1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE			(1<<0)
52 #define INTEL_RC6p_ENABLE			(1<<1)
53 #define INTEL_RC6pp_ENABLE			(1<<2)
54 
gen9_init_clock_gating(struct drm_device * dev)55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 	struct drm_i915_private *dev_priv = dev->dev_private;
58 
59 	/* WaEnableLbsSlaRetryTimerDecrement:skl */
60 	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63 
skl_init_clock_gating(struct drm_device * dev)64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66 	struct drm_i915_private *dev_priv = dev->dev_private;
67 
68 	gen9_init_clock_gating(dev);
69 
70 	if (INTEL_REVID(dev) == SKL_REVID_A0) {
71 		/*
72 		 * WaDisableSDEUnitClockGating:skl
73 		 * WaSetGAPSunitClckGateDisable:skl
74 		 */
75 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76 			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78 	}
79 
80 	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 		/* WaDisableHDCInvalidation:skl */
82 		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83 			   BDW_DISABLE_HDC_INVALIDATION);
84 
85 		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86 		I915_WRITE(FF_SLICE_CS_CHICKEN2,
87 			   I915_READ(FF_SLICE_CS_CHICKEN2) |
88 			   GEN9_TSG_BARRIER_ACK_DISABLE);
89 	}
90 
91 	if (INTEL_REVID(dev) <= SKL_REVID_E0)
92 		/* WaDisableLSQCROPERFforOCL:skl */
93 		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94 			   GEN8_LQSC_RO_PERF_DIS);
95 }
96 
i915_pineview_get_mem_freq(struct drm_device * dev)97 static void i915_pineview_get_mem_freq(struct drm_device *dev)
98 {
99 	struct drm_i915_private *dev_priv = dev->dev_private;
100 	u32 tmp;
101 
102 	tmp = I915_READ(CLKCFG);
103 
104 	switch (tmp & CLKCFG_FSB_MASK) {
105 	case CLKCFG_FSB_533:
106 		dev_priv->fsb_freq = 533; /* 133*4 */
107 		break;
108 	case CLKCFG_FSB_800:
109 		dev_priv->fsb_freq = 800; /* 200*4 */
110 		break;
111 	case CLKCFG_FSB_667:
112 		dev_priv->fsb_freq =  667; /* 167*4 */
113 		break;
114 	case CLKCFG_FSB_400:
115 		dev_priv->fsb_freq = 400; /* 100*4 */
116 		break;
117 	}
118 
119 	switch (tmp & CLKCFG_MEM_MASK) {
120 	case CLKCFG_MEM_533:
121 		dev_priv->mem_freq = 533;
122 		break;
123 	case CLKCFG_MEM_667:
124 		dev_priv->mem_freq = 667;
125 		break;
126 	case CLKCFG_MEM_800:
127 		dev_priv->mem_freq = 800;
128 		break;
129 	}
130 
131 	/* detect pineview DDR3 setting */
132 	tmp = I915_READ(CSHRDDR3CTL);
133 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134 }
135 
i915_ironlake_get_mem_freq(struct drm_device * dev)136 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137 {
138 	struct drm_i915_private *dev_priv = dev->dev_private;
139 	u16 ddrpll, csipll;
140 
141 	ddrpll = I915_READ16(DDRMPLL1);
142 	csipll = I915_READ16(CSIPLL0);
143 
144 	switch (ddrpll & 0xff) {
145 	case 0xc:
146 		dev_priv->mem_freq = 800;
147 		break;
148 	case 0x10:
149 		dev_priv->mem_freq = 1066;
150 		break;
151 	case 0x14:
152 		dev_priv->mem_freq = 1333;
153 		break;
154 	case 0x18:
155 		dev_priv->mem_freq = 1600;
156 		break;
157 	default:
158 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159 				 ddrpll & 0xff);
160 		dev_priv->mem_freq = 0;
161 		break;
162 	}
163 
164 	dev_priv->ips.r_t = dev_priv->mem_freq;
165 
166 	switch (csipll & 0x3ff) {
167 	case 0x00c:
168 		dev_priv->fsb_freq = 3200;
169 		break;
170 	case 0x00e:
171 		dev_priv->fsb_freq = 3733;
172 		break;
173 	case 0x010:
174 		dev_priv->fsb_freq = 4266;
175 		break;
176 	case 0x012:
177 		dev_priv->fsb_freq = 4800;
178 		break;
179 	case 0x014:
180 		dev_priv->fsb_freq = 5333;
181 		break;
182 	case 0x016:
183 		dev_priv->fsb_freq = 5866;
184 		break;
185 	case 0x018:
186 		dev_priv->fsb_freq = 6400;
187 		break;
188 	default:
189 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190 				 csipll & 0x3ff);
191 		dev_priv->fsb_freq = 0;
192 		break;
193 	}
194 
195 	if (dev_priv->fsb_freq == 3200) {
196 		dev_priv->ips.c_m = 0;
197 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198 		dev_priv->ips.c_m = 1;
199 	} else {
200 		dev_priv->ips.c_m = 2;
201 	}
202 }
203 
204 static const struct cxsr_latency cxsr_latency_table[] = {
205 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
206 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
207 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
208 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
209 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
210 
211 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
212 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
213 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
214 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
215 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
216 
217 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
218 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
219 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
220 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
221 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
222 
223 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
224 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
225 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
226 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
227 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
228 
229 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
230 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
231 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
232 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
233 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
234 
235 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
236 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
237 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
238 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
239 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
240 };
241 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)242 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 							 int is_ddr3,
244 							 int fsb,
245 							 int mem)
246 {
247 	const struct cxsr_latency *latency;
248 	int i;
249 
250 	if (fsb == 0 || mem == 0)
251 		return NULL;
252 
253 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254 		latency = &cxsr_latency_table[i];
255 		if (is_desktop == latency->is_desktop &&
256 		    is_ddr3 == latency->is_ddr3 &&
257 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
258 			return latency;
259 	}
260 
261 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262 
263 	return NULL;
264 }
265 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)266 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
267 {
268 	u32 val;
269 
270 	mutex_lock(&dev_priv->rps.hw_lock);
271 
272 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
273 	if (enable)
274 		val &= ~FORCE_DDR_HIGH_FREQ;
275 	else
276 		val |= FORCE_DDR_HIGH_FREQ;
277 	val &= ~FORCE_DDR_LOW_FREQ;
278 	val |= FORCE_DDR_FREQ_REQ_ACK;
279 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
280 
281 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
282 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
283 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
284 
285 	mutex_unlock(&dev_priv->rps.hw_lock);
286 }
287 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)288 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
289 {
290 	u32 val;
291 
292 	mutex_lock(&dev_priv->rps.hw_lock);
293 
294 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
295 	if (enable)
296 		val |= DSP_MAXFIFO_PM5_ENABLE;
297 	else
298 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
299 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
300 
301 	mutex_unlock(&dev_priv->rps.hw_lock);
302 }
303 
304 #define FW_WM(value, plane) \
305 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
306 
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)307 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
308 {
309 	struct drm_device *dev = dev_priv->dev;
310 	u32 val;
311 
312 	if (IS_VALLEYVIEW(dev)) {
313 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
314 		if (IS_CHERRYVIEW(dev))
315 			chv_set_memory_pm5(dev_priv, enable);
316 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
317 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
318 	} else if (IS_PINEVIEW(dev)) {
319 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
320 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
321 		I915_WRITE(DSPFW3, val);
322 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
323 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
324 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
325 		I915_WRITE(FW_BLC_SELF, val);
326 	} else if (IS_I915GM(dev)) {
327 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
328 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
329 		I915_WRITE(INSTPM, val);
330 	} else {
331 		return;
332 	}
333 
334 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
335 		      enable ? "enabled" : "disabled");
336 }
337 
338 
339 /*
340  * Latency for FIFO fetches is dependent on several factors:
341  *   - memory configuration (speed, channels)
342  *   - chipset
343  *   - current MCH state
344  * It can be fairly high in some situations, so here we assume a fairly
345  * pessimal value.  It's a tradeoff between extra memory fetches (if we
346  * set this value too high, the FIFO will fetch frequently to stay full)
347  * and power consumption (set it too low to save power and we might see
348  * FIFO underruns and display "flicker").
349  *
350  * A value of 5us seems to be a good balance; safe for very low end
351  * platforms but not overly aggressive on lower latency configs.
352  */
353 static const int pessimal_latency_ns = 5000;
354 
355 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
356 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
357 
vlv_get_fifo_size(struct drm_device * dev,enum pipe pipe,int plane)358 static int vlv_get_fifo_size(struct drm_device *dev,
359 			      enum pipe pipe, int plane)
360 {
361 	struct drm_i915_private *dev_priv = dev->dev_private;
362 	int sprite0_start, sprite1_start, size;
363 
364 	switch (pipe) {
365 		uint32_t dsparb, dsparb2, dsparb3;
366 	case PIPE_A:
367 		dsparb = I915_READ(DSPARB);
368 		dsparb2 = I915_READ(DSPARB2);
369 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
370 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
371 		break;
372 	case PIPE_B:
373 		dsparb = I915_READ(DSPARB);
374 		dsparb2 = I915_READ(DSPARB2);
375 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
376 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
377 		break;
378 	case PIPE_C:
379 		dsparb2 = I915_READ(DSPARB2);
380 		dsparb3 = I915_READ(DSPARB3);
381 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
382 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
383 		break;
384 	default:
385 		return 0;
386 	}
387 
388 	switch (plane) {
389 	case 0:
390 		size = sprite0_start;
391 		break;
392 	case 1:
393 		size = sprite1_start - sprite0_start;
394 		break;
395 	case 2:
396 		size = 512 - 1 - sprite1_start;
397 		break;
398 	default:
399 		return 0;
400 	}
401 
402 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
403 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
404 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
405 		      size);
406 
407 	return size;
408 }
409 
i9xx_get_fifo_size(struct drm_device * dev,int plane)410 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
411 {
412 	struct drm_i915_private *dev_priv = dev->dev_private;
413 	uint32_t dsparb = I915_READ(DSPARB);
414 	int size;
415 
416 	size = dsparb & 0x7f;
417 	if (plane)
418 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
419 
420 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421 		      plane ? "B" : "A", size);
422 
423 	return size;
424 }
425 
i830_get_fifo_size(struct drm_device * dev,int plane)426 static int i830_get_fifo_size(struct drm_device *dev, int plane)
427 {
428 	struct drm_i915_private *dev_priv = dev->dev_private;
429 	uint32_t dsparb = I915_READ(DSPARB);
430 	int size;
431 
432 	size = dsparb & 0x1ff;
433 	if (plane)
434 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
435 	size >>= 1; /* Convert to cachelines */
436 
437 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438 		      plane ? "B" : "A", size);
439 
440 	return size;
441 }
442 
i845_get_fifo_size(struct drm_device * dev,int plane)443 static int i845_get_fifo_size(struct drm_device *dev, int plane)
444 {
445 	struct drm_i915_private *dev_priv = dev->dev_private;
446 	uint32_t dsparb = I915_READ(DSPARB);
447 	int size;
448 
449 	size = dsparb & 0x7f;
450 	size >>= 2; /* Convert to cachelines */
451 
452 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
453 		      plane ? "B" : "A",
454 		      size);
455 
456 	return size;
457 }
458 
459 /* Pineview has different values for various configs */
460 static const struct intel_watermark_params pineview_display_wm = {
461 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
462 	.max_wm = PINEVIEW_MAX_WM,
463 	.default_wm = PINEVIEW_DFT_WM,
464 	.guard_size = PINEVIEW_GUARD_WM,
465 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_display_hplloff_wm = {
468 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
469 	.max_wm = PINEVIEW_MAX_WM,
470 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
471 	.guard_size = PINEVIEW_GUARD_WM,
472 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params pineview_cursor_wm = {
475 	.fifo_size = PINEVIEW_CURSOR_FIFO,
476 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
477 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
478 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
479 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
482 	.fifo_size = PINEVIEW_CURSOR_FIFO,
483 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
484 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
485 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
486 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params g4x_wm_info = {
489 	.fifo_size = G4X_FIFO_SIZE,
490 	.max_wm = G4X_MAX_WM,
491 	.default_wm = G4X_MAX_WM,
492 	.guard_size = 2,
493 	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params g4x_cursor_wm_info = {
496 	.fifo_size = I965_CURSOR_FIFO,
497 	.max_wm = I965_CURSOR_MAX_WM,
498 	.default_wm = I965_CURSOR_DFT_WM,
499 	.guard_size = 2,
500 	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params valleyview_wm_info = {
503 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
504 	.max_wm = VALLEYVIEW_MAX_WM,
505 	.default_wm = VALLEYVIEW_MAX_WM,
506 	.guard_size = 2,
507 	.cacheline_size = G4X_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params valleyview_cursor_wm_info = {
510 	.fifo_size = I965_CURSOR_FIFO,
511 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
512 	.default_wm = I965_CURSOR_DFT_WM,
513 	.guard_size = 2,
514 	.cacheline_size = G4X_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i965_cursor_wm_info = {
517 	.fifo_size = I965_CURSOR_FIFO,
518 	.max_wm = I965_CURSOR_MAX_WM,
519 	.default_wm = I965_CURSOR_DFT_WM,
520 	.guard_size = 2,
521 	.cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i945_wm_info = {
524 	.fifo_size = I945_FIFO_SIZE,
525 	.max_wm = I915_MAX_WM,
526 	.default_wm = 1,
527 	.guard_size = 2,
528 	.cacheline_size = I915_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i915_wm_info = {
531 	.fifo_size = I915_FIFO_SIZE,
532 	.max_wm = I915_MAX_WM,
533 	.default_wm = 1,
534 	.guard_size = 2,
535 	.cacheline_size = I915_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i830_a_wm_info = {
538 	.fifo_size = I855GM_FIFO_SIZE,
539 	.max_wm = I915_MAX_WM,
540 	.default_wm = 1,
541 	.guard_size = 2,
542 	.cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params i830_bc_wm_info = {
545 	.fifo_size = I855GM_FIFO_SIZE,
546 	.max_wm = I915_MAX_WM/2,
547 	.default_wm = 1,
548 	.guard_size = 2,
549 	.cacheline_size = I830_FIFO_LINE_SIZE,
550 };
551 static const struct intel_watermark_params i845_wm_info = {
552 	.fifo_size = I830_FIFO_SIZE,
553 	.max_wm = I915_MAX_WM,
554 	.default_wm = 1,
555 	.guard_size = 2,
556 	.cacheline_size = I830_FIFO_LINE_SIZE,
557 };
558 
559 /**
560  * intel_calculate_wm - calculate watermark level
561  * @clock_in_khz: pixel clock
562  * @wm: chip FIFO params
563  * @pixel_size: display pixel size
564  * @latency_ns: memory latency for the platform
565  *
566  * Calculate the watermark level (the level at which the display plane will
567  * start fetching from memory again).  Each chip has a different display
568  * FIFO size and allocation, so the caller needs to figure that out and pass
569  * in the correct intel_watermark_params structure.
570  *
571  * As the pixel clock runs, the FIFO will be drained at a rate that depends
572  * on the pixel size.  When it reaches the watermark level, it'll start
573  * fetching FIFO line sized based chunks from memory until the FIFO fills
574  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
575  * will occur, and a display engine hang could result.
576  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)577 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
578 					const struct intel_watermark_params *wm,
579 					int fifo_size,
580 					int pixel_size,
581 					unsigned long latency_ns)
582 {
583 	long entries_required, wm_size;
584 
585 	/*
586 	 * Note: we need to make sure we don't overflow for various clock &
587 	 * latency values.
588 	 * clocks go from a few thousand to several hundred thousand.
589 	 * latency is usually a few thousand
590 	 */
591 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
592 		1000;
593 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
594 
595 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
596 
597 	wm_size = fifo_size - (entries_required + wm->guard_size);
598 
599 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
600 
601 	/* Don't promote wm_size to unsigned... */
602 	if (wm_size > (long)wm->max_wm)
603 		wm_size = wm->max_wm;
604 	if (wm_size <= 0)
605 		wm_size = wm->default_wm;
606 
607 	/*
608 	 * Bspec seems to indicate that the value shouldn't be lower than
609 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
610 	 * Lets go for 8 which is the burst size since certain platforms
611 	 * already use a hardcoded 8 (which is what the spec says should be
612 	 * done).
613 	 */
614 	if (wm_size <= 8)
615 		wm_size = 8;
616 
617 	return wm_size;
618 }
619 
single_enabled_crtc(struct drm_device * dev)620 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
621 {
622 	struct drm_crtc *crtc, *enabled = NULL;
623 
624 	for_each_crtc(dev, crtc) {
625 		if (intel_crtc_active(crtc)) {
626 			if (enabled)
627 				return NULL;
628 			enabled = crtc;
629 		}
630 	}
631 
632 	return enabled;
633 }
634 
pineview_update_wm(struct drm_crtc * unused_crtc)635 static void pineview_update_wm(struct drm_crtc *unused_crtc)
636 {
637 	struct drm_device *dev = unused_crtc->dev;
638 	struct drm_i915_private *dev_priv = dev->dev_private;
639 	struct drm_crtc *crtc;
640 	const struct cxsr_latency *latency;
641 	u32 reg;
642 	unsigned long wm;
643 
644 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
645 					 dev_priv->fsb_freq, dev_priv->mem_freq);
646 	if (!latency) {
647 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648 		intel_set_memory_cxsr(dev_priv, false);
649 		return;
650 	}
651 
652 	crtc = single_enabled_crtc(dev);
653 	if (crtc) {
654 		const struct drm_display_mode *adjusted_mode;
655 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
656 		int clock;
657 
658 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
659 		clock = adjusted_mode->crtc_clock;
660 
661 		/* Display SR */
662 		wm = intel_calculate_wm(clock, &pineview_display_wm,
663 					pineview_display_wm.fifo_size,
664 					pixel_size, latency->display_sr);
665 		reg = I915_READ(DSPFW1);
666 		reg &= ~DSPFW_SR_MASK;
667 		reg |= FW_WM(wm, SR);
668 		I915_WRITE(DSPFW1, reg);
669 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
670 
671 		/* cursor SR */
672 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
673 					pineview_display_wm.fifo_size,
674 					pixel_size, latency->cursor_sr);
675 		reg = I915_READ(DSPFW3);
676 		reg &= ~DSPFW_CURSOR_SR_MASK;
677 		reg |= FW_WM(wm, CURSOR_SR);
678 		I915_WRITE(DSPFW3, reg);
679 
680 		/* Display HPLL off SR */
681 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
682 					pineview_display_hplloff_wm.fifo_size,
683 					pixel_size, latency->display_hpll_disable);
684 		reg = I915_READ(DSPFW3);
685 		reg &= ~DSPFW_HPLL_SR_MASK;
686 		reg |= FW_WM(wm, HPLL_SR);
687 		I915_WRITE(DSPFW3, reg);
688 
689 		/* cursor HPLL off SR */
690 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
691 					pineview_display_hplloff_wm.fifo_size,
692 					pixel_size, latency->cursor_hpll_disable);
693 		reg = I915_READ(DSPFW3);
694 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
695 		reg |= FW_WM(wm, HPLL_CURSOR);
696 		I915_WRITE(DSPFW3, reg);
697 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
698 
699 		intel_set_memory_cxsr(dev_priv, true);
700 	} else {
701 		intel_set_memory_cxsr(dev_priv, false);
702 	}
703 }
704 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)705 static bool g4x_compute_wm0(struct drm_device *dev,
706 			    int plane,
707 			    const struct intel_watermark_params *display,
708 			    int display_latency_ns,
709 			    const struct intel_watermark_params *cursor,
710 			    int cursor_latency_ns,
711 			    int *plane_wm,
712 			    int *cursor_wm)
713 {
714 	struct drm_crtc *crtc;
715 	const struct drm_display_mode *adjusted_mode;
716 	int htotal, hdisplay, clock, pixel_size;
717 	int line_time_us, line_count;
718 	int entries, tlb_miss;
719 
720 	crtc = intel_get_crtc_for_plane(dev, plane);
721 	if (!intel_crtc_active(crtc)) {
722 		*cursor_wm = cursor->guard_size;
723 		*plane_wm = display->guard_size;
724 		return false;
725 	}
726 
727 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
728 	clock = adjusted_mode->crtc_clock;
729 	htotal = adjusted_mode->crtc_htotal;
730 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
731 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
732 
733 	/* Use the small buffer method to calculate plane watermark */
734 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
735 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
736 	if (tlb_miss > 0)
737 		entries += tlb_miss;
738 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
739 	*plane_wm = entries + display->guard_size;
740 	if (*plane_wm > (int)display->max_wm)
741 		*plane_wm = display->max_wm;
742 
743 	/* Use the large buffer method to calculate cursor watermark */
744 	line_time_us = max(htotal * 1000 / clock, 1);
745 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
747 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
748 	if (tlb_miss > 0)
749 		entries += tlb_miss;
750 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
751 	*cursor_wm = entries + cursor->guard_size;
752 	if (*cursor_wm > (int)cursor->max_wm)
753 		*cursor_wm = (int)cursor->max_wm;
754 
755 	return true;
756 }
757 
758 /*
759  * Check the wm result.
760  *
761  * If any calculated watermark values is larger than the maximum value that
762  * can be programmed into the associated watermark register, that watermark
763  * must be disabled.
764  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)765 static bool g4x_check_srwm(struct drm_device *dev,
766 			   int display_wm, int cursor_wm,
767 			   const struct intel_watermark_params *display,
768 			   const struct intel_watermark_params *cursor)
769 {
770 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
771 		      display_wm, cursor_wm);
772 
773 	if (display_wm > display->max_wm) {
774 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
775 			      display_wm, display->max_wm);
776 		return false;
777 	}
778 
779 	if (cursor_wm > cursor->max_wm) {
780 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
781 			      cursor_wm, cursor->max_wm);
782 		return false;
783 	}
784 
785 	if (!(display_wm || cursor_wm)) {
786 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
787 		return false;
788 	}
789 
790 	return true;
791 }
792 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)793 static bool g4x_compute_srwm(struct drm_device *dev,
794 			     int plane,
795 			     int latency_ns,
796 			     const struct intel_watermark_params *display,
797 			     const struct intel_watermark_params *cursor,
798 			     int *display_wm, int *cursor_wm)
799 {
800 	struct drm_crtc *crtc;
801 	const struct drm_display_mode *adjusted_mode;
802 	int hdisplay, htotal, pixel_size, clock;
803 	unsigned long line_time_us;
804 	int line_count, line_size;
805 	int small, large;
806 	int entries;
807 
808 	if (!latency_ns) {
809 		*display_wm = *cursor_wm = 0;
810 		return false;
811 	}
812 
813 	crtc = intel_get_crtc_for_plane(dev, plane);
814 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
815 	clock = adjusted_mode->crtc_clock;
816 	htotal = adjusted_mode->crtc_htotal;
817 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
818 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
819 
820 	line_time_us = max(htotal * 1000 / clock, 1);
821 	line_count = (latency_ns / line_time_us + 1000) / 1000;
822 	line_size = hdisplay * pixel_size;
823 
824 	/* Use the minimum of the small and large buffer method for primary */
825 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
826 	large = line_count * line_size;
827 
828 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
829 	*display_wm = entries + display->guard_size;
830 
831 	/* calculate the self-refresh watermark for display cursor */
832 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
833 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
834 	*cursor_wm = entries + cursor->guard_size;
835 
836 	return g4x_check_srwm(dev,
837 			      *display_wm, *cursor_wm,
838 			      display, cursor);
839 }
840 
841 #define FW_WM_VLV(value, plane) \
842 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
843 
vlv_write_wm_values(struct intel_crtc * crtc,const struct vlv_wm_values * wm)844 static void vlv_write_wm_values(struct intel_crtc *crtc,
845 				const struct vlv_wm_values *wm)
846 {
847 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
848 	enum pipe pipe = crtc->pipe;
849 
850 	I915_WRITE(VLV_DDL(pipe),
851 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
852 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
853 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
854 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
855 
856 	I915_WRITE(DSPFW1,
857 		   FW_WM(wm->sr.plane, SR) |
858 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
859 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
860 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
861 	I915_WRITE(DSPFW2,
862 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
863 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
864 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
865 	I915_WRITE(DSPFW3,
866 		   FW_WM(wm->sr.cursor, CURSOR_SR));
867 
868 	if (IS_CHERRYVIEW(dev_priv)) {
869 		I915_WRITE(DSPFW7_CHV,
870 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
871 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
872 		I915_WRITE(DSPFW8_CHV,
873 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
874 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
875 		I915_WRITE(DSPFW9_CHV,
876 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
877 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
878 		I915_WRITE(DSPHOWM,
879 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
880 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
881 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
882 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
883 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
884 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
885 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
886 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
887 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
888 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889 	} else {
890 		I915_WRITE(DSPFW7,
891 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
892 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
893 		I915_WRITE(DSPHOWM,
894 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
895 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
896 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
897 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
898 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
899 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
900 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
901 	}
902 
903 	POSTING_READ(DSPFW1);
904 
905 	dev_priv->wm.vlv = *wm;
906 }
907 
908 #undef FW_WM_VLV
909 
vlv_compute_drain_latency(struct drm_crtc * crtc,struct drm_plane * plane)910 static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
911 					 struct drm_plane *plane)
912 {
913 	struct drm_device *dev = crtc->dev;
914 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
915 	int entries, prec_mult, drain_latency, pixel_size;
916 	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
917 	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
918 
919 	/*
920 	 * FIXME the plane might have an fb
921 	 * but be invisible (eg. due to clipping)
922 	 */
923 	if (!intel_crtc->active || !plane->state->fb)
924 		return 0;
925 
926 	if (WARN(clock == 0, "Pixel clock is zero!\n"))
927 		return 0;
928 
929 	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
930 
931 	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
932 		return 0;
933 
934 	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
935 
936 	prec_mult = high_precision;
937 	drain_latency = 64 * prec_mult * 4 / entries;
938 
939 	if (drain_latency > DRAIN_LATENCY_MASK) {
940 		prec_mult /= 2;
941 		drain_latency = 64 * prec_mult * 4 / entries;
942 	}
943 
944 	if (drain_latency > DRAIN_LATENCY_MASK)
945 		drain_latency = DRAIN_LATENCY_MASK;
946 
947 	return drain_latency | (prec_mult == high_precision ?
