1 /* Driver for Realtek PCI-Express card reader
2  *
3  * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2, or (at your option) any
8  * later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  *
18  * Author:
19  *   Wei WANG (wei_wang@realsil.com.cn)
20  *   Micky Ching (micky_ching@realsil.com.cn)
21  */
22 
23 #include <linux/blkdev.h>
24 #include <linux/kthread.h>
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 
28 #include "rtsx.h"
29 #include "ms.h"
30 #include "sd.h"
31 #include "xd.h"
32 
33 MODULE_DESCRIPTION("Realtek PCI-Express card reader rts5208/rts5288 driver");
34 MODULE_LICENSE("GPL");
35 
36 static unsigned int delay_use = 1;
37 module_param(delay_use, uint, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(delay_use, "seconds to delay before using a new device");
39 
40 static int ss_en;
41 module_param(ss_en, int, S_IRUGO | S_IWUSR);
42 MODULE_PARM_DESC(ss_en, "enable selective suspend");
43 
44 static int ss_interval = 50;
45 module_param(ss_interval, int, S_IRUGO | S_IWUSR);
46 MODULE_PARM_DESC(ss_interval, "Interval to enter ss state in seconds");
47 
48 static int auto_delink_en;
49 module_param(auto_delink_en, int, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(auto_delink_en, "enable auto delink");
51 
52 static unsigned char aspm_l0s_l1_en;
53 module_param(aspm_l0s_l1_en, byte, S_IRUGO | S_IWUSR);
54 MODULE_PARM_DESC(aspm_l0s_l1_en, "enable device aspm");
55 
56 static int msi_en;
57 module_param(msi_en, int, S_IRUGO | S_IWUSR);
58 MODULE_PARM_DESC(msi_en, "enable msi");
59 
60 static irqreturn_t rtsx_interrupt(int irq, void *dev_id);
61 
62 /***********************************************************************
63  * Host functions
64  ***********************************************************************/
65 
host_info(struct Scsi_Host * host)66 static const char *host_info(struct Scsi_Host *host)
67 {
68 	return "SCSI emulation for PCI-Express Mass Storage devices";
69 }
70 
slave_alloc(struct scsi_device * sdev)71 static int slave_alloc(struct scsi_device *sdev)
72 {
73 	/*
74 	 * Set the INQUIRY transfer length to 36.  We don't use any of
75 	 * the extra data and many devices choke if asked for more or
76 	 * less than 36 bytes.
77 	 */
78 	sdev->inquiry_len = 36;
79 	return 0;
80 }
81 
slave_configure(struct scsi_device * sdev)82 static int slave_configure(struct scsi_device *sdev)
83 {
84 	/* Scatter-gather buffers (all but the last) must have a length
85 	 * divisible by the bulk maxpacket size.  Otherwise a data packet
86 	 * would end up being short, causing a premature end to the data
87 	 * transfer.  Since high-speed bulk pipes have a maxpacket size
88 	 * of 512, we'll use that as the scsi device queue's DMA alignment
89 	 * mask.  Guaranteeing proper alignment of the first buffer will
90 	 * have the desired effect because, except at the beginning and
91 	 * the end, scatter-gather buffers follow page boundaries. */
92 	blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
93 
94 	/* Set the SCSI level to at least 2.  We'll leave it at 3 if that's
95 	 * what is originally reported.  We need this to avoid confusing
96 	 * the SCSI layer with devices that report 0 or 1, but need 10-byte
97 	 * commands (ala ATAPI devices behind certain bridges, or devices
98 	 * which simply have broken INQUIRY data).
99 	 *
100 	 * NOTE: This means /dev/sg programs (ala cdrecord) will get the
101 	 * actual information.  This seems to be the preference for
102 	 * programs like that.
103 	 *
104 	 * NOTE: This also means that /proc/scsi/scsi and sysfs may report
105 	 * the actual value or the modified one, depending on where the
106 	 * data comes from.
