1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34 
35 struct bdev_inode {
36 	struct block_device bdev;
37 	struct inode vfs_inode;
38 };
39 
40 static const struct address_space_operations def_blk_aops;
41 
BDEV_I(struct inode * inode)42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 	return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46 
I_BDEV(struct inode * inode)47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 	return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52 
bdev_write_inode(struct block_device * bdev)53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 	struct inode *inode = bdev->bd_inode;
56 	int ret;
57 
58 	spin_lock(&inode->i_lock);
59 	while (inode->i_state & I_DIRTY) {
60 		spin_unlock(&inode->i_lock);
61 		ret = write_inode_now(inode, true);
62 		if (ret) {
63 			char name[BDEVNAME_SIZE];
64 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 					    "for block device %s (err=%d).\n",
66 					    bdevname(bdev, name), ret);
67 		}
68 		spin_lock(&inode->i_lock);
69 	}
70 	spin_unlock(&inode->i_lock);
71 }
72 
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)74 void kill_bdev(struct block_device *bdev)
75 {
76 	struct address_space *mapping = bdev->bd_inode->i_mapping;
77 
78 	if (mapping->nrpages == 0 && mapping->nrshadows == 0)
79 		return;
80 
81 	invalidate_bh_lrus();
82 	truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85 
86 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)87 void invalidate_bdev(struct block_device *bdev)
88 {
89 	struct address_space *mapping = bdev->bd_inode->i_mapping;
90 
91 	if (mapping->nrpages == 0)
92 		return;
93 
94 	invalidate_bh_lrus();
95 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
96 	invalidate_mapping_pages(mapping, 0, -1);
97 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
98 	 * But, for the strange corners, lets be cautious
99 	 */
100 	cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103 
set_blocksize(struct block_device * bdev,int size)104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
107 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 		return -EINVAL;
109 
110 	/* Size cannot be smaller than the size supported by the device */
111 	if (size < bdev_logical_block_size(bdev))
112 		return -EINVAL;
113 
114 	/* Don't change the size if it is same as current */
115 	if (bdev->bd_block_size != size) {
116 		sync_blockdev(bdev);
117 		bdev->bd_block_size = size;
118 		bdev->bd_inode->i_blkbits = blksize_bits(size);
119 		kill_bdev(bdev);
120 	}
121 	return 0;
122 }
123 
124 EXPORT_SYMBOL(set_blocksize);
125 
sb_set_blocksize(struct super_block * sb,int size)126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 	if (set_blocksize(sb->s_bdev, size))
129 		return 0;
130 	/* If we get here, we know size is power of two
131 	 * and it's value is between 512 and PAGE_SIZE */
132 	sb->s_blocksize = size;
133 	sb->s_blocksize_bits = blksize_bits(size);
134 	return sb->s_blocksize;
135 }
136 
137 EXPORT_SYMBOL(sb_set_blocksize);
138 
sb_min_blocksize(struct super_block * sb,int size)139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 	int minsize = bdev_logical_block_size(sb->s_bdev);
142 	if (size < minsize)
143 		size = minsize;
144 	return sb_set_blocksize(sb, size);
145 }
146 
147 EXPORT_SYMBOL(sb_min_blocksize);
148 
149 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 		struct buffer_head *bh, int create)
152 {
153 	bh->b_bdev = I_BDEV(inode);
154 	bh->b_blocknr = iblock;
155 	set_buffer_mapped(bh);
156 	return 0;
157 }
158 
159 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)160 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
161 {
162 	struct file *file = iocb->ki_filp;
163 	struct inode *inode = file->f_mapping->host;
164 
165 	if (IS_DAX(inode))
166 		return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
167 				NULL, DIO_SKIP_DIO_COUNT);
168 	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
169 				    blkdev_get_block, NULL, NULL,
170 				    DIO_SKIP_DIO_COUNT);
171 }
172 
__sync_blockdev(struct block_device * bdev,int wait)173 int __sync_blockdev(struct block_device *bdev, int wait)
174 {
175 	if (!bdev)
176 		return 0;
177 	if (!wait)
178 		return filemap_flush(bdev->bd_inode->i_mapping);
179 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
180 }
181 
182 /*
183  * Write out and wait upon all the dirty data associated with a block
184  * device via its mapping.  Does not take the superblock lock.
185  */
sync_blockdev(struct block_device * bdev)186 int sync_blockdev(struct block_device *bdev)
187 {
188 	return __sync_blockdev(bdev, 1);
189 }
190 EXPORT_SYMBOL(sync_blockdev);
191 
192 /*
193  * Write out and wait upon all dirty data associated with this
194  * device.   Filesystem data as well as the underlying block
195  * device.  Takes the superblock lock.
196  */
fsync_bdev(struct block_device * bdev)197 int fsync_bdev(struct block_device *bdev)
198 {
199 	struct super_block *sb = get_super(bdev);
200 	if (sb) {
201 		int res = sync_filesystem(sb);
202 		drop_super(sb);
203 		return res;
204 	}
205 	return sync_blockdev(bdev);
206 }
207 EXPORT_SYMBOL(fsync_bdev);
208 
209 /**
210  * freeze_bdev  --  lock a filesystem and force it into a consistent state
211  * @bdev:	blockdevice to lock
212  *
213  * If a superblock is found on this device, we take the s_umount semaphore
214  * on it to make sure nobody unmounts until the snapshot creation is done.
215  * The reference counter (bd_fsfreeze_count) guarantees that only the last
216  * unfreeze process can unfreeze the frozen filesystem actually when multiple
217  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
218  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
219  * actually.
220  */
freeze_bdev(struct block_device * bdev)221 struct super_block *freeze_bdev(struct block_device *bdev)
222 {
223 	struct super_block *sb;
224 	int error = 0;
225 
226 	mutex_lock(&bdev->bd_fsfreeze_mutex);
227 	if (++bdev->bd_fsfreeze_count > 1) {
228 		/*
229 		 * We don't even need to grab a reference - the first call
230 		 * to freeze_bdev grab an active reference and only the last
231 		 * thaw_bdev drops it.
