1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_keys.h>
38
39 /* A. Checksumming of received packets by device.
40 *
41 * CHECKSUM_NONE:
42 *
43 * Device failed to checksum this packet e.g. due to lack of capabilities.
44 * The packet contains full (though not verified) checksum in packet but
45 * not in skb->csum. Thus, skb->csum is undefined in this case.
46 *
47 * CHECKSUM_UNNECESSARY:
48 *
49 * The hardware you're dealing with doesn't calculate the full checksum
50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
52 * if their checksums are okay. skb->csum is still undefined in this case
53 * though. It is a bad option, but, unfortunately, nowadays most vendors do
54 * this. Apparently with the secret goal to sell you new devices, when you
55 * will add new protocol to your host, f.e. IPv6 8)
56 *
57 * CHECKSUM_UNNECESSARY is applicable to following protocols:
58 * TCP: IPv6 and IPv4.
59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
60 * zero UDP checksum for either IPv4 or IPv6, the networking stack
61 * may perform further validation in this case.
62 * GRE: only if the checksum is present in the header.
63 * SCTP: indicates the CRC in SCTP header has been validated.
64 *
65 * skb->csum_level indicates the number of consecutive checksums found in
66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
68 * and a device is able to verify the checksums for UDP (possibly zero),
69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
70 * two. If the device were only able to verify the UDP checksum and not
71 * GRE, either because it doesn't support GRE checksum of because GRE
72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
73 * not considered in this case).
74 *
75 * CHECKSUM_COMPLETE:
76 *
77 * This is the most generic way. The device supplied checksum of the _whole_
78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
79 * hardware doesn't need to parse L3/L4 headers to implement this.
80 *
81 * Note: Even if device supports only some protocols, but is able to produce
82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
83 *
84 * CHECKSUM_PARTIAL:
85 *
86 * A checksum is set up to be offloaded to a device as described in the
87 * output description for CHECKSUM_PARTIAL. This may occur on a packet
88 * received directly from another Linux OS, e.g., a virtualized Linux kernel
89 * on the same host, or it may be set in the input path in GRO or remote
90 * checksum offload. For the purposes of checksum verification, the checksum
91 * referred to by skb->csum_start + skb->csum_offset and any preceding
92 * checksums in the packet are considered verified. Any checksums in the
93 * packet that are after the checksum being offloaded are not considered to
94 * be verified.
95 *
96 * B. Checksumming on output.
97 *
98 * CHECKSUM_NONE:
99 *
100 * The skb was already checksummed by the protocol, or a checksum is not
101 * required.
102 *
103 * CHECKSUM_PARTIAL:
104 *
105 * The device is required to checksum the packet as seen by hard_start_xmit()
106 * from skb->csum_start up to the end, and to record/write the checksum at
107 * offset skb->csum_start + skb->csum_offset.
108 *
109 * The device must show its capabilities in dev->features, set up at device
110 * setup time, e.g. netdev_features.h:
111 *
112 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
113 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
114 * IPv4. Sigh. Vendors like this way for an unknown reason.
115 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
116 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
117 * NETIF_F_... - Well, you get the picture.
118 *
119 * CHECKSUM_UNNECESSARY:
120 *
121 * Normally, the device will do per protocol specific checksumming. Protocol
122 * implementations that do not want the NIC to perform the checksum
123 * calculation should use this flag in their outgoing skbs.
124 *
125 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
126 * offload. Correspondingly, the FCoE protocol driver
127 * stack should use CHECKSUM_UNNECESSARY.
128 *
129 * Any questions? No questions, good. --ANK
130 */
131
132 /* Don't change this without changing skb_csum_unnecessary! */
133 #define CHECKSUM_NONE 0
134 #define CHECKSUM_UNNECESSARY 1
135 #define CHECKSUM_COMPLETE 2
136 #define CHECKSUM_PARTIAL 3
137
138 /* Maximum value in skb->csum_level */
139 #define SKB_MAX_CSUM_LEVEL 3
140
141 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
142 #define SKB_WITH_OVERHEAD(X) \
143 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
144 #define SKB_MAX_ORDER(X, ORDER) \
145 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
146 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
147 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
148
149 /* return minimum truesize of one skb containing X bytes of data */
150 #define SKB_TRUESIZE(X) ((X) + \
151 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
152 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
153
154 struct net_device;
155 struct scatterlist;
156 struct pipe_inode_info;
157 struct iov_iter;
158 struct napi_struct;
159
160 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
161 struct nf_conntrack {
162 atomic_t use;
163 };
164 #endif
165
166 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
167 struct nf_bridge_info {
168 atomic_t use;
169 enum {
170 BRNF_PROTO_UNCHANGED,
171 BRNF_PROTO_8021Q,
172 BRNF_PROTO_PPPOE
173 } orig_proto;
174 bool pkt_otherhost;
175 unsigned int mask;
176 struct net_device *physindev;
177 struct net_device *physoutdev;
178 char neigh_header[8];
179 __be32 ipv4_daddr;
180 };
181 #endif
182
183 struct sk_buff_head {
184 /* These two members must be first. */
185 struct sk_buff *next;
186 struct sk_buff *prev;
187
188 __u32 qlen;
189 spinlock_t lock;
190 };
191
192 struct sk_buff;
193
194 /* To allow 64K frame to be packed as single skb without frag_list we
195 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
196 * buffers which do not start on a page boundary.
197 *
198 * Since GRO uses frags we allocate at least 16 regardless of page
199 * size.
200 */
201 #if (65536/PAGE_SIZE + 1) < 16
202 #define MAX_SKB_FRAGS 16UL
203 #else
204 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
205 #endif
206 extern int sysctl_max_skb_frags;
207
208 typedef struct skb_frag_struct skb_frag_t;
209
210 struct skb_frag_struct {
211 struct {
212 struct page *p;
213 } page;
214 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
215 __u32 page_offset;
216 __u32 size;
217 #else
218 __u16 page_offset;
219 __u16 size;
220 #endif
221 };
222
skb_frag_size(const skb_frag_t * frag)223 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
224 {
225 return frag->size;
226 }
227
skb_frag_size_set(skb_frag_t * frag,unsigned int size)228 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
229 {
230 frag->size = size;
231 }
232
skb_frag_size_add(skb_frag_t * frag,int delta)233 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
234 {
235 frag->size += delta;
236 }
237
skb_frag_size_sub(skb_frag_t * frag,int delta)238 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
239 {
240 frag->size -= delta;
241 }
242
243 #define HAVE_HW_TIME_STAMP
244
245 /**
246 * struct skb_shared_hwtstamps - hardware time stamps
247 * @hwtstamp: hardware time stamp transformed into duration
248 * since arbitrary point in time
249 *
250 * Software time stamps generated by ktime_get_real() are stored in
251 * skb->tstamp.
252 *
253 * hwtstamps can only be compared against other hwtstamps from
254 * the same device.
255 *
256 * This structure is attached to packets as part of the
257 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
258 */
259 struct skb_shared_hwtstamps {
260 ktime_t hwtstamp;
261 };
262
263 /* Definitions for tx_flags in struct skb_shared_info */
264 enum {
265 /* generate hardware time stamp */
266 SKBTX_HW_TSTAMP = 1 << 0,
267
268 /* generate software time stamp when queueing packet to NIC */
269 SKBTX_SW_TSTAMP = 1 << 1,
270
271 /* device driver is going to provide hardware time stamp */
272 SKBTX_IN_PROGRESS = 1 << 2,
273
274 /* device driver supports TX zero-copy buffers */
275 SKBTX_DEV_ZEROCOPY = 1 << 3,
276
277 /* generate wifi status information (where possible) */
278 SKBTX_WIFI_STATUS = 1 << 4,
279
280 /* This indicates at least one fragment might be overwritten
281 * (as in vmsplice(), sendfile() ...)
282 * If we need to compute a TX checksum, we'll need to copy
283 * all frags to avoid possible bad checksum
284 */
285 SKBTX_SHARED_FRAG = 1 << 5,
286
287 /* generate software time stamp when entering packet scheduling */
288 SKBTX_SCHED_TSTAMP = 1 << 6,
289
290 /* generate software timestamp on peer data acknowledgment */
291 SKBTX_ACK_TSTAMP = 1 << 7,
292 };
293
294 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
295 SKBTX_SCHED_TSTAMP | \
296 SKBTX_ACK_TSTAMP)
297 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
298
299 /*
300 * The callback notifies userspace to release buffers when skb DMA is done in
301 * lower device, the skb last reference should be 0 when calling this.
302 * The zerocopy_success argument is true if zero copy transmit occurred,
303 * false on data copy or out of memory error caused by data copy attempt.
304 * The ctx field is used to track device context.
305 * The desc field is used to track userspace buffer index.
306 */
307 struct ubuf_info {
308 void (*callback)(struct ubuf_info *, bool zerocopy_success);
309 void *ctx;
310 unsigned long desc;
311 };
312
313 /* This data is invariant across clones and lives at
314 * the end of the header data, ie. at skb->end.
315 */
316 struct skb_shared_info {
317 unsigned char nr_frags;
318 __u8 tx_flags;
319 unsigned short gso_size;
320 /* Warning: this field is not always filled in (UFO)! */
321 unsigned short gso_segs;
322 unsigned short gso_type;
323 struct sk_buff *frag_list;
324 struct skb_shared_hwtstamps hwtstamps;
325 u32 tskey;
326 __be32 ip6_frag_id;
327
328 /*
329 * Warning : all fields before dataref are cleared in __alloc_skb()
330 */
331 atomic_t dataref;
332
333 /* Intermediate layers must ensure that destructor_arg
334 * remains valid until skb destructor */
335 void * destructor_arg;
336
337 /* must be last field, see pskb_expand_head() */
338 skb_frag_t frags[MAX_SKB_FRAGS];
339 };
340
341 /* We divide dataref into two halves. The higher 16 bits hold references
342 * to the payload part of skb->data. The lower 16 bits hold references to
343 * the entire skb->data. A clone of a headerless skb holds the length of
344 * the header in skb->hdr_len.
345 *
346 * All users must obey the rule that the skb->data reference count must be
347 * greater than or equal to the payload reference count.
348 *
349 * Holding a reference to the payload part means that the user does not
350 * care about modifications to the header part of skb->data.
351 */
352 #define SKB_DATAREF_SHIFT 16
353 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
354
355
356 enum {
357 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
358 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
359 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
360 };
361
362 enum {
363 SKB_GSO_TCPV4 = 1 << 0,
364 SKB_GSO_UDP = 1 << 1,
365
366 /* This indicates the skb is from an untrusted source. */
367 SKB_GSO_DODGY = 1 << 2,
368
369 /* This indicates the tcp segment has CWR set. */
370 SKB_GSO_TCP_ECN = 1 << 3,
371
372 SKB_GSO_TCPV6 = 1 << 4,
373
374 SKB_GSO_FCOE = 1 << 5,
375
376 SKB_GSO_GRE = 1 << 6,
377
378 SKB_GSO_GRE_CSUM = 1 << 7,
379
380 SKB_GSO_IPIP = 1 << 8,
381
382 SKB_GSO_SIT = 1 << 9,
383
384 SKB_GSO_UDP_TUNNEL = 1 << 10,
385
386 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
387
388 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
389 };
390
391 #if BITS_PER_LONG > 32
392 #define NET_SKBUFF_DATA_USES_OFFSET 1
393 #endif
394
395 #ifdef NET_SKBUFF_DATA_USES_OFFSET
396 typedef unsigned int sk_buff_data_t;
397 #else
398 typedef unsigned char *sk_buff_data_t;
399 #endif
400
401 /**
402 * struct skb_mstamp - multi resolution time stamps
403 * @stamp_us: timestamp in us resolution
404 * @stamp_jiffies: timestamp in jiffies
405 */
406 struct skb_mstamp {
407 union {
408 u64 v64;
409 struct {
410 u32 stamp_us;
411 u32 stamp_jiffies;
412 };
413 };
414 };
415
416 /**
417 * skb_mstamp_get - get current timestamp
418 * @cl: place to store timestamps
419 */
skb_mstamp_get(struct skb_mstamp * cl)420 static inline void skb_mstamp_get(struct skb_mstamp *cl)
421 {
422 u64 val = local_clock();
423
424 do_div(val, NSEC_PER_USEC);
425 cl->stamp_us = (u32)val;
426 cl->stamp_jiffies = (u32)jiffies;
427 }
428
429 /**
430 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
431 * @t1: pointer to newest sample
432 * @t0: pointer to oldest sample
433 */
skb_mstamp_us_delta(const struct skb_mstamp * t1,const struct skb_mstamp * t0)434 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
435 const struct skb_mstamp *t0)
436 {
437 s32 delta_us = t1->stamp_us - t0->stamp_us;
438 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
439
440 /* If delta_us is negative, this might be because interval is too big,
441 * or local_clock() drift is too big : fallback using jiffies.