948 				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
949 }
950 
vlv_compute_wm(struct intel_crtc * crtc,struct intel_plane * plane,int fifo_size)951 static int vlv_compute_wm(struct intel_crtc *crtc,
952 			  struct intel_plane *plane,
953 			  int fifo_size)
954 {
955 	int clock, entries, pixel_size;
956 
957 	/*
958 	 * FIXME the plane might have an fb
959 	 * but be invisible (eg. due to clipping)
960 	 */
961 	if (!crtc->active || !plane->base.state->fb)
962 		return 0;
963 
964 	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
965 	clock = crtc->config->base.adjusted_mode.crtc_clock;
966 
967 	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
968 
969 	/*
970 	 * Set up the watermark such that we don't start issuing memory
971 	 * requests until we are within PND's max deadline value (256us).
972 	 * Idea being to be idle as long as possible while still taking
973 	 * advatange of PND's deadline scheduling. The limit of 8
974 	 * cachelines (used when the FIFO will anyway drain in less time
975 	 * than 256us) should match what we would be done if trickle
976 	 * feed were enabled.
977 	 */
978 	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
979 }
980 
vlv_compute_sr_wm(struct drm_device * dev,struct vlv_wm_values * wm)981 static bool vlv_compute_sr_wm(struct drm_device *dev,
982 			      struct vlv_wm_values *wm)
983 {
984 	struct drm_i915_private *dev_priv = to_i915(dev);
985 	struct drm_crtc *crtc;
986 	enum pipe pipe = INVALID_PIPE;
987 	int num_planes = 0;
988 	int fifo_size = 0;
989 	struct intel_plane *plane;
990 
991 	wm->sr.cursor = wm->sr.plane = 0;
992 
993 	crtc = single_enabled_crtc(dev);
994 	/* maxfifo not supported on pipe C */
995 	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
996 		pipe = to_intel_crtc(crtc)->pipe;
997 		num_planes = !!wm->pipe[pipe].primary +
998 			!!wm->pipe[pipe].sprite[0] +
999 			!!wm->pipe[pipe].sprite[1];
1000 		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1001 	}
1002 
1003 	if (fifo_size == 0 || num_planes > 1)
1004 		return false;
1005 
1006 	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
1007 				       to_intel_plane(crtc->cursor), 0x3f);
1008 
1009 	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
1010 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1011 			continue;
1012 
1013 		if (plane->pipe != pipe)
1014 			continue;
1015 
1016 		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
1017 					      plane, fifo_size);
1018 		if (wm->sr.plane != 0)
1019 			break;
1020 	}
1021 
1022 	return true;
1023 }
1024 
valleyview_update_wm(struct drm_crtc * crtc)1025 static void valleyview_update_wm(struct drm_crtc *crtc)
1026 {
1027 	struct drm_device *dev = crtc->dev;
1028 	struct drm_i915_private *dev_priv = dev->dev_private;
1029 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1030 	enum pipe pipe = intel_crtc->pipe;
1031 	bool cxsr_enabled;
1032 	struct vlv_wm_values wm = dev_priv->wm.vlv;
1033 
1034 	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
1035 	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
1036 					       to_intel_plane(crtc->primary),
1037 					       vlv_get_fifo_size(dev, pipe, 0));
1038 
1039 	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
1040 	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
1041 					      to_intel_plane(crtc->cursor),
1042 					      0x3f);
1043 
1044 	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1045 
1046 	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1047 		return;
1048 
1049 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1050 		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1051 		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1052 		      wm.sr.plane, wm.sr.cursor);
1053 
1054 	/*
1055 	 * FIXME DDR DVFS introduces massive memory latencies which
1056 	 * are not known to system agent so any deadline specified
1057 	 * by the display may not be respected. To support DDR DVFS
1058 	 * the watermark code needs to be rewritten to essentially
1059 	 * bypass deadline mechanism and rely solely on the
1060 	 * watermarks. For now disable DDR DVFS.
1061 	 */
1062 	if (IS_CHERRYVIEW(dev_priv))
1063 		chv_set_memory_dvfs(dev_priv, false);
1064 
1065 	if (!cxsr_enabled)
1066 		intel_set_memory_cxsr(dev_priv, false);
1067 
1068 	vlv_write_wm_values(intel_crtc, &wm);
1069 
1070 	if (cxsr_enabled)
1071 		intel_set_memory_cxsr(dev_priv, true);
1072 }
1073 
valleyview_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)1074 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1075 					struct drm_crtc *crtc,
1076 					uint32_t sprite_width,
1077 					uint32_t sprite_height,
1078 					int pixel_size,
1079 					bool enabled, bool scaled)
1080 {
1081 	struct drm_device *dev = crtc->dev;
1082 	struct drm_i915_private *dev_priv = dev->dev_private;
1083 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1084 	enum pipe pipe = intel_crtc->pipe;
1085 	int sprite = to_intel_plane(plane)->plane;
1086 	bool cxsr_enabled;
1087 	struct vlv_wm_values wm = dev_priv->wm.vlv;
1088 
1089 	if (enabled) {
1090 		wm.ddl[pipe].sprite[sprite] =
1091 			vlv_compute_drain_latency(crtc, plane);
1092 
1093 		wm.pipe[pipe].sprite[sprite] =
1094 			vlv_compute_wm(intel_crtc,
1095 				       to_intel_plane(plane),
1096 				       vlv_get_fifo_size(dev, pipe, sprite+1));
1097 	} else {
1098 		wm.ddl[pipe].sprite[sprite] = 0;
1099 		wm.pipe[pipe].sprite[sprite] = 0;
1100 	}
1101 
1102 	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1103 
1104 	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1105 		return;
1106 
1107 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
1108 		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1109 		      sprite_name(pipe, sprite),
1110 		      wm.pipe[pipe].sprite[sprite],
1111 		      wm.sr.plane, wm.sr.cursor);
1112 
1113 	if (!cxsr_enabled)
1114 		intel_set_memory_cxsr(dev_priv, false);
1115 
1116 	vlv_write_wm_values(intel_crtc, &wm);
1117 
1118 	if (cxsr_enabled)
1119 		intel_set_memory_cxsr(dev_priv, true);
1120 }
1121 
1122 #define single_plane_enabled(mask) is_power_of_2(mask)
1123 
g4x_update_wm(struct drm_crtc * crtc)1124 static void g4x_update_wm(struct drm_crtc *crtc)
1125 {
1126 	struct drm_device *dev = crtc->dev;
1127 	static const int sr_latency_ns = 12000;
1128 	struct drm_i915_private *dev_priv = dev->dev_private;
1129 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1130 	int plane_sr, cursor_sr;
1131 	unsigned int enabled = 0;
1132 	bool cxsr_enabled;
1133 
1134 	if (g4x_compute_wm0(dev, PIPE_A,
1135 			    &g4x_wm_info, pessimal_latency_ns,
1136 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1137 			    &planea_wm, &cursora_wm))
1138 		enabled |= 1 << PIPE_A;
1139 
1140 	if (g4x_compute_wm0(dev, PIPE_B,
1141 			    &g4x_wm_info, pessimal_latency_ns,
1142 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1143 			    &planeb_wm, &cursorb_wm))
1144 		enabled |= 1 << PIPE_B;
1145 
1146 	if (single_plane_enabled(enabled) &&
1147 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1148 			     sr_latency_ns,
1149 			     &g4x_wm_info,
1150 			     &g4x_cursor_wm_info,
1151 			     &plane_sr, &cursor_sr)) {
1152 		cxsr_enabled = true;
1153 	} else {
1154 		cxsr_enabled = false;
1155 		intel_set_memory_cxsr(dev_priv, false);
1156 		plane_sr = cursor_sr = 0;
1157 	}
1158 
1159 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1160 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1161 		      planea_wm, cursora_wm,
1162 		      planeb_wm, cursorb_wm,
1163 		      plane_sr, cursor_sr);
1164 
1165 	I915_WRITE(DSPFW1,
1166 		   FW_WM(plane_sr, SR) |
1167 		   FW_WM(cursorb_wm, CURSORB) |
1168 		   FW_WM(planeb_wm, PLANEB) |
1169 		   FW_WM(planea_wm, PLANEA));
1170 	I915_WRITE(DSPFW2,
1171 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1172 		   FW_WM(cursora_wm, CURSORA));
1173 	/* HPLL off in SR has some issues on G4x... disable it */
1174 	I915_WRITE(DSPFW3,
1175 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1176 		   FW_WM(cursor_sr, CURSOR_SR));
1177 
1178 	if (cxsr_enabled)
1179 		intel_set_memory_cxsr(dev_priv, true);
1180 }
1181 
i965_update_wm(struct drm_crtc * unused_crtc)1182 static void i965_update_wm(struct drm_crtc *unused_crtc)
1183 {
1184 	struct drm_device *dev = unused_crtc->dev;
1185 	struct drm_i915_private *dev_priv = dev->dev_private;
1186 	struct drm_crtc *crtc;
1187 	int srwm = 1;
1188 	int cursor_sr = 16;
1189 	bool cxsr_enabled;
1190 
1191 	/* Calc sr entries for one plane configs */
1192 	crtc = single_enabled_crtc(dev);
1193 	if (crtc) {
1194 		/* self-refresh has much higher latency */
1195 		static const int sr_latency_ns = 12000;
1196 		const struct drm_display_mode *adjusted_mode =
1197 			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1198 		int clock = adjusted_mode->crtc_clock;
1199 		int htotal = adjusted_mode->crtc_htotal;
1200 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1201 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1202 		unsigned long line_time_us;
1203 		int entries;
1204 
1205 		line_time_us = max(htotal * 1000 / clock, 1);
1206 
1207 		/* Use ns/us then divide to preserve precision */
1208 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1209 			pixel_size * hdisplay;
1210 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1211 		srwm = I965_FIFO_SIZE - entries;
1212 		if (srwm < 0)
1213 			srwm = 1;
1214 		srwm &= 0x1ff;
1215 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1216 			      entries, srwm);
1217 
1218 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219 			pixel_size * crtc->cursor->state->crtc_w;
1220 		entries = DIV_ROUND_UP(entries,
1221 					  i965_cursor_wm_info.cacheline_size);
1222 		cursor_sr = i965_cursor_wm_info.fifo_size -
1223 			(entries + i965_cursor_wm_info.guard_size);
1224 
1225 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1226 			cursor_sr = i965_cursor_wm_info.max_wm;
1227 
1228 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1229 			      "cursor %d\n", srwm, cursor_sr);
1230 
1231 		cxsr_enabled = true;
1232 	} else {
1233 		cxsr_enabled = false;
1234 		/* Turn off self refresh if both pipes are enabled */
1235 		intel_set_memory_cxsr(dev_priv, false);
1236 	}
1237 
1238 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1239 		      srwm);
1240 
1241 	/* 965 has limitations... */
1242 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1243 		   FW_WM(8, CURSORB) |
1244 		   FW_WM(8, PLANEB) |
1245 		   FW_WM(8, PLANEA));
1246 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1247 		   FW_WM(8, PLANEC_OLD));
1248 	/* update cursor SR watermark */
1249 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1250 
1251 	if (cxsr_enabled)
1252 		intel_set_memory_cxsr(dev_priv, true);
1253 }
1254 
1255 #undef FW_WM
1256 
i9xx_update_wm(struct drm_crtc * unused_crtc)1257 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1258 {
1259 	struct drm_device *dev = unused_crtc->dev;
1260 	struct drm_i915_private *dev_priv = dev->dev_private;
1261 	const struct intel_watermark_params *wm_info;
1262 	uint32_t fwater_lo;
1263 	uint32_t fwater_hi;
1264 	int cwm, srwm = 1;
1265 	int fifo_size;
1266 	int planea_wm, planeb_wm;
1267 	struct drm_crtc *crtc, *enabled = NULL;
1268 
1269 	if (IS_I945GM(dev))
1270 		wm_info = &i945_wm_info;
1271 	else if (!IS_GEN2(dev))
1272 		wm_info = &i915_wm_info;
1273 	else
1274 		wm_info = &i830_a_wm_info;
1275 
1276 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1277 	crtc = intel_get_crtc_for_plane(dev, 0);
1278 	if (intel_crtc_active(crtc)) {
1279 		const struct drm_display_mode *adjusted_mode;
1280 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1281 		if (IS_GEN2(dev))
1282 			cpp = 4;
1283 
1284 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1285 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1286 					       wm_info, fifo_size, cpp,
1287 					       pessimal_latency_ns);
1288 		enabled = crtc;
1289 	} else {
1290 		planea_wm = fifo_size - wm_info->guard_size;
1291 		if (planea_wm > (long)wm_info->max_wm)
1292 			planea_wm = wm_info->max_wm;
1293 	}
1294 
1295 	if (IS_GEN2(dev))
1296 		wm_info = &i830_bc_wm_info;
1297 
1298 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1299 	crtc = intel_get_crtc_for_plane(dev, 1);
1300 	if (intel_crtc_active(crtc)) {
1301 		const struct drm_display_mode *adjusted_mode;
1302 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1303 		if (IS_GEN2(dev))
1304 			cpp = 4;
1305 
1306 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1307 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1308 					       wm_info, fifo_size, cpp,
1309 					       pessimal_latency_ns);
1310 		if (enabled == NULL)
1311 			enabled = crtc;
1312 		else
1313 			enabled = NULL;
1314 	} else {
1315 		planeb_wm = fifo_size - wm_info->guard_size;
1316 		if (planeb_wm > (long)wm_info->max_wm)
1317 			planeb_wm = wm_info->max_wm;
1318 	}
1319 
1320 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1321 
1322 	if (IS_I915GM(dev) && enabled) {
1323 		struct drm_i915_gem_object *obj;
1324 
1325 		obj = intel_fb_obj(enabled->primary->state->fb);
1326 
1327 		/* self-refresh seems busted with untiled */
1328 		if (obj->tiling_mode == I915_TILING_NONE)
1329 			enabled = NULL;
1330 	}
1331 
1332 	/*
1333 	 * Overlay gets an aggressive default since video jitter is bad.
1334 	 */
1335 	cwm = 2;
1336 
1337 	/* Play safe and disable self-refresh before adjusting watermarks. */
1338 	intel_set_memory_cxsr(dev_priv, false);
1339 
1340 	/* Calc sr entries for one plane configs */
1341 	if (HAS_FW_BLC(dev) && enabled) {
1342 		/* self-refresh has much higher latency */
1343 		static const int sr_latency_ns = 6000;
1344 		const struct drm_display_mode *adjusted_mode =
1345 			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1346 		int clock = adjusted_mode->crtc_clock;
1347 		int htotal = adjusted_mode->crtc_htotal;
1348 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1349 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1350 		unsigned long line_time_us;
1351 		int entries;
1352 
1353 		line_time_us = max(htotal * 1000 / clock, 1);
1354 
1355 		/* Use ns/us then divide to preserve precision */
1356 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1357 			pixel_size * hdisplay;
1358 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1359 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1360 		srwm = wm_info->fifo_size - entries;
1361 		if (srwm < 0)
1362 			srwm = 1;
1363 
1364 		if (IS_I945G(dev) || IS_I945GM(dev))
1365 			I915_WRITE(FW_BLC_SELF,
1366 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1367 		else if (IS_I915GM(dev))
1368 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1369 	}
1370 
1371 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1372 		      planea_wm, planeb_wm, cwm, srwm);
1373 
1374 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1375 	fwater_hi = (cwm & 0x1f);
1376 
1377 	/* Set request length to 8 cachelines per fetch */
1378 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1379 	fwater_hi = fwater_hi | (1 << 8);
1380 
1381 	I915_WRITE(FW_BLC, fwater_lo);
1382 	I915_WRITE(FW_BLC2, fwater_hi);
1383 
1384 	if (enabled)
1385 		intel_set_memory_cxsr(dev_priv, true);
1386 }
1387 
i845_update_wm(struct drm_crtc * unused_crtc)1388 static void i845_update_wm(struct drm_crtc *unused_crtc)
1389 {
1390 	struct drm_device *dev = unused_crtc->dev;
1391 	struct drm_i915_private *dev_priv = dev->dev_private;
1392 	struct drm_crtc *crtc;
1393 	const struct drm_display_mode *adjusted_mode;
1394 	uint32_t fwater_lo;
1395 	int planea_wm;
1396 
1397 	crtc = single_enabled_crtc(dev);
1398 	if (crtc == NULL)
1399 		return;
1400 
1401 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1402 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1403 				       &i845_wm_info,
1404 				       dev_priv->display.get_fifo_size(dev, 0),
1405 				       4, pessimal_latency_ns);
1406 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1407 	fwater_lo |= (3<<8) | planea_wm;
1408 
1409 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1410 
1411 	I915_WRITE(FW_BLC, fwater_lo);
1412 }
1413 
ilk_pipe_pixel_rate(struct drm_device * dev,struct drm_crtc * crtc)1414 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1415 				    struct drm_crtc *crtc)
1416 {
1417 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1418 	uint32_t pixel_rate;
1419 
1420 	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1421 
1422 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1423 	 * adjust the pixel_rate here. */
1424 
1425 	if (intel_crtc->config->pch_pfit.enabled) {
1426 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1427 		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1428 
1429 		pipe_w = intel_crtc->config->pipe_src_w;
1430 		pipe_h = intel_crtc->config->pipe_src_h;
1431 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1432 		pfit_h = pfit_size & 0xFFFF;
1433 		if (pipe_w < pfit_w)
1434 			pipe_w = pfit_w;
1435 		if (pipe_h < pfit_h)
1436 			pipe_h = pfit_h;
1437 
1438 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1439 				     pfit_w * pfit_h);
1440 	}
1441 
1442 	return pixel_rate;
1443 }
1444 
1445 /* latency must be in 0.1us units. */
ilk_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)1446 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1447 			       uint32_t latency)
1448 {
1449 	uint64_t ret;
1450 
1451 	if (WARN(latency == 0, "Latency value missing\n"))
1452 		return UINT_MAX;
1453 
1454 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1455 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1456 
1457 	return ret;
1458 }
1459 
1460 /* latency must be in 0.1us units. */
ilk_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint32_t latency)1461 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1462 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1463 			       uint32_t latency)
1464 {
1465 	uint32_t ret;
1466 
1467 	if (WARN(latency == 0, "Latency value missing\n"))
1468 		return UINT_MAX;
1469 
1470 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1471 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1472 	ret = DIV_ROUND_UP(ret, 64) + 2;
1473 	return ret;
1474 }
1475 
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t bytes_per_pixel)1476 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1477 			   uint8_t bytes_per_pixel)
1478 {
1479 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1480 }
1481 
1482 struct skl_pipe_wm_parameters {
1483 	bool active;
1484 	uint32_t pipe_htotal;
1485 	uint32_t pixel_rate; /* in KHz */
1486 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1487 	struct intel_plane_wm_parameters cursor;
1488 };
1489 
1490 struct ilk_pipe_wm_parameters {
1491 	bool active;
1492 	uint32_t pipe_htotal;
1493 	uint32_t pixel_rate;
1494 	struct intel_plane_wm_parameters pri;
1495 	struct intel_plane_wm_parameters spr;
1496 	struct intel_plane_wm_parameters cur;
1497 };
1498 
1499 struct ilk_wm_maximums {
1500 	uint16_t pri;
1501 	uint16_t spr;
1502 	uint16_t cur;
1503 	uint16_t fbc;
1504 };
1505 
1506 /* used in computing the new watermarks state */
1507 struct intel_wm_config {
1508 	unsigned int num_pipes_active;
1509 	bool sprites_enabled;
1510 	bool sprites_scaled;
1511 };
1512 
1513 /*
1514  * For both WM_PIPE and WM_LP.
1515  * mem_value must be in 0.1us units.
1516  */
ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters * params,uint32_t mem_value,bool is_lp)1517 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1518 				   uint32_t mem_value,
1519 				   bool is_lp)
1520 {
1521 	uint32_t method1, method2;
1522 
1523 	if (!params->active || !params->pri.enabled)
1524 		return 0;
1525 
1526 	method1 = ilk_wm_method1(params->pixel_rate,
1527 				 params->pri.bytes_per_pixel,
1528 				 mem_value);
1529 
1530 	if (!is_lp)
1531 		return method1;
1532 
1533 	method2 = ilk_wm_method2(params->pixel_rate,
1534 				 params->pipe_htotal,
1535 				 params->pri.horiz_pixels,
1536 				 params->pri.bytes_per_pixel,
1537 				 mem_value);
1538 
1539 	return min(method1, method2);
1540 }
1541 
1542 /*
1543  * For both WM_PIPE and WM_LP.
1544  * mem_value must be in 0.1us units.
1545  */
ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters * params,uint32_t mem_value)1546 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1547 				   uint32_t mem_value)
1548 {
1549 	uint32_t method1, method2;
1550 
1551 	if (!params->active || !params->spr.enabled)
1552 		return 0;
1553 
1554 	method1 = ilk_wm_method1(params->pixel_rate,
1555 				 params->spr.bytes_per_pixel,
1556 				 mem_value);
1557 	method2 = ilk_wm_method2(params->pixel_rate,
1558 				 params->pipe_htotal,
1559 				 params->spr.horiz_pixels,
1560 				 params->spr.bytes_per_pixel,
1561 				 mem_value);
1562 	return min(method1, method2);
1563 }
1564 
1565 /*
1566  * For both WM_PIPE and WM_LP.
1567  * mem_value must be in 0.1us units.
1568  */
ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters * params,uint32_t mem_value)1569 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1570 				   uint32_t mem_value)
1571 {
1572 	if (!params->active || !params->cur.enabled)
1573 		return 0;
1574 
1575 	return ilk_wm_method2(params->pixel_rate,
1576 			      params->pipe_htotal,
1577 			      params->cur.horiz_pixels,
1578 			      params->cur.bytes_per_pixel,
1579 			      mem_value);
1580 }
1581 
1582 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters * params,uint32_t pri_val)1583 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1584 				   uint32_t pri_val)
1585 {
1586 	if (!params->active || !params->pri.enabled)
1587 		return 0;
1588 
1589 	return ilk_wm_fbc(pri_val,
1590 			  params->pri.horiz_pixels,
1591 			  params->pri.bytes_per_pixel);
1592 }
1593 
ilk_display_fifo_size(const struct drm_device * dev)1594 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1595 {
1596 	if (INTEL_INFO(dev)->gen >= 8)
1597 		return 3072;
1598 	else if (INTEL_INFO(dev)->gen >= 7)
1599 		return 768;
1600 	else
1601 		return 512;
1602 }
1603 
ilk_plane_wm_reg_max(const struct drm_device * dev,int level,bool is_sprite)1604 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1605 					 int level, bool is_sprite)
1606 {
1607 	if (INTEL_INFO(dev)->gen >= 8)
1608 		/* BDW primary/sprite plane watermarks */
1609 		return level == 0 ? 255 : 2047;
1610 	else if (INTEL_INFO(dev)->gen >= 7)
1611 		/* IVB/HSW primary/sprite plane watermarks */
1612 		return level == 0 ? 127 : 1023;
1613 	else if (!is_sprite)
1614 		/* ILK/SNB primary plane watermarks */
1615 		return level == 0 ? 127 : 511;
1616 	else
1617 		/* ILK/SNB sprite plane watermarks */
1618 		return level == 0 ? 63 : 255;
1619 }
1620 
ilk_cursor_wm_reg_max(const struct drm_device * dev,int level)1621 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1622 					  int level)
1623 {
1624 	if (INTEL_INFO(dev)->gen >= 7)
1625 		return level == 0 ? 63 : 255;
1626 	else
1627 		return level == 0 ? 31 : 63;
1628 }
1629 
ilk_fbc_wm_reg_max(const struct drm_device * dev)1630 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1631 {
1632 	if (INTEL_INFO(dev)->gen >= 8)
1633 		return 31;
1634 	else
1635 		return 15;
1636 }
1637 
1638 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)1639 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1640 				     int level,
1641 				     const struct intel_wm_config *config,
1642 				     enum intel_ddb_partitioning ddb_partitioning,
1643 				     bool is_sprite)
1644 {
1645 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1646 
1647 	/* if sprites aren't enabled, sprites get nothing */
1648 	if (is_sprite && !config->sprites_enabled)
1649 		return 0;
1650 
1651 	/* HSW allows LP1+ watermarks even with multiple pipes */
1652 	if (level == 0 || config->num_pipes_active > 1) {
1653 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1654 
1655 		/*
1656 		 * For some reason the non self refresh
1657 		 * FIFO size is only half of the self
1658 		 * refresh FIFO size on ILK/SNB.
1659 		 */
1660 		if (INTEL_INFO(dev)->gen <= 6)
1661 			fifo_size /= 2;
1662 	}
1663 
1664 	if (config->sprites_enabled) {
1665 		/* level 0 is always calculated with 1:1 split */
1666 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1667 			if (is_sprite)
1668 				fifo_size *= 5;
1669 			fifo_size /= 6;
1670 		} else {
1671 			fifo_size /= 2;
1672 		}
1673 	}
1674 
1675 	/* clamp to max that the registers can hold */
1676 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1677 }
1678 
1679 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)1680 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1681 				      int level,
1682 				      const struct intel_wm_config *config)
1683 {
1684 	/* HSW LP1+ watermarks w/ multiple pipes */
1685 	if (level > 0 && config->num_pipes_active > 1)
1686 		return 64;
1687 
1688 	/* otherwise just report max that registers can hold */
1689 	return ilk_cursor_wm_reg_max(dev, level);
1690 }
1691 
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)1692 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1693 				    int level,
1694 				    const struct intel_wm_config *config,
1695 				    enum intel_ddb_partitioning ddb_partitioning,
1696 				    struct ilk_wm_maximums *max)
1697 {
1698 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1699 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1700 	max->cur = ilk_cursor_wm_max(dev, level, config);
1701 	max->fbc = ilk_fbc_wm_reg_max(dev);
1702 }
1703 
ilk_compute_wm_reg_maximums(struct drm_device * dev,int level,struct ilk_wm_maximums * max)1704 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1705 					int level,
1706 					struct ilk_wm_maximums *max)
1707 {
1708 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1709 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1710 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1711 	max->fbc = ilk_fbc_wm_reg_max(dev);
1712 }
1713 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)1714 static bool ilk_validate_wm_level(int level,
1715 				  const struct ilk_wm_maximums *max,
1716 				  struct intel_wm_level *result)
1717 {
1718 	bool ret;
1719 
1720 	/* already determined to be invalid? */
1721 	if (!result->enable)
1722 		return false;
1723 
1724 	result->enable = result->pri_val <= max->pri &&
1725 			 result->spr_val <= max->spr &&
1726 			 result->cur_val <= max->cur;
1727 
1728 	ret = result->enable;
1729 
1730 	/*
1731 	 * HACK until we can pre-compute everything,
1732 	 * and thus fail gracefully if LP0 watermarks
1733 	 * are exceeded...
