1 /*
2  * Copyright (C) 2012 CERN (www.cern.ch)
3  * Author: Alessandro Rubini <rubini@gnudd.com>
4  *
5  * Released according to the GNU GPL, version 2 or any later version.
6  *
7  * This work is part of the White Rabbit project, a research effort led
8  * by CERN, the European Institute for Nuclear Research.
9  */
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/fmc.h>
13 #include <linux/sdb.h>
14 #include <linux/err.h>
15 #include <linux/fmc-sdb.h>
16 #include <asm/byteorder.h>
17 
__sdb_rd(struct fmc_device * fmc,unsigned long address,int convert)18 static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
19 			int convert)
20 {
21 	uint32_t res = fmc_readl(fmc, address);
22 	if (convert)
23 		return __be32_to_cpu(res);
24 	return res;
25 }
26 
__fmc_scan_sdb_tree(struct fmc_device * fmc,unsigned long sdb_addr,unsigned long reg_base,int level)27 static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
28 					     unsigned long sdb_addr,
29 					     unsigned long reg_base, int level)
30 {
31 	uint32_t onew;
32 	int i, j, n, convert = 0;
33 	struct sdb_array *arr, *sub;
34 
35 	onew = fmc_readl(fmc, sdb_addr);
36 	if (onew == SDB_MAGIC) {
37 		/* Uh! If we are little-endian, we must convert */
38 		if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
39 			convert = 1;
40 	} else if (onew == __be32_to_cpu(SDB_MAGIC)) {
41 		/* ok, don't convert */
42 	} else {
43 		return ERR_PTR(-ENOENT);
44 	}
45 	/* So, the magic was there: get the count from offset 4*/
46 	onew = __sdb_rd(fmc, sdb_addr + 4, convert);
47 	n = __be16_to_cpu(*(uint16_t *)&onew);
48 	arr = kzalloc(sizeof(*arr), GFP_KERNEL);
49 	if (!arr)
50 		return ERR_PTR(-ENOMEM);
51 	arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
52 	arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
53 	if (!arr->record || !arr->subtree) {
54 		kfree(arr->record);
55 		kfree(arr->subtree);
56 		kfree(arr);
57 		return ERR_PTR(-ENOMEM);
58 	}
59 
60 	arr->len = n;
61 	arr->level = level;
62 	arr->fmc = fmc;
63 	for (i = 0; i < n; i++) {
64 		union  sdb_record *r;
65 
66 		for (j = 0; j < sizeof(arr->record[0]); j += 4) {
67 			*(uint32_t *)((void *)(arr->record + i) + j) =
68 				__sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
69 		}
70 		r = &arr->record[i];
71 		arr->subtree[i] = ERR_PTR(-ENODEV);
72 		if (r->empty.record_type == sdb_type_bridge) {
73 			struct sdb_component *c = &r->bridge.sdb_component;
74 			uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
75 			uint64_t newbase = __be64_to_cpu(c->addr_first);
76 
77 			subaddr += reg_base;
78 			newbase += reg_base;
79 			sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
80 						  level + 1);
81 			arr->subtree[i] = sub; /* may be error */
82 			if (IS_ERR(sub))
83 				continue;
84 			sub->parent = arr;
85 			sub->baseaddr = newbase;
86 		}
87 	}
88 	return arr;
89 }
90 
fmc_scan_sdb_tree(struct fmc_device * fmc,unsigned long address)91 int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
92 {
93 	struct sdb_array *ret;
94 	if (fmc->sdb)
95 		return -EBUSY;
96 	ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
97 	if (IS_ERR(ret))
98 		return PTR_ERR(ret);
99 	fmc->sdb = ret;
100 	return 0;
101 }
102 EXPORT_SYMBOL(fmc_scan_sdb_tree);
103 
__fmc_sdb_free(struct sdb_array * arr)104 static void __fmc_sdb_free(struct sdb_array *arr)
105 {
106 	int i, n;
107 
108 	if (!arr)
109 		return;
110 	n = arr->len;
111 	for (i = 0; i < n; i++) {
112 		if (IS_ERR(arr->subtree[i]))
113 			continue;
114 		__fmc_sdb_free(arr->subtree[i]);
115 	}
116 	kfree(arr->record);
117 	kfree(arr->subtree);
118 	kfree(arr);
119 }
120 
fmc_free_sdb_tree(struct fmc_device * fmc)121 int fmc_free_sdb_tree(struct fmc_device *fmc)
122 {
123 	__fmc_sdb_free(fmc->sdb);
124 	fmc->sdb = NULL;
125 	return 0;
126 }
127 EXPORT_SYMBOL(fmc_free_sdb_tree);
128 
129 /* This helper calls reprogram and inizialized sdb as well */
fmc_reprogram(struct fmc_device * fmc,struct fmc_driver * d,char * gw,int sdb_entry)130 int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
131 			 int sdb_entry)
132 {
133 	int ret;
134 
135 	ret = fmc->op->reprogram(fmc, d, gw);
136 	if (ret < 0)
137 		return ret;
138 	if (sdb_entry < 0)
139 		return ret;
140 
141 	/* We are required to find SDB at a given offset */
142 	ret = fmc_scan_sdb_tree(fmc, sdb_entry);
143 	if (ret < 0) {
144 		dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
145 			sdb_entry);
146 		return -ENODEV;
147 	}
148 	fmc_dump_sdb(fmc);
149 	return 0;
150 }
151 EXPORT_SYMBOL(fmc_reprogram);
152 