442 */
443 if (delta_us <= 0 ||
444 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
445
446 delta_us = jiffies_to_usecs(delta_jiffies);
447
448 return delta_us;
449 }
450
451
452 /**
453 * struct sk_buff - socket buffer
454 * @next: Next buffer in list
455 * @prev: Previous buffer in list
456 * @tstamp: Time we arrived/left
457 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
458 * @sk: Socket we are owned by
459 * @dev: Device we arrived on/are leaving by
460 * @cb: Control buffer. Free for use by every layer. Put private vars here
461 * @_skb_refdst: destination entry (with norefcount bit)
462 * @sp: the security path, used for xfrm
463 * @len: Length of actual data
464 * @data_len: Data length
465 * @mac_len: Length of link layer header
466 * @hdr_len: writable header length of cloned skb
467 * @csum: Checksum (must include start/offset pair)
468 * @csum_start: Offset from skb->head where checksumming should start
469 * @csum_offset: Offset from csum_start where checksum should be stored
470 * @priority: Packet queueing priority
471 * @ignore_df: allow local fragmentation
472 * @cloned: Head may be cloned (check refcnt to be sure)
473 * @ip_summed: Driver fed us an IP checksum
474 * @nohdr: Payload reference only, must not modify header
475 * @nfctinfo: Relationship of this skb to the connection
476 * @pkt_type: Packet class
477 * @fclone: skbuff clone status
478 * @ipvs_property: skbuff is owned by ipvs
479 * @peeked: this packet has been seen already, so stats have been
480 * done for it, don't do them again
481 * @nf_trace: netfilter packet trace flag
482 * @protocol: Packet protocol from driver
483 * @destructor: Destruct function
484 * @nfct: Associated connection, if any
485 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
486 * @skb_iif: ifindex of device we arrived on
487 * @tc_index: Traffic control index
488 * @tc_verd: traffic control verdict
489 * @hash: the packet hash
490 * @queue_mapping: Queue mapping for multiqueue devices
491 * @xmit_more: More SKBs are pending for this queue
492 * @ndisc_nodetype: router type (from link layer)
493 * @ooo_okay: allow the mapping of a socket to a queue to be changed
494 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
495 * ports.
496 * @sw_hash: indicates hash was computed in software stack
497 * @wifi_acked_valid: wifi_acked was set
498 * @wifi_acked: whether frame was acked on wifi or not
499 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
500 * @napi_id: id of the NAPI struct this skb came from
501 * @secmark: security marking
502 * @mark: Generic packet mark
503 * @vlan_proto: vlan encapsulation protocol
504 * @vlan_tci: vlan tag control information
505 * @inner_protocol: Protocol (encapsulation)
506 * @inner_transport_header: Inner transport layer header (encapsulation)
507 * @inner_network_header: Network layer header (encapsulation)
508 * @inner_mac_header: Link layer header (encapsulation)
509 * @transport_header: Transport layer header
510 * @network_header: Network layer header
511 * @mac_header: Link layer header
512 * @tail: Tail pointer
513 * @end: End pointer
514 * @head: Head of buffer
515 * @data: Data head pointer
516 * @truesize: Buffer size
517 * @users: User count - see {datagram,tcp}.c
518 */
519
520 struct sk_buff {
521 union {
522 struct {
523 /* These two members must be first. */
524 struct sk_buff *next;
525 struct sk_buff *prev;
526
527 union {
528 ktime_t tstamp;
529 struct skb_mstamp skb_mstamp;
530 };
531 };
532 struct rb_node rbnode; /* used in netem & tcp stack */
533 };
534 struct sock *sk;
535 struct net_device *dev;
536
537 /*
538 * This is the control buffer. It is free to use for every
539 * layer. Please put your private variables there. If you
540 * want to keep them across layers you have to do a skb_clone()
541 * first. This is owned by whoever has the skb queued ATM.
542 */
543 char cb[48] __aligned(8);
544
545 unsigned long _skb_refdst;
546 void (*destructor)(struct sk_buff *skb);
547 #ifdef CONFIG_XFRM
548 struct sec_path *sp;
549 #endif
550 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
551 struct nf_conntrack *nfct;
552 #endif
553 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
554 struct nf_bridge_info *nf_bridge;
555 #endif
556 unsigned int len,
557 data_len;
558 __u16 mac_len,
559 hdr_len;
560
561 /* Following fields are _not_ copied in __copy_skb_header()
562 * Note that queue_mapping is here mostly to fill a hole.
563 */
564 kmemcheck_bitfield_begin(flags1);
565 __u16 queue_mapping;
566 __u8 cloned:1,
567 nohdr:1,
568 fclone:2,
569 peeked:1,
570 head_frag:1,
571 xmit_more:1;
572 /* one bit hole */
573 kmemcheck_bitfield_end(flags1);
574
575 /* fields enclosed in headers_start/headers_end are copied
576 * using a single memcpy() in __copy_skb_header()
577 */
578 /* private: */
579 __u32 headers_start[0];
580 /* public: */
581
582 /* if you move pkt_type around you also must adapt those constants */
583 #ifdef __BIG_ENDIAN_BITFIELD
584 #define PKT_TYPE_MAX (7 << 5)
585 #else
586 #define PKT_TYPE_MAX 7
587 #endif
588 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
589
590 __u8 __pkt_type_offset[0];
591 __u8 pkt_type:3;
592 __u8 pfmemalloc:1;
593 __u8 ignore_df:1;
594 __u8 nfctinfo:3;
595
596 __u8 nf_trace:1;
597 __u8 ip_summed:2;
598 __u8 ooo_okay:1;
599 __u8 l4_hash:1;
600 __u8 sw_hash:1;
601 __u8 wifi_acked_valid:1;
602 __u8 wifi_acked:1;
603
604 __u8 no_fcs:1;
605 /* Indicates the inner headers are valid in the skbuff. */
606 __u8 encapsulation:1;
607 __u8 encap_hdr_csum:1;
608 __u8 csum_valid:1;
609 __u8 csum_complete_sw:1;
610 __u8 csum_level:2;
611 __u8 csum_bad:1;
612
613 #ifdef CONFIG_IPV6_NDISC_NODETYPE
614 __u8 ndisc_nodetype:2;
615 #endif
616 __u8 ipvs_property:1;
617 __u8 inner_protocol_type:1;
618 __u8 remcsum_offload:1;
619 /* 3 or 5 bit hole */
620
621 #ifdef CONFIG_NET_SCHED
622 __u16 tc_index; /* traffic control index */
623 #ifdef CONFIG_NET_CLS_ACT
624 __u16 tc_verd; /* traffic control verdict */
625 #endif
626 #endif
627
628 union {
629 __wsum csum;
630 struct {
631 __u16 csum_start;
632 __u16 csum_offset;
633 };
634 };
635 __u32 priority;
636 int skb_iif;
637 __u32 hash;
638 __be16 vlan_proto;
639 __u16 vlan_tci;
640 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
641 union {
642 unsigned int napi_id;
643 unsigned int sender_cpu;
644 };
645 #endif
646 #ifdef CONFIG_NETWORK_SECMARK
647 __u32 secmark;
648 #endif
649 union {
650 __u32 mark;
651 __u32 reserved_tailroom;
652 };
653
654 union {
655 __be16 inner_protocol;
656 __u8 inner_ipproto;
657 };
658
659 __u16 inner_transport_header;
660 __u16 inner_network_header;
661 __u16 inner_mac_header;
662
663 __be16 protocol;
664 __u16 transport_header;
665 __u16 network_header;
666 __u16 mac_header;
667
668 /* private: */
669 __u32 headers_end[0];
670 /* public: */
671
672 /* These elements must be at the end, see alloc_skb() for details. */
673 sk_buff_data_t tail;
674 sk_buff_data_t end;
675 unsigned char *head,
676 *data;
677 unsigned int truesize;
678 atomic_t users;
679 };
680
681 #ifdef __KERNEL__
682 /*
683 * Handling routines are only of interest to the kernel
684 */
685 #include <linux/slab.h>
686
687
688 #define SKB_ALLOC_FCLONE 0x01
689 #define SKB_ALLOC_RX 0x02
690 #define SKB_ALLOC_NAPI 0x04
691
692 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
skb_pfmemalloc(const struct sk_buff * skb)693 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
694 {
695 return unlikely(skb->pfmemalloc);
696 }
697
698 /*
699 * skb might have a dst pointer attached, refcounted or not.
700 * _skb_refdst low order bit is set if refcount was _not_ taken
701 */
702 #define SKB_DST_NOREF 1UL
703 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
704
705 /**
706 * skb_dst - returns skb dst_entry
707 * @skb: buffer
708 *
709 * Returns skb dst_entry, regardless of reference taken or not.
710 */
skb_dst(const struct sk_buff * skb)711 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
712 {
713 /* If refdst was not refcounted, check we still are in a
714 * rcu_read_lock section
715 */
716 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
717 !rcu_read_lock_held() &&
718 !rcu_read_lock_bh_held());
719 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
720 }
721
722 /**
723 * skb_dst_set - sets skb dst
724 * @skb: buffer
725 * @dst: dst entry
726 *
727 * Sets skb dst, assuming a reference was taken on dst and should
728 * be released by skb_dst_drop()
729 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)730 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
731 {
732 skb->_skb_refdst = (unsigned long)dst;
733 }
734
735 /**
736 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
737 * @skb: buffer
738 * @dst: dst entry
739 *
740 * Sets skb dst, assuming a reference was not taken on dst.
741 * If dst entry is cached, we do not take reference and dst_release
742 * will be avoided by refdst_drop. If dst entry is not cached, we take
743 * reference, so that last dst_release can destroy the dst immediately.
744 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)745 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
746 {
747 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
748 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
749 }
750
751 /**
752 * skb_dst_is_noref - Test if skb dst isn't refcounted
753 * @skb: buffer
754 */
skb_dst_is_noref(const struct sk_buff * skb)755 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
756 {
757 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
758 }
759
skb_rtable(const struct sk_buff * skb)760 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
761 {
762 return (struct rtable *)skb_dst(skb);
763 }
764
765 void kfree_skb(struct sk_buff *skb);
766 void kfree_skb_list(struct sk_buff *segs);
767 void skb_tx_error(struct sk_buff *skb);
768 void consume_skb(struct sk_buff *skb);
769 void __kfree_skb(struct sk_buff *skb);
770 extern struct kmem_cache *skbuff_head_cache;
771
772 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
773 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
774 bool *fragstolen, int *delta_truesize);
775
776 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
777 int node);
778 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
779 struct sk_buff *build_skb(void *data, unsigned int frag_size);
alloc_skb(unsigned int size,gfp_t priority)780 static inline struct sk_buff *alloc_skb(unsigned int size,
781 gfp_t priority)
782 {
783 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
784 }
785
786 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
787 unsigned long data_len,
788 int max_page_order,
789 int *errcode,
790 gfp_t gfp_mask);
791
792 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
793 struct sk_buff_fclones {
794 struct sk_buff skb1;
795
796 struct sk_buff skb2;
797
798 atomic_t fclone_ref;
799 };
800
801 /**
802 * skb_fclone_busy - check if fclone is busy
803 * @skb: buffer
804 *
805 * Returns true is skb is a fast clone, and its clone is not freed.
806 * Some drivers call skb_orphan() in their ndo_start_xmit(),
807 * so we also check that this didnt happen.
808 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)809 static inline bool skb_fclone_busy(const struct sock *sk,
810 const struct sk_buff *skb)
811 {
812 const struct sk_buff_fclones *fclones;
813
814 fclones = container_of(skb, struct sk_buff_fclones, skb1);
815
816 return skb->fclone == SKB_FCLONE_ORIG &&
817 atomic_read(&fclones->fclone_ref) > 1 &&
818 fclones->skb2.sk == sk;
819 }
820
alloc_skb_fclone(unsigned int size,gfp_t priority)821 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
822 gfp_t priority)
823 {
824 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
825 }
826
827 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
alloc_skb_head(gfp_t priority)828 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
829 {
830 return __alloc_skb_head(priority, -1);
831 }
832
833 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
834 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
835 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
836 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
837 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
838 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)839 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
840 gfp_t gfp_mask)
841 {
842 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
843 }
844
845 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
846 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
847 unsigned int headroom);
848 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
849 int newtailroom, gfp_t priority);
850 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
851 int offset, int len);
852 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
853 int len);
854 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
855 int skb_pad(struct sk_buff *skb, int pad);
856 #define dev_kfree_skb(a) consume_skb(a)
857
858 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
859 int getfrag(void *from, char *to, int offset,
860 int len, int odd, struct sk_buff *skb),
861 void *from, int length);
862
863 struct skb_seq_state {
864 __u32 lower_offset;
865 __u32 upper_offset;
866 __u32 frag_idx;
867 __u32 stepped_offset;
868 struct sk_buff *root_skb;
869 struct sk_buff *cur_skb;
870 __u8 *frag_data;
871 };
872
873 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
874 unsigned int to, struct skb_seq_state *st);
875 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
876 struct skb_seq_state *st);
877 void skb_abort_seq_read(struct skb_seq_state *st);
878
879 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
880 unsigned int to, struct ts_config *config);
881
882 /*
883 * Packet hash types specify the type of hash in skb_set_hash.