1734 	 */
1735 	if (level == 0 && !result->enable) {
1736 		if (result->pri_val > max->pri)
1737 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1738 				      level, result->pri_val, max->pri);
1739 		if (result->spr_val > max->spr)
1740 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1741 				      level, result->spr_val, max->spr);
1742 		if (result->cur_val > max->cur)
1743 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1744 				      level, result->cur_val, max->cur);
1745 
1746 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1747 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1748 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1749 		result->enable = true;
1750 	}
1751 
1752 	return ret;
1753 }
1754 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,int level,const struct ilk_pipe_wm_parameters * p,struct intel_wm_level * result)1755 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1756 				 int level,
1757 				 const struct ilk_pipe_wm_parameters *p,
1758 				 struct intel_wm_level *result)
1759 {
1760 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1761 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1762 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1763 
1764 	/* WM1+ latency values stored in 0.5us units */
1765 	if (level > 0) {
1766 		pri_latency *= 5;
1767 		spr_latency *= 5;
1768 		cur_latency *= 5;
1769 	}
1770 
1771 	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1772 	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1773 	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1774 	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1775 	result->enable = true;
1776 }
1777 
1778 static uint32_t
hsw_compute_linetime_wm(struct drm_device * dev,struct drm_crtc * crtc)1779 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1780 {
1781 	struct drm_i915_private *dev_priv = dev->dev_private;
1782 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1783 	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1784 	u32 linetime, ips_linetime;
1785 
1786 	if (!intel_crtc->active)
1787 		return 0;
1788 
1789 	/* The WM are computed with base on how long it takes to fill a single
1790 	 * row at the given clock rate, multiplied by 8.
1791 	 * */
1792 	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1793 				     mode->crtc_clock);
1794 	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1795 					 intel_ddi_get_cdclk_freq(dev_priv));
1796 
1797 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1798 	       PIPE_WM_LINETIME_TIME(linetime);
1799 }
1800 
intel_read_wm_latency(struct drm_device * dev,uint16_t wm[8])1801 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1802 {
1803 	struct drm_i915_private *dev_priv = dev->dev_private;
1804 
1805 	if (IS_GEN9(dev)) {
1806 		uint32_t val;
1807 		int ret, i;
1808 		int level, max_level = ilk_wm_max_level(dev);
1809 
1810 		/* read the first set of memory latencies[0:3] */
1811 		val = 0; /* data0 to be programmed to 0 for first set */
1812 		mutex_lock(&dev_priv->rps.hw_lock);
1813 		ret = sandybridge_pcode_read(dev_priv,
1814 					     GEN9_PCODE_READ_MEM_LATENCY,
1815 					     &val);
1816 		mutex_unlock(&dev_priv->rps.hw_lock);
1817 
1818 		if (ret) {
1819 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1820 			return;
1821 		}
1822 
1823 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1824 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1825 				GEN9_MEM_LATENCY_LEVEL_MASK;
1826 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1827 				GEN9_MEM_LATENCY_LEVEL_MASK;
1828 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1829 				GEN9_MEM_LATENCY_LEVEL_MASK;
1830 
1831 		/* read the second set of memory latencies[4:7] */
1832 		val = 1; /* data0 to be programmed to 1 for second set */
1833 		mutex_lock(&dev_priv->rps.hw_lock);
1834 		ret = sandybridge_pcode_read(dev_priv,
1835 					     GEN9_PCODE_READ_MEM_LATENCY,
1836 					     &val);
1837 		mutex_unlock(&dev_priv->rps.hw_lock);
1838 		if (ret) {
1839 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1840 			return;
1841 		}
1842 
1843 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1844 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1845 				GEN9_MEM_LATENCY_LEVEL_MASK;
1846 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1847 				GEN9_MEM_LATENCY_LEVEL_MASK;
1848 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1849 				GEN9_MEM_LATENCY_LEVEL_MASK;
1850 
1851 		/*
1852 		 * WaWmMemoryReadLatency:skl
1853 		 *
1854 		 * punit doesn't take into account the read latency so we need
1855 		 * to add 2us to the various latency levels we retrieve from
1856 		 * the punit.
1857 		 *   - W0 is a bit special in that it's the only level that
1858 		 *   can't be disabled if we want to have display working, so
1859 		 *   we always add 2us there.
1860 		 *   - For levels >=1, punit returns 0us latency when they are
1861 		 *   disabled, so we respect that and don't add 2us then
1862 		 *
1863 		 * Additionally, if a level n (n > 1) has a 0us latency, all
1864 		 * levels m (m >= n) need to be disabled. We make sure to
1865 		 * sanitize the values out of the punit to satisfy this
1866 		 * requirement.
1867 		 */
1868 		wm[0] += 2;
1869 		for (level = 1; level <= max_level; level++)
1870 			if (wm[level] != 0)
1871 				wm[level] += 2;
1872 			else {
1873 				for (i = level + 1; i <= max_level; i++)
1874 					wm[i] = 0;
1875 
1876 				break;
1877 			}
1878 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1879 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
1880 
1881 		wm[0] = (sskpd >> 56) & 0xFF;
1882 		if (wm[0] == 0)
1883 			wm[0] = sskpd & 0xF;
1884 		wm[1] = (sskpd >> 4) & 0xFF;
1885 		wm[2] = (sskpd >> 12) & 0xFF;
1886 		wm[3] = (sskpd >> 20) & 0x1FF;
1887 		wm[4] = (sskpd >> 32) & 0x1FF;
1888 	} else if (INTEL_INFO(dev)->gen >= 6) {
1889 		uint32_t sskpd = I915_READ(MCH_SSKPD);
1890 
1891 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1892 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1893 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1894 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1895 	} else if (INTEL_INFO(dev)->gen >= 5) {
1896 		uint32_t mltr = I915_READ(MLTR_ILK);
1897 
1898 		/* ILK primary LP0 latency is 700 ns */
1899 		wm[0] = 7;
1900 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1901 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1902 	}
1903 }
1904 
intel_fixup_spr_wm_latency(struct drm_device * dev,uint16_t wm[5])1905 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1906 {
1907 	/* ILK sprite LP0 latency is 1300 ns */
1908 	if (INTEL_INFO(dev)->gen == 5)
1909 		wm[0] = 13;
1910 }
1911 
intel_fixup_cur_wm_latency(struct drm_device * dev,uint16_t wm[5])1912 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1913 {
1914 	/* ILK cursor LP0 latency is 1300 ns */
1915 	if (INTEL_INFO(dev)->gen == 5)
1916 		wm[0] = 13;
1917 
1918 	/* WaDoubleCursorLP3Latency:ivb */
1919 	if (IS_IVYBRIDGE(dev))
1920 		wm[3] *= 2;
1921 }
1922 
ilk_wm_max_level(const struct drm_device * dev)1923 int ilk_wm_max_level(const struct drm_device *dev)
1924 {
1925 	/* how many WM levels are we expecting */
1926 	if (IS_GEN9(dev))
1927 		return 7;
1928 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1929 		return 4;
1930 	else if (INTEL_INFO(dev)->gen >= 6)
1931 		return 3;
1932 	else
1933 		return 2;
1934 }
1935 
intel_print_wm_latency(struct drm_device * dev,const char * name,const uint16_t wm[8])1936 static void intel_print_wm_latency(struct drm_device *dev,
1937 				   const char *name,
1938 				   const uint16_t wm[8])
1939 {
1940 	int level, max_level = ilk_wm_max_level(dev);
1941 
1942 	for (level = 0; level <= max_level; level++) {
1943 		unsigned int latency = wm[level];
1944 
1945 		if (latency == 0) {
1946 			DRM_ERROR("%s WM%d latency not provided\n",
1947 				  name, level);
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * - latencies are in us on gen9.
1953 		 * - before then, WM1+ latency values are in 0.5us units
1954 		 */
1955 		if (IS_GEN9(dev))
1956 			latency *= 10;
1957 		else if (level > 0)
1958 			latency *= 5;
1959 
1960 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1961 			      name, level, wm[level],
1962 			      latency / 10, latency % 10);
1963 	}
1964 }
1965 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)1966 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1967 				    uint16_t wm[5], uint16_t min)
1968 {
1969 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
1970 
1971 	if (wm[0] >= min)
1972 		return false;
1973 
1974 	wm[0] = max(wm[0], min);
1975 	for (level = 1; level <= max_level; level++)
1976 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1977 
1978 	return true;
1979 }
1980 
snb_wm_latency_quirk(struct drm_device * dev)1981 static void snb_wm_latency_quirk(struct drm_device *dev)
1982 {
1983 	struct drm_i915_private *dev_priv = dev->dev_private;
1984 	bool changed;
1985 
1986 	/*
1987 	 * The BIOS provided WM memory latency values are often
1988 	 * inadequate for high resolution displays. Adjust them.
1989 	 */
1990 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1991 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1992 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1993 
1994 	if (!changed)
1995 		return;
1996 
1997 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1998 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1999 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2000 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2001 }
2002 
ilk_setup_wm_latency(struct drm_device * dev)2003 static void ilk_setup_wm_latency(struct drm_device *dev)
2004 {
2005 	struct drm_i915_private *dev_priv = dev->dev_private;
2006 
2007 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2008 
2009 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2010 	       sizeof(dev_priv->wm.pri_latency));
2011 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2012 	       sizeof(dev_priv->wm.pri_latency));
2013 
2014 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2015 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2016 
2017 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2018 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2019 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2020 
2021 	if (IS_GEN6(dev))
2022 		snb_wm_latency_quirk(dev);
2023 }
2024 
skl_setup_wm_latency(struct drm_device * dev)2025 static void skl_setup_wm_latency(struct drm_device *dev)
2026 {
2027 	struct drm_i915_private *dev_priv = dev->dev_private;
2028 
2029 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2030 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2031 }
2032 
ilk_compute_wm_parameters(struct drm_crtc * crtc,struct ilk_pipe_wm_parameters * p)2033 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2034 				      struct ilk_pipe_wm_parameters *p)
2035 {
2036 	struct drm_device *dev = crtc->dev;
2037 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2038 	enum pipe pipe = intel_crtc->pipe;
2039 	struct drm_plane *plane;
2040 
2041 	if (!intel_crtc->active)
2042 		return;
2043 
2044 	p->active = true;
2045 	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2046 	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2047 
2048 	if (crtc->primary->state->fb)
2049 		p->pri.bytes_per_pixel =
2050 			crtc->primary->state->fb->bits_per_pixel / 8;
2051 	else
2052 		p->pri.bytes_per_pixel = 4;
2053 
2054 	p->cur.bytes_per_pixel = 4;
2055 	/*
2056 	 * TODO: for now, assume primary and cursor planes are always enabled.
2057 	 * Setting them to false makes the screen flicker.
2058 	 */
2059 	p->pri.enabled = true;
2060 	p->cur.enabled = true;
2061 
2062 	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2063 	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2064 
2065 	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2066 		struct intel_plane *intel_plane = to_intel_plane(plane);
2067 
2068 		if (intel_plane->pipe == pipe) {
2069 			p->spr = intel_plane->wm;
2070 			break;
2071 		}
2072 	}
2073 }
2074 
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)2075 static void ilk_compute_wm_config(struct drm_device *dev,
2076 				  struct intel_wm_config *config)
2077 {
2078 	struct intel_crtc *intel_crtc;
2079 
2080 	/* Compute the currently _active_ config */
2081 	for_each_intel_crtc(dev, intel_crtc) {
2082 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2083 
2084 		if (!wm->pipe_enabled)
2085 			continue;
2086 
2087 		config->sprites_enabled |= wm->sprites_enabled;
2088 		config->sprites_scaled |= wm->sprites_scaled;
2089 		config->num_pipes_active++;
2090 	}
2091 }
2092 
2093 /* Compute new watermarks for the pipe */
intel_compute_pipe_wm(struct drm_crtc * crtc,const struct ilk_pipe_wm_parameters * params,struct intel_pipe_wm * pipe_wm)2094 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2095 				  const struct ilk_pipe_wm_parameters *params,
2096 				  struct intel_pipe_wm *pipe_wm)
2097 {
2098 	struct drm_device *dev = crtc->dev;
2099 	const struct drm_i915_private *dev_priv = dev->dev_private;
2100 	int level, max_level = ilk_wm_max_level(dev);
2101 	/* LP0 watermark maximums depend on this pipe alone */
2102 	struct intel_wm_config config = {
2103 		.num_pipes_active = 1,
2104 		.sprites_enabled = params->spr.enabled,
2105 		.sprites_scaled = params->spr.scaled,
2106 	};
2107 	struct ilk_wm_maximums max;
2108 
2109 	pipe_wm->pipe_enabled = params->active;
2110 	pipe_wm->sprites_enabled = params->spr.enabled;
2111 	pipe_wm->sprites_scaled = params->spr.scaled;
2112 
2113 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2114 	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2115 		max_level = 1;
2116 
2117 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2118 	if (params->spr.scaled)
2119 		max_level = 0;
2120 
2121 	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2122 
2123 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2124 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2125 
2126 	/* LP0 watermarks always use 1/2 DDB partitioning */
2127 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2128 
2129 	/* At least LP0 must be valid */
2130 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2131 		return false;
2132 
2133 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2134 
2135 	for (level = 1; level <= max_level; level++) {
2136 		struct intel_wm_level wm = {};
2137 
2138 		ilk_compute_wm_level(dev_priv, level, params, &wm);
2139 
2140 		/*
2141 		 * Disable any watermark level that exceeds the
2142 		 * register maximums since such watermarks are
2143 		 * always invalid.
2144 		 */
2145 		if (!ilk_validate_wm_level(level, &max, &wm))
2146 			break;
2147 
2148 		pipe_wm->wm[level] = wm;
2149 	}
2150 
2151 	return true;
2152 }
2153 
2154 /*
2155  * Merge the watermarks from all active pipes for a specific level.
2156  */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)2157 static void ilk_merge_wm_level(struct drm_device *dev,
2158 			       int level,
2159 			       struct intel_wm_level *ret_wm)
2160 {
2161 	const struct intel_crtc *intel_crtc;
2162 
2163 	ret_wm->enable = true;
2164 
2165 	for_each_intel_crtc(dev, intel_crtc) {
2166 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2167 		const struct intel_wm_level *wm = &active->wm[level];
2168 
2169 		if (!active->pipe_enabled)
2170 			continue;
2171 
2172 		/*
2173 		 * The watermark values may have been used in the past,
2174 		 * so we must maintain them in the registers for some
2175 		 * time even if the level is now disabled.
2176 		 */
2177 		if (!wm->enable)
2178 			ret_wm->enable = false;
2179 
2180 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2181 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2182 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2183 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2184 	}
2185 }
2186 
2187 /*
2188  * Merge all low power watermarks for all active pipes.
2189  */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)2190 static void ilk_wm_merge(struct drm_device *dev,
2191 			 const struct intel_wm_config *config,
2192 			 const struct ilk_wm_maximums *max,
2193 			 struct intel_pipe_wm *merged)
2194 {
2195 	int level, max_level = ilk_wm_max_level(dev);
2196 	int last_enabled_level = max_level;
2197 
2198 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2199 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2200 	    config->num_pipes_active > 1)
2201 		return;
2202 
2203 	/* ILK: FBC WM must be disabled always */
2204 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2205 
2206 	/* merge each WM1+ level */
2207 	for (level = 1; level <= max_level; level++) {
2208 		struct intel_wm_level *wm = &merged->wm[level];
2209 
2210 		ilk_merge_wm_level(dev, level, wm);
2211 
2212 		if (level > last_enabled_level)
2213 			wm->enable = false;
2214 		else if (!ilk_validate_wm_level(level, max, wm))
2215 			/* make sure all following levels get disabled */
2216 			last_enabled_level = level - 1;
2217 
2218 		/*
2219 		 * The spec says it is preferred to disable
2220 		 * FBC WMs instead of disabling a WM level.
2221 		 */
2222 		if (wm->fbc_val > max->fbc) {
2223 			if (wm->enable)
2224 				merged->fbc_wm_enabled = false;
2225 			wm->fbc_val = 0;
2226 		}
2227 	}
2228 
2229 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2230 	/*
2231 	 * FIXME this is racy. FBC might get enabled later.
2232 	 * What we should check here is whether FBC can be
2233 	 * enabled sometime later.
2234 	 */
2235 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2236 		for (level = 2; level <= max_level; level++) {
2237 			struct intel_wm_level *wm = &merged->wm[level];
2238 
2239 			wm->enable = false;
2240 		}
2241 	}
2242 }
2243 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)2244 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2245 {
2246 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2247 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2248 }
2249 
2250 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)2251 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2252 {
2253 	struct drm_i915_private *dev_priv = dev->dev_private;
2254 
2255 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2256 		return 2 * level;
2257 	else
2258 		return dev_priv->wm.pri_latency[level];
2259 }
2260 
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)2261 static void ilk_compute_wm_results(struct drm_device *dev,
2262 				   const struct intel_pipe_wm *merged,
2263 				   enum intel_ddb_partitioning partitioning,
2264 				   struct ilk_wm_values *results)
2265 {
2266 	struct intel_crtc *intel_crtc;
2267 	int level, wm_lp;
2268 
2269 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2270 	results->partitioning = partitioning;
2271 
2272 	/* LP1+ register values */
2273 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2274 		const struct intel_wm_level *r;
2275 
2276 		level = ilk_wm_lp_to_level(wm_lp, merged);
2277 
2278 		r = &merged->wm[level];
2279 
2280 		/*
2281 		 * Maintain the watermark values even if the level is
2282 		 * disabled. Doing otherwise could cause underruns.
2283 		 */
2284 		results->wm_lp[wm_lp - 1] =
2285 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2286 			(r->pri_val << WM1_LP_SR_SHIFT) |
2287 			r->cur_val;
2288 
2289 		if (r->enable)
2290 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2291 
2292 		if (INTEL_INFO(dev)->gen >= 8)
2293 			results->wm_lp[wm_lp - 1] |=
2294 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2295 		else
2296 			results->wm_lp[wm_lp - 1] |=
2297 				r->fbc_val << WM1_LP_FBC_SHIFT;
2298 
2299 		/*
2300 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2301 		 * level is disabled. Doing otherwise could cause underruns.
2302 		 */
2303 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2304 			WARN_ON(wm_lp != 1);
2305 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2306 		} else
2307 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2308 	}
2309 
2310 	/* LP0 register values */
2311 	for_each_intel_crtc(dev, intel_crtc) {
2312 		enum pipe pipe = intel_crtc->pipe;
2313 		const struct intel_wm_level *r =
2314 			&intel_crtc->wm.active.wm[0];
2315 
2316 		if (WARN_ON(!r->enable))
2317 			continue;
2318 
2319 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2320 
2321 		results->wm_pipe[pipe] =
2322 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2323 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2324 			r->cur_val;
2325 	}
2326 }
2327 
2328 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2329  * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)2330 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2331 						  struct intel_pipe_wm *r1,
2332 						  struct intel_pipe_wm *r2)
2333 {
2334 	int level, max_level = ilk_wm_max_level(dev);
2335 	int level1 = 0, level2 = 0;
2336 
2337 	for (level = 1; level <= max_level; level++) {
2338 		if (r1->wm[level].enable)
2339 			level1 = level;
2340 		if (r2->wm[level].enable)
2341 			level2 = level;
2342 	}
2343 
2344 	if (level1 == level2) {
2345 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2346 			return r2;
2347 		else
2348 			return r1;
2349 	} else if (level1 > level2) {
2350 		return r1;
2351 	} else {
2352 		return r2;
2353 	}
2354 }
2355 
2356 /* dirty bits used to track which watermarks need changes */
2357 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2358 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2359 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2360 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2361 #define WM_DIRTY_FBC (1 << 24)
2362 #define WM_DIRTY_DDB (1 << 25)
2363 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)2364 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2365 					 const struct ilk_wm_values *old,
2366 					 const struct ilk_wm_values *new)
2367 {
2368 	unsigned int dirty = 0;
2369 	enum pipe pipe;
2370 	int wm_lp;
2371 
2372 	for_each_pipe(dev_priv, pipe) {
2373 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2374 			dirty |= WM_DIRTY_LINETIME(pipe);
2375 			/* Must disable LP1+ watermarks too */
2376 			dirty |= WM_DIRTY_LP_ALL;
2377 		}
2378 
2379 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2380 			dirty |= WM_DIRTY_PIPE(pipe);
2381 			/* Must disable LP1+ watermarks too */
2382 			dirty |= WM_DIRTY_LP_ALL;
2383 		}
2384 	}
2385 
2386 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2387 		dirty |= WM_DIRTY_FBC;
2388 		/* Must disable LP1+ watermarks too */
2389 		dirty |= WM_DIRTY_LP_ALL;
2390 	}
2391 
2392 	if (old->partitioning != new->partitioning) {
2393 		dirty |= WM_DIRTY_DDB;
2394 		/* Must disable LP1+ watermarks too */
2395 		dirty |= WM_DIRTY_LP_ALL;
2396 	}
2397 
2398 	/* LP1+ watermarks already deemed dirty, no need to continue */
2399 	if (dirty & WM_DIRTY_LP_ALL)
2400 		return dirty;
2401 
2402 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2403 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2404 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2405 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2406 			break;
2407 	}
2408 
2409 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2410 	for (; wm_lp <= 3; wm_lp++)
2411 		dirty |= WM_DIRTY_LP(wm_lp);
2412 
2413 	return dirty;
2414 }
2415 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)2416 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2417 			       unsigned int dirty)
2418 {
2419 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2420 	bool changed = false;
2421 
2422 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2423 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2424 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2425 		changed = true;
2426 	}
2427 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2428 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2429 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2430 		changed = true;
2431 	}
2432 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2433 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2434 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2435 		changed = true;
2436 	}
2437 
2438 	/*
2439 	 * Don't touch WM1S_LP_EN here.
2440 	 * Doing so could cause underruns.
2441 	 */
2442 
2443 	return changed;
2444 }
2445 
2446 /*
2447  * The spec says we shouldn't write when we don't need, because every write
2448  * causes WMs to be re-evaluated, expending some power.
2449  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)2450 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2451 				struct ilk_wm_values *results)
2452 {
2453 	struct drm_device *dev = dev_priv->dev;
2454 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2455 	unsigned int dirty;
2456 	uint32_t val;
2457 
2458 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2459 	if (!dirty)
2460 		return;
2461 
2462 	_ilk_disable_lp_wm(dev_priv, dirty);
2463 
2464 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2465 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2466 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2467 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2468 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2469 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2470 
2471 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2472 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2473 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2474 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2475 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2476 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2477 
2478 	if (dirty & WM_DIRTY_DDB) {
2479 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2480 			val = I915_READ(WM_MISC);
2481 			if (results->partitioning == INTEL_DDB_PART_1_2)
2482 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2483 			else
2484 				val |= WM_MISC_DATA_PARTITION_5_6;
2485 			I915_WRITE(WM_MISC, val);
2486 		} else {
2487 			val = I915_READ(DISP_ARB_CTL2);
2488 			if (results->partitioning == INTEL_DDB_PART_1_2)
2489 				val &= ~DISP_DATA_PARTITION_5_6;
2490 			else
2491 				val |= DISP_DATA_PARTITION_5_6;
2492 			I915_WRITE(DISP_ARB_CTL2, val);
2493 		}
2494 	}
2495 
2496 	if (dirty & WM_DIRTY_FBC) {
2497 		val = I915_READ(DISP_ARB_CTL);
2498 		if (results->enable_fbc_wm)
2499 			val &= ~DISP_FBC_WM_DIS;
2500 		else
2501 			val |= DISP_FBC_WM_DIS;
2502 		I915_WRITE(DISP_ARB_CTL, val);
2503 	}
2504 
2505 	if (dirty & WM_DIRTY_LP(1) &&
2506 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2507 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2508 
2509 	if (INTEL_INFO(dev)->gen >= 7) {
2510 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2511 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2512 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2513 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2514 	}
2515 
2516 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2517 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2518 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2519 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2520 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2521 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2522 
2523 	dev_priv->wm.hw = *results;
2524 }
2525 
ilk_disable_lp_wm(struct drm_device * dev)2526 static bool ilk_disable_lp_wm(struct drm_device *dev)
2527 {
2528 	struct drm_i915_private *dev_priv = dev->dev_private;
2529 
2530 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2531 }
2532 
2533 /*
2534  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2535  * different active planes.
2536  */
2537 
2538 #define SKL_DDB_SIZE		896	/* in blocks */
2539 
2540 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,struct drm_crtc * for_crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_entry * alloc)2541 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2542 				   struct drm_crtc *for_crtc,
2543 				   const struct intel_wm_config *config,
2544 				   const struct skl_pipe_wm_parameters *params,
2545 				   struct skl_ddb_entry *alloc /* out */)
2546 {
2547 	struct drm_crtc *crtc;
2548 	unsigned int pipe_size, ddb_size;
2549 	int nth_active_pipe;
2550 
2551 	if (!params->active) {
2552 		alloc->start = 0;
2553 		alloc->end = 0;
2554 		return;
2555 	}
2556 
2557 	ddb_size = SKL_DDB_SIZE;
2558 
2559 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2560 
2561 	nth_active_pipe = 0;
2562 	for_each_crtc(dev, crtc) {
2563 		if (!to_intel_crtc(crtc)->active)
2564 			continue;
2565 
2566 		if (crtc == for_crtc)
2567 			break;
2568 
2569 		nth_active_pipe++;
2570 	}
2571 
2572 	pipe_size = ddb_size / config->num_pipes_active;
2573 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2574 	alloc->end = alloc->start + pipe_size;
2575 }
2576 
skl_cursor_allocation(const struct intel_wm_config * config)2577 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2578 {
2579 	if (config->num_pipes_active == 1)
2580 		return 32;
2581 
2582 	return 8;
2583 }
2584 
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)2585 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2586 {
2587 	entry->start = reg & 0x3ff;
2588 	entry->end = (reg >> 16) & 0x3ff;
2589 	if (entry->end)
2590 		entry->end += 1;
2591 }
2592 
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)2593 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2594 			  struct skl_ddb_allocation *ddb /* out */)
2595 {
2596 	enum pipe pipe;
2597 	int plane;
2598 	u32 val;
2599 
2600 	for_each_pipe(dev_priv, pipe) {
2601 		for_each_plane(dev_priv, pipe, plane) {
2602 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2603 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2604 						   val);
2605 		}
2606 
2607 		val = I915_READ(CUR_BUF_CFG(pipe));
2608 		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2609 	}
2610 }
2611 
2612 static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters * p)2613 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2614 {
2615 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2616 }
2617 
2618 /*
2619  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2620  * a 8192x4096@32bpp framebuffer:
2621  *   3 * 4096 * 8192  * 4 < 2^32
2622  */
2623 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc * intel_crtc,const struct skl_pipe_wm_parameters * params)2624 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2625 				 const struct skl_pipe_wm_parameters *params)
2626 {
2627 	unsigned int total_data_rate = 0;
2628 	int plane;
2629 
2630 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2631 		const struct intel_plane_wm_parameters *p;
2632 
2633 		p = &params->plane[plane];
2634 		if (!p->enabled)
2635 			continue;
2636 
2637 		total_data_rate += skl_plane_relative_data_rate(p);
2638 	}
2639 
2640 	return total_data_rate;
2641 }
2642 
2643 static void
skl_allocate_pipe_ddb(struct drm_crtc * crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_allocation * ddb)2644 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2645 		      const struct intel_wm_config *config,
2646 		      const struct skl_pipe_wm_parameters *params,
2647 		      struct skl_ddb_allocation *ddb /* out */)
2648 {
2649 	struct drm_device *dev = crtc->dev;
2650 	struct drm_i915_private *dev_priv = dev->dev_private;
2651 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2652 	enum pipe pipe = intel_crtc->pipe;
2653 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2654 	uint16_t alloc_size, start, cursor_blocks;
2655 	uint16_t minimum[I915_MAX_PLANES];
2656 	unsigned int total_data_rate;
2657 	int plane;
2658 
2659 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2660 	alloc_size = skl_ddb_entry_size(alloc);
2661 	if (alloc_size == 0) {
2662 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2663 		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2664 		return;
2665 	}
2666 
2667 	cursor_blocks = skl_cursor_allocation(config);
2668 	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2669 	ddb->cursor[pipe].end = alloc->end;
2670 
2671 	alloc_size -= cursor_blocks;
2672 	alloc->end -= cursor_blocks;
2673 
2674 	/* 1. Allocate the mininum required blocks for each active plane */
2675 	for_each_plane(dev_priv, pipe, plane) {
2676 		const struct intel_plane_wm_parameters *p;
2677 
2678 		p = &params->plane[plane];
2679 		if (!p->enabled)
2680 			continue;
2681 
2682 		minimum[plane] = 8;
2683 		alloc_size -= minimum[plane];
2684 	}
2685 
2686 	/*
2687 	 * 2. Distribute the remaining space in proportion to the amount of
2688 	 * data each plane needs to fetch from memory.