107 	 */
108 	if (sdev->scsi_level < SCSI_2)
109 		sdev->scsi_level = sdev->sdev_target->scsi_level = SCSI_2;
110 
111 	return 0;
112 }
113 
114 
115 /***********************************************************************
116  * /proc/scsi/ functions
117  ***********************************************************************/
118 
119 /* we use this macro to help us write into the buffer */
120 #undef SPRINTF
121 #define SPRINTF(args...) \
122 	do { if (pos < buffer+length) pos += sprintf(pos, ## args); } while (0)
123 
124 /* queue a command */
125 /* This is always called with scsi_lock(host) held */
queuecommand_lck(struct scsi_cmnd * srb,void (* done)(struct scsi_cmnd *))126 static int queuecommand_lck(struct scsi_cmnd *srb,
127 			void (*done)(struct scsi_cmnd *))
128 {
129 	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
130 	struct rtsx_chip *chip = dev->chip;
131 
132 	/* check for state-transition errors */
133 	if (chip->srb != NULL) {
134 		dev_err(&dev->pci->dev, "Error: chip->srb = %p\n",
135 			chip->srb);
136 		return SCSI_MLQUEUE_HOST_BUSY;
137 	}
138 
139 	/* fail the command if we are disconnecting */
140 	if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
141 		dev_info(&dev->pci->dev, "Fail command during disconnect\n");
142 		srb->result = DID_NO_CONNECT << 16;
143 		done(srb);
144 		return 0;
145 	}
146 
147 	/* enqueue the command and wake up the control thread */
148 	srb->scsi_done = done;
149 	chip->srb = srb;
150 	complete(&dev->cmnd_ready);
151 
152 	return 0;
153 }
154 
DEF_SCSI_QCMD(queuecommand)155 static DEF_SCSI_QCMD(queuecommand)
156 
157 /***********************************************************************
158  * Error handling functions
159  ***********************************************************************/
160 
161 /* Command timeout and abort */
162 static int command_abort(struct scsi_cmnd *srb)
163 {
164 	struct Scsi_Host *host = srb->device->host;
165 	struct rtsx_dev *dev = host_to_rtsx(host);
166 	struct rtsx_chip *chip = dev->chip;
167 
168 	dev_info(&dev->pci->dev, "%s called\n", __func__);
169 
170 	scsi_lock(host);
171 
172 	/* Is this command still active? */
173 	if (chip->srb != srb) {
174 		scsi_unlock(host);
175 		dev_info(&dev->pci->dev, "-- nothing to abort\n");
176 		return FAILED;
177 	}
178 
179 	rtsx_set_stat(chip, RTSX_STAT_ABORT);
180 
181 	scsi_unlock(host);
182 
183 	/* Wait for the aborted command to finish */
184 	wait_for_completion(&dev->notify);
185 
186 	return SUCCESS;
187 }
188 
189 /* This invokes the transport reset mechanism to reset the state of the
190  * device */
device_reset(struct scsi_cmnd * srb)191 static int device_reset(struct scsi_cmnd *srb)
192 {
193 	int result = 0;
194 	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
195 
196 	dev_info(&dev->pci->dev, "%s called\n", __func__);
197 
198 	return result < 0 ? FAILED : SUCCESS;
199 }
200 
201 /* Simulate a SCSI bus reset by resetting the device's USB port. */
bus_reset(struct scsi_cmnd * srb)202 static int bus_reset(struct scsi_cmnd *srb)
203 {
204 	int result = 0;
205 	struct rtsx_dev *dev = host_to_rtsx(srb->device->host);
206 
207 	dev_info(&dev->pci->dev, "%s called\n", __func__);
208 
209 	return result < 0 ? FAILED : SUCCESS;
210 }
211 
212 
213 /*
214  * this defines our host template, with which we'll allocate hosts
215  */
216 
217 static struct scsi_host_template rtsx_host_template = {
218 	/* basic userland interface stuff */
219 	.name =				CR_DRIVER_NAME,
220 	.proc_name =			CR_DRIVER_NAME,
221 	.info =				host_info,
222 
223 	/* command interface -- queued only */
224 	.queuecommand =			queuecommand,
225 
226 	/* error and abort handlers */
227 	.eh_abort_handler =		command_abort,
228 	.eh_device_reset_handler =	device_reset,
229 	.eh_bus_reset_handler =		bus_reset,
230 
231 	/* queue commands only, only one command per LUN */
232 	.can_queue =			1,
233 	.cmd_per_lun =			1,
234 
235 	/* unknown initiator id */
236 	.this_id =			-1,
237 
238 	.slave_alloc =			slave_alloc,
239 	.slave_configure =		slave_configure,
240 
241 	/* lots of sg segments can be handled */
242 	.sg_tablesize =			SG_ALL,
243 
244 	/* limit the total size of a transfer to 120 KB */
245 	.max_sectors =                  240,
246 
247 	/* merge commands... this seems to help performance, but
248 	 * periodically someone should test to see which setting is more
249 	 * optimal.