232 		 */
233 		sb = get_super(bdev);
234 		drop_super(sb);
235 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
236 		return sb;
237 	}
238 
239 	sb = get_active_super(bdev);
240 	if (!sb)
241 		goto out;
242 	if (sb->s_op->freeze_super)
243 		error = sb->s_op->freeze_super(sb);
244 	else
245 		error = freeze_super(sb);
246 	if (error) {
247 		deactivate_super(sb);
248 		bdev->bd_fsfreeze_count--;
249 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
250 		return ERR_PTR(error);
251 	}
252 	deactivate_super(sb);
253  out:
254 	sync_blockdev(bdev);
255 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
256 	return sb;	/* thaw_bdev releases s->s_umount */
257 }
258 EXPORT_SYMBOL(freeze_bdev);
259 
260 /**
261  * thaw_bdev  -- unlock filesystem
262  * @bdev:	blockdevice to unlock
263  * @sb:		associated superblock
264  *
265  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
266  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)267 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
268 {
269 	int error = -EINVAL;
270 
271 	mutex_lock(&bdev->bd_fsfreeze_mutex);
272 	if (!bdev->bd_fsfreeze_count)
273 		goto out;
274 
275 	error = 0;
276 	if (--bdev->bd_fsfreeze_count > 0)
277 		goto out;
278 
279 	if (!sb)
280 		goto out;
281 
282 	if (sb->s_op->thaw_super)
283 		error = sb->s_op->thaw_super(sb);
284 	else
285 		error = thaw_super(sb);
286 	if (error) {
287 		bdev->bd_fsfreeze_count++;
288 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
289 		return error;
290 	}
291 out:
292 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
293 	return 0;
294 }
295 EXPORT_SYMBOL(thaw_bdev);
296 
blkdev_writepage(struct page * page,struct writeback_control * wbc)297 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
298 {
299 	return block_write_full_page(page, blkdev_get_block, wbc);
300 }
301 
blkdev_readpage(struct file * file,struct page * page)302 static int blkdev_readpage(struct file * file, struct page * page)
303 {
304 	return block_read_full_page(page, blkdev_get_block);
305 }
306 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)307 static int blkdev_readpages(struct file *file, struct address_space *mapping,
308 			struct list_head *pages, unsigned nr_pages)
309 {
310 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
311 }
312 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)313 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
314 			loff_t pos, unsigned len, unsigned flags,
315 			struct page **pagep, void **fsdata)
316 {
317 	return block_write_begin(mapping, pos, len, flags, pagep,
318 				 blkdev_get_block);
319 }
320 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)321 static int blkdev_write_end(struct file *file, struct address_space *mapping,
322 			loff_t pos, unsigned len, unsigned copied,
323 			struct page *page, void *fsdata)
324 {
325 	int ret;
326 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
327 
328 	unlock_page(page);
329 	page_cache_release(page);
330 
331 	return ret;
332 }
333 
334 /*
335  * private llseek:
336  * for a block special file file_inode(file)->i_size is zero
337  * so we compute the size by hand (just as in block_read/write above)
338  */
block_llseek(struct file * file,loff_t offset,int whence)339 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
340 {
341 	struct inode *bd_inode = file->f_mapping->host;
342 	loff_t retval;
343 
344 	mutex_lock(&bd_inode->i_mutex);
345 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
346 	mutex_unlock(&bd_inode->i_mutex);
347 	return retval;
348 }
349 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)350 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
351 {
352 	struct inode *bd_inode = filp->f_mapping->host;
353 	struct block_device *bdev = I_BDEV(bd_inode);
354 	int error;
355 
356 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
357 	if (error)
358 		return error;
359 
360 	/*
361 	 * There is no need to serialise calls to blkdev_issue_flush with
362 	 * i_mutex and doing so causes performance issues with concurrent
363 	 * O_SYNC writers to a block device.
364 	 */
365 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
366 	if (error == -EOPNOTSUPP)
367 		error = 0;
368 
369 	return error;
370 }
371 EXPORT_SYMBOL(blkdev_fsync);
372 
373 /**
374  * bdev_read_page() - Start reading a page from a block device
375  * @bdev: The device to read the page from
376  * @sector: The offset on the device to read the page to (need not be aligned)
377  * @page: The page to read
378  *
379  * On entry, the page should be locked.  It will be unlocked when the page
380  * has been read.  If the block driver implements rw_page synchronously,
381  * that will be true on exit from this function, but it need not be.
382  *
383  * Errors returned by this function are usually "soft", eg out of memory, or
384  * queue full; callers should try a different route to read this page rather
385  * than propagate an error back up the stack.
386  *
387  * Return: negative errno if an error occurs, 0 if submission was successful.
388  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)389 int bdev_read_page(struct block_device *bdev, sector_t sector,
390 			struct page *page)
391 {
392 	const struct block_device_operations *ops = bdev->bd_disk->fops;
393 	int result = -EOPNOTSUPP;
394 
395 	if (!ops->rw_page || bdev_get_integrity(bdev))
396 		return result;
397 
398 	result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
399 	if (result)
400 		return result;
401 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
402 	blk_queue_exit(bdev->bd_queue);
403 	return result;
404 }
405 EXPORT_SYMBOL_GPL(bdev_read_page);
406 
407 /**
408  * bdev_write_page() - Start writing a page to a block device
409  * @bdev: The device to write the page to
410  * @sector: The offset on the device to write the page to (need not be aligned)
411  * @page: The page to write
412  * @wbc: The writeback_control for the write
413  *
414  * On entry, the page should be locked and not currently under writeback.
415  * On exit, if the write started successfully, the page will be unlocked and
416  * under writeback.  If the write failed already (eg the driver failed to
417  * queue the page to the device), the page will still be locked.  If the
418  * caller is a ->writepage implementation, it will need to unlock the page.
419  *
420  * Errors returned by this function are usually "soft", eg out of memory, or
421  * queue full; callers should try a different route to write this page rather
422  * than propagate an error back up the stack.
423  *
424  * Return: negative errno if an error occurs, 0 if submission was successful.
425  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)426 int bdev_write_page(struct block_device *bdev, sector_t sector,
427 			struct page *page, struct writeback_control *wbc)
428 {
429 	int result;
430 	int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
431 	const struct block_device_operations *ops = bdev->bd_disk->fops;
432 
433 	if (!ops->rw_page || bdev_get_integrity(bdev))
434 		return -EOPNOTSUPP;
435 	result = blk_queue_enter(bdev->bd_queue, GFP_KERNEL);
436 	if (result)
437 		return result;
438 
439 	set_page_writeback(page);
440 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
441 	if (result)
442 		end_page_writeback(page);
443 	else
444 		unlock_page(page);
445 	blk_queue_exit(bdev->bd_queue);
446 	return result;
447 }
448 EXPORT_SYMBOL_GPL(bdev_write_page);
449 
450 /**
451  * bdev_direct_access() - Get the address for directly-accessibly memory
452  * @bdev: The device containing the memory
453  * @sector: The offset within the device
454  * @addr: Where to put the address of the memory
455  * @pfn: The Page Frame Number for the memory
456  * @size: The number of bytes requested
457  *
458  * If a block device is made up of directly addressable memory, this function
459  * will tell the caller the PFN and the address of the memory.  The address
460  * may be directly dereferenced within the kernel without the need to call
461  * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
462  * page tables.
463  *
464  * Return: negative errno if an error occurs, otherwise the number of bytes
465  * accessible at this address.
466  */
bdev_direct_access(struct block_device * bdev,sector_t sector,void __pmem ** addr,unsigned long * pfn,long size)467 long bdev_direct_access(struct block_device *bdev, sector_t sector,
468 			void __pmem **addr, unsigned long *pfn, long size)
469 {
470 	long avail;
471 	const struct block_device_operations *ops = bdev->bd_disk->fops;
472 
473 	/*
474 	 * The device driver is allowed to sleep, in order to make the
475 	 * memory directly accessible.