2689 	 *
2690 	 * FIXME: we may not allocate every single block here.
2691 	 */
2692 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2693 
2694 	start = alloc->start;
2695 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2696 		const struct intel_plane_wm_parameters *p;
2697 		unsigned int data_rate;
2698 		uint16_t plane_blocks;
2699 
2700 		p = &params->plane[plane];
2701 		if (!p->enabled)
2702 			continue;
2703 
2704 		data_rate = skl_plane_relative_data_rate(p);
2705 
2706 		/*
2707 		 * promote the expression to 64 bits to avoid overflowing, the
2708 		 * result is < available as data_rate / total_data_rate < 1
2709 		 */
2710 		plane_blocks = minimum[plane];
2711 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2712 					total_data_rate);
2713 
2714 		ddb->plane[pipe][plane].start = start;
2715 		ddb->plane[pipe][plane].end = start + plane_blocks;
2716 
2717 		start += plane_blocks;
2718 	}
2719 
2720 }
2721 
skl_pipe_pixel_rate(const struct intel_crtc_state * config)2722 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2723 {
2724 	/* TODO: Take into account the scalers once we support them */
2725 	return config->base.adjusted_mode.crtc_clock;
2726 }
2727 
2728 /*
2729  * The max latency should be 257 (max the punit can code is 255 and we add 2us
2730  * for the read latency) and bytes_per_pixel should always be <= 8, so that
2731  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2732  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2733 */
skl_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)2734 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2735 			       uint32_t latency)
2736 {
2737 	uint32_t wm_intermediate_val, ret;
2738 
2739 	if (latency == 0)
2740 		return UINT_MAX;
2741 
2742 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2743 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2744 
2745 	return ret;
2746 }
2747 
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint64_t tiling,uint32_t latency)2748 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2749 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2750 			       uint64_t tiling, uint32_t latency)
2751 {
2752 	uint32_t ret;
2753 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
2754 	uint32_t wm_intermediate_val;
2755 
2756 	if (latency == 0)
2757 		return UINT_MAX;
2758 
2759 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2760 
2761 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
2762 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
2763 		plane_bytes_per_line *= 4;
2764 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2765 		plane_blocks_per_line /= 4;
2766 	} else {
2767 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2768 	}
2769 
2770 	wm_intermediate_val = latency * pixel_rate;
2771 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2772 				plane_blocks_per_line;
2773 
2774 	return ret;
2775 }
2776 
skl_ddb_allocation_changed(const struct skl_ddb_allocation * new_ddb,const struct intel_crtc * intel_crtc)2777 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2778 				       const struct intel_crtc *intel_crtc)
2779 {
2780 	struct drm_device *dev = intel_crtc->base.dev;
2781 	struct drm_i915_private *dev_priv = dev->dev_private;
2782 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2783 	enum pipe pipe = intel_crtc->pipe;
2784 
2785 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2786 		   sizeof(new_ddb->plane[pipe])))
2787 		return true;
2788 
2789 	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2790 		    sizeof(new_ddb->cursor[pipe])))
2791 		return true;
2792 
2793 	return false;
2794 }
2795 
skl_compute_wm_global_parameters(struct drm_device * dev,struct intel_wm_config * config)2796 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2797 					     struct intel_wm_config *config)
2798 {
2799 	struct drm_crtc *crtc;
2800 	struct drm_plane *plane;
2801 
2802 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2803 		config->num_pipes_active += to_intel_crtc(crtc)->active;
2804 
2805 	/* FIXME: I don't think we need those two global parameters on SKL */
2806 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2807 		struct intel_plane *intel_plane = to_intel_plane(plane);
2808 
2809 		config->sprites_enabled |= intel_plane->wm.enabled;
2810 		config->sprites_scaled |= intel_plane->wm.scaled;
2811 	}
2812 }
2813 
skl_compute_wm_pipe_parameters(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)2814 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2815 					   struct skl_pipe_wm_parameters *p)
2816 {
2817 	struct drm_device *dev = crtc->dev;
2818 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819 	enum pipe pipe = intel_crtc->pipe;
2820 	struct drm_plane *plane;
2821 	struct drm_framebuffer *fb;
2822 	int i = 1; /* Index for sprite planes start */
2823 
2824 	p->active = intel_crtc->active;
2825 	if (p->active) {
2826 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2827 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2828 
2829 		fb = crtc->primary->state->fb;
2830 		if (fb) {
2831 			p->plane[0].enabled = true;
2832 			p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2833 			p->plane[0].tiling = fb->modifier[0];
2834 		} else {
2835 			p->plane[0].enabled = false;
2836 			p->plane[0].bytes_per_pixel = 0;
2837 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2838 		}
2839 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2840 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2841 		p->plane[0].rotation = crtc->primary->state->rotation;
2842 
2843 		fb = crtc->cursor->state->fb;
2844 		if (fb) {
2845 			p->cursor.enabled = true;
2846 			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
2847 			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
2848 			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
2849 		} else {
2850 			p->cursor.enabled = false;
2851 			p->cursor.bytes_per_pixel = 0;
2852 			p->cursor.horiz_pixels = 64;
2853 			p->cursor.vert_pixels = 64;
2854 		}
2855 	}
2856 
2857 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2858 		struct intel_plane *intel_plane = to_intel_plane(plane);
2859 
2860 		if (intel_plane->pipe == pipe &&
2861 			plane->type == DRM_PLANE_TYPE_OVERLAY)
2862 			p->plane[i++] = intel_plane->wm;
2863 	}
2864 }
2865 
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct skl_pipe_wm_parameters * p,struct intel_plane_wm_parameters * p_params,uint16_t ddb_allocation,int level,uint16_t * out_blocks,uint8_t * out_lines)2866 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2867 				 struct skl_pipe_wm_parameters *p,
2868 				 struct intel_plane_wm_parameters *p_params,
2869 				 uint16_t ddb_allocation,
2870 				 int level,
2871 				 uint16_t *out_blocks, /* out */
2872 				 uint8_t *out_lines /* out */)
2873 {
2874 	uint32_t latency = dev_priv->wm.skl_latency[level];
2875 	uint32_t method1, method2;
2876 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
2877 	uint32_t res_blocks, res_lines;
2878 	uint32_t selected_result;
2879 
2880 	if (latency == 0 || !p->active || !p_params->enabled)
2881 		return false;
2882 
2883 	method1 = skl_wm_method1(p->pixel_rate,
2884 				 p_params->bytes_per_pixel,
2885 				 latency);
2886 	method2 = skl_wm_method2(p->pixel_rate,
2887 				 p->pipe_htotal,
2888 				 p_params->horiz_pixels,
2889 				 p_params->bytes_per_pixel,
2890 				 p_params->tiling,
2891 				 latency);
2892 
2893 	plane_bytes_per_line = p_params->horiz_pixels *
2894 					p_params->bytes_per_pixel;
2895 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2896 
2897 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2898 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2899 		uint32_t min_scanlines = 4;
2900 		uint32_t y_tile_minimum;
2901 		if (intel_rotation_90_or_270(p_params->rotation)) {
2902 			switch (p_params->bytes_per_pixel) {
2903 			case 1:
2904 				min_scanlines = 16;
2905 				break;
2906 			case 2:
2907 				min_scanlines = 8;
2908 				break;
2909 			case 8:
2910 				WARN(1, "Unsupported pixel depth for rotation");
2911 			}
2912 		}
2913 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
2914 		selected_result = max(method2, y_tile_minimum);
2915 	} else {
2916 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
2917 			selected_result = min(method1, method2);
2918 		else
2919 			selected_result = method1;
2920 	}
2921 
2922 	res_blocks = selected_result + 1;
2923 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2924 
2925 	if (level >= 1 && level <= 7) {
2926 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2927 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2928 			res_lines += 4;
2929 		else
2930 			res_blocks++;
2931 	}
2932 
2933 	if (res_blocks >= ddb_allocation || res_lines > 31)
2934 		return false;
2935 
2936 	*out_blocks = res_blocks;
2937 	*out_lines = res_lines;
2938 
2939 	return true;
2940 }
2941 
skl_compute_wm_level(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * p,enum pipe pipe,int level,int num_planes,struct skl_wm_level * result)2942 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2943 				 struct skl_ddb_allocation *ddb,
2944 				 struct skl_pipe_wm_parameters *p,
2945 				 enum pipe pipe,
2946 				 int level,
2947 				 int num_planes,
2948 				 struct skl_wm_level *result)
2949 {
2950 	uint16_t ddb_blocks;
2951 	int i;
2952 
2953 	for (i = 0; i < num_planes; i++) {
2954 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2955 
2956 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2957 						p, &p->plane[i],
2958 						ddb_blocks,
2959 						level,
2960 						&result->plane_res_b[i],
2961 						&result->plane_res_l[i]);
2962 	}
2963 
2964 	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2965 	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2966 						 ddb_blocks, level,
2967 						 &result->cursor_res_b,
2968 						 &result->cursor_res_l);
2969 }
2970 
2971 static uint32_t
skl_compute_linetime_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)2972 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2973 {
2974 	if (!to_intel_crtc(crtc)->active)
2975 		return 0;
2976 
2977 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2978 
2979 }
2980 
skl_compute_transition_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct skl_wm_level * trans_wm)2981 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2982 				      struct skl_pipe_wm_parameters *params,
2983 				      struct skl_wm_level *trans_wm /* out */)
2984 {
2985 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2986 	int i;
2987 
2988 	if (!params->active)
2989 		return;
2990 
2991 	/* Until we know more, just disable transition WMs */
2992 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
2993 		trans_wm->plane_en[i] = false;
2994 	trans_wm->cursor_en = false;
2995 }
2996 
skl_compute_pipe_wm(struct drm_crtc * crtc,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * params,struct skl_pipe_wm * pipe_wm)2997 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2998 				struct skl_ddb_allocation *ddb,
2999 				struct skl_pipe_wm_parameters *params,
3000 				struct skl_pipe_wm *pipe_wm)
3001 {
3002 	struct drm_device *dev = crtc->dev;
3003 	const struct drm_i915_private *dev_priv = dev->dev_private;
3004 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3005 	int level, max_level = ilk_wm_max_level(dev);
3006 
3007 	for (level = 0; level <= max_level; level++) {
3008 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3009 				     level, intel_num_planes(intel_crtc),
3010 				     &pipe_wm->wm[level]);
3011 	}
3012 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3013 
3014 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3015 }
3016 
skl_compute_wm_results(struct drm_device * dev,struct skl_pipe_wm_parameters * p,struct skl_pipe_wm * p_wm,struct skl_wm_values * r,struct intel_crtc * intel_crtc)3017 static void skl_compute_wm_results(struct drm_device *dev,
3018 				   struct skl_pipe_wm_parameters *p,
3019 				   struct skl_pipe_wm *p_wm,
3020 				   struct skl_wm_values *r,
3021 				   struct intel_crtc *intel_crtc)
3022 {
3023 	int level, max_level = ilk_wm_max_level(dev);
3024 	enum pipe pipe = intel_crtc->pipe;
3025 	uint32_t temp;
3026 	int i;
3027 
3028 	for (level = 0; level <= max_level; level++) {
3029 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3030 			temp = 0;
3031 
3032 			temp |= p_wm->wm[level].plane_res_l[i] <<
3033 					PLANE_WM_LINES_SHIFT;
3034 			temp |= p_wm->wm[level].plane_res_b[i];
3035 			if (p_wm->wm[level].plane_en[i])
3036 				temp |= PLANE_WM_EN;
3037 
3038 			r->plane[pipe][i][level] = temp;
3039 		}
3040 
3041 		temp = 0;
3042 
3043 		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3044 		temp |= p_wm->wm[level].cursor_res_b;
3045 
3046 		if (p_wm->wm[level].cursor_en)
3047 			temp |= PLANE_WM_EN;
3048 
3049 		r->cursor[pipe][level] = temp;
3050 
3051 	}
3052 
3053 	/* transition WMs */
3054 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3055 		temp = 0;
3056 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3057 		temp |= p_wm->trans_wm.plane_res_b[i];
3058 		if (p_wm->trans_wm.plane_en[i])
3059 			temp |= PLANE_WM_EN;
3060 
3061 		r->plane_trans[pipe][i] = temp;
3062 	}
3063 
3064 	temp = 0;
3065 	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3066 	temp |= p_wm->trans_wm.cursor_res_b;
3067 	if (p_wm->trans_wm.cursor_en)
3068 		temp |= PLANE_WM_EN;
3069 
3070 	r->cursor_trans[pipe] = temp;
3071 
3072 	r->wm_linetime[pipe] = p_wm->linetime;
3073 }
3074 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,uint32_t reg,const struct skl_ddb_entry * entry)3075 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3076 				const struct skl_ddb_entry *entry)
3077 {
3078 	if (entry->end)
3079 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3080 	else
3081 		I915_WRITE(reg, 0);
3082 }
3083 
skl_write_wm_values(struct drm_i915_private * dev_priv,const struct skl_wm_values * new)3084 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3085 				const struct skl_wm_values *new)
3086 {
3087 	struct drm_device *dev = dev_priv->dev;
3088 	struct intel_crtc *crtc;
3089 
3090 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3091 		int i, level, max_level = ilk_wm_max_level(dev);
3092 		enum pipe pipe = crtc->pipe;
3093 
3094 		if (!new->dirty[pipe])
3095 			continue;
3096 
3097 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3098 
3099 		for (level = 0; level <= max_level; level++) {
3100 			for (i = 0; i < intel_num_planes(crtc); i++)
3101 				I915_WRITE(PLANE_WM(pipe, i, level),
3102 					   new->plane[pipe][i][level]);
3103 			I915_WRITE(CUR_WM(pipe, level),
3104 				   new->cursor[pipe][level]);
3105 		}
3106 		for (i = 0; i < intel_num_planes(crtc); i++)
3107 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3108 				   new->plane_trans[pipe][i]);
3109 		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3110 
3111 		for (i = 0; i < intel_num_planes(crtc); i++)
3112 			skl_ddb_entry_write(dev_priv,
3113 					    PLANE_BUF_CFG(pipe, i),
3114 					    &new->ddb.plane[pipe][i]);
3115 
3116 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3117 				    &new->ddb.cursor[pipe]);
3118 	}
3119 }
3120 
3121 /*
3122  * When setting up a new DDB allocation arrangement, we need to correctly
3123  * sequence the times at which the new allocations for the pipes are taken into
3124  * account or we'll have pipes fetching from space previously allocated to
3125  * another pipe.
3126  *
3127  * Roughly the sequence looks like:
3128  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3129  *     overlapping with a previous light-up pipe (another way to put it is:
3130  *     pipes with their new allocation strickly included into their old ones).
3131  *  2. re-allocate the other pipes that get their allocation reduced
3132  *  3. allocate the pipes having their allocation increased
3133  *
3134  * Steps 1. and 2. are here to take care of the following case:
3135  * - Initially DDB looks like this:
3136  *     |   B    |   C    |
3137  * - enable pipe A.
3138  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3139  *   allocation
3140  *     |  A  |  B  |  C  |
3141  *
3142  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3143  */
3144 
3145 static void
skl_wm_flush_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,int pass)3146 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3147 {
3148 	int plane;
3149 
3150 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3151 
3152 	for_each_plane(dev_priv, pipe, plane) {
3153 		I915_WRITE(PLANE_SURF(pipe, plane),
3154 			   I915_READ(PLANE_SURF(pipe, plane)));
3155 	}
3156 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3157 }
3158 
3159 static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation * old,const struct skl_ddb_allocation * new,enum pipe pipe)3160 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3161 			    const struct skl_ddb_allocation *new,
3162 			    enum pipe pipe)
3163 {
3164 	uint16_t old_size, new_size;
3165 
3166 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3167 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3168 
3169 	return old_size != new_size &&
3170 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3171 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3172 }
3173 
skl_flush_wm_values(struct drm_i915_private * dev_priv,struct skl_wm_values * new_values)3174 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3175 				struct skl_wm_values *new_values)
3176 {
3177 	struct drm_device *dev = dev_priv->dev;
3178 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3179 	bool reallocated[I915_MAX_PIPES] = {false, false, false};
3180 	struct intel_crtc *crtc;
3181 	enum pipe pipe;
3182 
3183 	new_ddb = &new_values->ddb;
3184 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3185 
3186 	/*
3187 	 * First pass: flush the pipes with the new allocation contained into
3188 	 * the old space.
3189 	 *
3190 	 * We'll wait for the vblank on those pipes to ensure we can safely
3191 	 * re-allocate the freed space without this pipe fetching from it.
3192 	 */
3193 	for_each_intel_crtc(dev, crtc) {
3194 		if (!crtc->active)
3195 			continue;
3196 
3197 		pipe = crtc->pipe;
3198 
3199 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3200 			continue;
3201 
3202 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3203 		intel_wait_for_vblank(dev, pipe);
3204 
3205 		reallocated[pipe] = true;
3206 	}
3207 
3208 
3209 	/*
3210 	 * Second pass: flush the pipes that are having their allocation
3211 	 * reduced, but overlapping with a previous allocation.
3212 	 *
3213 	 * Here as well we need to wait for the vblank to make sure the freed
3214 	 * space is not used anymore.
3215 	 */
3216 	for_each_intel_crtc(dev, crtc) {
3217 		if (!crtc->active)
3218 			continue;
3219 
3220 		pipe = crtc->pipe;
3221 
3222 		if (reallocated[pipe])
3223 			continue;
3224 
3225 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3226 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3227 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3228 			intel_wait_for_vblank(dev, pipe);
3229 			reallocated[pipe] = true;
3230 		}
3231 	}
3232 
3233 	/*
3234 	 * Third pass: flush the pipes that got more space allocated.
3235 	 *
3236 	 * We don't need to actively wait for the update here, next vblank
3237 	 * will just get more DDB space with the correct WM values.
3238 	 */
3239 	for_each_intel_crtc(dev, crtc) {
3240 		if (!crtc->active)
3241 			continue;
3242 
3243 		pipe = crtc->pipe;
3244 
3245 		/*
3246 		 * At this point, only the pipes more space than before are
3247 		 * left to re-allocate.
3248 		 */
3249 		if (reallocated[pipe])
3250 			continue;
3251 
3252 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3253 	}
3254 }
3255 
skl_update_pipe_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct intel_wm_config * config,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)3256 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3257 			       struct skl_pipe_wm_parameters *params,
3258 			       struct intel_wm_config *config,
3259 			       struct skl_ddb_allocation *ddb, /* out */
3260 			       struct skl_pipe_wm *pipe_wm /* out */)
3261 {
3262 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3263 
3264 	skl_compute_wm_pipe_parameters(crtc, params);
3265 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3266 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3267 
3268 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3269 		return false;
3270 
3271 	intel_crtc->wm.skl_active = *pipe_wm;
3272 	return true;
3273 }
3274 
skl_update_other_pipe_wm(struct drm_device * dev,struct drm_crtc * crtc,struct intel_wm_config * config,struct skl_wm_values * r)3275 static void skl_update_other_pipe_wm(struct drm_device *dev,
3276 				     struct drm_crtc *crtc,
3277 				     struct intel_wm_config *config,
3278 				     struct skl_wm_values *r)
3279 {
3280 	struct intel_crtc *intel_crtc;
3281 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3282 
3283 	/*
3284 	 * If the WM update hasn't changed the allocation for this_crtc (the
3285 	 * crtc we are currently computing the new WM values for), other
3286 	 * enabled crtcs will keep the same allocation and we don't need to
3287 	 * recompute anything for them.
3288 	 */
3289 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3290 		return;
3291 
3292 	/*
3293 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3294 	 * other active pipes need new DDB allocation and WM values.
3295 	 */
3296 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3297 				base.head) {
3298 		struct skl_pipe_wm_parameters params = {};
3299 		struct skl_pipe_wm pipe_wm = {};
3300 		bool wm_changed;
3301 
3302 		if (this_crtc->pipe == intel_crtc->pipe)
3303 			continue;
3304 
3305 		if (!intel_crtc->active)
3306 			continue;
3307 
3308 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3309 						&params, config,
3310 						&r->ddb, &pipe_wm);
3311 
3312 		/*
3313 		 * If we end up re-computing the other pipe WM values, it's
3314 		 * because it was really needed, so we expect the WM values to
3315 		 * be different.
3316 		 */
3317 		WARN_ON(!wm_changed);
3318 
3319 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3320 		r->dirty[intel_crtc->pipe] = true;
3321 	}
3322 }
3323 
skl_update_wm(struct drm_crtc * crtc)3324 static void skl_update_wm(struct drm_crtc *crtc)
3325 {
3326 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3327 	struct drm_device *dev = crtc->dev;
3328 	struct drm_i915_private *dev_priv = dev->dev_private;
3329 	struct skl_pipe_wm_parameters params = {};
3330 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3331 	struct skl_pipe_wm pipe_wm = {};
3332 	struct intel_wm_config config = {};
3333 
3334 	memset(results, 0, sizeof(*results));
3335 
3336 	skl_compute_wm_global_parameters(dev, &config);
3337 
3338 	if (!skl_update_pipe_wm(crtc, &params, &config,
3339 				&results->ddb, &pipe_wm))
3340 		return;
3341 
3342 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3343 	results->dirty[intel_crtc->pipe] = true;
3344 
3345 	skl_update_other_pipe_wm(dev, crtc, &config, results);
3346 	skl_write_wm_values(dev_priv, results);
3347 	skl_flush_wm_values(dev_priv, results);
3348 
3349 	/* store the new configuration */
3350 	dev_priv->wm.skl_hw = *results;
3351 }
3352 
3353 static void
skl_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3354 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3355 		     uint32_t sprite_width, uint32_t sprite_height,
3356 		     int pixel_size, bool enabled, bool scaled)
3357 {
3358 	struct intel_plane *intel_plane = to_intel_plane(plane);
3359 	struct drm_framebuffer *fb = plane->state->fb;
3360 
3361 	intel_plane->wm.enabled = enabled;
3362 	intel_plane->wm.scaled = scaled;
3363 	intel_plane->wm.horiz_pixels = sprite_width;
3364 	intel_plane->wm.vert_pixels = sprite_height;
3365 	intel_plane->wm.bytes_per_pixel = pixel_size;
3366 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3367 	/*
3368 	 * Framebuffer can be NULL on plane disable, but it does not
3369 	 * matter for watermarks if we assume no tiling in that case.
3370 	 */
3371 	if (fb)
3372 		intel_plane->wm.tiling = fb->modifier[0];
3373 	intel_plane->wm.rotation = plane->state->rotation;
3374 
3375 	skl_update_wm(crtc);
3376 }
3377 
ilk_update_wm(struct drm_crtc * crtc)3378 static void ilk_update_wm(struct drm_crtc *crtc)
3379 {
3380 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3381 	struct drm_device *dev = crtc->dev;
3382 	struct drm_i915_private *dev_priv = dev->dev_private;
3383 	struct ilk_wm_maximums max;
3384 	struct ilk_pipe_wm_parameters params = {};
3385 	struct ilk_wm_values results = {};
3386 	enum intel_ddb_partitioning partitioning;
3387 	struct intel_pipe_wm pipe_wm = {};
3388 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3389 	struct intel_wm_config config = {};
3390 
3391 	ilk_compute_wm_parameters(crtc, &params);
3392 
3393 	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3394 
3395 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3396 		return;
3397 
3398 	intel_crtc->wm.active = pipe_wm;
3399 
3400 	ilk_compute_wm_config(dev, &config);
3401 
3402 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3403 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3404 
3405 	/* 5/6 split only in single pipe config on IVB+ */
3406 	if (INTEL_INFO(dev)->gen >= 7 &&
3407 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3408 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3409 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3410 
3411 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3412 	} else {
3413 		best_lp_wm = &lp_wm_1_2;
3414 	}
3415 
3416 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3417 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3418 
3419 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3420 
3421 	ilk_write_wm_values(dev_priv, &results);
3422 }
3423 
3424 static void
ilk_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3425 ilk_update_sprite_wm(struct drm_plane *plane,
3426 		     struct drm_crtc *crtc,
3427 		     uint32_t sprite_width, uint32_t sprite_height,
3428 		     int pixel_size, bool enabled, bool scaled)
3429 {
3430 	struct drm_device *dev = plane->dev;
3431 	struct intel_plane *intel_plane = to_intel_plane(plane);
3432 
3433 	intel_plane->wm.enabled = enabled;
3434 	intel_plane->wm.scaled = scaled;
3435 	intel_plane->wm.horiz_pixels = sprite_width;
3436 	intel_plane->wm.vert_pixels = sprite_width;
3437 	intel_plane->wm.bytes_per_pixel = pixel_size;
3438 
3439 	/*
3440 	 * IVB workaround: must disable low power watermarks for at least
3441 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3442 	 * when scaling is disabled.