884 *
885 * Hash types refer to the protocol layer addresses which are used to
886 * construct a packet's hash. The hashes are used to differentiate or identify
887 * flows of the protocol layer for the hash type. Hash types are either
888 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
889 *
890 * Properties of hashes:
891 *
892 * 1) Two packets in different flows have different hash values
893 * 2) Two packets in the same flow should have the same hash value
894 *
895 * A hash at a higher layer is considered to be more specific. A driver should
896 * set the most specific hash possible.
897 *
898 * A driver cannot indicate a more specific hash than the layer at which a hash
899 * was computed. For instance an L3 hash cannot be set as an L4 hash.
900 *
901 * A driver may indicate a hash level which is less specific than the
902 * actual layer the hash was computed on. For instance, a hash computed
903 * at L4 may be considered an L3 hash. This should only be done if the
904 * driver can't unambiguously determine that the HW computed the hash at
905 * the higher layer. Note that the "should" in the second property above
906 * permits this.
907 */
908 enum pkt_hash_types {
909 PKT_HASH_TYPE_NONE, /* Undefined type */
910 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
911 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
912 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
913 };
914
915 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)916 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
917 {
918 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
919 skb->sw_hash = 0;
920 skb->hash = hash;
921 }
922
923 void __skb_get_hash(struct sk_buff *skb);
skb_get_hash(struct sk_buff * skb)924 static inline __u32 skb_get_hash(struct sk_buff *skb)
925 {
926 if (!skb->l4_hash && !skb->sw_hash)
927 __skb_get_hash(skb);
928
929 return skb->hash;
930 }
931
skb_get_hash_raw(const struct sk_buff * skb)932 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
933 {
934 return skb->hash;
935 }
936
skb_clear_hash(struct sk_buff * skb)937 static inline void skb_clear_hash(struct sk_buff *skb)
938 {
939 skb->hash = 0;
940 skb->sw_hash = 0;
941 skb->l4_hash = 0;
942 }
943
skb_clear_hash_if_not_l4(struct sk_buff * skb)944 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
945 {
946 if (!skb->l4_hash)
947 skb_clear_hash(skb);
948 }
949
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)950 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
951 {
952 to->hash = from->hash;
953 to->sw_hash = from->sw_hash;
954 to->l4_hash = from->l4_hash;
955 };
956
skb_sender_cpu_clear(struct sk_buff * skb)957 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
958 {
959 #ifdef CONFIG_XPS
960 skb->sender_cpu = 0;
961 #endif
962 }
963
964 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)965 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
966 {
967 return skb->head + skb->end;
968 }
969
skb_end_offset(const struct sk_buff * skb)970 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
971 {
972 return skb->end;
973 }
974 #else
skb_end_pointer(const struct sk_buff * skb)975 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
976 {
977 return skb->end;
978 }
979
skb_end_offset(const struct sk_buff * skb)980 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
981 {
982 return skb->end - skb->head;
983 }
984 #endif
985
986 /* Internal */
987 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
988
skb_hwtstamps(struct sk_buff * skb)989 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
990 {
991 return &skb_shinfo(skb)->hwtstamps;
992 }
993
994 /**
995 * skb_queue_empty - check if a queue is empty
996 * @list: queue head
997 *
998 * Returns true if the queue is empty, false otherwise.
999 */
skb_queue_empty(const struct sk_buff_head * list)1000 static inline int skb_queue_empty(const struct sk_buff_head *list)
1001 {
1002 return list->next == (const struct sk_buff *) list;
1003 }
1004
1005 /**
1006 * skb_queue_is_last - check if skb is the last entry in the queue
1007 * @list: queue head
1008 * @skb: buffer
1009 *
1010 * Returns true if @skb is the last buffer on the list.
1011 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1012 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1013 const struct sk_buff *skb)
1014 {
1015 return skb->next == (const struct sk_buff *) list;
1016 }
1017
1018 /**
1019 * skb_queue_is_first - check if skb is the first entry in the queue
1020 * @list: queue head
1021 * @skb: buffer
1022 *
1023 * Returns true if @skb is the first buffer on the list.
1024 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1025 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1026 const struct sk_buff *skb)
1027 {
1028 return skb->prev == (const struct sk_buff *) list;
1029 }
1030
1031 /**
1032 * skb_queue_next - return the next packet in the queue
1033 * @list: queue head
1034 * @skb: current buffer
1035 *
1036 * Return the next packet in @list after @skb. It is only valid to
1037 * call this if skb_queue_is_last() evaluates to false.
1038 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1039 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1040 const struct sk_buff *skb)
1041 {
1042 /* This BUG_ON may seem severe, but if we just return then we
1043 * are going to dereference garbage.
1044 */
1045 BUG_ON(skb_queue_is_last(list, skb));
1046 return skb->next;
1047 }
1048
1049 /**
1050 * skb_queue_prev - return the prev packet in the queue
1051 * @list: queue head
1052 * @skb: current buffer
1053 *
1054 * Return the prev packet in @list before @skb. It is only valid to
1055 * call this if skb_queue_is_first() evaluates to false.
1056 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1057 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1058 const struct sk_buff *skb)
1059 {
1060 /* This BUG_ON may seem severe, but if we just return then we
1061 * are going to dereference garbage.
1062 */
1063 BUG_ON(skb_queue_is_first(list, skb));
1064 return skb->prev;
1065 }
1066
1067 /**
1068 * skb_get - reference buffer
1069 * @skb: buffer to reference
1070 *
1071 * Makes another reference to a socket buffer and returns a pointer
1072 * to the buffer.
1073 */
skb_get(struct sk_buff * skb)1074 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1075 {
1076 atomic_inc(&skb->users);
1077 return skb;
1078 }
1079
1080 /*
1081 * If users == 1, we are the only owner and are can avoid redundant
1082 * atomic change.
1083 */
1084
1085 /**
1086 * skb_cloned - is the buffer a clone
1087 * @skb: buffer to check
1088 *
1089 * Returns true if the buffer was generated with skb_clone() and is
1090 * one of multiple shared copies of the buffer. Cloned buffers are
1091 * shared data so must not be written to under normal circumstances.
1092 */
skb_cloned(const struct sk_buff * skb)1093 static inline int skb_cloned(const struct sk_buff *skb)
1094 {
1095 return skb->cloned &&
1096 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1097 }
1098
skb_unclone(struct sk_buff * skb,gfp_t pri)1099 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1100 {
1101 might_sleep_if(pri & __GFP_WAIT);
1102
1103 if (skb_cloned(skb))
1104 return pskb_expand_head(skb, 0, 0, pri);
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * skb_header_cloned - is the header a clone
1111 * @skb: buffer to check
1112 *
1113 * Returns true if modifying the header part of the buffer requires
1114 * the data to be copied.
1115 */
skb_header_cloned(const struct sk_buff * skb)1116 static inline int skb_header_cloned(const struct sk_buff *skb)
1117 {
1118 int dataref;
1119
1120 if (!skb->cloned)
1121 return 0;
1122
1123 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1124 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1125 return dataref != 1;
1126 }
1127
1128 /**
1129 * skb_header_release - release reference to header
1130 * @skb: buffer to operate on
1131 *
1132 * Drop a reference to the header part of the buffer. This is done
1133 * by acquiring a payload reference. You must not read from the header
1134 * part of skb->data after this.
1135 * Note : Check if you can use __skb_header_release() instead.
1136 */
skb_header_release(struct sk_buff * skb)1137 static inline void skb_header_release(struct sk_buff *skb)
1138 {
1139 BUG_ON(skb->nohdr);
1140 skb->nohdr = 1;
1141 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1142 }
1143
1144 /**
1145 * __skb_header_release - release reference to header
1146 * @skb: buffer to operate on
1147 *
1148 * Variant of skb_header_release() assuming skb is private to caller.
1149 * We can avoid one atomic operation.
1150 */
__skb_header_release(struct sk_buff * skb)1151 static inline void __skb_header_release(struct sk_buff *skb)
1152 {
1153 skb->nohdr = 1;
1154 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1155 }
1156
1157
1158 /**
1159 * skb_shared - is the buffer shared
1160 * @skb: buffer to check
1161 *
1162 * Returns true if more than one person has a reference to this
1163 * buffer.
1164 */
skb_shared(const struct sk_buff * skb)1165 static inline int skb_shared(const struct sk_buff *skb)
1166 {
1167 return atomic_read(&skb->users) != 1;
1168 }
1169
1170 /**
1171 * skb_share_check - check if buffer is shared and if so clone it
1172 * @skb: buffer to check
1173 * @pri: priority for memory allocation
1174 *
1175 * If the buffer is shared the buffer is cloned and the old copy
1176 * drops a reference. A new clone with a single reference is returned.
1177 * If the buffer is not shared the original buffer is returned. When
1178 * being called from interrupt status or with spinlocks held pri must
1179 * be GFP_ATOMIC.
1180 *
1181 * NULL is returned on a memory allocation failure.
1182 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1183 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1184 {
1185 might_sleep_if(pri & __GFP_WAIT);
1186 if (skb_shared(skb)) {
1187 struct sk_buff *nskb = skb_clone(skb, pri);
1188
1189 if (likely(nskb))
1190 consume_skb(skb);
1191 else
1192 kfree_skb(skb);
1193 skb = nskb;
1194 }
1195 return skb;
1196 }
1197
1198 /*
1199 * Copy shared buffers into a new sk_buff. We effectively do COW on
1200 * packets to handle cases where we have a local reader and forward
1201 * and a couple of other messy ones. The normal one is tcpdumping
1202 * a packet thats being forwarded.
1203 */
1204
1205 /**
1206 * skb_unshare - make a copy of a shared buffer
1207 * @skb: buffer to check
1208 * @pri: priority for memory allocation
1209 *
1210 * If the socket buffer is a clone then this function creates a new
1211 * copy of the data, drops a reference count on the old copy and returns
1212 * the new copy with the reference count at 1. If the buffer is not a clone
1213 * the original buffer is returned. When called with a spinlock held or
1214 * from interrupt state @pri must be %GFP_ATOMIC
1215 *
1216 * %NULL is returned on a memory allocation failure.
1217 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1218 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1219 gfp_t pri)
1220 {
1221 might_sleep_if(pri & __GFP_WAIT);
1222 if (skb_cloned(skb)) {
1223 struct sk_buff *nskb = skb_copy(skb, pri);
1224
1225 /* Free our shared copy */
1226 if (likely(nskb))
1227 consume_skb(skb);
1228 else
1229 kfree_skb(skb);
1230 skb = nskb;
1231 }
1232 return skb;
1233 }
1234
1235 /**
1236 * skb_peek - peek at the head of an &sk_buff_head
1237 * @list_: list to peek at
1238 *
1239 * Peek an &sk_buff. Unlike most other operations you _MUST_
1240 * be careful with this one. A peek leaves the buffer on the
1241 * list and someone else may run off with it. You must hold
1242 * the appropriate locks or have a private queue to do this.
1243 *
1244 * Returns %NULL for an empty list or a pointer to the head element.
1245 * The reference count is not incremented and the reference is therefore
1246 * volatile. Use with caution.
1247 */
skb_peek(const struct sk_buff_head * list_)1248 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1249 {
1250 struct sk_buff *skb = list_->next;
1251
1252 if (skb == (struct sk_buff *)list_)
1253 skb = NULL;
1254 return skb;
1255 }
1256
1257 /**
1258 * skb_peek_next - peek skb following the given one from a queue
1259 * @skb: skb to start from
1260 * @list_: list to peek at
1261 *
1262 * Returns %NULL when the end of the list is met or a pointer to the
1263 * next element. The reference count is not incremented and the
1264 * reference is therefore volatile. Use with caution.
1265 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1266 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1267 const struct sk_buff_head *list_)
1268 {
1269 struct sk_buff *next = skb->next;
1270
1271 if (next == (struct sk_buff *)list_)
1272 next = NULL;
1273 return next;
1274 }
1275
1276 /**
1277 * skb_peek_tail - peek at the tail of an &sk_buff_head
1278 * @list_: list to peek at
1279 *
1280 * Peek an &sk_buff. Unlike most other operations you _MUST_
1281 * be careful with this one. A peek leaves the buffer on the
1282 * list and someone else may run off with it. You must hold
1283 * the appropriate locks or have a private queue to do this.