__strip_trailing_space(char * buf,char * str,int len)153 static char *__strip_trailing_space(char *buf, char *str, int len)
154 {
155 	int i = len - 1;
156 
157 	memcpy(buf, str, len);
158 	while(i >= 0 && buf[i] == ' ')
159 		buf[i--] = '\0';
160 	return buf;
161 }
162 
163 #define __sdb_string(buf, field) ({			\
164 	BUILD_BUG_ON(sizeof(buf) < sizeof(field));	\
165 	__strip_trailing_space(buf, (void *)(field), sizeof(field));	\
166 		})
167 
__fmc_show_sdb_tree(const struct fmc_device * fmc,const struct sdb_array * arr)168 static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
169 				const struct sdb_array *arr)
170 {
171 	unsigned long base = arr->baseaddr;
172 	int i, j, n = arr->len, level = arr->level;
173 	char buf[64];
174 
175 	for (i = 0; i < n; i++) {
176 		union  sdb_record *r;
177 		struct sdb_product *p;
178 		struct sdb_component *c;
179 		r = &arr->record[i];
180 		c = &r->dev.sdb_component;
181 		p = &c->product;
182 
183 		dev_info(&fmc->dev, "SDB: ");
184 
185 		for (j = 0; j < level; j++)
186 			printk(KERN_CONT "   ");
187 		switch (r->empty.record_type) {
188 		case sdb_type_interconnect:
189 			printk(KERN_CONT "%08llx:%08x %.19s\n",
190 			       __be64_to_cpu(p->vendor_id),
191 			       __be32_to_cpu(p->device_id),
192 			       p->name);
193 			break;
194 		case sdb_type_device:
195 			printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
196 			       __be64_to_cpu(p->vendor_id),
197 			       __be32_to_cpu(p->device_id),
198 			       p->name,
199 			       __be64_to_cpu(c->addr_first) + base,
200 			       __be64_to_cpu(c->addr_last) + base);
201 			break;
202 		case sdb_type_bridge:
203 			printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
204 			       __be64_to_cpu(p->vendor_id),
205 			       __be32_to_cpu(p->device_id),
206 			       p->name,
207 			       __be64_to_cpu(c->addr_first) + base);
208 			if (IS_ERR(arr->subtree[i])) {
209 				dev_info(&fmc->dev, "SDB: (bridge error %li)\n",
210 					 PTR_ERR(arr->subtree[i]));
211 				break;
212 			}
213 			__fmc_show_sdb_tree(fmc, arr->subtree[i]);
214 			break;
215 		case sdb_type_integration:
216 			printk(KERN_CONT "integration\n");
217 			break;
218 		case sdb_type_repo_url:
219 			printk(KERN_CONT "Synthesis repository: %s\n",
220 			       __sdb_string(buf, r->repo_url.repo_url));
221 			break;
222 		case sdb_type_synthesis:
223 			printk(KERN_CONT "Bitstream '%s' ",
224 			       __sdb_string(buf, r->synthesis.syn_name));
225 			printk(KERN_CONT "synthesized %08x by %s ",
226 			       __be32_to_cpu(r->synthesis.date),
227 			       __sdb_string(buf, r->synthesis.user_name));
228 			printk(KERN_CONT "(%s version %x), ",
229 			       __sdb_string(buf, r->synthesis.tool_name),
230 			       __be32_to_cpu(r->synthesis.tool_version));
231 			printk(KERN_CONT "commit %pm\n",
232 			       r->synthesis.commit_id);
233 			break;
234 		case sdb_type_empty:
235 			printk(KERN_CONT "empty\n");
236 			break;
237 		default:
238 			printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
239 			       r->empty.record_type);
240 			break;
241 		}
242 	}
243 }
244 
fmc_show_sdb_tree(const struct fmc_device * fmc)245 void fmc_show_sdb_tree(const struct fmc_device *fmc)
246 {
247 	if (!fmc->sdb)
248 		return;
249 	__fmc_show_sdb_tree(fmc, fmc->sdb);
250 }
251 EXPORT_SYMBOL(fmc_show_sdb_tree);
252 
fmc_find_sdb_device(struct sdb_array * tree,uint64_t vid,uint32_t did,unsigned long * sz)253 signed long fmc_find_sdb_device(struct sdb_array *tree,
254 				uint64_t vid, uint32_t did, unsigned long *sz)
255 {
256 	signed long res = -ENODEV;
257 	union  sdb_record *r;
258 	struct sdb_product *p;
259 	struct sdb_component *c;
260 	int i, n = tree->len;
261 	uint64_t last, first;
262 
263 	/* FIXME: what if the first interconnect is not at zero? */
264 	for (i = 0; i < n; i++) {
265 		r = &tree->record[i];
266 		c = &r->dev.sdb_component;
267 		p = &c->product;
268 
269 		if (!IS_ERR(tree->subtree[i]))
270 			res = fmc_find_sdb_device(tree->subtree[i],
271 						  vid, did, sz);
272 		if (res >= 0)
273 			return res + tree->baseaddr;
274 		if (r->empty.record_type != sdb_type_device)
275 			continue;
276 		if (__be64_to_cpu(p->vendor_id) != vid)
277 			continue;
278 		if (__be32_to_cpu(p->device_id) != did)
279 			continue;
280 		/* found */
281 		last = __be64_to_cpu(c->addr_last);
282 		first = __be64_to_cpu(c->addr_first);
283 		if (sz)
284 			*sz = (typeof(*sz))(last + 1 - first);
285 		return first + tree->baseaddr;
286 	}
287 	return res;
288 }
289 EXPORT_SYMBOL(fmc_find_sdb_device);
290