3443 	 *
3444 	 * WaCxSRDisabledForSpriteScaling:ivb
3445 	 */
3446 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3447 		intel_wait_for_vblank(dev, intel_plane->pipe);
3448 
3449 	ilk_update_wm(crtc);
3450 }
3451 
skl_pipe_wm_active_state(uint32_t val,struct skl_pipe_wm * active,bool is_transwm,bool is_cursor,int i,int level)3452 static void skl_pipe_wm_active_state(uint32_t val,
3453 				     struct skl_pipe_wm *active,
3454 				     bool is_transwm,
3455 				     bool is_cursor,
3456 				     int i,
3457 				     int level)
3458 {
3459 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3460 
3461 	if (!is_transwm) {
3462 		if (!is_cursor) {
3463 			active->wm[level].plane_en[i] = is_enabled;
3464 			active->wm[level].plane_res_b[i] =
3465 					val & PLANE_WM_BLOCKS_MASK;
3466 			active->wm[level].plane_res_l[i] =
3467 					(val >> PLANE_WM_LINES_SHIFT) &
3468 						PLANE_WM_LINES_MASK;
3469 		} else {
3470 			active->wm[level].cursor_en = is_enabled;
3471 			active->wm[level].cursor_res_b =
3472 					val & PLANE_WM_BLOCKS_MASK;
3473 			active->wm[level].cursor_res_l =
3474 					(val >> PLANE_WM_LINES_SHIFT) &
3475 						PLANE_WM_LINES_MASK;
3476 		}
3477 	} else {
3478 		if (!is_cursor) {
3479 			active->trans_wm.plane_en[i] = is_enabled;
3480 			active->trans_wm.plane_res_b[i] =
3481 					val & PLANE_WM_BLOCKS_MASK;
3482 			active->trans_wm.plane_res_l[i] =
3483 					(val >> PLANE_WM_LINES_SHIFT) &
3484 						PLANE_WM_LINES_MASK;
3485 		} else {
3486 			active->trans_wm.cursor_en = is_enabled;
3487 			active->trans_wm.cursor_res_b =
3488 					val & PLANE_WM_BLOCKS_MASK;
3489 			active->trans_wm.cursor_res_l =
3490 					(val >> PLANE_WM_LINES_SHIFT) &
3491 						PLANE_WM_LINES_MASK;
3492 		}
3493 	}
3494 }
3495 
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc)3496 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3497 {
3498 	struct drm_device *dev = crtc->dev;
3499 	struct drm_i915_private *dev_priv = dev->dev_private;
3500 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3501 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3503 	enum pipe pipe = intel_crtc->pipe;
3504 	int level, i, max_level;
3505 	uint32_t temp;
3506 
3507 	max_level = ilk_wm_max_level(dev);
3508 
3509 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3510 
3511 	for (level = 0; level <= max_level; level++) {
3512 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3513 			hw->plane[pipe][i][level] =
3514 					I915_READ(PLANE_WM(pipe, i, level));
3515 		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3516 	}
3517 
3518 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3519 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3520 	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3521 
3522 	if (!intel_crtc->active)
3523 		return;
3524 
3525 	hw->dirty[pipe] = true;
3526 
3527 	active->linetime = hw->wm_linetime[pipe];
3528 
3529 	for (level = 0; level <= max_level; level++) {
3530 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3531 			temp = hw->plane[pipe][i][level];
3532 			skl_pipe_wm_active_state(temp, active, false,
3533 						false, i, level);
3534 		}
3535 		temp = hw->cursor[pipe][level];
3536 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3537 	}
3538 
3539 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3540 		temp = hw->plane_trans[pipe][i];
3541 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3542 	}
3543 
3544 	temp = hw->cursor_trans[pipe];
3545 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3546 }
3547 
skl_wm_get_hw_state(struct drm_device * dev)3548 void skl_wm_get_hw_state(struct drm_device *dev)
3549 {
3550 	struct drm_i915_private *dev_priv = dev->dev_private;
3551 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3552 	struct drm_crtc *crtc;
3553 
3554 	skl_ddb_get_hw_state(dev_priv, ddb);
3555 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3556 		skl_pipe_wm_get_hw_state(crtc);
3557 }
3558 
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)3559 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3560 {
3561 	struct drm_device *dev = crtc->dev;
3562 	struct drm_i915_private *dev_priv = dev->dev_private;
3563 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3564 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3566 	enum pipe pipe = intel_crtc->pipe;
3567 	static const unsigned int wm0_pipe_reg[] = {
3568 		[PIPE_A] = WM0_PIPEA_ILK,
3569 		[PIPE_B] = WM0_PIPEB_ILK,
3570 		[PIPE_C] = WM0_PIPEC_IVB,
3571 	};
3572 
3573 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3574 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3575 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3576 
3577 	memset(active, 0, sizeof(*active));
3578 
3579 	active->pipe_enabled = intel_crtc->active;
3580 
3581 	if (active->pipe_enabled) {
3582 		u32 tmp = hw->wm_pipe[pipe];
3583 
3584 		/*
3585 		 * For active pipes LP0 watermark is marked as
3586 		 * enabled, and LP1+ watermaks as disabled since
3587 		 * we can't really reverse compute them in case
3588 		 * multiple pipes are active.
3589 		 */
3590 		active->wm[0].enable = true;
3591 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3592 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3593 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3594 		active->linetime = hw->wm_linetime[pipe];
3595 	} else {
3596 		int level, max_level = ilk_wm_max_level(dev);
3597 
3598 		/*
3599 		 * For inactive pipes, all watermark levels
3600 		 * should be marked as enabled but zeroed,
3601 		 * which is what we'd compute them to.
3602 		 */
3603 		for (level = 0; level <= max_level; level++)
3604 			active->wm[level].enable = true;
3605 	}
3606 }
3607 
ilk_wm_get_hw_state(struct drm_device * dev)3608 void ilk_wm_get_hw_state(struct drm_device *dev)
3609 {
3610 	struct drm_i915_private *dev_priv = dev->dev_private;
3611 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3612 	struct drm_crtc *crtc;
3613 
3614 	for_each_crtc(dev, crtc)
3615 		ilk_pipe_wm_get_hw_state(crtc);
3616 
3617 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3618 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3619 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3620 
3621 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3622 	if (INTEL_INFO(dev)->gen >= 7) {
3623 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3624 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3625 	}
3626 
3627 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3628 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3629 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3630 	else if (IS_IVYBRIDGE(dev))
3631 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3632 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3633 
3634 	hw->enable_fbc_wm =
3635 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3636 }
3637 
3638 /**
3639  * intel_update_watermarks - update FIFO watermark values based on current modes
3640  *
3641  * Calculate watermark values for the various WM regs based on current mode
3642  * and plane configuration.
3643  *
3644  * There are several cases to deal with here:
3645  *   - normal (i.e. non-self-refresh)
3646  *   - self-refresh (SR) mode
3647  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3648  *   - lines are small relative to FIFO size (buffer can hold more than 2
3649  *     lines), so need to account for TLB latency
3650  *
3651  *   The normal calculation is:
3652  *     watermark = dotclock * bytes per pixel * latency
3653  *   where latency is platform & configuration dependent (we assume pessimal
3654  *   values here).
3655  *
3656  *   The SR calculation is:
3657  *     watermark = (trunc(latency/line time)+1) * surface width *
3658  *       bytes per pixel
3659  *   where
3660  *     line time = htotal / dotclock
3661  *     surface width = hdisplay for normal plane and 64 for cursor
3662  *   and latency is assumed to be high, as above.
3663  *
3664  * The final value programmed to the register should always be rounded up,
3665  * and include an extra 2 entries to account for clock crossings.
3666  *
3667  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3668  * to set the non-SR watermarks to 8.
3669  */
intel_update_watermarks(struct drm_crtc * crtc)3670 void intel_update_watermarks(struct drm_crtc *crtc)
3671 {
3672 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3673 
3674 	if (dev_priv->display.update_wm)
3675 		dev_priv->display.update_wm(crtc);
3676 }
3677 
intel_update_sprite_watermarks(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3678 void intel_update_sprite_watermarks(struct drm_plane *plane,
3679 				    struct drm_crtc *crtc,
3680 				    uint32_t sprite_width,
3681 				    uint32_t sprite_height,
3682 				    int pixel_size,
3683 				    bool enabled, bool scaled)
3684 {
3685 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3686 
3687 	if (dev_priv->display.update_sprite_wm)
3688 		dev_priv->display.update_sprite_wm(plane, crtc,
3689 						   sprite_width, sprite_height,
3690 						   pixel_size, enabled, scaled);
3691 }
3692 
3693 /**
3694  * Lock protecting IPS related data structures
3695  */
3696 DEFINE_SPINLOCK(mchdev_lock);
3697 
3698 /* Global for IPS driver to get at the current i915 device. Protected by
3699  * mchdev_lock. */
3700 static struct drm_i915_private *i915_mch_dev;
3701 
ironlake_set_drps(struct drm_device * dev,u8 val)3702 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3703 {
3704 	struct drm_i915_private *dev_priv = dev->dev_private;
3705 	u16 rgvswctl;
3706 
3707 	assert_spin_locked(&mchdev_lock);
3708 
3709 	rgvswctl = I915_READ16(MEMSWCTL);
3710 	if (rgvswctl & MEMCTL_CMD_STS) {
3711 		DRM_DEBUG("gpu busy, RCS change rejected\n");
3712 		return false; /* still busy with another command */
3713 	}
3714 
3715 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3716 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3717 	I915_WRITE16(MEMSWCTL, rgvswctl);
3718 	POSTING_READ16(MEMSWCTL);
3719 
3720 	rgvswctl |= MEMCTL_CMD_STS;
3721 	I915_WRITE16(MEMSWCTL, rgvswctl);
3722 
3723 	return true;
3724 }
3725 
ironlake_enable_drps(struct drm_device * dev)3726 static void ironlake_enable_drps(struct drm_device *dev)
3727 {
3728 	struct drm_i915_private *dev_priv = dev->dev_private;
3729 	u32 rgvmodectl = I915_READ(MEMMODECTL);
3730 	u8 fmax, fmin, fstart, vstart;
3731 
3732 	spin_lock_irq(&mchdev_lock);
3733 
3734 	/* Enable temp reporting */
3735 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3736 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3737 
3738 	/* 100ms RC evaluation intervals */
3739 	I915_WRITE(RCUPEI, 100000);
3740 	I915_WRITE(RCDNEI, 100000);
3741 
3742 	/* Set max/min thresholds to 90ms and 80ms respectively */
3743 	I915_WRITE(RCBMAXAVG, 90000);
3744 	I915_WRITE(RCBMINAVG, 80000);
3745 
3746 	I915_WRITE(MEMIHYST, 1);
3747 
3748 	/* Set up min, max, and cur for interrupt handling */
3749 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3750 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3751 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3752 		MEMMODE_FSTART_SHIFT;
3753 
3754 	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3755 		PXVFREQ_PX_SHIFT;
3756 
3757 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3758 	dev_priv->ips.fstart = fstart;
3759 
3760 	dev_priv->ips.max_delay = fstart;
3761 	dev_priv->ips.min_delay = fmin;
3762 	dev_priv->ips.cur_delay = fstart;
3763 
3764 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3765 			 fmax, fmin, fstart);
3766 
3767 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3768 
3769 	/*
3770 	 * Interrupts will be enabled in ironlake_irq_postinstall
3771 	 */
3772 
3773 	I915_WRITE(VIDSTART, vstart);
3774 	POSTING_READ(VIDSTART);
3775 
3776 	rgvmodectl |= MEMMODE_SWMODE_EN;
3777 	I915_WRITE(MEMMODECTL, rgvmodectl);
3778 
3779 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3780 		DRM_ERROR("stuck trying to change perf mode\n");
3781 	mdelay(1);
3782 
3783 	ironlake_set_drps(dev, fstart);
3784 
3785 	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3786 		I915_READ(0x112e0);
3787 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3788 	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3789 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3790 
3791 	spin_unlock_irq(&mchdev_lock);
3792 }
3793 
ironlake_disable_drps(struct drm_device * dev)3794 static void ironlake_disable_drps(struct drm_device *dev)
3795 {
3796 	struct drm_i915_private *dev_priv = dev->dev_private;
3797 	u16 rgvswctl;
3798 
3799 	spin_lock_irq(&mchdev_lock);
3800 
3801 	rgvswctl = I915_READ16(MEMSWCTL);
3802 
3803 	/* Ack interrupts, disable EFC interrupt */
3804 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3805 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3806 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3807 	I915_WRITE(DEIIR, DE_PCU_EVENT);
3808 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3809 
3810 	/* Go back to the starting frequency */
3811 	ironlake_set_drps(dev, dev_priv->ips.fstart);
3812 	mdelay(1);
3813 	rgvswctl |= MEMCTL_CMD_STS;
3814 	I915_WRITE(MEMSWCTL, rgvswctl);
3815 	mdelay(1);
3816 
3817 	spin_unlock_irq(&mchdev_lock);
3818 }
3819 
3820 /* There's a funny hw issue where the hw returns all 0 when reading from
3821  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3822  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3823  * all limits and the gpu stuck at whatever frequency it is at atm).
3824  */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)3825 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3826 {
3827 	u32 limits;
3828 
3829 	/* Only set the down limit when we've reached the lowest level to avoid
3830 	 * getting more interrupts, otherwise leave this clear. This prevents a
3831 	 * race in the hw when coming out of rc6: There's a tiny window where
3832 	 * the hw runs at the minimal clock before selecting the desired
3833 	 * frequency, if the down threshold expires in that window we will not
3834 	 * receive a down interrupt. */
3835 	if (IS_GEN9(dev_priv->dev)) {
3836 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
3837 		if (val <= dev_priv->rps.min_freq_softlimit)
3838 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
3839 	} else {
3840 		limits = dev_priv->rps.max_freq_softlimit << 24;
3841 		if (val <= dev_priv->rps.min_freq_softlimit)
3842 			limits |= dev_priv->rps.min_freq_softlimit << 16;
3843 	}
3844 
3845 	return limits;
3846 }
3847 
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)3848 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3849 {
3850 	int new_power;
3851 	u32 threshold_up = 0, threshold_down = 0; /* in % */
3852 	u32 ei_up = 0, ei_down = 0;
3853 
3854 	new_power = dev_priv->rps.power;
3855 	switch (dev_priv->rps.power) {
3856 	case LOW_POWER:
3857 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3858 			new_power = BETWEEN;
3859 		break;
3860 
3861 	case BETWEEN:
3862 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3863 			new_power = LOW_POWER;
3864 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3865 			new_power = HIGH_POWER;
3866 		break;
3867 
3868 	case HIGH_POWER:
3869 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3870 			new_power = BETWEEN;
3871 		break;
3872 	}
3873 	/* Max/min bins are special */
3874 	if (val <= dev_priv->rps.min_freq_softlimit)
3875 		new_power = LOW_POWER;
3876 	if (val >= dev_priv->rps.max_freq_softlimit)
3877 		new_power = HIGH_POWER;
3878 	if (new_power == dev_priv->rps.power)
3879 		return;
3880 
3881 	/* Note the units here are not exactly 1us, but 1280ns. */
3882 	switch (new_power) {
3883 	case LOW_POWER:
3884 		/* Upclock if more than 95% busy over 16ms */
3885 		ei_up = 16000;
3886 		threshold_up = 95;
3887 
3888 		/* Downclock if less than 85% busy over 32ms */
3889 		ei_down = 32000;
3890 		threshold_down = 85;
3891 		break;
3892 
3893 	case BETWEEN:
3894 		/* Upclock if more than 90% busy over 13ms */
3895 		ei_up = 13000;
3896 		threshold_up = 90;
3897 
3898 		/* Downclock if less than 75% busy over 32ms */
3899 		ei_down = 32000;
3900 		threshold_down = 75;
3901 		break;
3902 
3903 	case HIGH_POWER:
3904 		/* Upclock if more than 85% busy over 10ms */
3905 		ei_up = 10000;
3906 		threshold_up = 85;
3907 
3908 		/* Downclock if less than 60% busy over 32ms */
3909 		ei_down = 32000;
3910 		threshold_down = 60;
3911 		break;
3912 	}
3913 
3914 	I915_WRITE(GEN6_RP_UP_EI,
3915 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
3916 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
3917 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
3918 
3919 	I915_WRITE(GEN6_RP_DOWN_EI,
3920 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
3921 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3922 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
3923 
3924 	 I915_WRITE(GEN6_RP_CONTROL,
3925 		    GEN6_RP_MEDIA_TURBO |
3926 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3927 		    GEN6_RP_MEDIA_IS_GFX |
3928 		    GEN6_RP_ENABLE |
3929 		    GEN6_RP_UP_BUSY_AVG |
3930 		    GEN6_RP_DOWN_IDLE_AVG);
3931 
3932 	dev_priv->rps.power = new_power;
3933 	dev_priv->rps.last_adj = 0;
3934 }
3935 
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)3936 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3937 {
3938 	u32 mask = 0;
3939 
3940 	if (val > dev_priv->rps.min_freq_softlimit)
3941 		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3942 	if (val < dev_priv->rps.max_freq_softlimit)
3943 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3944 
3945 	mask &= dev_priv->pm_rps_events;
3946 
3947 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3948 }
3949 
3950 /* gen6_set_rps is called to update the frequency request, but should also be
3951  * called when the range (min_delay and max_delay) is modified so that we can
3952  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_device * dev,u8 val)3953 static void gen6_set_rps(struct drm_device *dev, u8 val)
3954 {
3955 	struct drm_i915_private *dev_priv = dev->dev_private;
3956 
3957 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3958 	WARN_ON(val > dev_priv->rps.max_freq);
3959 	WARN_ON(val < dev_priv->rps.min_freq);
3960 
3961 	/* min/max delay may still have been modified so be sure to
3962 	 * write the limits value.
3963 	 */
3964 	if (val != dev_priv->rps.cur_freq) {
3965 		gen6_set_rps_thresholds(dev_priv, val);
3966 
3967 		if (IS_GEN9(dev))
3968 			I915_WRITE(GEN6_RPNSWREQ,
3969 				   GEN9_FREQUENCY(val));
3970 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3971 			I915_WRITE(GEN6_RPNSWREQ,
3972 				   HSW_FREQUENCY(val));
3973 		else
3974 			I915_WRITE(GEN6_RPNSWREQ,
3975 				   GEN6_FREQUENCY(val) |
3976 				   GEN6_OFFSET(0) |
3977 				   GEN6_AGGRESSIVE_TURBO);
3978 	}
3979 
3980 	/* Make sure we continue to get interrupts
3981 	 * until we hit the minimum or maximum frequencies.
3982 	 */
3983 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
3984 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3985 
3986 	POSTING_READ(GEN6_RPNSWREQ);
3987 
3988 	dev_priv->rps.cur_freq = val;
3989 	trace_intel_gpu_freq_change(val * 50);
3990 }
3991 
valleyview_set_rps(struct drm_device * dev,u8 val)3992 static void valleyview_set_rps(struct drm_device *dev, u8 val)
3993 {
3994 	struct drm_i915_private *dev_priv = dev->dev_private;
3995 
3996 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3997 	WARN_ON(val > dev_priv->rps.max_freq);
3998 	WARN_ON(val < dev_priv->rps.min_freq);
3999 
4000 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4001 		      "Odd GPU freq value\n"))
4002 		val &= ~1;
4003 
4004 	if (val != dev_priv->rps.cur_freq)
4005 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4006 
4007 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4008 
4009 	dev_priv->rps.cur_freq = val;
4010 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4011 }
4012 
4013 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
4014  *
4015  * * If Gfx is Idle, then
4016  * 1. Mask Turbo interrupts
4017  * 2. Bring up Gfx clock
4018  * 3. Change the freq to Rpn and wait till P-Unit updates freq
4019  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
4020  * 5. Unmask Turbo interrupts
4021 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)4022 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4023 {
4024 	struct drm_device *dev = dev_priv->dev;
4025 	u32 val = dev_priv->rps.idle_freq;
4026 
4027 	/* CHV and latest VLV don't need to force the gfx clock */
4028 	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4029 		valleyview_set_rps(dev_priv->dev, val);
4030 		return;
4031 	}
4032 
4033 	/*
4034 	 * When we are idle.  Drop to min voltage state.