1284 *
1285 * Returns %NULL for an empty list or a pointer to the tail element.
1286 * The reference count is not incremented and the reference is therefore
1287 * volatile. Use with caution.
1288 */
skb_peek_tail(const struct sk_buff_head * list_)1289 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1290 {
1291 struct sk_buff *skb = list_->prev;
1292
1293 if (skb == (struct sk_buff *)list_)
1294 skb = NULL;
1295 return skb;
1296
1297 }
1298
1299 /**
1300 * skb_queue_len - get queue length
1301 * @list_: list to measure
1302 *
1303 * Return the length of an &sk_buff queue.
1304 */
skb_queue_len(const struct sk_buff_head * list_)1305 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1306 {
1307 return list_->qlen;
1308 }
1309
1310 /**
1311 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1312 * @list: queue to initialize
1313 *
1314 * This initializes only the list and queue length aspects of
1315 * an sk_buff_head object. This allows to initialize the list
1316 * aspects of an sk_buff_head without reinitializing things like
1317 * the spinlock. It can also be used for on-stack sk_buff_head
1318 * objects where the spinlock is known to not be used.
1319 */
__skb_queue_head_init(struct sk_buff_head * list)1320 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1321 {
1322 list->prev = list->next = (struct sk_buff *)list;
1323 list->qlen = 0;
1324 }
1325
1326 /*
1327 * This function creates a split out lock class for each invocation;
1328 * this is needed for now since a whole lot of users of the skb-queue
1329 * infrastructure in drivers have different locking usage (in hardirq)
1330 * than the networking core (in softirq only). In the long run either the
1331 * network layer or drivers should need annotation to consolidate the
1332 * main types of usage into 3 classes.
1333 */
skb_queue_head_init(struct sk_buff_head * list)1334 static inline void skb_queue_head_init(struct sk_buff_head *list)
1335 {
1336 spin_lock_init(&list->lock);
1337 __skb_queue_head_init(list);
1338 }
1339
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1340 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1341 struct lock_class_key *class)
1342 {
1343 skb_queue_head_init(list);
1344 lockdep_set_class(&list->lock, class);
1345 }
1346
1347 /*
1348 * Insert an sk_buff on a list.
1349 *
1350 * The "__skb_xxxx()" functions are the non-atomic ones that
1351 * can only be called with interrupts disabled.
1352 */
1353 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1354 struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1355 static inline void __skb_insert(struct sk_buff *newsk,
1356 struct sk_buff *prev, struct sk_buff *next,
1357 struct sk_buff_head *list)
1358 {
1359 newsk->next = next;
1360 newsk->prev = prev;
1361 next->prev = prev->next = newsk;
1362 list->qlen++;
1363 }
1364
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1365 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1366 struct sk_buff *prev,
1367 struct sk_buff *next)
1368 {
1369 struct sk_buff *first = list->next;
1370 struct sk_buff *last = list->prev;
1371
1372 first->prev = prev;
1373 prev->next = first;
1374
1375 last->next = next;
1376 next->prev = last;
1377 }
1378
1379 /**
1380 * skb_queue_splice - join two skb lists, this is designed for stacks
1381 * @list: the new list to add
1382 * @head: the place to add it in the first list
1383 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1384 static inline void skb_queue_splice(const struct sk_buff_head *list,
1385 struct sk_buff_head *head)
1386 {
1387 if (!skb_queue_empty(list)) {
1388 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1389 head->qlen += list->qlen;
1390 }
1391 }
1392
1393 /**
1394 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1395 * @list: the new list to add
1396 * @head: the place to add it in the first list
1397 *
1398 * The list at @list is reinitialised
1399 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1400 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1401 struct sk_buff_head *head)
1402 {
1403 if (!skb_queue_empty(list)) {
1404 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1405 head->qlen += list->qlen;
1406 __skb_queue_head_init(list);
1407 }
1408 }
1409
1410 /**
1411 * skb_queue_splice_tail - join two skb lists, each list being a queue
1412 * @list: the new list to add
1413 * @head: the place to add it in the first list
1414 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1415 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1416 struct sk_buff_head *head)
1417 {
1418 if (!skb_queue_empty(list)) {
1419 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1420 head->qlen += list->qlen;
1421 }
1422 }
1423
1424 /**
1425 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1426 * @list: the new list to add
1427 * @head: the place to add it in the first list
1428 *
1429 * Each of the lists is a queue.
1430 * The list at @list is reinitialised
1431 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1432 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1433 struct sk_buff_head *head)
1434 {
1435 if (!skb_queue_empty(list)) {
1436 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1437 head->qlen += list->qlen;
1438 __skb_queue_head_init(list);
1439 }
1440 }
1441
1442 /**
1443 * __skb_queue_after - queue a buffer at the list head
1444 * @list: list to use
1445 * @prev: place after this buffer
1446 * @newsk: buffer to queue
1447 *
1448 * Queue a buffer int the middle of a list. This function takes no locks
1449 * and you must therefore hold required locks before calling it.
1450 *
1451 * A buffer cannot be placed on two lists at the same time.
1452 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1453 static inline void __skb_queue_after(struct sk_buff_head *list,
1454 struct sk_buff *prev,
1455 struct sk_buff *newsk)
1456 {
1457 __skb_insert(newsk, prev, prev->next, list);
1458 }
1459
1460 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1461 struct sk_buff_head *list);
1462
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1463 static inline void __skb_queue_before(struct sk_buff_head *list,
1464 struct sk_buff *next,
1465 struct sk_buff *newsk)
1466 {
1467 __skb_insert(newsk, next->prev, next, list);
1468 }
1469
1470 /**
1471 * __skb_queue_head - queue a buffer at the list head
1472 * @list: list to use
1473 * @newsk: buffer to queue
1474 *
1475 * Queue a buffer at the start of a list. This function takes no locks
1476 * and you must therefore hold required locks before calling it.
1477 *
1478 * A buffer cannot be placed on two lists at the same time.
1479 */
1480 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1481 static inline void __skb_queue_head(struct sk_buff_head *list,
1482 struct sk_buff *newsk)
1483 {
1484 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1485 }
1486
1487 /**
1488 * __skb_queue_tail - queue a buffer at the list tail
1489 * @list: list to use
1490 * @newsk: buffer to queue
1491 *
1492 * Queue a buffer at the end of a list. This function takes no locks
1493 * and you must therefore hold required locks before calling it.
1494 *
1495 * A buffer cannot be placed on two lists at the same time.
1496 */
1497 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1498 static inline void __skb_queue_tail(struct sk_buff_head *list,
1499 struct sk_buff *newsk)
1500 {
1501 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1502 }
1503
1504 /*
1505 * remove sk_buff from list. _Must_ be called atomically, and with
1506 * the list known..
1507 */
1508 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1509 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1510 {
1511 struct sk_buff *next, *prev;
1512
1513 list->qlen--;
1514 next = skb->next;
1515 prev = skb->prev;
1516 skb->next = skb->prev = NULL;
1517 next->prev = prev;
1518 prev->next = next;
1519 }
1520
1521 /**
1522 * __skb_dequeue - remove from the head of the queue
1523 * @list: list to dequeue from
1524 *
1525 * Remove the head of the list. This function does not take any locks
1526 * so must be used with appropriate locks held only. The head item is
1527 * returned or %NULL if the list is empty.
1528 */
1529 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1530 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1531 {
1532 struct sk_buff *skb = skb_peek(list);
1533 if (skb)
1534 __skb_unlink(skb, list);
1535 return skb;
1536 }
1537
1538 /**
1539 * __skb_dequeue_tail - remove from the tail of the queue
1540 * @list: list to dequeue from
1541 *
1542 * Remove the tail of the list. This function does not take any locks
1543 * so must be used with appropriate locks held only. The tail item is
1544 * returned or %NULL if the list is empty.
1545 */
1546 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1547 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1548 {
1549 struct sk_buff *skb = skb_peek_tail(list);
1550 if (skb)
1551 __skb_unlink(skb, list);
1552 return skb;
1553 }
1554
1555
skb_is_nonlinear(const struct sk_buff * skb)1556 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1557 {
1558 return skb->data_len;
1559 }
1560
skb_headlen(const struct sk_buff * skb)1561 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1562 {
1563 return skb->len - skb->data_len;
1564 }
1565
skb_pagelen(const struct sk_buff * skb)1566 static inline int skb_pagelen(const struct sk_buff *skb)
1567 {
1568 int i, len = 0;
1569
1570 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1571 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1572 return len + skb_headlen(skb);
1573 }
1574
1575 /**
1576 * __skb_fill_page_desc - initialise a paged fragment in an skb
1577 * @skb: buffer containing fragment to be initialised
1578 * @i: paged fragment index to initialise
1579 * @page: the page to use for this fragment
1580 * @off: the offset to the data with @page
1581 * @size: the length of the data
1582 *
1583 * Initialises the @i'th fragment of @skb to point to &size bytes at
1584 * offset @off within @page.
1585 *
1586 * Does not take any additional reference on the fragment.
1587 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1588 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1589 struct page *page, int off, int size)
1590 {
1591 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1592
1593 /*
1594 * Propagate page pfmemalloc to the skb if we can. The problem is
1595 * that not all callers have unique ownership of the page but rely
1596 * on page_is_pfmemalloc doing the right thing(tm).
1597 */
1598 frag->page.p = page;
1599 frag->page_offset = off;
1600 skb_frag_size_set(frag, size);
1601
1602 page = compound_head(page);
1603 if (page_is_pfmemalloc(page))
1604 skb->pfmemalloc = true;
1605 }
1606
1607 /**
1608 * skb_fill_page_desc - initialise a paged fragment in an skb
1609 * @skb: buffer containing fragment to be initialised
1610 * @i: paged fragment index to initialise
1611 * @page: the page to use for this fragment
1612 * @off: the offset to the data with @page
1613 * @size: the length of the data
1614 *
1615 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1616 * @skb to point to @size bytes at offset @off within @page. In
1617 * addition updates @skb such that @i is the last fragment.
1618 *
1619 * Does not take any additional reference on the fragment.
1620 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1621 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1622 struct page *page, int off, int size)
1623 {
1624 __skb_fill_page_desc(skb, i, page, off, size);
1625 skb_shinfo(skb)->nr_frags = i + 1;
1626 }
1627
1628 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1629 int size, unsigned int truesize);
1630
1631 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1632 unsigned int truesize);
1633
1634 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1635 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1636 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1637
1638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1639 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1640 {
1641 return skb->head + skb->tail;
1642 }
1643
skb_reset_tail_pointer(struct sk_buff * skb)1644 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1645 {
1646 skb->tail = skb->data - skb->head;
1647 }
1648
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1649 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1650 {
1651 skb_reset_tail_pointer(skb);
1652 skb->tail += offset;
1653 }
1654
1655 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1656 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1657 {
1658 return skb->tail;
1659 }
1660
skb_reset_tail_pointer(struct sk_buff * skb)1661 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1662 {
1663 skb->tail = skb->data;
1664 }
1665
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1666 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1667 {
1668 skb->tail = skb->data + offset;
1669 }
1670
1671 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1672
1673 /*
1674 * Add data to an sk_buff
1675 */
1676 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1677 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1678 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1679 {
1680 unsigned char *tmp = skb_tail_pointer(skb);
1681 SKB_LINEAR_ASSERT(skb);
1682 skb->tail += len;
1683 skb->len += len;
1684 return tmp;
1685 }
1686
1687 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1688 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1689 {
1690 skb->data -= len;
1691 skb->len += len;
1692 return skb->data;
1693 }
1694
1695 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1696 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1697 {
1698 skb->len -= len;
1699 BUG_ON(skb->len < skb->data_len);
1700 return skb->data += len;
1701 }
1702
skb_pull_inline(struct sk_buff * skb,unsigned int len)1703 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1704 {
1705 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1706 }
1707
1708 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1709
__pskb_pull(struct sk_buff * skb,unsigned int len)1710 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1711 {
1712 if (len > skb_headlen(skb) &&
1713 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1714 return NULL;
1715 skb->len -= len;
1716 return skb->data += len;
1717 }
1718
pskb_pull(struct sk_buff * skb,unsigned int len)1719 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1720 {
1721 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1722 }
1723
pskb_may_pull(struct sk_buff * skb,unsigned int len)1724 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1725 {
1726 if (likely(len <= skb_headlen(skb)))
1727 return 1;
1728 if (unlikely(len > skb->len))
1729 return 0;
1730 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1731 }
1732
1733 /**
1734 * skb_headroom - bytes at buffer head
1735 * @skb: buffer to check
1736 *
1737 * Return the number of bytes of free space at the head of an &sk_buff.