476 	 */
477 	might_sleep();
478 
479 	if (size < 0)
480 		return size;
481 	if (!ops->direct_access)
482 		return -EOPNOTSUPP;
483 	if ((sector + DIV_ROUND_UP(size, 512)) >
484 					part_nr_sects_read(bdev->bd_part))
485 		return -ERANGE;
486 	sector += get_start_sect(bdev);
487 	if (sector % (PAGE_SIZE / 512))
488 		return -EINVAL;
489 	avail = ops->direct_access(bdev, sector, addr, pfn);
490 	if (!avail)
491 		return -ERANGE;
492 	return min(avail, size);
493 }
494 EXPORT_SYMBOL_GPL(bdev_direct_access);
495 
496 /*
497  * pseudo-fs
498  */
499 
500 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
501 static struct kmem_cache * bdev_cachep __read_mostly;
502 
bdev_alloc_inode(struct super_block * sb)503 static struct inode *bdev_alloc_inode(struct super_block *sb)
504 {
505 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
506 	if (!ei)
507 		return NULL;
508 	return &ei->vfs_inode;
509 }
510 
bdev_i_callback(struct rcu_head * head)511 static void bdev_i_callback(struct rcu_head *head)
512 {
513 	struct inode *inode = container_of(head, struct inode, i_rcu);
514 	struct bdev_inode *bdi = BDEV_I(inode);
515 
516 	kmem_cache_free(bdev_cachep, bdi);
517 }
518 
bdev_destroy_inode(struct inode * inode)519 static void bdev_destroy_inode(struct inode *inode)
520 {
521 	call_rcu(&inode->i_rcu, bdev_i_callback);
522 }
523 
init_once(void * foo)524 static void init_once(void *foo)
525 {
526 	struct bdev_inode *ei = (struct bdev_inode *) foo;
527 	struct block_device *bdev = &ei->bdev;
528 
529 	memset(bdev, 0, sizeof(*bdev));
530 	mutex_init(&bdev->bd_mutex);
531 	INIT_LIST_HEAD(&bdev->bd_inodes);
532 	INIT_LIST_HEAD(&bdev->bd_list);
533 #ifdef CONFIG_SYSFS
534 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
535 #endif
536 	inode_init_once(&ei->vfs_inode);
537 	/* Initialize mutex for freeze. */
538 	mutex_init(&bdev->bd_fsfreeze_mutex);
539 }
540 
__bd_forget(struct inode * inode)541 static inline void __bd_forget(struct inode *inode)
542 {
543 	list_del_init(&inode->i_devices);
544 	inode->i_bdev = NULL;
545 	inode->i_mapping = &inode->i_data;
546 }
547 
bdev_evict_inode(struct inode * inode)548 static void bdev_evict_inode(struct inode *inode)
549 {
550 	struct block_device *bdev = &BDEV_I(inode)->bdev;
551 	struct list_head *p;
552 	truncate_inode_pages_final(&inode->i_data);
553 	invalidate_inode_buffers(inode); /* is it needed here? */
554 	clear_inode(inode);
555 	spin_lock(&bdev_lock);
556 	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
557 		__bd_forget(list_entry(p, struct inode, i_devices));
558 	}
559 	list_del_init(&bdev->bd_list);
560 	spin_unlock(&bdev_lock);
561 }
562 
563 static const struct super_operations bdev_sops = {
564 	.statfs = simple_statfs,
565 	.alloc_inode = bdev_alloc_inode,
566 	.destroy_inode = bdev_destroy_inode,
567 	.drop_inode = generic_delete_inode,
568 	.evict_inode = bdev_evict_inode,
569 };
570 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)571 static struct dentry *bd_mount(struct file_system_type *fs_type,
572 	int flags, const char *dev_name, void *data)
573 {
574 	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
575 }
576 
577 static struct file_system_type bd_type = {
578 	.name		= "bdev",
579 	.mount		= bd_mount,
580 	.kill_sb	= kill_anon_super,
581 };
582 
583 struct super_block *blockdev_superblock __read_mostly;
584 EXPORT_SYMBOL_GPL(blockdev_superblock);
585 
bdev_cache_init(void)586 void __init bdev_cache_init(void)
587 {
588 	int err;
589 	static struct vfsmount *bd_mnt;
590 
591 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
592 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
593 				SLAB_MEM_SPREAD|SLAB_PANIC),
594 			init_once);
595 	err = register_filesystem(&bd_type);
596 	if (err)
597 		panic("Cannot register bdev pseudo-fs");
598 	bd_mnt = kern_mount(&bd_type);
599 	if (IS_ERR(bd_mnt))
600 		panic("Cannot create bdev pseudo-fs");
601 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
602 }
603 
604 /*
605  * Most likely _very_ bad one - but then it's hardly critical for small
606  * /dev and can be fixed when somebody will need really large one.
607  * Keep in mind that it will be fed through icache hash function too.
608  */
hash(dev_t dev)609 static inline unsigned long hash(dev_t dev)
610 {
611 	return MAJOR(dev)+MINOR(dev);
612 }
613 
bdev_test(struct inode * inode,void * data)614 static int bdev_test(struct inode *inode, void *data)
615 {
616 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
617 }
618 
bdev_set(struct inode * inode,void * data)619 static int bdev_set(struct inode *inode, void *data)
620 {
621 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
622 	return 0;
623 }
624 
625 static LIST_HEAD(all_bdevs);
626 
bdget(dev_t dev)627 struct block_device *bdget(dev_t dev)
628 {
629 	struct block_device *bdev;
630 	struct inode *inode;
631 
632 	inode = iget5_locked(blockdev_superblock, hash(dev),
633 			bdev_test, bdev_set, &dev);
634 
635 	if (!inode)
636 		return NULL;
637 
638 	bdev = &BDEV_I(inode)->bdev;
639 
640 	if (inode->i_state & I_NEW) {
641 		bdev->bd_contains = NULL;
642 		bdev->bd_super = NULL;
643 		bdev->bd_inode = inode;
644 		bdev->bd_block_size = (1 << inode->i_blkbits);
645 		bdev->bd_part_count = 0;
646 		bdev->bd_invalidated = 0;
647 		inode->i_mode = S_IFBLK;
648 		inode->i_rdev = dev;
649 		inode->i_bdev = bdev;
650 		inode->i_data.a_ops = &def_blk_aops;
651 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
652 		spin_lock(&bdev_lock);
653 		list_add(&bdev->bd_list, &all_bdevs);
654 		spin_unlock(&bdev_lock);
655 		unlock_new_inode(inode);
656 	}
657 	return bdev;
658 }
659 
660 EXPORT_SYMBOL(bdget);
661 
662 /**
663  * bdgrab -- Grab a reference to an already referenced block device
664  * @bdev:	Block device to grab a reference to.
665  */
bdgrab(struct block_device * bdev)666 struct block_device *bdgrab(struct block_device *bdev)
667 {
668 	ihold(bdev->bd_inode);
669 	return bdev;
670 }
671 EXPORT_SYMBOL(bdgrab);
672 
nr_blockdev_pages(void)673 long nr_blockdev_pages(void)
674 {
675 	struct block_device *bdev;
676 	long ret = 0;
677 	spin_lock(&bdev_lock);
678 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
679 		ret += bdev->bd_inode->i_mapping->nrpages;
680 	}
681 	spin_unlock(&bdev_lock);
682 	return ret;
683 }
684 
bdput(struct block_device * bdev)685 void bdput(struct block_device *bdev)
686 {
687 	iput(bdev->bd_inode);
688 }
689 
690 EXPORT_SYMBOL(bdput);
691 
bd_acquire(struct inode * inode)692 static struct block_device *bd_acquire(struct inode *inode)
693 {
694 	struct block_device *bdev;
695 
696 	spin_lock(&bdev_lock);
697 	bdev = inode->i_bdev;
698 	if (bdev) {
699 		ihold(bdev->bd_inode);
700 		spin_unlock(&bdev_lock);
701 		return bdev;
702 	}
703 	spin_unlock(&bdev_lock);
704 
705 	bdev = bdget(inode->i_rdev);
706 	if (bdev) {
707 		spin_lock(&bdev_lock);
708 		if (!inode->i_bdev) {
709 			/*
710 			 * We take an additional reference to bd_inode,
711 			 * and it's released in clear_inode() of inode.
712 			 * So, we can access it via ->i_mapping always
713 			 * without igrab().