4035 	 */
4036 
4037 	if (dev_priv->rps.cur_freq <= val)
4038 		return;
4039 
4040 	/* Mask turbo interrupt so that they will not come in between */
4041 	I915_WRITE(GEN6_PMINTRMSK,
4042 		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4043 
4044 	vlv_force_gfx_clock(dev_priv, true);
4045 
4046 	dev_priv->rps.cur_freq = val;
4047 
4048 	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4049 
4050 	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4051 				& GENFREQSTATUS) == 0, 100))
4052 		DRM_ERROR("timed out waiting for Punit\n");
4053 
4054 	vlv_force_gfx_clock(dev_priv, false);
4055 
4056 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4057 }
4058 
gen6_rps_busy(struct drm_i915_private * dev_priv)4059 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4060 {
4061 	mutex_lock(&dev_priv->rps.hw_lock);
4062 	if (dev_priv->rps.enabled) {
4063 		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4064 			gen6_rps_reset_ei(dev_priv);
4065 		I915_WRITE(GEN6_PMINTRMSK,
4066 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4067 	}
4068 	mutex_unlock(&dev_priv->rps.hw_lock);
4069 }
4070 
gen6_rps_idle(struct drm_i915_private * dev_priv)4071 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4072 {
4073 	struct drm_device *dev = dev_priv->dev;
4074 
4075 	mutex_lock(&dev_priv->rps.hw_lock);
4076 	if (dev_priv->rps.enabled) {
4077 		if (IS_VALLEYVIEW(dev))
4078 			vlv_set_rps_idle(dev_priv);
4079 		else
4080 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4081 		dev_priv->rps.last_adj = 0;
4082 		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4083 	}
4084 	mutex_unlock(&dev_priv->rps.hw_lock);
4085 }
4086 
gen6_rps_boost(struct drm_i915_private * dev_priv)4087 void gen6_rps_boost(struct drm_i915_private *dev_priv)
4088 {
4089 	u32 val;
4090 
4091 	mutex_lock(&dev_priv->rps.hw_lock);
4092 	val = dev_priv->rps.max_freq_softlimit;
4093 	if (dev_priv->rps.enabled &&
4094 	    dev_priv->mm.busy &&
4095 	    dev_priv->rps.cur_freq < val) {
4096 		intel_set_rps(dev_priv->dev, val);
4097 		dev_priv->rps.last_adj = 0;
4098 	}
4099 	mutex_unlock(&dev_priv->rps.hw_lock);
4100 }
4101 
intel_set_rps(struct drm_device * dev,u8 val)4102 void intel_set_rps(struct drm_device *dev, u8 val)
4103 {
4104 	if (IS_VALLEYVIEW(dev))
4105 		valleyview_set_rps(dev, val);
4106 	else
4107 		gen6_set_rps(dev, val);
4108 }
4109 
gen9_disable_rps(struct drm_device * dev)4110 static void gen9_disable_rps(struct drm_device *dev)
4111 {
4112 	struct drm_i915_private *dev_priv = dev->dev_private;
4113 
4114 	I915_WRITE(GEN6_RC_CONTROL, 0);
4115 	I915_WRITE(GEN9_PG_ENABLE, 0);
4116 }
4117 
gen6_disable_rps(struct drm_device * dev)4118 static void gen6_disable_rps(struct drm_device *dev)
4119 {
4120 	struct drm_i915_private *dev_priv = dev->dev_private;
4121 
4122 	I915_WRITE(GEN6_RC_CONTROL, 0);
4123 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4124 }
4125 
cherryview_disable_rps(struct drm_device * dev)4126 static void cherryview_disable_rps(struct drm_device *dev)
4127 {
4128 	struct drm_i915_private *dev_priv = dev->dev_private;
4129 
4130 	I915_WRITE(GEN6_RC_CONTROL, 0);
4131 }
4132 
valleyview_disable_rps(struct drm_device * dev)4133 static void valleyview_disable_rps(struct drm_device *dev)
4134 {
4135 	struct drm_i915_private *dev_priv = dev->dev_private;
4136 
4137 	/* we're doing forcewake before Disabling RC6,
4138 	 * This what the BIOS expects when going into suspend */
4139 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4140 
4141 	I915_WRITE(GEN6_RC_CONTROL, 0);
4142 
4143 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4144 }
4145 
intel_print_rc6_info(struct drm_device * dev,u32 mode)4146 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4147 {
4148 	if (IS_VALLEYVIEW(dev)) {
4149 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4150 			mode = GEN6_RC_CTL_RC6_ENABLE;
4151 		else
4152 			mode = 0;
4153 	}
4154 	if (HAS_RC6p(dev))
4155 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4156 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4157 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4158 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4159 
4160 	else
4161 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4162 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4163 }
4164 
sanitize_rc6_option(const struct drm_device * dev,int enable_rc6)4165 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4166 {
4167 	/* No RC6 before Ironlake */
4168 	if (INTEL_INFO(dev)->gen < 5)
4169 		return 0;
4170 
4171 	/* RC6 is only on Ironlake mobile not on desktop */
4172 	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4173 		return 0;
4174 
4175 	/* Respect the kernel parameter if it is set */
4176 	if (enable_rc6 >= 0) {
4177 		int mask;
4178 
4179 		if (HAS_RC6p(dev))
4180 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4181 			       INTEL_RC6pp_ENABLE;
4182 		else
4183 			mask = INTEL_RC6_ENABLE;
4184 
4185 		if ((enable_rc6 & mask) != enable_rc6)
4186 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4187 				      enable_rc6 & mask, enable_rc6, mask);
4188 
4189 		return enable_rc6 & mask;
4190 	}
4191 
4192 	/* Disable RC6 on Ironlake */
4193 	if (INTEL_INFO(dev)->gen == 5)
4194 		return 0;
4195 
4196 	if (IS_IVYBRIDGE(dev))
4197 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4198 
4199 	return INTEL_RC6_ENABLE;
4200 }
4201 
intel_enable_rc6(const struct drm_device * dev)4202 int intel_enable_rc6(const struct drm_device *dev)
4203 {
4204 	return i915.enable_rc6;
4205 }
4206 
gen6_init_rps_frequencies(struct drm_device * dev)4207 static void gen6_init_rps_frequencies(struct drm_device *dev)
4208 {
4209 	struct drm_i915_private *dev_priv = dev->dev_private;
4210 	uint32_t rp_state_cap;
4211 	u32 ddcc_status = 0;
4212 	int ret;
4213 
4214 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4215 	/* All of these values are in units of 50MHz */
4216 	dev_priv->rps.cur_freq		= 0;
4217 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4218 	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4219 	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4220 	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
4221 	if (IS_SKYLAKE(dev)) {
4222 		/* Store the frequency values in 16.66 MHZ units, which is
4223 		   the natural hardware unit for SKL */
4224 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4225 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4226 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4227 	}
4228 	/* hw_max = RP0 until we check for overclocking */
4229 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4230 
4231 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4232 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4233 		ret = sandybridge_pcode_read(dev_priv,
4234 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4235 					&ddcc_status);
4236 		if (0 == ret)
4237 			dev_priv->rps.efficient_freq =
4238 				clamp_t(u8,
4239 					((ddcc_status >> 8) & 0xff),
4240 					dev_priv->rps.min_freq,
4241 					dev_priv->rps.max_freq);
4242 	}
4243 
4244 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4245 
4246 	/* Preserve min/max settings in case of re-init */
4247 	if (dev_priv->rps.max_freq_softlimit == 0)
4248 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4249 
4250 	if (dev_priv->rps.min_freq_softlimit == 0) {
4251 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4252 			dev_priv->rps.min_freq_softlimit =
4253 				/* max(RPe, 450 MHz) */
4254 				max(dev_priv->rps.efficient_freq, (u8) 9);
4255 		else
4256 			dev_priv->rps.min_freq_softlimit =
4257 				dev_priv->rps.min_freq;
4258 	}
4259 }
4260 
4261 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_device * dev)4262 static void gen9_enable_rps(struct drm_device *dev)
4263 {
4264 	struct drm_i915_private *dev_priv = dev->dev_private;
4265 
4266 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4267 
4268 	gen6_init_rps_frequencies(dev);
4269 
4270 	/* Program defaults and thresholds for RPS*/
4271 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4272 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4273 
4274 	/* 1 second timeout*/
4275 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4276 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4277 
4278 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4279 
4280 	/* Leaning on the below call to gen6_set_rps to program/setup the
4281 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4282 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4283 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4284 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4285 
4286 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4287 }
4288 
gen9_enable_rc6(struct drm_device * dev)4289 static void gen9_enable_rc6(struct drm_device *dev)
4290 {
4291 	struct drm_i915_private *dev_priv = dev->dev_private;
4292 	struct intel_engine_cs *ring;
4293 	uint32_t rc6_mask = 0;
4294 	int unused;
4295 
4296 	/* 1a: Software RC state - RC0 */
4297 	I915_WRITE(GEN6_RC_STATE, 0);
4298 
4299 	/* 1b: Get forcewake during program sequence. Although the driver
4300 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4301 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4302 
4303 	/* 2a: Disable RC states. */
4304 	I915_WRITE(GEN6_RC_CONTROL, 0);
4305 
4306 	/* 2b: Program RC6 thresholds.*/
4307 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4308 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4309 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4310 	for_each_ring(ring, dev_priv, unused)
4311 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4312 	I915_WRITE(GEN6_RC_SLEEP, 0);
4313 	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4314 
4315 	/* 2c: Program Coarse Power Gating Policies. */
4316 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4317 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4318 
4319 	/* 3a: Enable RC6 */
4320 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4321 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4322 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4323 			"on" : "off");
4324 	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4325 				   GEN6_RC_CTL_EI_MODE(1) |
4326 				   rc6_mask);
4327 
4328 	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4329 	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4330 
4331 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4332 
4333 }
4334 
gen8_enable_rps(struct drm_device * dev)4335 static void gen8_enable_rps(struct drm_device *dev)
4336 {
4337 	struct drm_i915_private *dev_priv = dev->dev_private;
4338 	struct intel_engine_cs *ring;
4339 	uint32_t rc6_mask = 0;
4340 	int unused;
4341 
4342 	/* 1a: Software RC state - RC0 */
4343 	I915_WRITE(GEN6_RC_STATE, 0);
4344 
4345 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4346 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4347 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4348 
4349 	/* 2a: Disable RC states. */
4350 	I915_WRITE(GEN6_RC_CONTROL, 0);
4351 
4352 	/* Initialize rps frequencies */
4353 	gen6_init_rps_frequencies(dev);
4354 
4355 	/* 2b: Program RC6 thresholds.*/
4356 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4357 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4358 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4359 	for_each_ring(ring, dev_priv, unused)
4360 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4361 	I915_WRITE(GEN6_RC_SLEEP, 0);
4362 	if (IS_BROADWELL(dev))
4363 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4364 	else
4365 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4366 
4367 	/* 3: Enable RC6 */
4368 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4369 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4370 	intel_print_rc6_info(dev, rc6_mask);
4371 	if (IS_BROADWELL(dev))
4372 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4373 				GEN7_RC_CTL_TO_MODE |
4374 				rc6_mask);
4375 	else
4376 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4377 				GEN6_RC_CTL_EI_MODE(1) |
4378 				rc6_mask);
4379 
4380 	/* 4 Program defaults and thresholds for RPS*/
4381 	I915_WRITE(GEN6_RPNSWREQ,
4382 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4383 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4384 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4385 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4386 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4387 
4388 	/* Docs recommend 900MHz, and 300 MHz respectively */
4389 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4390 		   dev_priv->rps.max_freq_softlimit << 24 |
4391 		   dev_priv->rps.min_freq_softlimit << 16);
4392 
4393 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4394 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4395 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4396 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4397 
4398 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4399 
4400 	/* 5: Enable RPS */
4401 	I915_WRITE(GEN6_RP_CONTROL,
4402 		   GEN6_RP_MEDIA_TURBO |
4403 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4404 		   GEN6_RP_MEDIA_IS_GFX |
4405 		   GEN6_RP_ENABLE |
4406 		   GEN6_RP_UP_BUSY_AVG |
4407 		   GEN6_RP_DOWN_IDLE_AVG);
4408 
4409 	/* 6: Ring frequency + overclocking (our driver does this later */
4410 
4411 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4412 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4413 
4414 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4415 }
4416 
gen6_enable_rps(struct drm_device * dev)4417 static void gen6_enable_rps(struct drm_device *dev)
4418 {
4419 	struct drm_i915_private *dev_priv = dev->dev_private;
4420 	struct intel_engine_cs *ring;
4421 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4422 	u32 gtfifodbg;
4423 	int rc6_mode;
4424 	int i, ret;
4425 
4426 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4427 
4428 	/* Here begins a magic sequence of register writes to enable
4429 	 * auto-downclocking.
4430 	 *
4431 	 * Perhaps there might be some value in exposing these to
4432 	 * userspace...
4433 	 */
4434 	I915_WRITE(GEN6_RC_STATE, 0);
4435 
4436 	/* Clear the DBG now so we don't confuse earlier errors */
4437 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4438 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4439 		I915_WRITE(GTFIFODBG, gtfifodbg);
4440 	}
4441 
4442 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4443 
4444 	/* Initialize rps frequencies */
4445 	gen6_init_rps_frequencies(dev);
4446 
4447 	/* disable the counters and set deterministic thresholds */
4448 	I915_WRITE(GEN6_RC_CONTROL, 0);
4449 
4450 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4451 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4452 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4453 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4454 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4455 
4456 	for_each_ring(ring, dev_priv, i)
4457 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4458 
4459 	I915_WRITE(GEN6_RC_SLEEP, 0);
4460 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4461 	if (IS_IVYBRIDGE(dev))
4462 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4463 	else
4464 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4465 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4466 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4467 
4468 	/* Check if we are enabling RC6 */
4469 	rc6_mode = intel_enable_rc6(dev_priv->dev);
4470 	if (rc6_mode & INTEL_RC6_ENABLE)
4471 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4472 
4473 	/* We don't use those on Haswell */
4474 	if (!IS_HASWELL(dev)) {
4475 		if (rc6_mode & INTEL_RC6p_ENABLE)
4476 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4477 
4478 		if (rc6_mode & INTEL_RC6pp_ENABLE)
4479 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4480 	}
4481 
4482 	intel_print_rc6_info(dev, rc6_mask);
4483 
4484 	I915_WRITE(GEN6_RC_CONTROL,
4485 		   rc6_mask |
4486 		   GEN6_RC_CTL_EI_MODE(1) |
4487 		   GEN6_RC_CTL_HW_ENABLE);
4488 
4489 	/* Power down if completely idle for over 50ms */
4490 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4491 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4492 
4493 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4494 	if (ret)
4495 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4496 
4497 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4498 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4499 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4500 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4501 				 (pcu_mbox & 0xff) * 50);
4502 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4503 	}
4504 
4505 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4506 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4507 
4508 	rc6vids = 0;
4509 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4510 	if (IS_GEN6(dev) && ret) {
4511 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4512 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4513 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4514 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4515 		rc6vids &= 0xffff00;
4516 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
4517 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4518 		if (ret)
4519 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4520 	}
4521 
4522 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4523 }
4524 
__gen6_update_ring_freq(struct drm_device * dev)4525 static void __gen6_update_ring_freq(struct drm_device *dev)
4526 {
4527 	struct drm_i915_private *dev_priv = dev->dev_private;
4528 	int min_freq = 15;
4529 	unsigned int gpu_freq;
4530 	unsigned int max_ia_freq, min_ring_freq;
4531 	int scaling_factor = 180;
4532 	struct cpufreq_policy *policy;
4533 
4534 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4535 
4536 	policy = cpufreq_cpu_get(0);
4537 	if (policy) {
4538 		max_ia_freq = policy->cpuinfo.max_freq;
4539 		cpufreq_cpu_put(policy);
4540 	} else {
4541 		/*
4542 		 * Default to measured freq if none found, PCU will ensure we
4543 		 * don't go over
4544 		 */
4545 		max_ia_freq = tsc_khz;
4546 	}
4547 
4548 	/* Convert from kHz to MHz */
4549 	max_ia_freq /= 1000;
4550 
4551 	min_ring_freq = I915_READ(DCLK) & 0xf;
4552 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
4553 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4554 
4555 	/*
4556 	 * For each potential GPU frequency, load a ring frequency we'd like
4557 	 * to use for memory access.  We do this by specifying the IA frequency
4558 	 * the PCU should use as a reference to determine the ring frequency.
4559 	 */
4560 	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4561 	     gpu_freq--) {
4562 		int diff = dev_priv->rps.max_freq - gpu_freq;
4563 		unsigned int ia_freq = 0, ring_freq = 0;
4564 
4565 		if (INTEL_INFO(dev)->gen >= 8) {
4566 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
4567 			ring_freq = max(min_ring_freq, gpu_freq);
4568 		} else if (IS_HASWELL(dev)) {
4569 			ring_freq = mult_frac(gpu_freq, 5, 4);
4570 			ring_freq = max(min_ring_freq, ring_freq);
4571 			/* leave ia_freq as the default, chosen by cpufreq */
4572 		} else {
4573 			/* On older processors, there is no separate ring
4574 			 * clock domain, so in order to boost the bandwidth
4575 			 * of the ring, we need to upclock the CPU (ia_freq).
4576 			 *
4577 			 * For GPU frequencies less than 750MHz,
4578 			 * just use the lowest ring freq.
4579 			 */
4580 			if (gpu_freq < min_freq)
4581 				ia_freq = 800;
4582 			else
4583 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4584 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4585 		}
4586 
4587 		sandybridge_pcode_write(dev_priv,
4588 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4589 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4590 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4591 					gpu_freq);
4592 	}
4593 }
4594 
gen6_update_ring_freq(struct drm_device * dev)4595 void gen6_update_ring_freq(struct drm_device *dev)
4596 {
4597 	struct drm_i915_private *dev_priv = dev->dev_private;
4598 
4599 	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4600 		return;
4601 
4602 	mutex_lock(&dev_priv->rps.hw_lock);
4603 	__gen6_update_ring_freq(dev);
4604 	mutex_unlock(&dev_priv->rps.hw_lock);
4605 }
4606 
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)4607 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4608 {
4609 	struct drm_device *dev = dev_priv->dev;
4610 	u32 val, rp0;
4611 
4612 	if (dev->pdev->revision >= 0x20) {
4613 		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4614 
4615 		switch (INTEL_INFO(dev)->eu_total) {
4616 		case 8:
4617 				/* (2 * 4) config */
4618 				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4619 				break;
4620 		case 12:
4621 				/* (2 * 6) config */
4622 				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4623 				break;
4624 		case 16:
4625 				/* (2 * 8) config */
4626 		default:
4627 				/* Setting (2 * 8) Min RP0 for any other combination */
4628 				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4629 				break;
4630 		}
4631 		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4632 	} else {
4633 		/* For pre-production hardware */
4634 		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4635 		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4636 		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4637 	}
4638 	return rp0;
4639 }
4640 
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)4641 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4642 {
4643 	u32 val, rpe;
4644 
4645 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4646 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4647 
4648 	return rpe;
4649 }
4650 
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)4651 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4652 {
4653 	struct drm_device *dev = dev_priv->dev;
4654 	u32 val, rp1;
4655 
4656 	if (dev->pdev->revision >= 0x20) {
4657 		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4658 		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4659 	} else {
4660 		/* For pre-production hardware */
4661 		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4662 		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4663 		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4664 	}
4665 	return rp1;
4666 }
4667 
cherryview_rps_min_freq(struct drm_i915_private * dev_priv)4668 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4669 {
4670 	struct drm_device *dev = dev_priv->dev;
4671 	u32 val, rpn;
4672 
4673 	if (dev->pdev->revision >= 0x20) {
4674 		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4675 		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4676 		       FB_GFX_FREQ_FUSE_MASK);
4677 	} else { /* For pre-production hardware */
4678 		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4679 		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4680 		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4681 	}
4682 
4683 	return rpn;
4684 }
4685 
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)4686 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4687 {
4688 	u32 val, rp1;
4689 
4690 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4691 
4692 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4693 
4694 	return rp1;
4695 }
4696 
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)4697 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4698 {
4699 	u32 val, rp0;
4700 
4701 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4702 
4703 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4704 	/* Clamp to max */
4705 	rp0 = min_t(u32, rp0, 0xea);
4706 
4707 	return rp0;
4708 }
4709 
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)4710 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4711 {
4712 	u32 val, rpe;
4713 
4714 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4715 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4716 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4717 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4718 
4719 	return rpe;
4720 }
4721 
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)4722 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4723 {
4724 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4725 }
4726 
4727 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)4728 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4729 {
4730 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4731 
4732 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4733 			     dev_priv->vlv_pctx->stolen->start);
4734 }
4735 
4736 
4737 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)4738 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4739 {
4740 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4741 
4742 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4743 }
4744 
cherryview_setup_pctx(struct drm_device * dev)4745 static void cherryview_setup_pctx(struct drm_device *dev)
4746 {
4747 	struct drm_i915_private *dev_priv = dev->dev_private;
4748 	unsigned long pctx_paddr, paddr;
4749 	struct i915_gtt *gtt = &dev_priv->gtt;
4750 	u32 pcbr;
4751 	int pctx_size = 32*1024;
4752 
4753 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4754 
4755 	pcbr = I915_READ(VLV_PCBR);
4756 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4757 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4758 		paddr = (dev_priv->mm.stolen_base +
4759 			 (gtt->stolen_size - pctx_size));
4760 
4761 		pctx_paddr = (paddr & (~4095));
4762 		I915_WRITE(VLV_PCBR, pctx_paddr);
4763 	}
4764 
4765 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4766 }
4767 
valleyview_setup_pctx(struct drm_device * dev)4768 static void valleyview_setup_pctx(struct drm_device *dev)
4769 {
4770 	struct drm_i915_private *dev_priv = dev->dev_private;
4771 	struct drm_i915_gem_object *pctx;
4772 	unsigned long pctx_paddr;
4773 	u32 pcbr;
4774 	int pctx_size = 24*1024;
4775 
4776 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4777 
4778 	pcbr = I915_READ(VLV_PCBR);
4779 	if (pcbr) {
4780 		/* BIOS set it up already, grab the pre-alloc'd space */
4781 		int pcbr_offset;
4782 
4783 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4784 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4785 								      pcbr_offset,
4786 								      I915_GTT_OFFSET_NONE,
4787 								      pctx_size);
4788 		goto out;
4789 	}
4790 
4791 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4792 
4793 	/*
4794 	 * From the Gunit register HAS:
4795 	 * The Gfx driver is expected to program this register and ensure
4796 	 * proper allocation within Gfx stolen memory.  For example, this
4797 	 * register should be programmed such than the PCBR range does not
4798 	 * overlap with other ranges, such as the frame buffer, protected
4799 	 * memory, or any other relevant ranges.
4800 	 */
4801 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
4802 	if (!pctx) {
4803 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4804 		return;
4805 	}
4806 
4807 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4808 	I915_WRITE(VLV_PCBR, pctx_paddr);
4809 
4810 out:
4811 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4812 	dev_priv->vlv_pctx = pctx;
4813 }
4814 
valleyview_cleanup_pctx(struct drm_device * dev)4815 static void valleyview_cleanup_pctx(struct drm_device *dev)
4816 {
4817 	struct drm_i915_private *dev_priv = dev->dev_private;
4818 
4819 	if (WARN_ON(!dev_priv->vlv_pctx))
4820 		return;
4821 
4822 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4823 	dev_priv->vlv_pctx = NULL;
4824 }
4825 
valleyview_init_gt_powersave(struct drm_device * dev)4826 static void valleyview_init_gt_powersave(struct drm_device *dev)
4827 {
4828 	struct drm_i915_private *dev_priv = dev->dev_private;
4829 	u32 val;
4830 
4831 	valleyview_setup_pctx(dev);
4832 
4833 	mutex_lock(&dev_priv->rps.hw_lock);
4834 
4835 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4836 	switch ((val >> 6) & 3) {
4837 	case 0:
4838 	case 1:
4839 		dev_priv->mem_freq = 800;
4840 		break;
4841 	case 2:
4842 		dev_priv->mem_freq = 1066;
4843 		break;
4844 	case 3:
4845 		dev_priv->mem_freq = 1333;
4846 		break;
4847 	}
4848 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4849 
4850 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4851 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4852 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4853 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4854 			 dev_priv->rps.max_freq);
4855 
4856 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4857 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4858 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4859 			 dev_priv->rps.efficient_freq);
4860 
4861 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4862 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4863 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4864 			 dev_priv->rps.rp1_freq);
4865 
4866 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4867 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4868 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4869 			 dev_priv->rps.min_freq);
4870 
4871 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4872 
4873 	/* Preserve min/max settings in case of re-init */
4874 	if (dev_priv->rps.max_freq_softlimit == 0)
4875 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4876 
4877 	if (dev_priv->rps.min_freq_softlimit == 0)
4878 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4879 
4880 	mutex_unlock(&dev_priv->rps.hw_lock);
4881 }
4882 
cherryview_init_gt_powersave(struct drm_device * dev)4883 static void cherryview_init_gt_powersave(struct drm_device *dev)
4884 {
4885 	struct drm_i915_private *dev_priv = dev->dev_private;
4886 	u32 val;
4887 
4888 	cherryview_setup_pctx(dev);
4889 
4890 	mutex_lock(&dev_priv->rps.hw_lock);
4891 
4892 	mutex_lock(&dev_priv->dpio_lock);
4893 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4894 	mutex_unlock(&dev_priv->dpio_lock);
4895 
4896 	switch ((val >> 2) & 0x7) {
4897 	case 0:
4898 	case 1:
4899 		dev_priv->rps.cz_freq = 200;
4900 		dev_priv->mem_freq = 1600;
4901 		break;
4902 	case 2:
4903 		dev_priv->rps.cz_freq = 267;
4904 		dev_priv->mem_freq = 1600;
4905 		break;
4906 	case 3:
4907 		dev_priv->rps.cz_freq = 333;
4908 		dev_priv->mem_freq = 2000;
4909 		break;
4910 	case 4:
4911 		dev_priv->rps.cz_freq = 320;
4912 		dev_priv->mem_freq = 1600;
4913 		break;
4914 	case 5:
4915 		dev_priv->rps.cz_freq = 400;
4916 		dev_priv->mem_freq = 1600;
4917 		break;
4918 	}
4919 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4920 
4921 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4922 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4923 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4924 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4925 			 dev_priv->rps.max_freq);
4926 
4927 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4928 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4929 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4930 			 dev_priv->rps.efficient_freq);
4931 
4932 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4933 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4934 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4935 			 dev_priv->rps.rp1_freq);
4936 
4937 	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4938 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4939 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4940 			 dev_priv->rps.min_freq);
4941 
4942 	WARN_ONCE((dev_priv->rps.max_freq |
4943 		   dev_priv->rps.efficient_freq |
4944 		   dev_priv->rps.rp1_freq |
4945 		   dev_priv->rps.min_freq) & 1,
4946 		  "Odd GPU freq values\n");
4947 
4948 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4949 
4950 	/* Preserve min/max settings in case of re-init */
4951 	if (dev_priv->rps.max_freq_softlimit == 0)
4952 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4953 
4954 	if (dev_priv->rps.min_freq_softlimit == 0)
4955 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4956 
4957 	mutex_unlock(&dev_priv->rps.hw_lock);
4958 }
4959 
valleyview_cleanup_gt_powersave(struct drm_device * dev)4960 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4961 {
4962 	valleyview_cleanup_pctx(dev);
4963 }
4964 
cherryview_enable_rps(struct drm_device * dev)4965 static void cherryview_enable_rps(struct drm_device *dev)
4966 {
4967 	struct drm_i915_private *dev_priv = dev->dev_private;
4968 	struct intel_engine_cs *ring;
4969 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4970 	int i;
4971 
4972 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973 
4974 	gtfifodbg = I915_READ(GTFIFODBG);
4975 	if (gtfifodbg) {
4976 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4977 				 gtfifodbg);
4978 		I915_WRITE(GTFIFODBG, gtfifodbg);
4979 	}
4980 
4981 	cherryview_check_pctx(dev_priv);
4982 
4983 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
4984 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4985 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4986 
4987 	/*  Disable RC states. */
4988 	I915_WRITE(GEN6_RC_CONTROL, 0);
4989 
4990 	/* 2a: Program RC6 thresholds.*/
4991 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4992 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4993 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4994 
4995 	for_each_ring(ring, dev_priv, i)
4996 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4997 	I915_WRITE(GEN6_RC_SLEEP, 0);
4998 
4999 	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
5000 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5001 
5002 	/* allows RC6 residency counter to work */
5003 	I915_WRITE(VLV_COUNTER_CONTROL,
5004 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5005 				      VLV_MEDIA_RC6_COUNT_EN |
5006 				      VLV_RENDER_RC6_COUNT_EN));
5007 
5008 	/* For now we assume BIOS is allocating and populating the PCBR  */
5009 	pcbr = I915_READ(VLV_PCBR);
5010 
5011 	/* 3: Enable RC6 */
5012 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5013 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5014 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5015 
5016 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5017 
5018 	/* 4 Program defaults and thresholds for RPS*/
5019 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5020 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5021 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5022 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5023 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5024 
5025 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5026 
5027 	/* 5: Enable RPS */
5028 	I915_WRITE(GEN6_RP_CONTROL,
5029 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5030 		   GEN6_RP_MEDIA_IS_GFX |
5031 		   GEN6_RP_ENABLE |
5032 		   GEN6_RP_UP_BUSY_AVG |
5033 		   GEN6_RP_DOWN_IDLE_AVG);
5034 
5035 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5036 
5037 	/* RPS code assumes GPLL is used */
5038 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5039 
5040 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5041 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5042 
5043 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5044 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5045 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5046 			 dev_priv->rps.cur_freq);
5047 
5048 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5049 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5050 			 dev_priv->rps.efficient_freq);
5051 
5052 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5053 
5054 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5055 }
5056 
valleyview_enable_rps(struct drm_device * dev)5057 static void valleyview_enable_rps(struct drm_device *dev)
5058 {
5059 	struct drm_i915_private *dev_priv = dev->dev_private;
5060 	struct intel_engine_cs *ring;
5061 	u32 gtfifodbg, val, rc6_mode = 0;
5062 	int i;
5063 
5064 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5065 
5066 	valleyview_check_pctx(dev_priv);
5067 
5068 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5069 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5070 				 gtfifodbg);
5071 		I915_WRITE(GTFIFODBG, gtfifodbg);
5072 	}
5073 
5074 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5075 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5076 
5077 	/*  Disable RC states. */
5078 	I915_WRITE(GEN6_RC_CONTROL, 0);
5079 
5080 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5081 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5082 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5083 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5084 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5085 
5086 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5087 
5088 	I915_WRITE(GEN6_RP_CONTROL,
5089 		   GEN6_RP_MEDIA_TURBO |
5090 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5091 		   GEN6_RP_MEDIA_IS_GFX |
5092 		   GEN6_RP_ENABLE |
5093 		   GEN6_RP_UP_BUSY_AVG |
5094 		   GEN6_RP_DOWN_IDLE_CONT);
5095 
5096 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5097 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5098 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5099 
5100 	for_each_ring(ring, dev_priv, i)
5101 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5102 
5103 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5104 
5105 	/* allows RC6 residency counter to work */
5106 	I915_WRITE(VLV_COUNTER_CONTROL,
5107 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5108 				      VLV_RENDER_RC0_COUNT_EN |
5109 				      VLV_MEDIA_RC6_COUNT_EN |
5110 				      VLV_RENDER_RC6_COUNT_EN));
5111 
5112 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5113 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5114 
5115 	intel_print_rc6_info(dev, rc6_mode);
5116 
5117 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5118 
5119 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5120 
5121 	/* RPS code assumes GPLL is used */
5122 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5123 
5124 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5125 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5126 
5127 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5128 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5129 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5130 			 dev_priv->rps.cur_freq);
5131 
5132 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5133 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5134 			 dev_priv->rps.efficient_freq);
5135 
5136 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5137 
5138 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5139 }
5140 
intel_pxfreq(u32 vidfreq)5141 static unsigned long intel_pxfreq(u32 vidfreq)
5142 {
5143 	unsigned long freq;
5144 	int div = (vidfreq & 0x3f0000) >> 16;
5145 	int post = (vidfreq & 0x3000) >> 12;
5146 	int pre = (vidfreq & 0x7);
5147 
5148 	if (!pre)
5149 		return 0;
5150 
5151 	freq = ((div * 133333) / ((1<<post) * pre));
5152 
5153 	return freq;
5154 }
5155 
5156 static const struct cparams {
5157 	u16 i;
5158 	u16 t;
5159 	u16 m;
5160 	u16 c;
5161 } cparams[] = {
5162 	{ 1, 1333, 301, 28664 },
5163 	{ 1, 1066, 294, 24460 },
5164 	{ 1, 800, 294, 25192 },
5165 	{ 0, 1333, 276, 27605 },
5166 	{ 0, 1066, 276, 27605 },
5167 	{ 0, 800, 231, 23784 },
5168 };
5169 
__i915_chipset_val(struct drm_i915_private * dev_priv)5170 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5171 {
5172 	u64 total_count, diff, ret;
5173 	u32 count1, count2, count3, m = 0, c = 0;
5174 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5175 	int i;
5176 
5177 	assert_spin_locked(&mchdev_lock);
5178 
5179 	diff1 = now - dev_priv->ips.last_time1;
5180 
5181 	/* Prevent division-by-zero if we are asking too fast.