1738 */
skb_headroom(const struct sk_buff * skb)1739 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1740 {
1741 return skb->data - skb->head;
1742 }
1743
1744 /**
1745 * skb_tailroom - bytes at buffer end
1746 * @skb: buffer to check
1747 *
1748 * Return the number of bytes of free space at the tail of an sk_buff
1749 */
skb_tailroom(const struct sk_buff * skb)1750 static inline int skb_tailroom(const struct sk_buff *skb)
1751 {
1752 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1753 }
1754
1755 /**
1756 * skb_availroom - bytes at buffer end
1757 * @skb: buffer to check
1758 *
1759 * Return the number of bytes of free space at the tail of an sk_buff
1760 * allocated by sk_stream_alloc()
1761 */
skb_availroom(const struct sk_buff * skb)1762 static inline int skb_availroom(const struct sk_buff *skb)
1763 {
1764 if (skb_is_nonlinear(skb))
1765 return 0;
1766
1767 return skb->end - skb->tail - skb->reserved_tailroom;
1768 }
1769
1770 /**
1771 * skb_reserve - adjust headroom
1772 * @skb: buffer to alter
1773 * @len: bytes to move
1774 *
1775 * Increase the headroom of an empty &sk_buff by reducing the tail
1776 * room. This is only allowed for an empty buffer.
1777 */
skb_reserve(struct sk_buff * skb,int len)1778 static inline void skb_reserve(struct sk_buff *skb, int len)
1779 {
1780 skb->data += len;
1781 skb->tail += len;
1782 }
1783
1784 #define ENCAP_TYPE_ETHER 0
1785 #define ENCAP_TYPE_IPPROTO 1
1786
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)1787 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1788 __be16 protocol)
1789 {
1790 skb->inner_protocol = protocol;
1791 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1792 }
1793
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)1794 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1795 __u8 ipproto)
1796 {
1797 skb->inner_ipproto = ipproto;
1798 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1799 }
1800
skb_reset_inner_headers(struct sk_buff * skb)1801 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1802 {
1803 skb->inner_mac_header = skb->mac_header;
1804 skb->inner_network_header = skb->network_header;
1805 skb->inner_transport_header = skb->transport_header;
1806 }
1807
skb_reset_mac_len(struct sk_buff * skb)1808 static inline void skb_reset_mac_len(struct sk_buff *skb)
1809 {
1810 skb->mac_len = skb->network_header - skb->mac_header;
1811 }
1812
skb_inner_transport_header(const struct sk_buff * skb)1813 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1814 *skb)
1815 {
1816 return skb->head + skb->inner_transport_header;
1817 }
1818
skb_reset_inner_transport_header(struct sk_buff * skb)1819 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1820 {
1821 skb->inner_transport_header = skb->data - skb->head;
1822 }
1823
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)1824 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1825 const int offset)
1826 {
1827 skb_reset_inner_transport_header(skb);
1828 skb->inner_transport_header += offset;
1829 }
1830
skb_inner_network_header(const struct sk_buff * skb)1831 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1832 {
1833 return skb->head + skb->inner_network_header;
1834 }
1835
skb_reset_inner_network_header(struct sk_buff * skb)1836 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1837 {
1838 skb->inner_network_header = skb->data - skb->head;
1839 }
1840
skb_set_inner_network_header(struct sk_buff * skb,const int offset)1841 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1842 const int offset)
1843 {
1844 skb_reset_inner_network_header(skb);
1845 skb->inner_network_header += offset;
1846 }
1847
skb_inner_mac_header(const struct sk_buff * skb)1848 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1849 {
1850 return skb->head + skb->inner_mac_header;
1851 }
1852
skb_reset_inner_mac_header(struct sk_buff * skb)1853 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1854 {
1855 skb->inner_mac_header = skb->data - skb->head;
1856 }
1857
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)1858 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1859 const int offset)
1860 {
1861 skb_reset_inner_mac_header(skb);
1862 skb->inner_mac_header += offset;
1863 }
skb_transport_header_was_set(const struct sk_buff * skb)1864 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1865 {
1866 return skb->transport_header != (typeof(skb->transport_header))~0U;
1867 }
1868
skb_transport_header(const struct sk_buff * skb)1869 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1870 {
1871 return skb->head + skb->transport_header;
1872 }
1873
skb_reset_transport_header(struct sk_buff * skb)1874 static inline void skb_reset_transport_header(struct sk_buff *skb)
1875 {
1876 skb->transport_header = skb->data - skb->head;
1877 }
1878
skb_set_transport_header(struct sk_buff * skb,const int offset)1879 static inline void skb_set_transport_header(struct sk_buff *skb,
1880 const int offset)
1881 {
1882 skb_reset_transport_header(skb);
1883 skb->transport_header += offset;
1884 }
1885
skb_network_header(const struct sk_buff * skb)1886 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1887 {
1888 return skb->head + skb->network_header;
1889 }
1890
skb_reset_network_header(struct sk_buff * skb)1891 static inline void skb_reset_network_header(struct sk_buff *skb)
1892 {
1893 skb->network_header = skb->data - skb->head;
1894 }
1895
skb_set_network_header(struct sk_buff * skb,const int offset)1896 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1897 {
1898 skb_reset_network_header(skb);
1899 skb->network_header += offset;
1900 }
1901
skb_mac_header(const struct sk_buff * skb)1902 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1903 {
1904 return skb->head + skb->mac_header;
1905 }
1906
skb_mac_header_was_set(const struct sk_buff * skb)1907 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1908 {
1909 return skb->mac_header != (typeof(skb->mac_header))~0U;
1910 }
1911
skb_reset_mac_header(struct sk_buff * skb)1912 static inline void skb_reset_mac_header(struct sk_buff *skb)
1913 {
1914 skb->mac_header = skb->data - skb->head;
1915 }
1916
skb_set_mac_header(struct sk_buff * skb,const int offset)1917 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1918 {
1919 skb_reset_mac_header(skb);
1920 skb->mac_header += offset;
1921 }
1922
skb_pop_mac_header(struct sk_buff * skb)1923 static inline void skb_pop_mac_header(struct sk_buff *skb)
1924 {
1925 skb->mac_header = skb->network_header;
1926 }
1927
skb_probe_transport_header(struct sk_buff * skb,const int offset_hint)1928 static inline void skb_probe_transport_header(struct sk_buff *skb,
1929 const int offset_hint)
1930 {
1931 struct flow_keys keys;
1932
1933 if (skb_transport_header_was_set(skb))
1934 return;
1935 else if (skb_flow_dissect(skb, &keys))
1936 skb_set_transport_header(skb, keys.thoff);
1937 else
1938 skb_set_transport_header(skb, offset_hint);
1939 }
1940
skb_mac_header_rebuild(struct sk_buff * skb)1941 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1942 {
1943 if (skb_mac_header_was_set(skb)) {
1944 const unsigned char *old_mac = skb_mac_header(skb);
1945
1946 skb_set_mac_header(skb, -skb->mac_len);
1947 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1948 }
1949 }
1950
skb_checksum_start_offset(const struct sk_buff * skb)1951 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1952 {
1953 return skb->csum_start - skb_headroom(skb);
1954 }
1955
skb_transport_offset(const struct sk_buff * skb)1956 static inline int skb_transport_offset(const struct sk_buff *skb)
1957 {
1958 return skb_transport_header(skb) - skb->data;
1959 }
1960
skb_network_header_len(const struct sk_buff * skb)1961 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1962 {
1963 return skb->transport_header - skb->network_header;
1964 }
1965
skb_inner_network_header_len(const struct sk_buff * skb)1966 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1967 {
1968 return skb->inner_transport_header - skb->inner_network_header;
1969 }
1970
skb_network_offset(const struct sk_buff * skb)1971 static inline int skb_network_offset(const struct sk_buff *skb)
1972 {
1973 return skb_network_header(skb) - skb->data;
1974 }
1975
skb_inner_network_offset(const struct sk_buff * skb)1976 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1977 {
1978 return skb_inner_network_header(skb) - skb->data;
1979 }
1980
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1981 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1982 {
1983 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1984 }
1985
1986 /*
1987 * CPUs often take a performance hit when accessing unaligned memory
1988 * locations. The actual performance hit varies, it can be small if the
1989 * hardware handles it or large if we have to take an exception and fix it
1990 * in software.
1991 *
1992 * Since an ethernet header is 14 bytes network drivers often end up with
1993 * the IP header at an unaligned offset. The IP header can be aligned by
1994 * shifting the start of the packet by 2 bytes. Drivers should do this
1995 * with:
1996 *
1997 * skb_reserve(skb, NET_IP_ALIGN);
1998 *
1999 * The downside to this alignment of the IP header is that the DMA is now
2000 * unaligned. On some architectures the cost of an unaligned DMA is high
2001 * and this cost outweighs the gains made by aligning the IP header.
2002 *
2003 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2004 * to be overridden.
2005 */
2006 #ifndef NET_IP_ALIGN
2007 #define NET_IP_ALIGN 2
2008 #endif
2009
2010 /*
2011 * The networking layer reserves some headroom in skb data (via
2012 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2013 * the header has to grow. In the default case, if the header has to grow
2014 * 32 bytes or less we avoid the reallocation.
2015 *
2016 * Unfortunately this headroom changes the DMA alignment of the resulting
2017 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2018 * on some architectures. An architecture can override this value,
2019 * perhaps setting it to a cacheline in size (since that will maintain
2020 * cacheline alignment of the DMA). It must be a power of 2.
2021 *
2022 * Various parts of the networking layer expect at least 32 bytes of
2023 * headroom, you should not reduce this.
2024 *
2025 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2026 * to reduce average number of cache lines per packet.
2027 * get_rps_cpus() for example only access one 64 bytes aligned block :
2028 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2029 */
2030 #ifndef NET_SKB_PAD
2031 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2032 #endif
2033
2034 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2035
__skb_trim(struct sk_buff * skb,unsigned int len)2036 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2037 {
2038 if (unlikely(skb_is_nonlinear(skb))) {
2039 WARN_ON(1);
2040 return;
2041 }
2042 skb->len = len;
2043 skb_set_tail_pointer(skb, len);
2044 }
2045
2046 void skb_trim(struct sk_buff *skb, unsigned int len);
2047
__pskb_trim(struct sk_buff * skb,unsigned int len)2048 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2049 {
2050 if (skb->data_len)
2051 return ___pskb_trim(skb, len);
2052 __skb_trim(skb, len);
2053 return 0;
2054 }
2055
pskb_trim(struct sk_buff * skb,unsigned int len)2056 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2057 {
2058 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2059 }
2060
2061 /**
2062 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2063 * @skb: buffer to alter
2064 * @len: new length
2065 *
2066 * This is identical to pskb_trim except that the caller knows that
2067 * the skb is not cloned so we should never get an error due to out-
2068 * of-memory.
2069 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2070 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2071 {
2072 int err = pskb_trim(skb, len);
2073 BUG_ON(err);
2074 }
2075
2076 /**
2077 * skb_orphan - orphan a buffer
2078 * @skb: buffer to orphan
2079 *
2080 * If a buffer currently has an owner then we call the owner's
2081 * destructor function and make the @skb unowned. The buffer continues
2082 * to exist but is no longer charged to its former owner.
2083 */
skb_orphan(struct sk_buff * skb)2084 static inline void skb_orphan(struct sk_buff *skb)
2085 {
2086 if (skb->destructor) {
2087 skb->destructor(skb);
2088 skb->destructor = NULL;
2089 skb->sk = NULL;
2090 } else {
2091 BUG_ON(skb->sk);
2092 }
2093 }
2094
2095 /**
2096 * skb_orphan_frags - orphan the frags contained in a buffer
2097 * @skb: buffer to orphan frags from
2098 * @gfp_mask: allocation mask for replacement pages
2099 *
2100 * For each frag in the SKB which needs a destructor (i.e. has an
2101 * owner) create a copy of that frag and release the original
2102 * page by calling the destructor.
2103 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2104 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2105 {
2106 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2107 return 0;
2108 return skb_copy_ubufs(skb, gfp_mask);
2109 }
2110
2111 /**
2112 * __skb_queue_purge - empty a list
2113 * @list: list to empty
2114 *
2115 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2116 * the list and one reference dropped. This function does not take the
2117 * list lock and the caller must hold the relevant locks to use it.
2118 */
2119 void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)2120 static inline void __skb_queue_purge(struct sk_buff_head *list)
2121 {
2122 struct sk_buff *skb;
2123 while ((skb = __skb_dequeue(list)) != NULL)
2124 kfree_skb(skb);
2125 }
2126
2127 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2128 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2129 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2130
2131 void *netdev_alloc_frag(unsigned int fragsz);
2132
2133 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2134 gfp_t gfp_mask);
2135
2136 /**
2137 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2138 * @dev: network device to receive on
2139 * @length: length to allocate
2140 *
2141 * Allocate a new &sk_buff and assign it a usage count of one. The
2142 * buffer has unspecified headroom built in. Users should allocate
2143 * the headroom they think they need without accounting for the
2144 * built in space. The built in space is used for optimisations.