714 			 */
715 			ihold(bdev->bd_inode);
716 			inode->i_bdev = bdev;
717 			inode->i_mapping = bdev->bd_inode->i_mapping;
718 			list_add(&inode->i_devices, &bdev->bd_inodes);
719 		}
720 		spin_unlock(&bdev_lock);
721 	}
722 	return bdev;
723 }
724 
725 /* Call when you free inode */
726 
bd_forget(struct inode * inode)727 void bd_forget(struct inode *inode)
728 {
729 	struct block_device *bdev = NULL;
730 
731 	spin_lock(&bdev_lock);
732 	if (!sb_is_blkdev_sb(inode->i_sb))
733 		bdev = inode->i_bdev;
734 	__bd_forget(inode);
735 	spin_unlock(&bdev_lock);
736 
737 	if (bdev)
738 		iput(bdev->bd_inode);
739 }
740 
741 /**
742  * bd_may_claim - test whether a block device can be claimed
743  * @bdev: block device of interest
744  * @whole: whole block device containing @bdev, may equal @bdev
745  * @holder: holder trying to claim @bdev
746  *
747  * Test whether @bdev can be claimed by @holder.
748  *
749  * CONTEXT:
750  * spin_lock(&bdev_lock).
751  *
752  * RETURNS:
753  * %true if @bdev can be claimed, %false otherwise.
754  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)755 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
756 			 void *holder)
757 {
758 	if (bdev->bd_holder == holder)
759 		return true;	 /* already a holder */
760 	else if (bdev->bd_holder != NULL)
761 		return false; 	 /* held by someone else */
762 	else if (bdev->bd_contains == bdev)
763 		return true;  	 /* is a whole device which isn't held */
764 
765 	else if (whole->bd_holder == bd_may_claim)
766 		return true; 	 /* is a partition of a device that is being partitioned */
767 	else if (whole->bd_holder != NULL)
768 		return false;	 /* is a partition of a held device */
769 	else
770 		return true;	 /* is a partition of an un-held device */
771 }
772 
773 /**
774  * bd_prepare_to_claim - prepare to claim a block device
775  * @bdev: block device of interest
776  * @whole: the whole device containing @bdev, may equal @bdev
777  * @holder: holder trying to claim @bdev
778  *
779  * Prepare to claim @bdev.  This function fails if @bdev is already
780  * claimed by another holder and waits if another claiming is in
781  * progress.  This function doesn't actually claim.  On successful
782  * return, the caller has ownership of bd_claiming and bd_holder[s].
783  *
784  * CONTEXT:
785  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
786  * it multiple times.
787  *
788  * RETURNS:
789  * 0 if @bdev can be claimed, -EBUSY otherwise.
790  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)791 static int bd_prepare_to_claim(struct block_device *bdev,
792 			       struct block_device *whole, void *holder)
793 {
794 retry:
795 	/* if someone else claimed, fail */
796 	if (!bd_may_claim(bdev, whole, holder))
797 		return -EBUSY;
798 
799 	/* if claiming is already in progress, wait for it to finish */
800 	if (whole->bd_claiming) {
801 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
802 		DEFINE_WAIT(wait);
803 
804 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
805 		spin_unlock(&bdev_lock);
806 		schedule();
807 		finish_wait(wq, &wait);
808 		spin_lock(&bdev_lock);
809 		goto retry;
810 	}
811 
812 	/* yay, all mine */
813 	return 0;
814 }
815 
816 /**
817  * bd_start_claiming - start claiming a block device
818  * @bdev: block device of interest
819  * @holder: holder trying to claim @bdev
820  *
821  * @bdev is about to be opened exclusively.  Check @bdev can be opened
822  * exclusively and mark that an exclusive open is in progress.  Each
823  * successful call to this function must be matched with a call to
824  * either bd_finish_claiming() or bd_abort_claiming() (which do not
825  * fail).
826  *
827  * This function is used to gain exclusive access to the block device
828  * without actually causing other exclusive open attempts to fail. It
829  * should be used when the open sequence itself requires exclusive
830  * access but may subsequently fail.
831  *
832  * CONTEXT:
833  * Might sleep.
834  *
835  * RETURNS:
836  * Pointer to the block device containing @bdev on success, ERR_PTR()
837  * value on failure.
838  */
bd_start_claiming(struct block_device * bdev,void * holder)839 static struct block_device *bd_start_claiming(struct block_device *bdev,
840 					      void *holder)
841 {
842 	struct gendisk *disk;
843 	struct block_device *whole;
844 	int partno, err;
845 
846 	might_sleep();
847 
848 	/*
849 	 * @bdev might not have been initialized properly yet, look up
850 	 * and grab the outer block device the hard way.
851 	 */
852 	disk = get_gendisk(bdev->bd_dev, &partno);
853 	if (!disk)
854 		return ERR_PTR(-ENXIO);
855 
856 	/*
857 	 * Normally, @bdev should equal what's returned from bdget_disk()
858 	 * if partno is 0; however, some drivers (floppy) use multiple
859 	 * bdev's for the same physical device and @bdev may be one of the
860 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
861 	 * tracking is broken for those devices but it has always been that
862 	 * way.
863 	 */
864 	if (partno)
865 		whole = bdget_disk(disk, 0);
866 	else
867 		whole = bdgrab(bdev);
868 
869 	module_put(disk->fops->owner);
870 	put_disk(disk);
871 	if (!whole)
872 		return ERR_PTR(-ENOMEM);
873 
874 	/* prepare to claim, if successful, mark claiming in progress */
875 	spin_lock(&bdev_lock);
876 
877 	err = bd_prepare_to_claim(bdev, whole, holder);
878 	if (err == 0) {
879 		whole->bd_claiming = holder;
880 		spin_unlock(&bdev_lock);
881 		return whole;
882 	} else {
883 		spin_unlock(&bdev_lock);
884 		bdput(whole);
885 		return ERR_PTR(err);
886 	}
887 }
888 
889 #ifdef CONFIG_SYSFS
890 struct bd_holder_disk {
891 	struct list_head	list;
892 	struct gendisk		*disk;
893 	int			refcnt;
894 };
895 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)896 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
897 						  struct gendisk *disk)
898 {
899 	struct bd_holder_disk *holder;
900 
901 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
902 		if (holder->disk == disk)
903 			return holder;
904 	return NULL;
905 }
906 
add_symlink(struct kobject * from,struct kobject * to)907 static int add_symlink(struct kobject *from, struct kobject *to)
908 {
909 	return sysfs_create_link(from, to, kobject_name(to));
910 }
911 
del_symlink(struct kobject * from,struct kobject * to)912 static void del_symlink(struct kobject *from, struct kobject *to)
913 {
914 	sysfs_remove_link(from, kobject_name(to));
915 }
916 
917 /**
918  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
919  * @bdev: the claimed slave bdev
920  * @disk: the holding disk
921  *
922  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
923  *
924  * This functions creates the following sysfs symlinks.
925  *
926  * - from "slaves" directory of the holder @disk to the claimed @bdev
927  * - from "holders" directory of the @bdev to the holder @disk
928  *
929  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
930  * passed to bd_link_disk_holder(), then:
931  *
932  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
933  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
934  *
935  * The caller must have claimed @bdev before calling this function and
936  * ensure that both @bdev and @disk are valid during the creation and
937  * lifetime of these symlinks.
938  *
939  * CONTEXT:
940  * Might sleep.
941  *
942  * RETURNS:
943  * 0 on success, -errno on failure.
