 0;
1796 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1797 			return -EFAULT;
1798 		skb->csum = csum_block_add(skb->csum, csum, offset);
1799 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1800 		if (copy_from_iter_nocache(to, copy, from) != copy)
1801 			return -EFAULT;
1802 	} else if (copy_from_iter(to, copy, from) != copy)
1803 		return -EFAULT;
1804 
1805 	return 0;
1806 }
1807 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1808 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1809 				       struct iov_iter *from, int copy)
1810 {
1811 	int err, offset = skb->len;
1812 
1813 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1814 				       copy, offset);
1815 	if (err)
1816 		__skb_trim(skb, offset);
1817 
1818 	return err;
1819 }
1820 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)1821 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1822 					   struct sk_buff *skb,
1823 					   struct page *page,
1824 					   int off, int copy)
1825 {
1826 	int err;
1827 
1828 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1829 				       copy, skb->len);
1830 	if (err)
1831 		return err;
1832 
1833 	skb->len	     += copy;
1834 	skb->data_len	     += copy;
1835 	skb->truesize	     += copy;
1836 	sk->sk_wmem_queued   += copy;
1837 	sk_mem_charge(sk, copy);
1838 	return 0;
1839 }
1840 
1841 /**
1842  * sk_wmem_alloc_get - returns write allocations
1843  * @sk: socket
1844  *
1845  * Returns sk_wmem_alloc minus initial offset of one
1846  */
sk_wmem_alloc_get(const struct sock * sk)1847 static inline int sk_wmem_alloc_get(const struct sock *sk)
1848 {
1849 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1850 }
1851 
1852 /**
1853  * sk_rmem_alloc_get - returns read allocations
1854  * @sk: socket
1855  *
1856  * Returns sk_rmem_alloc
1857  */
sk_rmem_alloc_get(const struct sock * sk)1858 static inline int sk_rmem_alloc_get(const struct sock *sk)
1859 {
1860 	return atomic_read(&sk->sk_rmem_alloc);
1861 }
1862 
1863 /**
1864  * sk_has_allocations - check if allocations are outstanding
1865  * @sk: socket
1866  *
1867  * Returns true if socket has write or read allocations
1868  */
sk_has_allocations(const struct sock * sk)1869 static inline bool sk_has_allocations(const struct sock *sk)
1870 {
1871 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1872 }
1873 
1874 /**
1875  * wq_has_sleeper - check if there are any waiting processes
1876  * @wq: struct socket_wq
1877  *
1878  * Returns true if socket_wq has waiting processes
1879  *
1880  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1881  * barrier call. They were added due to the race found within the tcp code.
1882  *
1883  * Consider following tcp code paths:
1884  *
1885  * CPU1                  CPU2
1886  *
1887  * sys_select            receive packet
1888  *   ...                 ...
1889  *   __add_wait_queue    update tp->rcv_nxt
1890  *   ...                 ...
1891  *   tp->rcv_nxt check   sock_def_readable
1892  *   ...                 {
1893  *   schedule               rcu_read_lock();
1894  *                          wq = rcu_dereference(sk->sk_wq);
1895  *                          if (wq && waitqueue_active(&wq->wait))
1896  *                              wake_up_interruptible(&wq->wait)
1897  *                          ...
1898  *                       }
1899  *
1900  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1901  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1902  * could then endup calling schedule and sleep forever if there are no more
1903  * data on the socket.
1904  *
1905  */
wq_has_sleeper(struct socket_wq * wq)1906 static inline bool wq_has_sleeper(struct socket_wq *wq)
1907 {
1908 	/* We need to be sure we are in sync with the
1909 	 * add_wait_queue modifications to the wait queue.
1910 	 *
1911 	 * This memory barrier is paired in the sock_poll_wait.
1912 	 */
1913 	smp_mb();
1914 	return wq && waitqueue_active(&wq->wait);
1915 }
1916 
1917 /**
1918  * sock_poll_wait - place memory barrier behind the poll_wait call.
1919  * @filp:           file
1920  * @wait_address:   socket wait queue
1921  * @p:              poll_table
1922  *
1923  * See the comments in the wq_has_sleeper function.
1924  */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)1925 static inline void sock_poll_wait(struct file *filp,
1926 		wait_queue_head_t *wait_address, poll_table *p)
1927 {
1928 	if (!poll_does_not_wait(p) && wait_address) {
1929 		poll_wait(filp, wait_address, p);
1930 		/* We need to be sure we are in sync with the
1931 		 * socket flags modification.
1932 		 *
1933 		 * This memory barrier is paired in the wq_has_sleeper.