2145 *
2146 * %NULL is returned if there is no free memory. Although this function
2147 * allocates memory it can be called from an interrupt.
2148 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2149 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2150 unsigned int length)
2151 {
2152 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2153 }
2154
2155 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2156 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2157 gfp_t gfp_mask)
2158 {
2159 return __netdev_alloc_skb(NULL, length, gfp_mask);
2160 }
2161
2162 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2163 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2164 {
2165 return netdev_alloc_skb(NULL, length);
2166 }
2167
2168
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2169 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2170 unsigned int length, gfp_t gfp)
2171 {
2172 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2173
2174 if (NET_IP_ALIGN && skb)
2175 skb_reserve(skb, NET_IP_ALIGN);
2176 return skb;
2177 }
2178
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2179 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2180 unsigned int length)
2181 {
2182 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2183 }
2184
2185 void *napi_alloc_frag(unsigned int fragsz);
2186 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2187 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2188 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2189 unsigned int length)
2190 {
2191 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2192 }
2193
2194 /**
2195 * __dev_alloc_pages - allocate page for network Rx
2196 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2197 * @order: size of the allocation
2198 *
2199 * Allocate a new page.
2200 *
2201 * %NULL is returned if there is no free memory.
2202 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2203 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2204 unsigned int order)
2205 {
2206 /* This piece of code contains several assumptions.
2207 * 1. This is for device Rx, therefor a cold page is preferred.
2208 * 2. The expectation is the user wants a compound page.
2209 * 3. If requesting a order 0 page it will not be compound
2210 * due to the check to see if order has a value in prep_new_page
2211 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2212 * code in gfp_to_alloc_flags that should be enforcing this.
2213 */
2214 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2215
2216 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2217 }
2218
dev_alloc_pages(unsigned int order)2219 static inline struct page *dev_alloc_pages(unsigned int order)
2220 {
2221 return __dev_alloc_pages(GFP_ATOMIC, order);
2222 }
2223
2224 /**
2225 * __dev_alloc_page - allocate a page for network Rx
2226 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2227 *
2228 * Allocate a new page.
2229 *
2230 * %NULL is returned if there is no free memory.
2231 */
__dev_alloc_page(gfp_t gfp_mask)2232 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2233 {
2234 return __dev_alloc_pages(gfp_mask, 0);
2235 }
2236
dev_alloc_page(void)2237 static inline struct page *dev_alloc_page(void)
2238 {
2239 return __dev_alloc_page(GFP_ATOMIC);
2240 }
2241
2242 /**
2243 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2244 * @page: The page that was allocated from skb_alloc_page
2245 * @skb: The skb that may need pfmemalloc set
2246 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2247 static inline void skb_propagate_pfmemalloc(struct page *page,
2248 struct sk_buff *skb)
2249 {
2250 if (page_is_pfmemalloc(page))
2251 skb->pfmemalloc = true;
2252 }
2253
2254 /**
2255 * skb_frag_page - retrieve the page referred to by a paged fragment
2256 * @frag: the paged fragment
2257 *
2258 * Returns the &struct page associated with @frag.
2259 */
skb_frag_page(const skb_frag_t * frag)2260 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2261 {
2262 return frag->page.p;
2263 }
2264
2265 /**
2266 * __skb_frag_ref - take an addition reference on a paged fragment.
2267 * @frag: the paged fragment
2268 *
2269 * Takes an additional reference on the paged fragment @frag.
2270 */
__skb_frag_ref(skb_frag_t * frag)2271 static inline void __skb_frag_ref(skb_frag_t *frag)
2272 {
2273 get_page(skb_frag_page(frag));
2274 }
2275
2276 /**
2277 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2278 * @skb: the buffer
2279 * @f: the fragment offset.
2280 *
2281 * Takes an additional reference on the @f'th paged fragment of @skb.
2282 */
skb_frag_ref(struct sk_buff * skb,int f)2283 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2284 {
2285 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2286 }
2287
2288 /**
2289 * __skb_frag_unref - release a reference on a paged fragment.
2290 * @frag: the paged fragment
2291 *
2292 * Releases a reference on the paged fragment @frag.
2293 */
__skb_frag_unref(skb_frag_t * frag)2294 static inline void __skb_frag_unref(skb_frag_t *frag)
2295 {
2296 put_page(skb_frag_page(frag));
2297 }
2298
2299 /**
2300 * skb_frag_unref - release a reference on a paged fragment of an skb.
2301 * @skb: the buffer
2302 * @f: the fragment offset
2303 *
2304 * Releases a reference on the @f'th paged fragment of @skb.
2305 */
skb_frag_unref(struct sk_buff * skb,int f)2306 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2307 {
2308 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2309 }
2310
2311 /**
2312 * skb_frag_address - gets the address of the data contained in a paged fragment
2313 * @frag: the paged fragment buffer
2314 *
2315 * Returns the address of the data within @frag. The page must already
2316 * be mapped.
2317 */
skb_frag_address(const skb_frag_t * frag)2318 static inline void *skb_frag_address(const skb_frag_t *frag)
2319 {
2320 return page_address(skb_frag_page(frag)) + frag->page_offset;
2321 }
2322
2323 /**
2324 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2325 * @frag: the paged fragment buffer
2326 *
2327 * Returns the address of the data within @frag. Checks that the page
2328 * is mapped and returns %NULL otherwise.
2329 */
skb_frag_address_safe(const skb_frag_t * frag)2330 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2331 {
2332 void *ptr = page_address(skb_frag_page(frag));
2333 if (unlikely(!ptr))
2334 return NULL;
2335
2336 return ptr + frag->page_offset;
2337 }
2338
2339 /**
2340 * __skb_frag_set_page - sets the page contained in a paged fragment
2341 * @frag: the paged fragment
2342 * @page: the page to set
2343 *
2344 * Sets the fragment @frag to contain @page.
2345 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)2346 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2347 {
2348 frag->page.p = page;
2349 }
2350
2351 /**
2352 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2353 * @skb: the buffer
2354 * @f: the fragment offset
2355 * @page: the page to set
2356 *
2357 * Sets the @f'th fragment of @skb to contain @page.
2358 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)2359 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2360 struct page *page)
2361 {
2362 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2363 }
2364
2365 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2366
2367 /**
2368 * skb_frag_dma_map - maps a paged fragment via the DMA API
2369 * @dev: the device to map the fragment to
2370 * @frag: the paged fragment to map
2371 * @offset: the offset within the fragment (starting at the
2372 * fragment's own offset)
2373 * @size: the number of bytes to map
2374 * @dir: the direction of the mapping (%PCI_DMA_*)
2375 *
2376 * Maps the page associated with @frag to @device.
2377 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)2378 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2379 const skb_frag_t *frag,
2380 size_t offset, size_t size,
2381 enum dma_data_direction dir)
2382 {
2383 return dma_map_page(dev, skb_frag_page(frag),
2384 frag->page_offset + offset, size, dir);
2385 }
2386
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)2387 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2388 gfp_t gfp_mask)
2389 {
2390 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2391 }
2392
2393
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)2394 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2395 gfp_t gfp_mask)
2396 {
2397 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2398 }
2399
2400
2401 /**
2402 * skb_clone_writable - is the header of a clone writable
2403 * @skb: buffer to check
2404 * @len: length up to which to write
2405 *
2406 * Returns true if modifying the header part of the cloned buffer
2407 * does not requires the data to be copied.
2408 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)2409 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2410 {
2411 return !skb_header_cloned(skb) &&
2412 skb_headroom(skb) + len <= skb->hdr_len;
2413 }
2414
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)2415 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2416 int cloned)
2417 {
2418 int delta = 0;
2419
2420 if (headroom > skb_headroom(skb))
2421 delta = headroom - skb_headroom(skb);
2422
2423 if (delta || cloned)
2424 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2425 GFP_ATOMIC);
2426 return 0;
2427 }
2428
2429 /**
2430 * skb_cow - copy header of skb when it is required
2431 * @skb: buffer to cow
2432 * @headroom: needed headroom
2433 *
2434 * If the skb passed lacks sufficient headroom or its data part
2435 * is shared, data is reallocated. If reallocation fails, an error
2436 * is returned and original skb is not changed.
2437 *
2438 * The result is skb with writable area skb->head...skb->tail
2439 * and at least @headroom of space at head.
2440 */
skb_cow(struct sk_buff * skb,unsigned int headroom)2441 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2442 {
2443 return __skb_cow(skb, headroom, skb_cloned(skb));
2444 }
2445
2446 /**
2447 * skb_cow_head - skb_cow but only making the head writable
2448 * @skb: buffer to cow
2449 * @headroom: needed headroom
2450 *
2451 * This function is identical to skb_cow except that we replace the
2452 * skb_cloned check by skb_header_cloned. It should be used when
2453 * you only need to push on some header and do not need to modify
2454 * the data.
2455 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)2456 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2457 {
2458 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2459 }
2460
2461 /**
2462 * skb_padto - pad an skbuff up to a minimal size
2463 * @skb: buffer to pad
2464 * @len: minimal length
2465 *
2466 * Pads up a buffer to ensure the trailing bytes exist and are
2467 * blanked. If the buffer already contains sufficient data it
2468 * is untouched. Otherwise it is extended. Returns zero on
2469 * success. The skb is freed on error.
2470 */
skb_padto(struct sk_buff * skb,unsigned int len)2471 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2472 {
2473 unsigned int size = skb->len;
2474 if (likely(size >= len))
2475 return 0;
2476 return skb_pad(skb, len - size);
2477 }
2478
2479 /**
2480 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2481 * @skb: buffer to pad
2482 * @len: minimal length
2483 *
2484 * Pads up a buffer to ensure the trailing bytes exist and are
2485 * blanked. If the buffer already contains sufficient data it
2486 * is untouched. Otherwise it is extended. Returns zero on
2487 * success. The skb is freed on error.
2488 */
skb_put_padto(struct sk_buff * skb,unsigned int len)2489 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2490 {
2491 unsigned int size = skb->len;
2492
2493 if (unlikely(size < len)) {
2494 len -= size;
2495 if (skb_pad(skb, len))
2496 return -ENOMEM;
2497 __skb_put(skb, len);
2498 }
2499 return 0;
2500 }
2501
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)2502 static inline int skb_add_data(struct sk_buff *skb,
2503 struct iov_iter *from, int copy)
2504 {
2505 const int off = skb->len;
2506
2507 if (skb->ip_summed == CHECKSUM_NONE) {
2508 __wsum csum = 0;
2509 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2510 &csum, from) == copy) {
2511 skb->csum = csum_block_add(skb->csum, csum, off);
2512 return 0;
2513 }
2514 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2515 return 0;
2516
2517 __skb_trim(skb, off);
2518 return -EFAULT;
2519 }
2520
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)2521 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2522 const struct page *page, int off)
2523 {
2524 if (i) {
2525 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2526
2527 return page == skb_frag_page(frag) &&
2528 off == frag->page_offset + skb_frag_size(frag);
2529 }
2530 return false;
2531 }
2532
__skb_linearize(struct sk_buff * skb)2533 static inline int __skb_linearize(struct sk_buff *skb)
2534 {
2535 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2536 }
2537
2538 /**
2539 * skb_linearize - convert paged skb to linear one
2540 * @skb: buffer to linarize
2541 *
2542 * If there is no free memory -ENOMEM is returned, otherwise zero
2543 * is returned and the old skb data released.
2544 */
skb_linearize(struct sk_buff * skb)2545 static inline int skb_linearize(struct sk_buff *skb)
2546 {
2547 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2548 }
2549
2550 /**
2551 * skb_has_shared_frag - can any frag be overwritten
2552 * @skb: buffer to test
2553 *
2554 * Return true if the skb has at least one frag that might be modified
2555 * by an external entity (as in vmsplice()/sendfile())
2556 */
skb_has_shared_frag(const struct sk_buff * skb)2557 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2558 {
2559 return skb_is_nonlinear(skb) &&
2560 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2561 }
2562
2563 /**
2564 * skb_linearize_cow - make sure skb is linear and writable
2565 * @skb: buffer to process
2566 *
2567 * If there is no free memory -ENOMEM is returned, otherwise zero
2568 * is returned and the old skb data released.
2569 */
skb_linearize_cow(struct sk_buff * skb)2570 static inline int skb_linearize_cow(struct sk_buff *skb)
2571 {
2572 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2573 __skb_linearize(skb) : 0;
2574 }
2575
2576 /**
2577 * skb_postpull_rcsum - update checksum for received skb after pull
2578 * @skb: buffer to update
2579 * @start: start of data before pull
2580 * @len: length of data pulled
2581 *
2582 * After doing a pull on a received packet, you need to call this to
2583 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2584 * CHECKSUM_NONE so that it can be recomputed from scratch.