5182 	 * Also, we don't get interesting results if we are polling
5183 	 * faster than once in 10ms, so just return the saved value
5184 	 * in such cases.
5185 	 */
5186 	if (diff1 <= 10)
5187 		return dev_priv->ips.chipset_power;
5188 
5189 	count1 = I915_READ(DMIEC);
5190 	count2 = I915_READ(DDREC);
5191 	count3 = I915_READ(CSIEC);
5192 
5193 	total_count = count1 + count2 + count3;
5194 
5195 	/* FIXME: handle per-counter overflow */
5196 	if (total_count < dev_priv->ips.last_count1) {
5197 		diff = ~0UL - dev_priv->ips.last_count1;
5198 		diff += total_count;
5199 	} else {
5200 		diff = total_count - dev_priv->ips.last_count1;
5201 	}
5202 
5203 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5204 		if (cparams[i].i == dev_priv->ips.c_m &&
5205 		    cparams[i].t == dev_priv->ips.r_t) {
5206 			m = cparams[i].m;
5207 			c = cparams[i].c;
5208 			break;
5209 		}
5210 	}
5211 
5212 	diff = div_u64(diff, diff1);
5213 	ret = ((m * diff) + c);
5214 	ret = div_u64(ret, 10);
5215 
5216 	dev_priv->ips.last_count1 = total_count;
5217 	dev_priv->ips.last_time1 = now;
5218 
5219 	dev_priv->ips.chipset_power = ret;
5220 
5221 	return ret;
5222 }
5223 
i915_chipset_val(struct drm_i915_private * dev_priv)5224 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5225 {
5226 	struct drm_device *dev = dev_priv->dev;
5227 	unsigned long val;
5228 
5229 	if (INTEL_INFO(dev)->gen != 5)
5230 		return 0;
5231 
5232 	spin_lock_irq(&mchdev_lock);
5233 
5234 	val = __i915_chipset_val(dev_priv);
5235 
5236 	spin_unlock_irq(&mchdev_lock);
5237 
5238 	return val;
5239 }
5240 
i915_mch_val(struct drm_i915_private * dev_priv)5241 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5242 {
5243 	unsigned long m, x, b;
5244 	u32 tsfs;
5245 
5246 	tsfs = I915_READ(TSFS);
5247 
5248 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5249 	x = I915_READ8(TR1);
5250 
5251 	b = tsfs & TSFS_INTR_MASK;
5252 
5253 	return ((m * x) / 127) - b;
5254 }
5255 
_pxvid_to_vd(u8 pxvid)5256 static int _pxvid_to_vd(u8 pxvid)
5257 {
5258 	if (pxvid == 0)
5259 		return 0;
5260 
5261 	if (pxvid >= 8 && pxvid < 31)
5262 		pxvid = 31;
5263 
5264 	return (pxvid + 2) * 125;
5265 }
5266 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)5267 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5268 {
5269 	struct drm_device *dev = dev_priv->dev;
5270 	const int vd = _pxvid_to_vd(pxvid);
5271 	const int vm = vd - 1125;
5272 
5273 	if (INTEL_INFO(dev)->is_mobile)
5274 		return vm > 0 ? vm : 0;
5275 
5276 	return vd;
5277 }
5278 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)5279 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5280 {
5281 	u64 now, diff, diffms;
5282 	u32 count;
5283 
5284 	assert_spin_locked(&mchdev_lock);
5285 
5286 	now = ktime_get_raw_ns();
5287 	diffms = now - dev_priv->ips.last_time2;
5288 	do_div(diffms, NSEC_PER_MSEC);
5289 
5290 	/* Don't divide by 0 */
5291 	if (!diffms)
5292 		return;
5293 
5294 	count = I915_READ(GFXEC);
5295 
5296 	if (count < dev_priv->ips.last_count2) {
5297 		diff = ~0UL - dev_priv->ips.last_count2;
5298 		diff += count;
5299 	} else {
5300 		diff = count - dev_priv->ips.last_count2;
5301 	}
5302 
5303 	dev_priv->ips.last_count2 = count;
5304 	dev_priv->ips.last_time2 = now;
5305 
5306 	/* More magic constants... */
5307 	diff = diff * 1181;
5308 	diff = div_u64(diff, diffms * 10);
5309 	dev_priv->ips.gfx_power = diff;
5310 }
5311 
i915_update_gfx_val(struct drm_i915_private * dev_priv)5312 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5313 {
5314 	struct drm_device *dev = dev_priv->dev;
5315 
5316 	if (INTEL_INFO(dev)->gen != 5)
5317 		return;
5318 
5319 	spin_lock_irq(&mchdev_lock);
5320 
5321 	__i915_update_gfx_val(dev_priv);
5322 
5323 	spin_unlock_irq(&mchdev_lock);
5324 }
5325 
__i915_gfx_val(struct drm_i915_private * dev_priv)5326 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5327 {
5328 	unsigned long t, corr, state1, corr2, state2;
5329 	u32 pxvid, ext_v;
5330 
5331 	assert_spin_locked(&mchdev_lock);
5332 
5333 	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5334 	pxvid = (pxvid >> 24) & 0x7f;
5335 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5336 
5337 	state1 = ext_v;
5338 
5339 	t = i915_mch_val(dev_priv);
5340 
5341 	/* Revel in the empirically derived constants */
5342 
5343 	/* Correction factor in 1/100000 units */
5344 	if (t > 80)
5345 		corr = ((t * 2349) + 135940);
5346 	else if (t >= 50)
5347 		corr = ((t * 964) + 29317);
5348 	else /* < 50 */
5349 		corr = ((t * 301) + 1004);
5350 
5351 	corr = corr * ((150142 * state1) / 10000 - 78642);
5352 	corr /= 100000;
5353 	corr2 = (corr * dev_priv->ips.corr);
5354 
5355 	state2 = (corr2 * state1) / 10000;
5356 	state2 /= 100; /* convert to mW */
5357 
5358 	__i915_update_gfx_val(dev_priv);
5359 
5360 	return dev_priv->ips.gfx_power + state2;
5361 }
5362 
i915_gfx_val(struct drm_i915_private * dev_priv)5363 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5364 {
5365 	struct drm_device *dev = dev_priv->dev;
5366 	unsigned long val;
5367 
5368 	if (INTEL_INFO(dev)->gen != 5)
5369 		return 0;
5370 
5371 	spin_lock_irq(&mchdev_lock);
5372 
5373 	val = __i915_gfx_val(dev_priv);
5374 
5375 	spin_unlock_irq(&mchdev_lock);
5376 
5377 	return val;
5378 }
5379 
5380 /**
5381  * i915_read_mch_val - return value for IPS use
5382  *
5383  * Calculate and return a value for the IPS driver to use when deciding whether
5384  * we have thermal and power headroom to increase CPU or GPU power budget.
5385  */
i915_read_mch_val(void)5386 unsigned long i915_read_mch_val(void)
5387 {
5388 	struct drm_i915_private *dev_priv;
5389 	unsigned long chipset_val, graphics_val, ret = 0;
5390 
5391 	spin_lock_irq(&mchdev_lock);
5392 	if (!i915_mch_dev)
5393 		goto out_unlock;
5394 	dev_priv = i915_mch_dev;
5395 
5396 	chipset_val = __i915_chipset_val(dev_priv);
5397 	graphics_val = __i915_gfx_val(dev_priv);
5398 
5399 	ret = chipset_val + graphics_val;
5400 
5401 out_unlock:
5402 	spin_unlock_irq(&mchdev_lock);
5403 
5404 	return ret;
5405 }
5406 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5407 
5408 /**
5409  * i915_gpu_raise - raise GPU frequency limit
5410  *
5411  * Raise the limit; IPS indicates we have thermal headroom.
5412  */
i915_gpu_raise(void)5413 bool i915_gpu_raise(void)
5414 {
5415 	struct drm_i915_private *dev_priv;
5416 	bool ret = true;
5417 
5418 	spin_lock_irq(&mchdev_lock);
5419 	if (!i915_mch_dev) {
5420 		ret = false;
5421 		goto out_unlock;
5422 	}
5423 	dev_priv = i915_mch_dev;
5424 
5425 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5426 		dev_priv->ips.max_delay--;
5427 
5428 out_unlock:
5429 	spin_unlock_irq(&mchdev_lock);
5430 
5431 	return ret;
5432 }
5433 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5434 
5435 /**
5436  * i915_gpu_lower - lower GPU frequency limit
5437  *
5438  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5439  * frequency maximum.
5440  */
i915_gpu_lower(void)5441 bool i915_gpu_lower(void)
5442 {
5443 	struct drm_i915_private *dev_priv;
5444 	bool ret = true;
5445 
5446 	spin_lock_irq(&mchdev_lock);
5447 	if (!i915_mch_dev) {
5448 		ret = false;
5449 		goto out_unlock;
5450 	}
5451 	dev_priv = i915_mch_dev;
5452 
5453 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5454 		dev_priv->ips.max_delay++;
5455 
5456 out_unlock:
5457 	spin_unlock_irq(&mchdev_lock);
5458 
5459 	return ret;
5460 }
5461 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5462 
5463 /**
5464  * i915_gpu_busy - indicate GPU business to IPS
5465  *
5466  * Tell the IPS driver whether or not the GPU is busy.
5467  */
i915_gpu_busy(void)5468 bool i915_gpu_busy(void)
5469 {
5470 	struct drm_i915_private *dev_priv;
5471 	struct intel_engine_cs *ring;
5472 	bool ret = false;
5473 	int i;
5474 
5475 	spin_lock_irq(&mchdev_lock);
5476 	if (!i915_mch_dev)
5477 		goto out_unlock;
5478 	dev_priv = i915_mch_dev;
5479 
5480 	for_each_ring(ring, dev_priv, i)
5481 		ret |= !list_empty(&ring->request_list);
5482 
5483 out_unlock:
5484 	spin_unlock_irq(&mchdev_lock);
5485 
5486 	return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5489 
5490 /**
5491  * i915_gpu_turbo_disable - disable graphics turbo
5492  *
5493  * Disable graphics turbo by resetting the max frequency and setting the
5494  * current frequency to the default.
5495  */
i915_gpu_turbo_disable(void)5496 bool i915_gpu_turbo_disable(void)
5497 {
5498 	struct drm_i915_private *dev_priv;
5499 	bool ret = true;
5500 
5501 	spin_lock_irq(&mchdev_lock);
5502 	if (!i915_mch_dev) {
5503 		ret = false;
5504 		goto out_unlock;
5505 	}
5506 	dev_priv = i915_mch_dev;
5507 
5508 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5509 
5510 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5511 		ret = false;
5512 
5513 out_unlock:
5514 	spin_unlock_irq(&mchdev_lock);
5515 
5516 	return ret;
5517 }
5518 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5519 
5520 /**
5521  * Tells the intel_ips driver that the i915 driver is now loaded, if
5522  * IPS got loaded first.
5523  *
5524  * This awkward dance is so that neither module has to depend on the
5525  * other in order for IPS to do the appropriate communication of
5526  * GPU turbo limits to i915.
5527  */
5528 static void
ips_ping_for_i915_load(void)5529 ips_ping_for_i915_load(void)
5530 {
5531 	void (*link)(void);
5532 
5533 	link = symbol_get(ips_link_to_i915_driver);
5534 	if (link) {
5535 		link();
5536 		symbol_put(ips_link_to_i915_driver);
5537 	}
5538 }
5539 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)5540 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5541 {
5542 	/* We only register the i915 ips part with intel-ips once everything is
5543 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5544 	spin_lock_irq(&mchdev_lock);
5545 	i915_mch_dev = dev_priv;
5546 	spin_unlock_irq(&mchdev_lock);
5547 
5548 	ips_ping_for_i915_load();
5549 }
5550 
intel_gpu_ips_teardown(void)5551 void intel_gpu_ips_teardown(void)
5552 {
5553 	spin_lock_irq(&mchdev_lock);
5554 	i915_mch_dev = NULL;
5555 	spin_unlock_irq(&mchdev_lock);
5556 }
5557 
intel_init_emon(struct drm_device * dev)5558 static void intel_init_emon(struct drm_device *dev)
5559 {
5560 	struct drm_i915_private *dev_priv = dev->dev_private;
5561 	u32 lcfuse;
5562 	u8 pxw[16];
5563 	int i;
5564 
5565 	/* Disable to program */
5566 	I915_WRITE(ECR, 0);
5567 	POSTING_READ(ECR);
5568 
5569 	/* Program energy weights for various events */
5570 	I915_WRITE(SDEW, 0x15040d00);
5571 	I915_WRITE(CSIEW0, 0x007f0000);
5572 	I915_WRITE(CSIEW1, 0x1e220004);
5573 	I915_WRITE(CSIEW2, 0x04000004);
5574 
5575 	for (i = 0; i < 5; i++)
5576 		I915_WRITE(PEW + (i * 4), 0);
5577 	for (i = 0; i < 3; i++)
5578 		I915_WRITE(DEW + (i * 4), 0);
5579 
5580 	/* Program P-state weights to account for frequency power adjustment */
5581 	for (i = 0; i < 16; i++) {
5582 		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5583 		unsigned long freq = intel_pxfreq(pxvidfreq);
5584 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5585 			PXVFREQ_PX_SHIFT;
5586 		unsigned long val;
5587 
5588 		val = vid * vid;
5589 		val *= (freq / 1000);
5590 		val *= 255;
5591 		val /= (127*127*900);
5592 		if (val > 0xff)
5593 			DRM_ERROR("bad pxval: %ld\n", val);
5594 		pxw[i] = val;
5595 	}
5596 	/* Render standby states get 0 weight */
5597 	pxw[14] = 0;
5598 	pxw[15] = 0;
5599 
5600 	for (i = 0; i < 4; i++) {
5601 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5602 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5603 		I915_WRITE(PXW + (i * 4), val);
5604 	}
5605 
5606 	/* Adjust magic regs to magic values (more experimental results) */
5607 	I915_WRITE(OGW0, 0);
5608 	I915_WRITE(OGW1, 0);
5609 	I915_WRITE(EG0, 0x00007f00);
5610 	I915_WRITE(EG1, 0x0000000e);
5611 	I915_WRITE(EG2, 0x000e0000);
5612 	I915_WRITE(EG3, 0x68000300);
5613 	I915_WRITE(EG4, 0x42000000);
5614 	I915_WRITE(EG5, 0x00140031);
5615 	I915_WRITE(EG6, 0);
5616 	I915_WRITE(EG7, 0);
5617 
5618 	for (i = 0; i < 8; i++)
5619 		I915_WRITE(PXWL + (i * 4), 0);
5620 
5621 	/* Enable PMON + select events */
5622 	I915_WRITE(ECR, 0x80000019);
5623 
5624 	lcfuse = I915_READ(LCFUSE02);
5625 
5626 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5627 }
5628 
intel_init_gt_powersave(struct drm_device * dev)5629 void intel_init_gt_powersave(struct drm_device *dev)
5630 {
5631 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5632 
5633 	if (IS_CHERRYVIEW(dev))
5634 		cherryview_init_gt_powersave(dev);
5635 	else if (IS_VALLEYVIEW(dev))
5636 		valleyview_init_gt_powersave(dev);
5637 }
5638 
intel_cleanup_gt_powersave(struct drm_device * dev)5639 void intel_cleanup_gt_powersave(struct drm_device *dev)
5640 {
5641 	if (IS_CHERRYVIEW(dev))
5642 		return;
5643 	else if (IS_VALLEYVIEW(dev))
5644 		valleyview_cleanup_gt_powersave(dev);
5645 }
5646 
gen6_suspend_rps(struct drm_device * dev)5647 static void gen6_suspend_rps(struct drm_device *dev)
5648 {
5649 	struct drm_i915_private *dev_priv = dev->dev_private;
5650 
5651 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5652 
5653 	gen6_disable_rps_interrupts(dev);
5654 }
5655 
5656 /**
5657  * intel_suspend_gt_powersave - suspend PM work and helper threads
5658  * @dev: drm device
5659  *
5660  * We don't want to disable RC6 or other features here, we just want
5661  * to make sure any work we've queued has finished and won't bother
5662  * us while we're suspended.
5663  */
intel_suspend_gt_powersave(struct drm_device * dev)5664 void intel_suspend_gt_powersave(struct drm_device *dev)
5665 {
5666 	struct drm_i915_private *dev_priv = dev->dev_private;
5667 
5668 	if (INTEL_INFO(dev)->gen < 6)
5669 		return;
5670 
5671 	gen6_suspend_rps(dev);
5672 
5673 	/* Force GPU to min freq during suspend */
5674 	gen6_rps_idle(dev_priv);
5675 }
5676 
intel_disable_gt_powersave(struct drm_device * dev)5677 void intel_disable_gt_powersave(struct drm_device *dev)
5678 {
5679 	struct drm_i915_private *dev_priv = dev->dev_private;
5680 
5681 	if (IS_IRONLAKE_M(dev)) {
5682 		ironlake_disable_drps(dev);
5683 	} else if (INTEL_INFO(dev)->gen >= 6) {
5684 		intel_suspend_gt_powersave(dev);
5685 
5686 		mutex_lock(&dev_priv->rps.hw_lock);
5687 		if (INTEL_INFO(dev)->gen >= 9)
5688 			gen9_disable_rps(dev);
5689 		else if (IS_CHERRYVIEW(dev))
5690 			cherryview_disable_rps(dev);
5691 		else if (IS_VALLEYVIEW(dev))
5692 			valleyview_disable_rps(dev);
5693 		else
5694 			gen6_disable_rps(dev);
5695 
5696 		dev_priv->rps.enabled = false;
5697 		mutex_unlock(&dev_priv->rps.hw_lock);
5698 	}
5699 }
5700 
intel_gen6_powersave_work(struct work_struct * work)5701 static void intel_gen6_powersave_work(struct work_struct *work)
5702 {
5703 	struct drm_i915_private *dev_priv =
5704 		container_of(work, struct drm_i915_private,
5705 			     rps.delayed_resume_work.work);
5706 	struct drm_device *dev = dev_priv->dev;
5707 
5708 	mutex_lock(&dev_priv->rps.hw_lock);
5709 
5710 	gen6_reset_rps_interrupts(dev);
5711 
5712 	if (IS_CHERRYVIEW(dev)) {
5713 		cherryview_enable_rps(dev);
5714 	} else if (IS_VALLEYVIEW(dev)) {
5715 		valleyview_enable_rps(dev);
5716 	} else if (INTEL_INFO(dev)->gen >= 9) {
5717 		gen9_enable_rc6(dev);
5718 		gen9_enable_rps(dev);
5719 		__gen6_update_ring_freq(dev);
5720 	} else if (IS_BROADWELL(dev)) {
5721 		gen8_enable_rps(dev);
5722 		__gen6_update_ring_freq(dev);
5723 	} else {
5724 		gen6_enable_rps(dev);
5725 		__gen6_update_ring_freq(dev);
5726 	}
5727 
5728 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
5729 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
5730 
5731 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
5732 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
5733 
5734 	dev_priv->rps.enabled = true;
5735 
5736 	gen6_enable_rps_interrupts(dev);
5737 
5738 	mutex_unlock(&dev_priv->rps.hw_lock);
5739 
5740 	intel_runtime_pm_put(dev_priv);
5741 }
5742 
intel_enable_gt_powersave(struct drm_device * dev)5743 void intel_enable_gt_powersave(struct drm_device *dev)
5744 {
5745 	struct drm_i915_private *dev_priv = dev->dev_private;
5746 
5747 	/* Powersaving is controlled by the host when inside a VM */
5748 	if (intel_vgpu_active(dev))
5749 		return;
5750 
5751 	if (IS_IRONLAKE_M(dev)) {
5752 		mutex_lock(&dev->struct_mutex);
5753 		ironlake_enable_drps(dev);
5754 		intel_init_emon(dev);
5755 		mutex_unlock(&dev->struct_mutex);
5756 	} else if (INTEL_INFO(dev)->gen >= 6) {
5757 		/*
5758 		 * PCU communication is slow and this doesn't need to be
5759 		 * done at any specific time, so do this out of our fast path
5760 		 * to make resume and init faster.
5761 		 *
5762 		 * We depend on the HW RC6 power context save/restore
5763 		 * mechanism when entering D3 through runtime PM suspend. So
5764 		 * disable RPM until RPS/RC6 is properly setup. We can only
5765 		 * get here via the driver load/system resume/runtime resume
5766 		 * paths, so the _noresume version is enough (and in case of
5767 		 * runtime resume it's necessary).
5768 		 */
5769 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5770 					   round_jiffies_up_relative(HZ)))
5771 			intel_runtime_pm_get_noresume(dev_priv);
5772 	}
5773 }
5774 
intel_reset_gt_powersave(struct drm_device * dev)5775 void intel_reset_gt_powersave(struct drm_device *dev)
5776 {
5777 	struct drm_i915_private *dev_priv = dev->dev_private;
5778 
5779 	if (INTEL_INFO(dev)->gen < 6)
5780 		return;
5781 
5782 	gen6_suspend_rps(dev);
5783 	dev_priv->rps.enabled = false;
5784 }
5785 
ibx_init_clock_gating(struct drm_device * dev)5786 static void ibx_init_clock_gating(struct drm_device *dev)
5787 {
5788 	struct drm_i915_private *dev_priv = dev->dev_private;
5789 
5790 	/*
5791 	 * On Ibex Peak and Cougar Point, we need to disable clock
5792 	 * gating for the panel power sequencer or it will fail to
5793 	 * start up when no ports are active.
5794 	 */
5795 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5796 }
5797 
g4x_disable_trickle_feed(struct drm_device * dev)5798 static void g4x_disable_trickle_feed(struct drm_device *dev)
5799 {
5800 	struct drm_i915_private *dev_priv = dev->dev_private;
5801 	int pipe;
5802 
5803 	for_each_pipe(dev_priv, pipe) {
5804 		I915_WRITE(DSPCNTR(pipe),
5805 			   I915_READ(DSPCNTR(pipe)) |
5806 			   DISPPLANE_TRICKLE_FEED_DISABLE);
5807 		intel_flush_primary_plane(dev_priv, pipe);
5808 	}
5809 }
5810 
ilk_init_lp_watermarks(struct drm_device * dev)5811 static void ilk_init_lp_watermarks(struct drm_device *dev)
5812 {
5813 	struct drm_i915_private *dev_priv = dev->dev_private;
5814 
5815 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5816 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5817 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5818 
5819 	/*
5820 	 * Don't touch WM1S_LP_EN here.
5821 	 * Doing so could cause underruns.
5822 	 */
5823 }
5824 
ironlake_init_clock_gating(struct drm_device * dev)5825 static void ironlake_init_clock_gating(struct drm_device *dev)
5826 {
5827 	struct drm_i915_private *dev_priv = dev->dev_private;
5828 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5829 
5830 	/*
5831 	 * Required for FBC
5832 	 * WaFbcDisableDpfcClockGating:ilk
5833 	 */
5834 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5835 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5836 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5837 
5838 	I915_WRITE(PCH_3DCGDIS0,
5839 		   MARIUNIT_CLOCK_GATE_DISABLE |
5840 		   SVSMUNIT_CLOCK_GATE_DISABLE);
5841 	I915_WRITE(PCH_3DCGDIS1,
5842 		   VFMUNIT_CLOCK_GATE_DISABLE);
5843 
5844 	/*
5845 	 * According to the spec the following bits should be set in
5846 	 * order to enable memory self-refresh
5847 	 * The bit 22/21 of 0x42004
5848 	 * The bit 5 of 0x42020
5849 	 * The bit 15 of 0x45000
5850 	 */
5851 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5852 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
5853 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5854 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5855 	I915_WRITE(DISP_ARB_CTL,
5856 		   (I915_READ(DISP_ARB_CTL) |
5857 		    DISP_FBC_WM_DIS));
5858 
5859 	ilk_init_lp_watermarks(dev);
5860 
5861 	/*
5862 	 * Based on the document from hardware guys the following bits
5863 	 * should be set unconditionally in order to enable FBC.
5864 	 * The bit 22 of 0x42000
5865 	 * The bit 22 of 0x42004
5866 	 * The bit 7,8,9 of 0x42020.
5867 	 */
5868 	if (IS_IRONLAKE_M(dev)) {
5869 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5870 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
5871 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
5872 			   ILK_FBCQ_DIS);
5873 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
5874 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
5875 			   ILK_DPARB_GATE);
5876 	}
5877 
5878 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5879 
5880 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5881 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5882 		   ILK_ELPIN_409_SELECT);
5883 	I915_WRITE(_3D_CHICKEN2,
5884 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5885 		   _3D_CHICKEN2_WM_READ_PIPELINED);
5886 
5887 	/* WaDisableRenderCachePipelinedFlush:ilk */
5888 	I915_WRITE(CACHE_MODE_0,
5889 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5890 
5891 	/* WaDisable_RenderCache_OperationalFlush:ilk */
5892 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5893 
5894 	g4x_disable_trickle_feed(dev);
5895 
5896 	ibx_init_clock_gating(dev);
5897 }
5898 
cpt_init_clock_gating(struct drm_device * dev)5899 static void cpt_init_clock_gating(struct drm_device *dev)
5900 {
5901 	struct drm_i915_private *dev_priv = dev->dev_private;
5902 	int pipe;
5903 	uint32_t val;
5904 
5905 	/*
5906 	 * On Ibex Peak and Cougar Point, we need to disable clock
5907 	 * gating for the panel power sequencer or it will fail to
5908 	 * start up when no ports are active.
5909 	 */
5910 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5911 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5912 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5913 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5914 		   DPLS_EDP_PPS_FIX_DIS);
5915 	/* The below fixes the weird display corruption, a few pixels shifted
5916 	 * downward, on (only) LVDS of some HP laptops with IVY.