1934 		 */
1935 		smp_mb();
1936 	}
1937 }
1938 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)1939 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1940 {
1941 	if (sk->sk_txhash) {
1942 		skb->l4_hash = 1;
1943 		skb->hash = sk->sk_txhash;
1944 	}
1945 }
1946 
1947 /*
1948  *	Queue a received datagram if it will fit. Stream and sequenced
1949  *	protocols can't normally use this as they need to fit buffers in
1950  *	and play with them.
1951  *
1952  *	Inlined as it's very short and called for pretty much every
1953  *	packet ever received.
1954  */
1955 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1956 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1957 {
1958 	skb_orphan(skb);
1959 	skb->sk = sk;
1960 	skb->destructor = sock_wfree;
1961 	skb_set_hash_from_sk(skb, sk);
1962 	/*
1963 	 * We used to take a refcount on sk, but following operation
1964 	 * is enough to guarantee sk_free() wont free this sock until
1965 	 * all in-flight packets are completed
1966 	 */
1967 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1968 }
1969 
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)1970 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1971 {
1972 	skb_orphan(skb);
1973 	skb->sk = sk;
1974 	skb->destructor = sock_rfree;
1975 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1976 	sk_mem_charge(sk, skb->truesize);
1977 }
1978 
1979 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1980 		    unsigned long expires);
1981 
1982 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1983 
1984 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1985 
1986 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1987 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1988 
1989 /*
1990  *	Recover an error report and clear atomically
1991  */
1992 
sock_error(struct sock * sk)1993 static inline int sock_error(struct sock *sk)
1994 {
1995 	int err;
1996 	if (likely(!sk->sk_err))
1997 		return 0;
1998 	err = xchg(&sk->sk_err, 0);
1999 	return -err;
2000 }
2001 
sock_wspace(struct sock * sk)2002 static inline unsigned long sock_wspace(struct sock *sk)
2003 {
2004 	int amt = 0;
2005 
2006 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2007 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2008 		if (amt < 0)
2009 			amt = 0;
2010 	}
2011 	return amt;
2012 }
2013 
sk_wake_async(struct sock * sk,int how,int band)2014 static inline void sk_wake_async(struct sock *sk, int how, int band)
2015 {
2016 	if (sock_flag(sk, SOCK_FASYNC))
2017 		sock_wake_async(sk->sk_socket, how, band);
2018 }
2019 
2020 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2021  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2022  * Note: for send buffers, TCP works better if we can build two skbs at
2023  * minimum.
2024  */
2025 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2026 
2027 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2028 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2029 
sk_stream_moderate_sndbuf(struct sock * sk)2030 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2031 {
2032 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2033 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2034 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2035 	}
2036 }
2037 
2038 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2039 
2040 /**
2041  * sk_page_frag - return an appropriate page_frag
2042  * @sk: socket
2043  *
2044  * If socket allocation mode allows current thread to sleep, it means its
2045  * safe to use the per task page_frag instead of the per socket one.
2046  */
sk_page_frag(struct sock * sk)2047 static inline struct page_frag *sk_page_frag(struct sock *sk)
2048 {
2049 	if (sk->sk_allocation & __GFP_WAIT)
2050 		return &current->task_frag;
2051 
2052 	return &sk->sk_frag;
2053 }
2054 
2055 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2056 
2057 /*
2058  *	Default write policy as shown to user space via poll/select/SIGIO
2059  */
sock_writeable(const struct sock * sk)2060 static inline bool sock_writeable(const struct sock *sk)
2061 {
2062 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2063 }
2064 
gfp_any(void)2065 static inline gfp_t gfp_any(void)
2066 {
2067 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2068 }
2069 
sock_rcvtimeo(const struct sock * sk,bool noblock)2070 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2071 {
2072 	return noblock ? 0 : sk->sk_rcvtimeo;
2073 }
2074 
sock_sndtimeo(const struct sock * sk,bool noblock)2075 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2076 {
2077 	return noblock ? 0 : sk->sk_sndtimeo;
2078 }
2079 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2080 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2081 {
2082 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2083 }
2084 
2085 /* Alas, with timeout socket operations are not restartable.
2086  * Compare this to poll().
2087  */
sock_intr_errno(long timeo)2088 static inline int sock_intr_errno(long timeo)
2089 {
2090 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2091 }
2092 
2093 struct sock_skb_cb {
2094 	u32 dropcount;
2095 };
2096 
2097 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2098  * using skb->cb[] would keep using it directly and utilize its
2099  * alignement guarantee.