2585 */
2586
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2587 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2588 const void *start, unsigned int len)
2589 {
2590 if (skb->ip_summed == CHECKSUM_COMPLETE)
2591 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2592 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2593 skb_checksum_start_offset(skb) < 0)
2594 skb->ip_summed = CHECKSUM_NONE;
2595 }
2596
2597 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2598
2599 /**
2600 * pskb_trim_rcsum - trim received skb and update checksum
2601 * @skb: buffer to trim
2602 * @len: new length
2603 *
2604 * This is exactly the same as pskb_trim except that it ensures the
2605 * checksum of received packets are still valid after the operation.
2606 */
2607
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2608 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2609 {
2610 if (likely(len >= skb->len))
2611 return 0;
2612 if (skb->ip_summed == CHECKSUM_COMPLETE)
2613 skb->ip_summed = CHECKSUM_NONE;
2614 return __pskb_trim(skb, len);
2615 }
2616
2617 #define skb_queue_walk(queue, skb) \
2618 for (skb = (queue)->next; \
2619 skb != (struct sk_buff *)(queue); \
2620 skb = skb->next)
2621
2622 #define skb_queue_walk_safe(queue, skb, tmp) \
2623 for (skb = (queue)->next, tmp = skb->next; \
2624 skb != (struct sk_buff *)(queue); \
2625 skb = tmp, tmp = skb->next)
2626
2627 #define skb_queue_walk_from(queue, skb) \
2628 for (; skb != (struct sk_buff *)(queue); \
2629 skb = skb->next)
2630
2631 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2632 for (tmp = skb->next; \
2633 skb != (struct sk_buff *)(queue); \
2634 skb = tmp, tmp = skb->next)
2635
2636 #define skb_queue_reverse_walk(queue, skb) \
2637 for (skb = (queue)->prev; \
2638 skb != (struct sk_buff *)(queue); \
2639 skb = skb->prev)
2640
2641 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2642 for (skb = (queue)->prev, tmp = skb->prev; \
2643 skb != (struct sk_buff *)(queue); \
2644 skb = tmp, tmp = skb->prev)
2645
2646 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2647 for (tmp = skb->prev; \
2648 skb != (struct sk_buff *)(queue); \
2649 skb = tmp, tmp = skb->prev)
2650
skb_has_frag_list(const struct sk_buff * skb)2651 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2652 {
2653 return skb_shinfo(skb)->frag_list != NULL;
2654 }
2655
skb_frag_list_init(struct sk_buff * skb)2656 static inline void skb_frag_list_init(struct sk_buff *skb)
2657 {
2658 skb_shinfo(skb)->frag_list = NULL;
2659 }
2660
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2661 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2662 {
2663 frag->next = skb_shinfo(skb)->frag_list;
2664 skb_shinfo(skb)->frag_list = frag;
2665 }
2666
2667 #define skb_walk_frags(skb, iter) \
2668 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2669
2670 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2671 int *peeked, int *off, int *err);
2672 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2673 int *err);
2674 unsigned int datagram_poll(struct file *file, struct socket *sock,
2675 struct poll_table_struct *wait);
2676 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2677 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)2678 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2679 struct msghdr *msg, int size)
2680 {
2681 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2682 }
2683 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2684 struct msghdr *msg);
2685 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2686 struct iov_iter *from, int len);
2687 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2688 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2689 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2690 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2691 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2692 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2693 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2694 int len, __wsum csum);
2695 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2696 struct pipe_inode_info *pipe, unsigned int len,
2697 unsigned int flags);
2698 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2699 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2700 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2701 int len, int hlen);
2702 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2703 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2704 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2705 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2706 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2707 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2708 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2709 int skb_vlan_pop(struct sk_buff *skb);
2710 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2711
memcpy_from_msg(void * data,struct msghdr * msg,int len)2712 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2713 {
2714 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2715 }
2716
memcpy_to_msg(struct msghdr * msg,void * data,int len)2717 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2718 {
2719 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2720 }
2721
2722 struct skb_checksum_ops {
2723 __wsum (*update)(const void *mem, int len, __wsum wsum);
2724 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2725 };
2726
2727 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2728 __wsum csum, const struct skb_checksum_ops *ops);
2729 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2730 __wsum csum);
2731
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)2732 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2733 int len, void *data, int hlen, void *buffer)
2734 {
2735 if (hlen - offset >= len)
2736 return data + offset;
2737
2738 if (!skb ||
2739 skb_copy_bits(skb, offset, buffer, len) < 0)
2740 return NULL;
2741
2742 return buffer;
2743 }
2744
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2745 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2746 int len, void *buffer)
2747 {
2748 return __skb_header_pointer(skb, offset, len, skb->data,
2749 skb_headlen(skb), buffer);
2750 }
2751
2752 /**
2753 * skb_needs_linearize - check if we need to linearize a given skb
2754 * depending on the given device features.
2755 * @skb: socket buffer to check
2756 * @features: net device features
2757 *
2758 * Returns true if either:
2759 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2760 * 2. skb is fragmented and the device does not support SG.
2761 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)2762 static inline bool skb_needs_linearize(struct sk_buff *skb,
2763 netdev_features_t features)
2764 {
2765 return skb_is_nonlinear(skb) &&
2766 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2767 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2768 }
2769
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2770 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2771 void *to,
2772 const unsigned int len)
2773 {
2774 memcpy(to, skb->data, len);
2775 }
2776
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2777 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2778 const int offset, void *to,
2779 const unsigned int len)
2780 {
2781 memcpy(to, skb->data + offset, len);
2782 }
2783
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2784 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2785 const void *from,
2786 const unsigned int len)
2787 {
2788 memcpy(skb->data, from, len);
2789 }
2790
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2791 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2792 const int offset,
2793 const void *from,
2794 const unsigned int len)
2795 {
2796 memcpy(skb->data + offset, from, len);
2797 }
2798
2799 void skb_init(void);
2800
skb_get_ktime(const struct sk_buff * skb)2801 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2802 {
2803 return skb->tstamp;
2804 }
2805
2806 /**
2807 * skb_get_timestamp - get timestamp from a skb
2808 * @skb: skb to get stamp from
2809 * @stamp: pointer to struct timeval to store stamp in
2810 *
2811 * Timestamps are stored in the skb as offsets to a base timestamp.
2812 * This function converts the offset back to a struct timeval and stores
2813 * it in stamp.
2814 */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2815 static inline void skb_get_timestamp(const struct sk_buff *skb,
2816 struct timeval *stamp)
2817 {
2818 *stamp = ktime_to_timeval(skb->tstamp);
2819 }
2820
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2821 static inline void skb_get_timestampns(const struct sk_buff *skb,
2822 struct timespec *stamp)
2823 {
2824 *stamp = ktime_to_timespec(skb->tstamp);
2825 }
2826
__net_timestamp(struct sk_buff * skb)2827 static inline void __net_timestamp(struct sk_buff *skb)
2828 {
2829 skb->tstamp = ktime_get_real();
2830 }
2831
net_timedelta(ktime_t t)2832 static inline ktime_t net_timedelta(ktime_t t)
2833 {
2834 return ktime_sub(ktime_get_real(), t);
2835 }
2836
net_invalid_timestamp(void)2837 static inline ktime_t net_invalid_timestamp(void)
2838 {
2839 return ktime_set(0, 0);
2840 }
2841
2842 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2843
2844 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2845
2846 void skb_clone_tx_timestamp(struct sk_buff *skb);
2847 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2848
2849 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2850
skb_clone_tx_timestamp(struct sk_buff * skb)2851 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2852 {
2853 }
2854
skb_defer_rx_timestamp(struct sk_buff * skb)2855 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2856 {
2857 return false;
2858 }
2859
2860 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2861
2862 /**
2863 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2864 *
2865 * PHY drivers may accept clones of transmitted packets for
2866 * timestamping via their phy_driver.txtstamp method. These drivers
2867 * must call this function to return the skb back to the stack, with
2868 * or without a timestamp.
2869 *
2870 * @skb: clone of the the original outgoing packet
2871 * @hwtstamps: hardware time stamps, may be NULL if not available
2872 *
2873 */
2874 void skb_complete_tx_timestamp(struct sk_buff *skb,
2875 struct skb_shared_hwtstamps *hwtstamps);
2876
2877 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2878 struct skb_shared_hwtstamps *hwtstamps,
2879 struct sock *sk, int tstype);
2880
2881 /**
2882 * skb_tstamp_tx - queue clone of skb with send time stamps
2883 * @orig_skb: the original outgoing packet
2884 * @hwtstamps: hardware time stamps, may be NULL if not available
2885 *
2886 * If the skb has a socket associated, then this function clones the
2887 * skb (thus sharing the actual data and optional structures), stores
2888 * the optional hardware time stamping information (if non NULL) or
2889 * generates a software time stamp (otherwise), then queues the clone
2890 * to the error queue of the socket. Errors are silently ignored.
2891 */
2892 void skb_tstamp_tx(struct sk_buff *orig_skb,
2893 struct skb_shared_hwtstamps *hwtstamps);
2894
sw_tx_timestamp(struct sk_buff * skb)2895 static inline void sw_tx_timestamp(struct sk_buff *skb)
2896 {
2897 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2898 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2899 skb_tstamp_tx(skb, NULL);
2900 }
2901
2902 /**
2903 * skb_tx_timestamp() - Driver hook for transmit timestamping
2904 *
2905 * Ethernet MAC Drivers should call this function in their hard_xmit()
2906 * function immediately before giving the sk_buff to the MAC hardware.
2907 *
2908 * Specifically, one should make absolutely sure that this function is
2909 * called before TX completion of this packet can trigger. Otherwise
2910 * the packet could potentially already be freed.
2911 *
2912 * @skb: A socket buffer.
2913 */
skb_tx_timestamp(struct sk_buff * skb)2914 static inline void skb_tx_timestamp(struct sk_buff *skb)
2915 {
2916 skb_clone_tx_timestamp(skb);
2917 sw_tx_timestamp(skb);
2918 }
2919
2920 /**
2921 * skb_complete_wifi_ack - deliver skb with wifi status
2922 *
2923 * @skb: the original outgoing packet
2924 * @acked: ack status
2925 *
2926 */
2927 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2928
2929 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2930 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2931
skb_csum_unnecessary(const struct sk_buff * skb)2932 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2933 {
2934 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
2935 skb->csum_valid ||
2936 (skb->ip_summed == CHECKSUM_PARTIAL &&
2937 skb_checksum_start_offset(skb) >= 0));
2938 }
2939
2940 /**
2941 * skb_checksum_complete - Calculate checksum of an entire packet
2942 * @skb: packet to process
2943 *
2944 * This function calculates the checksum over the entire packet plus
2945 * the value of skb->csum. The latter can be used to supply the
2946 * checksum of a pseudo header as used by TCP/UDP. It returns the
2947 * checksum.
2948 *
2949 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2950 * this function can be used to verify that checksum on received
2951 * packets. In that case the function should return zero if the
2952 * checksum is correct. In particular, this function will return zero
2953 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2954 * hardware has already verified the correctness of the checksum.
2955 */
skb_checksum_complete(struct sk_buff * skb)2956 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2957 {
2958 return skb_csum_unnecessary(skb) ?
2959 0 : __skb_checksum_complete(skb);
2960 }
2961
__skb_decr_checksum_unnecessary(struct sk_buff * skb)2962 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2963 {
2964 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2965 if (skb->csum_level == 0)
2966 skb->ip_summed = CHECKSUM_NONE;
2967 else
2968 skb->csum_level--;
2969 }
2970 }
2971
__skb_incr_checksum_unnecessary(struct sk_buff * skb)2972 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2973 {
2974 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2975 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2976 skb->csum_level++;
2977 } else if (skb->ip_summed == CHECKSUM_NONE) {
2978 skb->ip_summed = CHECKSUM_UNNECESSARY;
2979 skb->csum_level = 0;
2980 }
2981 }
2982
__skb_mark_checksum_bad(struct sk_buff * skb)2983 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2984 {
2985 /* Mark current checksum as bad (typically called from GRO
2986 * path). In the case that ip_summed is CHECKSUM_NONE
2987 * this must be the first checksum encountered in the packet.
2988 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2989 * checksum after the last one validated. For UDP, a zero
2990 * checksum can not be marked as bad.
2991 */
2992
2993 if (skb->ip_summed == CHECKSUM_NONE ||
2994 skb->ip_summed == CHECKSUM_UNNECESSARY)
2995 skb->csum_bad = 1;
2996 }
2997
2998 /* Check if we need to perform checksum complete validation.
2999 *
3000 * Returns true if checksum complete is needed, false otherwise
3001 * (either checksum is unnecessary or zero checksum is allowed).