944  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)945 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
946 {
947 	struct bd_holder_disk *holder;
948 	int ret = 0;
949 
950 	mutex_lock(&bdev->bd_mutex);
951 
952 	WARN_ON_ONCE(!bdev->bd_holder);
953 
954 	/* FIXME: remove the following once add_disk() handles errors */
955 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
956 		goto out_unlock;
957 
958 	holder = bd_find_holder_disk(bdev, disk);
959 	if (holder) {
960 		holder->refcnt++;
961 		goto out_unlock;
962 	}
963 
964 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
965 	if (!holder) {
966 		ret = -ENOMEM;
967 		goto out_unlock;
968 	}
969 
970 	INIT_LIST_HEAD(&holder->list);
971 	holder->disk = disk;
972 	holder->refcnt = 1;
973 
974 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
975 	if (ret)
976 		goto out_free;
977 
978 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
979 	if (ret)
980 		goto out_del;
981 	/*
982 	 * bdev could be deleted beneath us which would implicitly destroy
983 	 * the holder directory.  Hold on to it.
984 	 */
985 	kobject_get(bdev->bd_part->holder_dir);
986 
987 	list_add(&holder->list, &bdev->bd_holder_disks);
988 	goto out_unlock;
989 
990 out_del:
991 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
992 out_free:
993 	kfree(holder);
994 out_unlock:
995 	mutex_unlock(&bdev->bd_mutex);
996 	return ret;
997 }
998 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
999 
1000 /**
1001  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1002  * @bdev: the calimed slave bdev
1003  * @disk: the holding disk
1004  *
1005  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1006  *
1007  * CONTEXT:
1008  * Might sleep.
1009  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1010 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1011 {
1012 	struct bd_holder_disk *holder;
1013 
1014 	mutex_lock(&bdev->bd_mutex);
1015 
1016 	holder = bd_find_holder_disk(bdev, disk);
1017 
1018 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1019 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1020 		del_symlink(bdev->bd_part->holder_dir,
1021 			    &disk_to_dev(disk)->kobj);
1022 		kobject_put(bdev->bd_part->holder_dir);
1023 		list_del_init(&holder->list);
1024 		kfree(holder);
1025 	}
1026 
1027 	mutex_unlock(&bdev->bd_mutex);
1028 }
1029 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1030 #endif
1031 
1032 /**
1033  * flush_disk - invalidates all buffer-cache entries on a disk
1034  *
1035  * @bdev:      struct block device to be flushed
1036  * @kill_dirty: flag to guide handling of dirty inodes
1037  *
1038  * Invalidates all buffer-cache entries on a disk. It should be called
1039  * when a disk has been changed -- either by a media change or online
1040  * resize.
1041  */
flush_disk(struct block_device * bdev,bool kill_dirty)1042 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1043 {
1044 	if (__invalidate_device(bdev, kill_dirty)) {
1045 		char name[BDEVNAME_SIZE] = "";
1046 
1047 		if (bdev->bd_disk)
1048 			disk_name(bdev->bd_disk, 0, name);
1049 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1050 		       "resized disk %s\n", name);
1051 	}
1052 
1053 	if (!bdev->bd_disk)
1054 		return;
1055 	if (disk_part_scan_enabled(bdev->bd_disk))
1056 		bdev->bd_invalidated = 1;
1057 }
1058 
1059 /**
1060  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1061  * @disk: struct gendisk to check
1062  * @bdev: struct bdev to adjust.
1063  *
1064  * This routine checks to see if the bdev size does not match the disk size
1065  * and adjusts it if it differs.
1066  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1067 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1068 {
1069 	loff_t disk_size, bdev_size;
1070 
1071 	disk_size = (loff_t)get_capacity(disk) << 9;
1072 	bdev_size = i_size_read(bdev->bd_inode);
1073 	if (disk_size != bdev_size) {
1074 		char name[BDEVNAME_SIZE];
1075 
1076 		disk_name(disk, 0, name);
1077 		printk(KERN_INFO
1078 		       "%s: detected capacity change from %lld to %lld\n",
1079 		       name, bdev_size, disk_size);
1080 		i_size_write(bdev->bd_inode, disk_size);
1081 		flush_disk(bdev, false);
1082 	}
1083 }
1084 EXPORT_SYMBOL(check_disk_size_change);
1085 
1086 /**
1087  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1088  * @disk: struct gendisk to be revalidated
1089  *
1090  * This routine is a wrapper for lower-level driver's revalidate_disk
1091  * call-backs.  It is used to do common pre and post operations needed
1092  * for all revalidate_disk operations.
1093  */
revalidate_disk(struct gendisk * disk)1094 int revalidate_disk(struct gendisk *disk)
1095 {
1096 	struct block_device *bdev;
1097 	int ret = 0;
1098 
1099 	if (disk->fops->revalidate_disk)
1100 		ret = disk->fops->revalidate_disk(disk);
1101 	blk_integrity_revalidate(disk);
1102 	bdev = bdget_disk(disk, 0);
1103 	if (!bdev)
1104 		return ret;
1105 
1106 	mutex_lock(&bdev->bd_mutex);
1107 	check_disk_size_change(disk, bdev);
1108 	bdev->bd_invalidated = 0;
1109 	mutex_unlock(&bdev->bd_mutex);
1110 	bdput(bdev);
1111 	return ret;
1112 }
1113 EXPORT_SYMBOL(revalidate_disk);
1114 
1115 /*
1116  * This routine checks whether a removable media has been changed,
1117  * and invalidates all buffer-cache-entries in that case. This
1118  * is a relatively slow routine, so we have to try to minimize using
1119  * it. Thus it is called only upon a 'mount' or 'open'. This
1120  * is the best way of combining speed and utility, I think.
1121  * People changing diskettes in the middle of an operation deserve
1122  * to lose :-)
1123  */
check_disk_change(struct block_device * bdev)1124 int check_disk_change(struct block_device *bdev)
1125 {
1126 	struct gendisk *disk = bdev->bd_disk;
1127 	const struct block_device_operations *bdops = disk->fops;
1128 	unsigned int events;
1129 
1130 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1131 				   DISK_EVENT_EJECT_REQUEST);
1132 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1133 		return 0;
1134 
1135 	flush_disk(bdev, true);
1136 	if (bdops->revalidate_disk)
1137 		bdops->revalidate_disk(bdev->bd_disk);
1138 	return 1;
1139 }
1140 
1141 EXPORT_SYMBOL(check_disk_change);
1142 
bd_set_size(struct block_device * bdev,loff_t size)1143 void bd_set_size(struct block_device *bdev, loff_t size)
1144 {
1145 	unsigned bsize = bdev_logical_block_size(bdev);
1146 
1147 	mutex_lock(&bdev->bd_inode->i_mutex);
1148 	i_size_write(bdev->bd_inode, size);
1149 	mutex_unlock(&bdev->bd_inode->i_mutex);
1150 	while (bsize < PAGE_CACHE_SIZE) {
1151 		if (size & bsize)
1152 			break;
1153 		bsize <<= 1;
1154 	}
1155 	bdev->bd_block_size = bsize;
1156 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1157 }
1158 EXPORT_SYMBOL(bd_set_size);
1159 
1160 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1161 
1162 /*
1163  * bd_mutex locking:
1164  *
1165  *  mutex_lock(part->bd_mutex)
1166  *    mutex_lock_nested(whole->bd_mutex, 1)
1167  */
1168 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1169 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1170 {
1171 	struct gendisk *disk;
1172 	struct module *owner;
1173 	int ret;
1174 	int partno;
1175 	int perm = 0;
1176 
1177 	if (mode & FMODE_READ)
1178 		perm |= MAY_READ;
1179 	if (mode & FMODE_WRITE)
1180 		perm |= MAY_WRITE;
1181 	/*
1182 	 * hooks: /n/, see "layering violations".