2100  */
2101 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2102 			    sizeof(struct sock_skb_cb)))
2103 
2104 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2105 			    SOCK_SKB_CB_OFFSET))
2106 
2107 #define sock_skb_cb_check_size(size) \
2108 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2109 
2110 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2111 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2112 {
2113 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2114 }
2115 
2116 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2117 			   struct sk_buff *skb);
2118 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2119 			     struct sk_buff *skb);
2120 
2121 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2122 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2123 {
2124 	ktime_t kt = skb->tstamp;
2125 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2126 
2127 	/*
2128 	 * generate control messages if
2129 	 * - receive time stamping in software requested
2130 	 * - software time stamp available and wanted
2131 	 * - hardware time stamps available and wanted
2132 	 */
2133 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2134 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2135 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2136 	    (hwtstamps->hwtstamp.tv64 &&
2137 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2138 		__sock_recv_timestamp(msg, sk, skb);
2139 	else
2140 		sk->sk_stamp = kt;
2141 
2142 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2143 		__sock_recv_wifi_status(msg, sk, skb);
2144 }
2145 
2146 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2147 			      struct sk_buff *skb);
2148 
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2149 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2150 					  struct sk_buff *skb)
2151 {
2152 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2153 			   (1UL << SOCK_RCVTSTAMP))
2154 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2155 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2156 
2157 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2158 		__sock_recv_ts_and_drops(msg, sk, skb);
2159 	else
2160 		sk->sk_stamp = skb->tstamp;
2161 }
2162 
2163 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2164 
2165 /**
2166  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2167  * @sk:		socket sending this packet
2168  * @tx_flags:	completed with instructions for time stamping
2169  *
2170  * Note : callers should take care of initial *tx_flags value (usually 0)
2171  */
sock_tx_timestamp(const struct sock * sk,__u8 * tx_flags)2172 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2173 {
2174 	if (unlikely(sk->sk_tsflags))
2175 		__sock_tx_timestamp(sk, tx_flags);
2176 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2177 		*tx_flags |= SKBTX_WIFI_STATUS;
2178 }
2179 
2180 /**
2181  * sk_eat_skb - Release a skb if it is no longer needed
2182  * @sk: socket to eat this skb from
2183  * @skb: socket buffer to eat
2184  *
2185  * This routine must be called with interrupts disabled or with the socket
2186  * locked so that the sk_buff queue operation is ok.
2187 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2188 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2189 {
2190 	__skb_unlink(skb, &sk->sk_receive_queue);
2191 	__kfree_skb(skb);
2192 }
2193 
2194 static inline
sock_net(const struct sock * sk)2195 struct net *sock_net(const struct sock *sk)
2196 {
2197 	return read_pnet(&sk->sk_net);
2198 }
2199 
2200 static inline
sock_net_set(struct sock * sk,struct net * net)2201 void sock_net_set(struct sock *sk, struct net *net)
2202 {
2203 	write_pnet(&sk->sk_net, net);
2204 }
2205 
2206 /*
2207  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2208  * They should not hold a reference to a namespace in order to allow
2209  * to stop it.
2210  * Sockets after sk_change_net should be released using sk_release_kernel
2211  */
sk_change_net(struct sock * sk,struct net * net)2212 static inline void sk_change_net(struct sock *sk, struct net *net)
2213 {
2214 	struct net *current_net = sock_net(sk);
2215 
2216 	if (!net_eq(current_net, net)) {
2217 		put_net(current_net);
2218 		sock_net_set(sk, net);
2219 	}
2220 }
2221 
skb_steal_sock(struct sk_buff * skb)2222 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2223 {
2224 	if (skb->sk) {
2225 		struct sock *sk = skb->sk;
2226 
2227 		skb->destructor = NULL;
2228 		skb->sk = NULL;
2229 		return sk;
2230 	}
2231 	return NULL;
2232 }
2233 
2234 /* This helper checks if a socket is a full socket,
2235  * ie _not_ a timewait or request socket.
2236  */
sk_fullsock(const struct sock * sk)2237 static inline bool sk_fullsock(const struct sock *sk)
2238 {
2239 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2240 }
2241 
2242 void sock_enable_timestamp(struct sock *sk, int flag);
2243 int sock_get_timestamp(struct sock *, struct timeval __user *);
2244 int sock_get_timestampns(struct sock *, struct timespec __user *);
2245 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2246 		       int type);
2247 
2248 bool sk_ns_capable(const struct sock *sk,
2249 		   struct user_namespace *user_ns, int cap);
2250 bool sk_capable(const struct sock *sk, int cap);
2251 bool sk_net_capable(const struct sock *sk, int cap);
2252 
2253 extern __u32 sysctl_wmem_max;
2254 extern __u32 sysctl_rmem_max;
2255 
2256 extern int sysctl_tstamp_allow_data;
2257 extern int sysctl_optmem_max;
2258 
2259 extern __u32 sysctl_wmem_default;
2260 extern __u32 sysctl_rmem_default;
2261 
2262 #endif	/* _SOCK_H */
2263