3002 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3003 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3004 bool zero_okay,
3005 __sum16 check)
3006 {
3007 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3008 skb->csum_valid = 1;
3009 __skb_decr_checksum_unnecessary(skb);
3010 return false;
3011 }
3012
3013 return true;
3014 }
3015
3016 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3017 * in checksum_init.
3018 */
3019 #define CHECKSUM_BREAK 76
3020
3021 /* Unset checksum-complete
3022 *
3023 * Unset checksum complete can be done when packet is being modified
3024 * (uncompressed for instance) and checksum-complete value is
3025 * invalidated.
3026 */
skb_checksum_complete_unset(struct sk_buff * skb)3027 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3028 {
3029 if (skb->ip_summed == CHECKSUM_COMPLETE)
3030 skb->ip_summed = CHECKSUM_NONE;
3031 }
3032
3033 /* Validate (init) checksum based on checksum complete.
3034 *
3035 * Return values:
3036 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3037 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3038 * checksum is stored in skb->csum for use in __skb_checksum_complete
3039 * non-zero: value of invalid checksum
3040 *
3041 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)3042 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3043 bool complete,
3044 __wsum psum)
3045 {
3046 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3047 if (!csum_fold(csum_add(psum, skb->csum))) {
3048 skb->csum_valid = 1;
3049 return 0;
3050 }
3051 } else if (skb->csum_bad) {
3052 /* ip_summed == CHECKSUM_NONE in this case */
3053 return 1;
3054 }
3055
3056 skb->csum = psum;
3057
3058 if (complete || skb->len <= CHECKSUM_BREAK) {
3059 __sum16 csum;
3060
3061 csum = __skb_checksum_complete(skb);
3062 skb->csum_valid = !csum;
3063 return csum;
3064 }
3065
3066 return 0;
3067 }
3068
null_compute_pseudo(struct sk_buff * skb,int proto)3069 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3070 {
3071 return 0;
3072 }
3073
3074 /* Perform checksum validate (init). Note that this is a macro since we only
3075 * want to calculate the pseudo header which is an input function if necessary.
3076 * First we try to validate without any computation (checksum unnecessary) and
3077 * then calculate based on checksum complete calling the function to compute
3078 * pseudo header.
3079 *
3080 * Return values:
3081 * 0: checksum is validated or try to in skb_checksum_complete
3082 * non-zero: value of invalid checksum
3083 */
3084 #define __skb_checksum_validate(skb, proto, complete, \
3085 zero_okay, check, compute_pseudo) \
3086 ({ \
3087 __sum16 __ret = 0; \
3088 skb->csum_valid = 0; \
3089 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3090 __ret = __skb_checksum_validate_complete(skb, \
3091 complete, compute_pseudo(skb, proto)); \
3092 __ret; \
3093 })
3094
3095 #define skb_checksum_init(skb, proto, compute_pseudo) \
3096 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3097
3098 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3099 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3100
3101 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3102 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3103
3104 #define skb_checksum_validate_zero_check(skb, proto, check, \
3105 compute_pseudo) \
3106 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3107
3108 #define skb_checksum_simple_validate(skb) \
3109 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3110
__skb_checksum_convert_check(struct sk_buff * skb)3111 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3112 {
3113 return (skb->ip_summed == CHECKSUM_NONE &&
3114 skb->csum_valid && !skb->csum_bad);
3115 }
3116
__skb_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)3117 static inline void __skb_checksum_convert(struct sk_buff *skb,
3118 __sum16 check, __wsum pseudo)
3119 {
3120 skb->csum = ~pseudo;
3121 skb->ip_summed = CHECKSUM_COMPLETE;
3122 }
3123
3124 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3125 do { \
3126 if (__skb_checksum_convert_check(skb)) \
3127 __skb_checksum_convert(skb, check, \
3128 compute_pseudo(skb, proto)); \
3129 } while (0)
3130
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)3131 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3132 u16 start, u16 offset)
3133 {
3134 skb->ip_summed = CHECKSUM_PARTIAL;
3135 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3136 skb->csum_offset = offset - start;
3137 }
3138
3139 /* Update skbuf and packet to reflect the remote checksum offload operation.
3140 * When called, ptr indicates the starting point for skb->csum when
3141 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3142 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3143 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)3144 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3145 int start, int offset, bool nopartial)
3146 {
3147 __wsum delta;
3148
3149 if (!nopartial) {
3150 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3151 return;
3152 }
3153
3154 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3155 __skb_checksum_complete(skb);
3156 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3157 }
3158
3159 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3160
3161 /* Adjust skb->csum since we changed the packet */
3162 skb->csum = csum_add(skb->csum, delta);
3163 }
3164
3165 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3166 void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)3167 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3168 {
3169 if (nfct && atomic_dec_and_test(&nfct->use))
3170 nf_conntrack_destroy(nfct);
3171 }
nf_conntrack_get(struct nf_conntrack * nfct)3172 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3173 {
3174 if (nfct)
3175 atomic_inc(&nfct->use);
3176 }
3177 #endif
3178 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
nf_bridge_put(struct nf_bridge_info * nf_bridge)3179 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3180 {
3181 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3182 kfree(nf_bridge);
3183 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)3184 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3185 {
3186 if (nf_bridge)
3187 atomic_inc(&nf_bridge->use);
3188 }
3189 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)3190 static inline void nf_reset(struct sk_buff *skb)
3191 {
3192 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3193 nf_conntrack_put(skb->nfct);
3194 skb->nfct = NULL;
3195 #endif
3196 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3197 nf_bridge_put(skb->nf_bridge);
3198 skb->nf_bridge = NULL;
3199 #endif
3200 }
3201
nf_reset_trace(struct sk_buff * skb)3202 static inline void nf_reset_trace(struct sk_buff *skb)
3203 {
3204 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3205 skb->nf_trace = 0;
3206 #endif
3207 }
3208
3209 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)3210 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3211 bool copy)
3212 {
3213 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3214 dst->nfct = src->nfct;
3215 nf_conntrack_get(src->nfct);
3216 if (copy)
3217 dst->nfctinfo = src->nfctinfo;
3218 #endif
3219 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3220 dst->nf_bridge = src->nf_bridge;
3221 nf_bridge_get(src->nf_bridge);
3222 #endif
3223 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3224 if (copy)
3225 dst->nf_trace = src->nf_trace;
3226 #endif
3227 }
3228
nf_copy(struct sk_buff * dst,const struct sk_buff * src)3229 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3230 {
3231 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3232 nf_conntrack_put(dst->nfct);
3233 #endif
3234 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3235 nf_bridge_put(dst->nf_bridge);
3236 #endif
3237 __nf_copy(dst, src, true);
3238 }
3239
3240 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3241 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3242 {
3243 to->secmark = from->secmark;
3244 }
3245
skb_init_secmark(struct sk_buff * skb)3246 static inline void skb_init_secmark(struct sk_buff *skb)
3247 {
3248 skb->secmark = 0;
3249 }
3250 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)3251 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3252 { }
3253
skb_init_secmark(struct sk_buff * skb)3254 static inline void skb_init_secmark(struct sk_buff *skb)
3255 { }
3256 #endif
3257
skb_irq_freeable(const struct sk_buff * skb)3258 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3259 {
3260 return !skb->destructor &&
3261 #if IS_ENABLED(CONFIG_XFRM)
3262 !skb->sp &&
3263 #endif
3264 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3265 !skb->nfct &&
3266 #endif
3267 !skb->_skb_refdst &&
3268 !skb_has_frag_list(skb);
3269 }
3270
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)3271 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3272 {
3273 skb->queue_mapping = queue_mapping;
3274 }
3275
skb_get_queue_mapping(const struct sk_buff * skb)3276 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3277 {
3278 return skb->queue_mapping;
3279 }
3280
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)3281 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3282 {
3283 to->queue_mapping = from->queue_mapping;
3284 }
3285
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)3286 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3287 {
3288 skb->queue_mapping = rx_queue + 1;
3289 }
3290
skb_get_rx_queue(const struct sk_buff * skb)3291 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3292 {
3293 return skb->queue_mapping - 1;
3294 }
3295
skb_rx_queue_recorded(const struct sk_buff * skb)3296 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3297 {
3298 return skb->queue_mapping != 0;
3299 }
3300
3301 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3302 unsigned int num_tx_queues);
3303
skb_sec_path(struct sk_buff * skb)3304 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3305 {
3306 #ifdef CONFIG_XFRM
3307 return skb->sp;
3308 #else
3309 return NULL;
3310 #endif
3311 }
3312
3313 /* Keeps track of mac header offset relative to skb->head.
3314 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3315 * For non-tunnel skb it points to skb_mac_header() and for
3316 * tunnel skb it points to outer mac header.
3317 * Keeps track of level of encapsulation of network headers.
3318 */
3319 struct skb_gso_cb {
3320 int mac_offset;
3321 int encap_level;
3322 __u16 csum_start;
3323 };
3324 #define SKB_SGO_CB_OFFSET 32
3325 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3326
skb_tnl_header_len(const struct sk_buff * inner_skb)3327 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3328 {
3329 return (skb_mac_header(inner_skb) - inner_skb->head) -
3330 SKB_GSO_CB(inner_skb)->mac_offset;
3331 }
3332
gso_pskb_expand_head(struct sk_buff * skb,int extra)3333 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3334 {
3335 int new_headroom, headroom;
3336 int ret;
3337
3338 headroom = skb_headroom(skb);
3339 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3340 if (ret)
3341 return ret;
3342
3343 new_headroom = skb_headroom(skb);
3344 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3345 return 0;
3346 }
3347
3348 /* Compute the checksum for a gso segment. First compute the checksum value
3349 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3350 * then add in skb->csum (checksum from csum_start to end of packet).
3351 * skb->csum and csum_start are then updated to reflect the checksum of the
3352 * resultant packet starting from the transport header-- the resultant checksum
3353 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3354 * header.
3355 */
gso_make_checksum(struct sk_buff * skb,__wsum res)3356 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3357 {
3358 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3359 skb_transport_offset(skb);
3360 __u16 csum;
3361
3362 csum = csum_fold(csum_partial(skb_transport_header(skb),
3363 plen, skb->csum));
3364 skb->csum = res;
3365 SKB_GSO_CB(skb)->csum_start -= plen;
3366
3367 return csum;
3368 }
3369
skb_is_gso(const struct sk_buff * skb)3370 static inline bool skb_is_gso(const struct sk_buff *skb)
3371 {
3372 return skb_shinfo(skb)->gso_size;
3373 }
3374
3375 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)3376 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3377 {
3378 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3379 }
3380
3381 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3382
skb_warn_if_lro(const struct sk_buff * skb)3383 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3384 {
3385 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3386 * wanted then gso_type will be set. */
3387 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3388
3389 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3390 unlikely(shinfo->gso_type == 0)) {
3391 __skb_warn_lro_forwarding(skb);
3392 return true;
3393 }
3394 return false;
3395 }
3396
skb_forward_csum(struct sk_buff * skb)3397 static inline void skb_forward_csum(struct sk_buff *skb)
3398 {
3399 /* Unfortunately we don't support this one. Any brave souls? */
3400 if (skb->ip_summed == CHECKSUM_COMPLETE)
3401 skb->ip_summed = CHECKSUM_NONE;
3402 }
3403
3404 /**
3405 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3406 * @skb: skb to check
3407 *
3408 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3409 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3410 * use this helper, to document places where we make this assertion.
3411 */
skb_checksum_none_assert(const struct sk_buff * skb)3412 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3413 {
3414 #ifdef DEBUG
3415 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3416 #endif
3417 }
3418
3419 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3420
3421 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3422
3423 u32 skb_get_poff(const struct sk_buff *skb);
3424 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3425 const struct flow_keys *keys, int hlen);
3426
3427 /**
3428 * skb_head_is_locked - Determine if the skb->head is locked down
3429 * @skb: skb to check
3430 *
3431 * The head on skbs build around a head frag can be removed if they are
3432 * not cloned. This function returns true if the skb head is locked down
3433 * due to either being allocated via kmalloc, or by being a clone with
3434 * multiple references to the head.
3435 */
skb_head_is_locked(const struct sk_buff * skb)3436 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3437 {
3438 return !skb->head_frag || skb_cloned(skb);
3439 }
3440
3441 /**
3442 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3443 *
3444 * @skb: GSO skb
3445 *
3446 * skb_gso_network_seglen is used to determine the real size of the
3447 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3448 *
3449 * The MAC/L2 header is not accounted for.
3450 */
skb_gso_network_seglen(const struct sk_buff * skb)3451 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3452 {
3453 unsigned int hdr_len = skb_transport_header(skb) -
3454 skb_network_header(skb);
3455 return hdr_len + skb_gso_transport_seglen(skb);
3456 }
3457 #endif /* __KERNEL__ */
3458 #endif /* _LINUX_SKBUFF_H */
3459