1183 	 */
1184 	if (!for_part) {
1185 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1186 		if (ret != 0) {
1187 			bdput(bdev);
1188 			return ret;
1189 		}
1190 	}
1191 
1192  restart:
1193 
1194 	ret = -ENXIO;
1195 	disk = get_gendisk(bdev->bd_dev, &partno);
1196 	if (!disk)
1197 		goto out;
1198 	owner = disk->fops->owner;
1199 
1200 	disk_block_events(disk);
1201 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1202 	if (!bdev->bd_openers) {
1203 		bdev->bd_disk = disk;
1204 		bdev->bd_queue = disk->queue;
1205 		bdev->bd_contains = bdev;
1206 		bdev->bd_inode->i_flags = disk->fops->direct_access ? S_DAX : 0;
1207 		if (!partno) {
1208 			ret = -ENXIO;
1209 			bdev->bd_part = disk_get_part(disk, partno);
1210 			if (!bdev->bd_part)
1211 				goto out_clear;
1212 
1213 			ret = 0;
1214 			if (disk->fops->open) {
1215 				ret = disk->fops->open(bdev, mode);
1216 				if (ret == -ERESTARTSYS) {
1217 					/* Lost a race with 'disk' being
1218 					 * deleted, try again.
1219 					 * See md.c
1220 					 */
1221 					disk_put_part(bdev->bd_part);
1222 					bdev->bd_part = NULL;
1223 					bdev->bd_disk = NULL;
1224 					bdev->bd_queue = NULL;
1225 					mutex_unlock(&bdev->bd_mutex);
1226 					disk_unblock_events(disk);
1227 					put_disk(disk);
1228 					module_put(owner);
1229 					goto restart;
1230 				}
1231 			}
1232 
1233 			if (!ret)
1234 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1235 
1236 			/*
1237 			 * If the device is invalidated, rescan partition
1238 			 * if open succeeded or failed with -ENOMEDIUM.
1239 			 * The latter is necessary to prevent ghost
1240 			 * partitions on a removed medium.
1241 			 */
1242 			if (bdev->bd_invalidated) {
1243 				if (!ret)
1244 					rescan_partitions(disk, bdev);
1245 				else if (ret == -ENOMEDIUM)
1246 					invalidate_partitions(disk, bdev);
1247 			}
1248 			if (ret)
1249 				goto out_clear;
1250 		} else {
1251 			struct block_device *whole;
1252 			whole = bdget_disk(disk, 0);
1253 			ret = -ENOMEM;
1254 			if (!whole)
1255 				goto out_clear;
1256 			BUG_ON(for_part);
1257 			ret = __blkdev_get(whole, mode, 1);
1258 			if (ret)
1259 				goto out_clear;
1260 			bdev->bd_contains = whole;
1261 			bdev->bd_part = disk_get_part(disk, partno);
1262 			if (!(disk->flags & GENHD_FL_UP) ||
1263 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1264 				ret = -ENXIO;
1265 				goto out_clear;
1266 			}
1267 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1268 			/*
1269 			 * If the partition is not aligned on a page
1270 			 * boundary, we can't do dax I/O to it.
1271 			 */
1272 			if ((bdev->bd_part->start_sect % (PAGE_SIZE / 512)) ||
1273 			    (bdev->bd_part->nr_sects % (PAGE_SIZE / 512)))
1274 				bdev->bd_inode->i_flags &= ~S_DAX;
1275 		}
1276 	} else {
1277 		if (bdev->bd_contains == bdev) {
1278 			ret = 0;
1279 			if (bdev->bd_disk->fops->open)
1280 				ret = bdev->bd_disk->fops->open(bdev, mode);
1281 			/* the same as first opener case, read comment there */
1282 			if (bdev->bd_invalidated) {
1283 				if (!ret)
1284 					rescan_partitions(bdev->bd_disk, bdev);
1285 				else if (ret == -ENOMEDIUM)
1286 					invalidate_partitions(bdev->bd_disk, bdev);
1287 			}
1288 			if (ret)
1289 				goto out_unlock_bdev;
1290 		}
1291 		/* only one opener holds refs to the module and disk */
1292 		put_disk(disk);
1293 		module_put(owner);
1294 	}
1295 	bdev->bd_openers++;
1296 	if (for_part)
1297 		bdev->bd_part_count++;
1298 	mutex_unlock(&bdev->bd_mutex);
1299 	disk_unblock_events(disk);
1300 	return 0;
1301 
1302  out_clear:
1303 	disk_put_part(bdev->bd_part);
1304 	bdev->bd_disk = NULL;
1305 	bdev->bd_part = NULL;
1306 	bdev->bd_queue = NULL;
1307 	if (bdev != bdev->bd_contains)
1308 		__blkdev_put(bdev->bd_contains, mode, 1);
1309 	bdev->bd_contains = NULL;
1310  out_unlock_bdev:
1311 	mutex_unlock(&bdev->bd_mutex);
1312 	disk_unblock_events(disk);
1313 	put_disk(disk);
1314 	module_put(owner);
1315  out:
1316 	bdput(bdev);
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  * blkdev_get - open a block device
1323  * @bdev: block_device to open
1324  * @mode: FMODE_* mask
1325  * @holder: exclusive holder identifier
1326  *
1327  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1328  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1329  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1330  *
1331  * On success, the reference count of @bdev is unchanged.  On failure,
1332  * @bdev is put.
1333  *
1334  * CONTEXT:
1335  * Might sleep.
1336  *
1337  * RETURNS:
1338  * 0 on success, -errno on failure.
1339  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1340 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1341 {
1342 	struct block_device *whole = NULL;
1343 	int res;
1344 
1345 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1346 
1347 	if ((mode & FMODE_EXCL) && holder) {
1348 		whole = bd_start_claiming(bdev, holder);
1349 		if (IS_ERR(whole)) {
1350 			bdput(bdev);
1351 			return PTR_ERR(whole);
1352 		}
1353 	}
1354 
1355 	res = __blkdev_get(bdev, mode, 0);
1356 
1357 	if (whole) {
1358 		struct gendisk *disk = whole->bd_disk;
1359 
1360 		/* finish claiming */
1361 		mutex_lock(&bdev->bd_mutex);
1362 		spin_lock(&bdev_lock);
1363 
1364 		if (!res) {
1365 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1366 			/*
1367 			 * Note that for a whole device bd_holders
1368 			 * will be incremented twice, and bd_holder
1369 			 * will be set to bd_may_claim before being
1370 			 * set to holder
1371 			 */
1372 			whole->bd_holders++;
1373 			whole->bd_holder = bd_may_claim;
1374 			bdev->bd_holders++;
1375 			bdev->bd_holder = holder;
1376 		}
1377 
1378 		/* tell others that we're done */
1379 		BUG_ON(whole->bd_claiming != holder);
1380 		whole->bd_claiming = NULL;
1381 		wake_up_bit(&whole->bd_claiming, 0);
1382 
1383 		spin_unlock(&bdev_lock);
1384 
1385 		/*
1386 		 * Block event polling for write claims if requested.  Any
1387 		 * write holder makes the write_holder state stick until
1388 		 * all are released.  This is good enough and tracking
1389 		 * individual writeable reference is too fragile given the
1390 		 * way @mode is used in blkdev_get/put().