5917 	 */
5918 	for_each_pipe(dev_priv, pipe) {
5919 		val = I915_READ(TRANS_CHICKEN2(pipe));
5920 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5921 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5922 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5923 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5924 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5925 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5926 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5927 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
5928 	}
5929 	/* WADP0ClockGatingDisable */
5930 	for_each_pipe(dev_priv, pipe) {
5931 		I915_WRITE(TRANS_CHICKEN1(pipe),
5932 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5933 	}
5934 }
5935 
gen6_check_mch_setup(struct drm_device * dev)5936 static void gen6_check_mch_setup(struct drm_device *dev)
5937 {
5938 	struct drm_i915_private *dev_priv = dev->dev_private;
5939 	uint32_t tmp;
5940 
5941 	tmp = I915_READ(MCH_SSKPD);
5942 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5943 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5944 			      tmp);
5945 }
5946 
gen6_init_clock_gating(struct drm_device * dev)5947 static void gen6_init_clock_gating(struct drm_device *dev)
5948 {
5949 	struct drm_i915_private *dev_priv = dev->dev_private;
5950 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5951 
5952 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5953 
5954 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5955 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5956 		   ILK_ELPIN_409_SELECT);
5957 
5958 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5959 	I915_WRITE(_3D_CHICKEN,
5960 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5961 
5962 	/* WaDisable_RenderCache_OperationalFlush:snb */
5963 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5964 
5965 	/*
5966 	 * BSpec recoomends 8x4 when MSAA is used,
5967 	 * however in practice 16x4 seems fastest.
5968 	 *
5969 	 * Note that PS/WM thread counts depend on the WIZ hashing
5970 	 * disable bit, which we don't touch here, but it's good
5971 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5972 	 */
5973 	I915_WRITE(GEN6_GT_MODE,
5974 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5975 
5976 	ilk_init_lp_watermarks(dev);
5977 
5978 	I915_WRITE(CACHE_MODE_0,
5979 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5980 
5981 	I915_WRITE(GEN6_UCGCTL1,
5982 		   I915_READ(GEN6_UCGCTL1) |
5983 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5984 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5985 
5986 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5987 	 * gating disable must be set.  Failure to set it results in
5988 	 * flickering pixels due to Z write ordering failures after
5989 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
5990 	 * Sanctuary and Tropics, and apparently anything else with
5991 	 * alpha test or pixel discard.
5992 	 *
5993 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
5994 	 * but we didn't debug actual testcases to find it out.
5995 	 *
5996 	 * WaDisableRCCUnitClockGating:snb
5997 	 * WaDisableRCPBUnitClockGating:snb
5998 	 */
5999 	I915_WRITE(GEN6_UCGCTL2,
6000 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6001 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6002 
6003 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6004 	I915_WRITE(_3D_CHICKEN3,
6005 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6006 
6007 	/*
6008 	 * Bspec says:
6009 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6010 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6011 	 */
6012 	I915_WRITE(_3D_CHICKEN3,
6013 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6014 
6015 	/*
6016 	 * According to the spec the following bits should be
6017 	 * set in order to enable memory self-refresh and fbc:
6018 	 * The bit21 and bit22 of 0x42000
6019 	 * The bit21 and bit22 of 0x42004
6020 	 * The bit5 and bit7 of 0x42020
6021 	 * The bit14 of 0x70180
6022 	 * The bit14 of 0x71180
6023 	 *
6024 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6025 	 */
6026 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6027 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6028 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6029 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6030 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6031 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6032 	I915_WRITE(ILK_DSPCLK_GATE_D,
6033 		   I915_READ(ILK_DSPCLK_GATE_D) |
6034 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6035 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6036 
6037 	g4x_disable_trickle_feed(dev);
6038 
6039 	cpt_init_clock_gating(dev);
6040 
6041 	gen6_check_mch_setup(dev);
6042 }
6043 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)6044 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6045 {
6046 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6047 
6048 	/*
6049 	 * WaVSThreadDispatchOverride:ivb,vlv
6050 	 *
6051 	 * This actually overrides the dispatch
6052 	 * mode for all thread types.
6053 	 */
6054 	reg &= ~GEN7_FF_SCHED_MASK;
6055 	reg |= GEN7_FF_TS_SCHED_HW;
6056 	reg |= GEN7_FF_VS_SCHED_HW;
6057 	reg |= GEN7_FF_DS_SCHED_HW;
6058 
6059 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6060 }
6061 
lpt_init_clock_gating(struct drm_device * dev)6062 static void lpt_init_clock_gating(struct drm_device *dev)
6063 {
6064 	struct drm_i915_private *dev_priv = dev->dev_private;
6065 
6066 	/*
6067 	 * TODO: this bit should only be enabled when really needed, then
6068 	 * disabled when not needed anymore in order to save power.
6069 	 */
6070 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6071 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6072 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6073 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6074 
6075 	/* WADPOClockGatingDisable:hsw */
6076 	I915_WRITE(_TRANSA_CHICKEN1,
6077 		   I915_READ(_TRANSA_CHICKEN1) |
6078 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6079 }
6080 
lpt_suspend_hw(struct drm_device * dev)6081 static void lpt_suspend_hw(struct drm_device *dev)
6082 {
6083 	struct drm_i915_private *dev_priv = dev->dev_private;
6084 
6085 	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6086 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6087 
6088 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6089 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6090 	}
6091 }
6092 
broadwell_init_clock_gating(struct drm_device * dev)6093 static void broadwell_init_clock_gating(struct drm_device *dev)
6094 {
6095 	struct drm_i915_private *dev_priv = dev->dev_private;
6096 	enum pipe pipe;
6097 
6098 	I915_WRITE(WM3_LP_ILK, 0);
6099 	I915_WRITE(WM2_LP_ILK, 0);
6100 	I915_WRITE(WM1_LP_ILK, 0);
6101 
6102 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6103 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6104 
6105 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6106 	I915_WRITE(CHICKEN_PAR1_1,
6107 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6108 
6109 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6110 	for_each_pipe(dev_priv, pipe) {
6111 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6112 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6113 			   BDW_DPRS_MASK_VBLANK_SRD);
6114 	}
6115 
6116 	/* WaVSRefCountFullforceMissDisable:bdw */
6117 	/* WaDSRefCountFullforceMissDisable:bdw */
6118 	I915_WRITE(GEN7_FF_THREAD_MODE,
6119 		   I915_READ(GEN7_FF_THREAD_MODE) &
6120 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6121 
6122 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6123 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6124 
6125 	/* WaDisableSDEUnitClockGating:bdw */
6126 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6127 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6128 
6129 	lpt_init_clock_gating(dev);
6130 }
6131 
haswell_init_clock_gating(struct drm_device * dev)6132 static void haswell_init_clock_gating(struct drm_device *dev)
6133 {
6134 	struct drm_i915_private *dev_priv = dev->dev_private;
6135 
6136 	ilk_init_lp_watermarks(dev);
6137 
6138 	/* L3 caching of data atomics doesn't work -- disable it. */
6139 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6140 	I915_WRITE(HSW_ROW_CHICKEN3,
6141 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6142 
6143 	/* This is required by WaCatErrorRejectionIssue:hsw */
6144 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6145 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6146 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6147 
6148 	/* WaVSRefCountFullforceMissDisable:hsw */
6149 	I915_WRITE(GEN7_FF_THREAD_MODE,
6150 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6151 
6152 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6153 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6154 
6155 	/* enable HiZ Raw Stall Optimization */
6156 	I915_WRITE(CACHE_MODE_0_GEN7,
6157 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6158 
6159 	/* WaDisable4x2SubspanOptimization:hsw */
6160 	I915_WRITE(CACHE_MODE_1,
6161 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6162 
6163 	/*
6164 	 * BSpec recommends 8x4 when MSAA is used,
6165 	 * however in practice 16x4 seems fastest.
6166 	 *
6167 	 * Note that PS/WM thread counts depend on the WIZ hashing
6168 	 * disable bit, which we don't touch here, but it's good
6169 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6170 	 */
6171 	I915_WRITE(GEN7_GT_MODE,
6172 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6173 
6174 	/* WaSampleCChickenBitEnable:hsw */
6175 	I915_WRITE(HALF_SLICE_CHICKEN3,
6176 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6177 
6178 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6179 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6180 
6181 	/* WaRsPkgCStateDisplayPMReq:hsw */
6182 	I915_WRITE(CHICKEN_PAR1_1,
6183 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6184 
6185 	lpt_init_clock_gating(dev);
6186 }
6187 
ivybridge_init_clock_gating(struct drm_device * dev)6188 static void ivybridge_init_clock_gating(struct drm_device *dev)
6189 {
6190 	struct drm_i915_private *dev_priv = dev->dev_private;
6191 	uint32_t snpcr;
6192 
6193 	ilk_init_lp_watermarks(dev);
6194 
6195 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6196 
6197 	/* WaDisableEarlyCull:ivb */
6198 	I915_WRITE(_3D_CHICKEN3,
6199 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6200 
6201 	/* WaDisableBackToBackFlipFix:ivb */
6202 	I915_WRITE(IVB_CHICKEN3,
6203 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6204 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6205 
6206 	/* WaDisablePSDDualDispatchEnable:ivb */
6207 	if (IS_IVB_GT1(dev))
6208 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6209 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6210 
6211 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6212 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6213 
6214 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6215 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6216 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6217 
6218 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6219 	I915_WRITE(GEN7_L3CNTLREG1,
6220 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6221 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6222 		   GEN7_WA_L3_CHICKEN_MODE);
6223 	if (IS_IVB_GT1(dev))
6224 		I915_WRITE(GEN7_ROW_CHICKEN2,
6225 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6226 	else {
6227 		/* must write both registers */
6228 		I915_WRITE(GEN7_ROW_CHICKEN2,
6229 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6230 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6231 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6232 	}
6233 
6234 	/* WaForceL3Serialization:ivb */
6235 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6236 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6237 
6238 	/*
6239 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6240 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6241 	 */
6242 	I915_WRITE(GEN6_UCGCTL2,
6243 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6244 
6245 	/* This is required by WaCatErrorRejectionIssue:ivb */
6246 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6247 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6248 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6249 
6250 	g4x_disable_trickle_feed(dev);
6251 
6252 	gen7_setup_fixed_func_scheduler(dev_priv);
6253 
6254 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6255 		/* enable HiZ Raw Stall Optimization */
6256 		I915_WRITE(CACHE_MODE_0_GEN7,
6257 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6258 	}
6259 
6260 	/* WaDisable4x2SubspanOptimization:ivb */
6261 	I915_WRITE(CACHE_MODE_1,
6262 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6263 
6264 	/*
6265 	 * BSpec recommends 8x4 when MSAA is used,
6266 	 * however in practice 16x4 seems fastest.
6267 	 *
6268 	 * Note that PS/WM thread counts depend on the WIZ hashing
6269 	 * disable bit, which we don't touch here, but it's good
6270 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6271 	 */
6272 	I915_WRITE(GEN7_GT_MODE,
6273 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6274 
6275 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6276 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6277 	snpcr |= GEN6_MBC_SNPCR_MED;
6278 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6279 
6280 	if (!HAS_PCH_NOP(dev))
6281 		cpt_init_clock_gating(dev);
6282 
6283 	gen6_check_mch_setup(dev);
6284 }
6285 
vlv_init_display_clock_gating(struct drm_i915_private * dev_priv)6286 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6287 {
6288 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6289 
6290 	/*
6291 	 * Disable trickle feed and enable pnd deadline calculation
6292 	 */
6293 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6294 	I915_WRITE(CBR1_VLV, 0);
6295 }
6296 
valleyview_init_clock_gating(struct drm_device * dev)6297 static void valleyview_init_clock_gating(struct drm_device *dev)
6298 {
6299 	struct drm_i915_private *dev_priv = dev->dev_private;
6300 
6301 	vlv_init_display_clock_gating(dev_priv);
6302 
6303 	/* WaDisableEarlyCull:vlv */
6304 	I915_WRITE(_3D_CHICKEN3,
6305 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6306 
6307 	/* WaDisableBackToBackFlipFix:vlv */
6308 	I915_WRITE(IVB_CHICKEN3,
6309 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6310 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6311 
6312 	/* WaPsdDispatchEnable:vlv */
6313 	/* WaDisablePSDDualDispatchEnable:vlv */
6314 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6315 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6316 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6317 
6318 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6319 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6320 
6321 	/* WaForceL3Serialization:vlv */
6322 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6323 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6324 
6325 	/* WaDisableDopClockGating:vlv */
6326 	I915_WRITE(GEN7_ROW_CHICKEN2,
6327 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6328 
6329 	/* This is required by WaCatErrorRejectionIssue:vlv */
6330 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6331 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6332 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6333 
6334 	gen7_setup_fixed_func_scheduler(dev_priv);
6335 
6336 	/*
6337 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6338 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6339 	 */
6340 	I915_WRITE(GEN6_UCGCTL2,
6341 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6342 
6343 	/* WaDisableL3Bank2xClockGate:vlv
6344 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6345 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6346 	I915_WRITE(GEN7_UCGCTL4,
6347 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6348 
6349 	/*
6350 	 * BSpec says this must be set, even though
6351 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6352 	 */
6353 	I915_WRITE(CACHE_MODE_1,
6354 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6355 
6356 	/*
6357 	 * BSpec recommends 8x4 when MSAA is used,
6358 	 * however in practice 16x4 seems fastest.
6359 	 *
6360 	 * Note that PS/WM thread counts depend on the WIZ hashing
6361 	 * disable bit, which we don't touch here, but it's good
6362 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6363 	 */
6364 	I915_WRITE(GEN7_GT_MODE,
6365 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6366 
6367 	/*
6368 	 * WaIncreaseL3CreditsForVLVB0:vlv
6369 	 * This is the hardware default actually.
6370 	 */
6371 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6372 
6373 	/*
6374 	 * WaDisableVLVClockGating_VBIIssue:vlv
6375 	 * Disable clock gating on th GCFG unit to prevent a delay
6376 	 * in the reporting of vblank events.
6377 	 */
6378 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6379 }
6380 
cherryview_init_clock_gating(struct drm_device * dev)6381 static void cherryview_init_clock_gating(struct drm_device *dev)
6382 {
6383 	struct drm_i915_private *dev_priv = dev->dev_private;
6384 
6385 	vlv_init_display_clock_gating(dev_priv);
6386 
6387 	/* WaVSRefCountFullforceMissDisable:chv */
6388 	/* WaDSRefCountFullforceMissDisable:chv */
6389 	I915_WRITE(GEN7_FF_THREAD_MODE,
6390 		   I915_READ(GEN7_FF_THREAD_MODE) &
6391 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6392 
6393 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6394 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6395 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6396 
6397 	/* WaDisableCSUnitClockGating:chv */
6398 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6399 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6400 
6401 	/* WaDisableSDEUnitClockGating:chv */
6402 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6403 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6404 }
6405 
g4x_init_clock_gating(struct drm_device * dev)6406 static void g4x_init_clock_gating(struct drm_device *dev)
6407 {
6408 	struct drm_i915_private *dev_priv = dev->dev_private;
6409 	uint32_t dspclk_gate;
6410 
6411 	I915_WRITE(RENCLK_GATE_D1, 0);
6412 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6413 		   GS_UNIT_CLOCK_GATE_DISABLE |
6414 		   CL_UNIT_CLOCK_GATE_DISABLE);
6415 	I915_WRITE(RAMCLK_GATE_D, 0);
6416 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6417 		OVRUNIT_CLOCK_GATE_DISABLE |
6418 		OVCUNIT_CLOCK_GATE_DISABLE;
6419 	if (IS_GM45(dev))
6420 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6421 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6422 
6423 	/* WaDisableRenderCachePipelinedFlush */
6424 	I915_WRITE(CACHE_MODE_0,
6425 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6426 
6427 	/* WaDisable_RenderCache_OperationalFlush:g4x */
6428 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6429 
6430 	g4x_disable_trickle_feed(dev);
6431 }
6432 
crestline_init_clock_gating(struct drm_device * dev)6433 static void crestline_init_clock_gating(struct drm_device *dev)
6434 {
6435 	struct drm_i915_private *dev_priv = dev->dev_private;
6436 
6437 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6438 	I915_WRITE(RENCLK_GATE_D2, 0);
6439 	I915_WRITE(DSPCLK_GATE_D, 0);
6440 	I915_WRITE(RAMCLK_GATE_D, 0);
6441 	I915_WRITE16(DEUC, 0);
6442 	I915_WRITE(MI_ARB_STATE,
6443 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6444 
6445 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6446 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6447 }
6448 
broadwater_init_clock_gating(struct drm_device * dev)6449 static void broadwater_init_clock_gating(struct drm_device *dev)
6450 {
6451 	struct drm_i915_private *dev_priv = dev->dev_private;
6452 
6453 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6454 		   I965_RCC_CLOCK_GATE_DISABLE |
6455 		   I965_RCPB_CLOCK_GATE_DISABLE |
6456 		   I965_ISC_CLOCK_GATE_DISABLE |
6457 		   I965_FBC_CLOCK_GATE_DISABLE);
6458 	I915_WRITE(RENCLK_GATE_D2, 0);
6459 	I915_WRITE(MI_ARB_STATE,
6460 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6461 
6462 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6463 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6464 }
6465 
gen3_init_clock_gating(struct drm_device * dev)6466 static void gen3_init_clock_gating(struct drm_device *dev)
6467 {
6468 	struct drm_i915_private *dev_priv = dev->dev_private;
6469 	u32 dstate = I915_READ(D_STATE);
6470 
6471 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6472 		DSTATE_DOT_CLOCK_GATING;
6473 	I915_WRITE(D_STATE, dstate);
6474 
6475 	if (IS_PINEVIEW(dev))
6476 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6477 
6478 	/* IIR "flip pending" means done if this bit is set */
6479 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6480 
6481 	/* interrupts should cause a wake up from C3 */
6482 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6483 
6484 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6485 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6486 
6487 	I915_WRITE(MI_ARB_STATE,
6488 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6489 }
6490 
i85x_init_clock_gating(struct drm_device * dev)6491 static void i85x_init_clock_gating(struct drm_device *dev)
6492 {
6493 	struct drm_i915_private *dev_priv = dev->dev_private;
6494 
6495 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6496 
6497 	/* interrupts should cause a wake up from C3 */
6498 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6499 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6500 
6501 	I915_WRITE(MEM_MODE,
6502 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6503 }
6504 
i830_init_clock_gating(struct drm_device * dev)6505 static void i830_init_clock_gating(struct drm_device *dev)
6506 {
6507 	struct drm_i915_private *dev_priv = dev->dev_private;
6508 
6509 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6510 
6511 	I915_WRITE(MEM_MODE,
6512 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6513 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6514 }
6515 
intel_init_clock_gating(struct drm_device * dev)6516 void intel_init_clock_gating(struct drm_device *dev)
6517 {
6518 	struct drm_i915_private *dev_priv = dev->dev_private;
6519 
6520 	if (dev_priv->display.init_clock_gating)
6521 		dev_priv->display.init_clock_gating(dev);
6522 }
6523 
intel_suspend_hw(struct drm_device * dev)6524 void intel_suspend_hw(struct drm_device *dev)
6525 {
6526 	if (HAS_PCH_LPT(dev))
6527 		lpt_suspend_hw(dev);
6528 }
6529 
6530 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)6531 void intel_init_pm(struct drm_device *dev)
6532 {
6533 	struct drm_i915_private *dev_priv = dev->dev_private;
6534 
6535 	intel_fbc_init(dev_priv);
6536 
6537 	/* For cxsr */
6538 	if (IS_PINEVIEW(dev))
6539 		i915_pineview_get_mem_freq(dev);
6540 	else if (IS_GEN5(dev))
6541 		i915_ironlake_get_mem_freq(dev);
6542 
6543 	/* For FIFO watermark updates */
6544 	if (INTEL_INFO(dev)->gen >= 9) {
6545 		skl_setup_wm_latency(dev);
6546 
6547 		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6548 		dev_priv->display.update_wm = skl_update_wm;
6549 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6550 	} else if (HAS_PCH_SPLIT(dev)) {
6551 		ilk_setup_wm_latency(dev);
6552 
6553 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6554 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6555 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6556 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6557 			dev_priv->display.update_wm = ilk_update_wm;
6558 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6559 		} else {
6560 			DRM_DEBUG_KMS("Failed to read display plane latency. "
6561 				      "Disable CxSR\n");
6562 		}
6563 
6564 		if (IS_GEN5(dev))
6565 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6566 		else if (IS_GEN6(dev))
6567 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6568 		else if (IS_IVYBRIDGE(dev))
6569 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6570 		else if (IS_HASWELL(dev))
6571 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6572 		else if (INTEL_INFO(dev)->gen == 8)
6573 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6574 	} else if (IS_CHERRYVIEW(dev)) {
6575 		dev_priv->display.update_wm = valleyview_update_wm;
6576 		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6577 		dev_priv->display.init_clock_gating =
6578 			cherryview_init_clock_gating;
6579 	} else if (IS_VALLEYVIEW(dev)) {
6580 		dev_priv->display.update_wm = valleyview_update_wm;
6581 		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6582 		dev_priv->display.init_clock_gating =
6583 			valleyview_init_clock_gating;
6584 	} else if (IS_PINEVIEW(dev)) {
6585 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6586 					    dev_priv->is_ddr3,
6587 					    dev_priv->fsb_freq,
6588 					    dev_priv->mem_freq)) {
6589 			DRM_INFO("failed to find known CxSR latency "
6590 				 "(found ddr%s fsb freq %d, mem freq %d), "
6591 				 "disabling CxSR\n",
6592 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6593 				 dev_priv->fsb_freq, dev_priv->mem_freq);
6594 			/* Disable CxSR and never update its watermark again */
6595 			intel_set_memory_cxsr(dev_priv, false);
6596 			dev_priv->display.update_wm = NULL;
6597 		} else
6598 			dev_priv->display.update_wm = pineview_update_wm;
6599 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6600 	} else if (IS_G4X(dev)) {
6601 		dev_priv->display.update_wm = g4x_update_wm;
6602 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6603 	} else if (IS_GEN4(dev)) {
6604 		dev_priv->display.update_wm = i965_update_wm;
6605 		if (IS_CRESTLINE(dev))
6606 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6607 		else if (IS_BROADWATER(dev))
6608 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6609 	} else if (IS_GEN3(dev)) {
6610 		dev_priv->display.update_wm = i9xx_update_wm;
6611 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6612 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6613 	} else if (IS_GEN2(dev)) {
6614 		if (INTEL_INFO(dev)->num_pipes == 1) {
6615 			dev_priv->display.update_wm = i845_update_wm;
6616 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6617 		} else {
6618 			dev_priv->display.update_wm = i9xx_update_wm;
6619 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6620 		}
6621 
6622 		if (IS_I85X(dev) || IS_I865G(dev))
6623 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6624 		else
6625 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
6626 	} else {
6627 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6628 	}
6629 }
6630 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)6631 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6632 {
6633 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6634 
6635 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6636 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6637 		return -EAGAIN;
6638 	}
6639 
6640 	I915_WRITE(GEN6_PCODE_DATA, *val);
6641 	I915_WRITE(GEN6_PCODE_DATA1, 0);
6642 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6643 
6644 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6645 		     500)) {
6646 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6647 		return -ETIMEDOUT;
6648 	}
6649 
6650 	*val = I915_READ(GEN6_PCODE_DATA);
6651 	I915_WRITE(GEN6_PCODE_DATA, 0);
6652 
6653 	return 0;
6654 }
6655 
sandybridge_pcode_write(struct drm_i915_private * dev_priv,u32 mbox,u32 val)6656 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6657 {
6658 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6659 
6660 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6661 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6662 		return -EAGAIN;
6663 	}
6664 
6665 	I915_WRITE(GEN6_PCODE_DATA, val);
6666 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6667 
6668 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6669 		     500)) {
6670 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6671 		return -ETIMEDOUT;
6672 	}
6673 
6674 	I915_WRITE(GEN6_PCODE_DATA, 0);
6675 
6676 	return 0;
6677 }
6678 
vlv_gpu_freq_div(unsigned int czclk_freq)6679 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6680 {
6681 	switch (czclk_freq) {
6682 	case 200:
6683 		return 10;
6684 	case 267:
6685 		return 12;
6686 	case 320:
6687 	case 333:
6688 		return 16;
6689 	case 400:
6690 		return 20;
6691 	default:
6692 		return -1;
6693 	}
6694 }
6695 
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)6696 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6697 {
6698 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6699 
6700 	div = vlv_gpu_freq_div(czclk_freq);
6701 	if (div < 0)
6702 		return div;
6703 
6704 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6705 }
6706 
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)6707 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6708 {
6709 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6710 
6711 	mul = vlv_gpu_freq_div(czclk_freq);
6712 	if (mul < 0)
6713 		return mul;
6714 
6715 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6716 }
6717 
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)6718 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6719 {
6720 	int div, czclk_freq = dev_priv->rps.cz_freq;
6721 
6722 	div = vlv_gpu_freq_div(czclk_freq) / 2;
6723 	if (div < 0)
6724 		return div;
6725 
6726 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6727 }
6728 
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)6729 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6730 {
6731 	int mul, czclk_freq = dev_priv->rps.cz_freq;
6732 
6733 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
6734 	if (mul < 0)
6735 		return mul;
6736 
6737 	/* CHV needs even values */
6738 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6739 }
6740 
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)6741 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6742 {
6743 	if (IS_GEN9(dev_priv->dev))
6744 		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
6745 	else if (IS_CHERRYVIEW(dev_priv->dev))
6746 		return chv_gpu_freq(dev_priv, val);
6747 	else if (IS_VALLEYVIEW(dev_priv->dev))
6748 		return byt_gpu_freq(dev_priv, val);
6749 	else
6750 		return val * GT_FREQUENCY_MULTIPLIER;
6751 }
6752 
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)6753 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6754 {
6755 	if (IS_GEN9(dev_priv->dev))
6756 		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
6757 	else if (IS_CHERRYVIEW(dev_priv->dev))
6758 		return chv_freq_opcode(dev_priv, val);
6759 	else if (IS_VALLEYVIEW(dev_priv->dev))
6760 		return byt_freq_opcode(dev_priv, val);
6761 	else
6762 		return val / GT_FREQUENCY_MULTIPLIER;
6763 }
6764 
intel_pm_setup(struct drm_device * dev)6765 void intel_pm_setup(struct drm_device *dev)
6766 {
6767 	struct drm_i915_private *dev_priv = dev->dev_private;
6768 
6769 	mutex_init(&dev_priv->rps.hw_lock);
6770 
6771 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6772 			  intel_gen6_powersave_work);
6773 
6774 	dev_priv->pm.suspended = false;
6775 }
6776