1391 		 */
1392 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1393 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1394 			bdev->bd_write_holder = true;
1395 			disk_block_events(disk);
1396 		}
1397 
1398 		mutex_unlock(&bdev->bd_mutex);
1399 		bdput(whole);
1400 	}
1401 
1402 	return res;
1403 }
1404 EXPORT_SYMBOL(blkdev_get);
1405 
1406 /**
1407  * blkdev_get_by_path - open a block device by name
1408  * @path: path to the block device to open
1409  * @mode: FMODE_* mask
1410  * @holder: exclusive holder identifier
1411  *
1412  * Open the blockdevice described by the device file at @path.  @mode
1413  * and @holder are identical to blkdev_get().
1414  *
1415  * On success, the returned block_device has reference count of one.
1416  *
1417  * CONTEXT:
1418  * Might sleep.
1419  *
1420  * RETURNS:
1421  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1422  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1423 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1424 					void *holder)
1425 {
1426 	struct block_device *bdev;
1427 	int err;
1428 
1429 	bdev = lookup_bdev(path);
1430 	if (IS_ERR(bdev))
1431 		return bdev;
1432 
1433 	err = blkdev_get(bdev, mode, holder);
1434 	if (err)
1435 		return ERR_PTR(err);
1436 
1437 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1438 		blkdev_put(bdev, mode);
1439 		return ERR_PTR(-EACCES);
1440 	}
1441 
1442 	return bdev;
1443 }
1444 EXPORT_SYMBOL(blkdev_get_by_path);
1445 
1446 /**
1447  * blkdev_get_by_dev - open a block device by device number
1448  * @dev: device number of block device to open
1449  * @mode: FMODE_* mask
1450  * @holder: exclusive holder identifier
1451  *
1452  * Open the blockdevice described by device number @dev.  @mode and
1453  * @holder are identical to blkdev_get().
1454  *
1455  * Use it ONLY if you really do not have anything better - i.e. when
1456  * you are behind a truly sucky interface and all you are given is a
1457  * device number.  _Never_ to be used for internal purposes.  If you
1458  * ever need it - reconsider your API.
1459  *
1460  * On success, the returned block_device has reference count of one.
1461  *
1462  * CONTEXT:
1463  * Might sleep.
1464  *
1465  * RETURNS:
1466  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1467  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1468 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1469 {
1470 	struct block_device *bdev;
1471 	int err;
1472 
1473 	bdev = bdget(dev);
1474 	if (!bdev)
1475 		return ERR_PTR(-ENOMEM);
1476 
1477 	err = blkdev_get(bdev, mode, holder);
1478 	if (err)
1479 		return ERR_PTR(err);
1480 
1481 	return bdev;
1482 }
1483 EXPORT_SYMBOL(blkdev_get_by_dev);
1484 
blkdev_open(struct inode * inode,struct file * filp)1485 static int blkdev_open(struct inode * inode, struct file * filp)
1486 {
1487 	struct block_device *bdev;
1488 
1489 	/*
1490 	 * Preserve backwards compatibility and allow large file access
1491 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1492 	 * binary needs it. We might want to drop this workaround
1493 	 * during an unstable branch.
1494 	 */
1495 	filp->f_flags |= O_LARGEFILE;
1496 
1497 	if (filp->f_flags & O_NDELAY)
1498 		filp->f_mode |= FMODE_NDELAY;
1499 	if (filp->f_flags & O_EXCL)
1500 		filp->f_mode |= FMODE_EXCL;
1501 	if ((filp->f_flags & O_ACCMODE) == 3)
1502 		filp->f_mode |= FMODE_WRITE_IOCTL;
1503 
1504 	bdev = bd_acquire(inode);
1505 	if (bdev == NULL)
1506 		return -ENOMEM;
1507 
1508 	filp->f_mapping = bdev->bd_inode->i_mapping;
1509 
1510 	return blkdev_get(bdev, filp->f_mode, filp);
1511 }
1512 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1513 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1514 {
1515 	struct gendisk *disk = bdev->bd_disk;
1516 	struct block_device *victim = NULL;
1517 
1518 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1519 	if (for_part)
1520 		bdev->bd_part_count--;
1521 
1522 	if (!--bdev->bd_openers) {
1523 		WARN_ON_ONCE(bdev->bd_holders);
1524 		sync_blockdev(bdev);
1525 		kill_bdev(bdev);
1526 
1527 		bdev_write_inode(bdev);
1528 		/*
1529 		 * Detaching bdev inode from its wb in __destroy_inode()
1530 		 * is too late: the queue which embeds its bdi (along with
1531 		 * root wb) can be gone as soon as we put_disk() below.
1532 		 */
1533 		inode_detach_wb(bdev->bd_inode);
1534 	}
1535 	if (bdev->bd_contains == bdev) {
1536 		if (disk->fops->release)
1537 			disk->fops->release(disk, mode);
1538 	}
1539 	if (!bdev->bd_openers) {
1540 		struct module *owner = disk->fops->owner;
1541 
1542 		disk_put_part(bdev->bd_part);
1543 		bdev->bd_part = NULL;
1544 		bdev->bd_disk = NULL;
1545 		if (bdev != bdev->bd_contains)
1546 			victim = bdev->bd_contains;
1547 		bdev->bd_contains = NULL;
1548 
1549 		put_disk(disk);
1550 		module_put(owner);
1551 	}
1552 	mutex_unlock(&bdev->bd_mutex);
1553 	bdput(bdev);
1554 	if (victim)
1555 		__blkdev_put(victim, mode, 1);
1556 }
1557 
blkdev_put(struct block_device * bdev,fmode_t mode)1558 void blkdev_put(struct block_device *bdev, fmode_t mode)
1559 {
1560 	mutex_lock(&bdev->bd_mutex);
1561 
1562 	if (mode & FMODE_EXCL) {
1563 		bool bdev_free;
1564 
1565 		/*
1566 		 * Release a claim on the device.  The holder fields
1567 		 * are protected with bdev_lock.  bd_mutex is to
1568 		 * synchronize disk_holder unlinking.
1569 		 */
1570 		spin_lock(&bdev_lock);
1571 
1572 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1573 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1574 
1575 		/* bd_contains might point to self, check in a separate step */
1576 		if ((bdev_free = !bdev->bd_holders))
1577 			bdev->bd_holder = NULL;
1578 		if (!bdev->bd_contains->bd_holders)
1579 			bdev->bd_contains->bd_holder = NULL;
1580 
1581 		spin_unlock(&bdev_lock);
1582 
1583 		/*
1584 		 * If this was the last claim, remove holder link and
1585 		 * unblock evpoll if it was a write holder.
1586 		 */
1587 		if (bdev_free && bdev->bd_write_holder) {
1588 			disk_unblock_events(bdev->bd_disk);
1589 			bdev->bd_write_holder = false;
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1595 	 * event.  This is to ensure detection of media removal commanded
1596 	 * from userland - e.g. eject(1).
1597 	 */
1598 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1599 
1600 	mutex_unlock(&bdev->bd_mutex);
1601 
1602 	__blkdev_put(bdev, mode, 0);
1603 }
1604 EXPORT_SYMBOL(blkdev_put);
1605 
blkdev_close(struct inode * inode,struct file * filp)1606 static int blkdev_close(struct inode * inode, struct file * filp)
1607 {
1608 	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1609 	blkdev_put(bdev, filp->f_mode);
1610 	return 0;
1611 }
1612 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1613 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1614 {
1615 	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1616 	fmode_t mode = file->f_mode;
1617 
1618 	/*
1619 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1620 	 * to updated it before every ioctl.
1621 	 */
1622 	if (file->f_flags & O_NDELAY)
1623 		mode |= FMODE_NDELAY;
1624 	else
1625 		mode &= ~FMODE_NDELAY;
1626 
1627 	return blkdev_ioctl(bdev, mode, cmd, arg);
1628 }
1629 
1630 /*
1631  * Write data to the block device.  Only intended for the block device itself
1632  * and the raw driver which basically is a fake block device.
1633  *
1634  * Does not take i_mutex for the write and thus is not for general purpose
1635  * use.
1636  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1637 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1638 {
1639 	struct file *file = iocb->ki_filp;
1640 	struct inode *bd_inode = file->f_mapping->host;
1641 	loff_t size = i_size_read(bd_inode);
1642 	struct blk_plug plug;
1643 	ssize_t ret;
1644 
1645 	if (bdev_read_only(I_BDEV(bd_inode)))
1646 		return -EPERM;
1647 
1648 	if (!iov_iter_count(from))
1649 		return 0;
1650 
1651 	if (iocb->ki_pos >= size)
1652 		return -ENOSPC;
1653 
1654 	iov_iter_truncate(from, size - iocb->ki_pos);
1655 
1656 	blk_start_plug(&plug);
1657 	ret = __generic_file_write_iter(iocb, from);
1658 	if (ret > 0) {
1659 		ssize_t err;
1660 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1661 		if (err < 0)
1662 			ret = err;
1663 	}
1664 	blk_finish_plug(&plug);
1665 	return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1668 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1669 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1670 {
1671 	struct file *file = iocb->ki_filp;
1672 	struct inode *bd_inode = file->f_mapping->host;
1673 	loff_t size = i_size_read(bd_inode);
1674 	loff_t pos = iocb->ki_pos;
1675 
1676 	if (pos >= size)
1677 		return 0;
1678 
1679 	size -= pos;
1680 	iov_iter_truncate(to, size);
1681 	return generic_file_read_iter(iocb, to);
1682 }
1683 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1684 
1685 /*
1686  * Try to release a page associated with block device when the system
1687  * is under memory pressure.
1688  */
blkdev_releasepage(struct page * page,gfp_t wait)1689 static int blkdev_releasepage(struct page *page, gfp_t wait)
1690 {
1691 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1692 
1693 	if (super && super->s_op->bdev_try_to_free_page)
1694 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1695 
1696 	return try_to_free_buffers(page);
1697 }
1698 
1699 static const struct address_space_operations def_blk_aops = {
1700 	.readpage	= blkdev_readpage,
1701 	.readpages	= blkdev_readpages,
1702 	.writepage	= blkdev_writepage,
1703 	.write_begin	= blkdev_write_begin,
1704 	.write_end	= blkdev_write_end,
1705 	.writepages	= generic_writepages,
1706 	.releasepage	= blkdev_releasepage,
1707 	.direct_IO	= blkdev_direct_IO,
1708 	.is_dirty_writeback = buffer_check_dirty_writeback,
1709 };
1710 
1711 const struct file_operations def_blk_fops = {
1712 	.open		= blkdev_open,
1713 	.release	= blkdev_close,
1714 	.llseek		= block_llseek,
1715 	.read_iter	= blkdev_read_iter,
1716 	.write_iter	= blkdev_write_iter,
1717 	.mmap		= generic_file_mmap,
1718 	.fsync		= blkdev_fsync,
1719 	.unlocked_ioctl	= block_ioctl,
1720 #ifdef CONFIG_COMPAT
1721 	.compat_ioctl	= compat_blkdev_ioctl,
1722 #endif
1723 	.splice_read	= generic_file_splice_read,
1724 	.splice_write	= iter_file_splice_write,
1725 };
1726 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1727 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1728 {
1729 	int res;
1730 	mm_segment_t old_fs = get_fs();
1731 	set_fs(KERNEL_DS);
1732 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1733 	set_fs(old_fs);
1734 	return res;
1735 }
1736 
1737 EXPORT_SYMBOL(ioctl_by_bdev);
1738 
1739 /**
1740  * lookup_bdev  - lookup a struct block_device by name
1741  * @pathname:	special file representing the block device
1742  *
1743  * Get a reference to the blockdevice at @pathname in the current
1744  * namespace if possible and return it.  Return ERR_PTR(error)
1745  * otherwise.
1746  */
lookup_bdev(const char * pathname)1747 struct block_device *lookup_bdev(const char *pathname)
1748 {
1749 	struct block_device *bdev;
1750 	struct inode *inode;
1751 	struct path path;
1752 	int error;
1753 
1754 	if (!pathname || !*pathname)
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1758 	if (error)
1759 		return ERR_PTR(error);
1760 
1761 	inode = d_backing_inode(path.dentry);
1762 	error = -ENOTBLK;
1763 	if (!S_ISBLK(inode->i_mode))
1764 		goto fail;
1765 	error = -EACCES;
1766 	if (path.mnt->mnt_flags & MNT_NODEV)
1767 		goto fail;
1768 	error = -ENOMEM;
1769 	bdev = bd_acquire(inode);
1770 	if (!bdev)
1771 		goto fail;
1772 out:
1773 	path_put(&path);
1774 	return bdev;
1775 fail:
1776 	bdev = ERR_PTR(error);
1777 	goto out;
1778 }
1779 EXPORT_SYMBOL(lookup_bdev);
1780 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1781 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1782 {
1783 	struct super_block *sb = get_super(bdev);
1784 	int res = 0;
1785 
1786 	if (sb) {
1787 		/*
1788 		 * no need to lock the super, get_super holds the
1789 		 * read mutex so the filesystem cannot go away
1790 		 * under us (->put_super runs with the write lock
1791 		 * hold).
1792 		 */
1793 		shrink_dcache_sb(sb);
1794 		res = invalidate_inodes(sb, kill_dirty);
1795 		drop_super(sb);
1796 	}
1797 	invalidate_bdev(bdev);
1798 	return res;
1799 }
1800 EXPORT_SYMBOL(__invalidate_device);
1801 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1802 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1803 {
1804 	struct inode *inode, *old_inode = NULL;
1805 
1806 	spin_lock(&blockdev_superblock->s_inode_list_lock);
1807 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1808 		struct address_space *mapping = inode->i_mapping;
1809 
1810 		spin_lock(&inode->i_lock);
1811 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1812 		    mapping->nrpages == 0) {
1813 			spin_unlock(&inode->i_lock);
1814 			continue;
1815 		}
1816 		__iget(inode);
1817 		spin_unlock(&inode->i_lock);
1818 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1819 		/*
1820 		 * We hold a reference to 'inode' so it couldn't have been
1821 		 * removed from s_inodes list while we dropped the
1822 		 * s_inode_list_lock  We cannot iput the inode now as we can
1823 		 * be holding the last reference and we cannot iput it under
1824 		 * s_inode_list_lock. So we keep the reference and iput it
1825 		 * later.
1826 		 */
1827 		iput(old_inode);
1828 		old_inode = inode;
1829 
1830 		func(I_BDEV(inode), arg);
1831 
1832 		spin_lock(&blockdev_superblock->s_inode_list_lock);
1833 	}
1834 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1835 	iput(old_inode);
1836 }
1837