250 	 */
251 	.use_clustering =		1,
252 
253 	/* emulated HBA */
254 	.emulated =			1,
255 
256 	/* we do our own delay after a device or bus reset */
257 	.skip_settle_delay =		1,
258 
259 	/* module management */
260 	.module =			THIS_MODULE
261 };
262 
263 
rtsx_acquire_irq(struct rtsx_dev * dev)264 static int rtsx_acquire_irq(struct rtsx_dev *dev)
265 {
266 	struct rtsx_chip *chip = dev->chip;
267 
268 	dev_info(&dev->pci->dev, "%s: chip->msi_en = %d, pci->irq = %d\n",
269 		 __func__, chip->msi_en, dev->pci->irq);
270 
271 	if (request_irq(dev->pci->irq, rtsx_interrupt,
272 			chip->msi_en ? 0 : IRQF_SHARED,
273 			CR_DRIVER_NAME, dev)) {
274 		dev_err(&dev->pci->dev,
275 			"rtsx: unable to grab IRQ %d, disabling device\n",
276 			dev->pci->irq);
277 		return -1;
278 	}
279 
280 	dev->irq = dev->pci->irq;
281 	pci_intx(dev->pci, !chip->msi_en);
282 
283 	return 0;
284 }
285 
286 
rtsx_read_pci_cfg_byte(u8 bus,u8 dev,u8 func,u8 offset,u8 * val)287 int rtsx_read_pci_cfg_byte(u8 bus, u8 dev, u8 func, u8 offset, u8 *val)
288 {
289 	struct pci_dev *pdev;
290 	u8 data;
291 	u8 devfn = (dev << 3) | func;
292 
293 	pdev = pci_get_bus_and_slot(bus, devfn);
294 	if (!pdev)
295 		return -1;
296 
297 	pci_read_config_byte(pdev, offset, &data);
298 	if (val)
299 		*val = data;
300 
301 	return 0;
302 }
303 
304 #ifdef CONFIG_PM
305 /*
306  * power management
307  */
rtsx_suspend(struct pci_dev * pci,pm_message_t state)308 static int rtsx_suspend(struct pci_dev *pci, pm_message_t state)
309 {
310 	struct rtsx_dev *dev = pci_get_drvdata(pci);
311 	struct rtsx_chip *chip;
312 
313 	if (!dev)
314 		return 0;
315 
316 	/* lock the device pointers */
317 	mutex_lock(&(dev->dev_mutex));
318 
319 	chip = dev->chip;
320 
321 	rtsx_do_before_power_down(chip, PM_S3);
322 
323 	if (dev->irq >= 0) {
324 		synchronize_irq(dev->irq);
325 		free_irq(dev->irq, (void *)dev);
326 		dev->irq = -1;
327 	}
328 
329 	if (chip->msi_en)
330 		pci_disable_msi(pci);
331 
332 	pci_save_state(pci);
333 	pci_enable_wake(pci, pci_choose_state(pci, state), 1);
334 	pci_disable_device(pci);
335 	pci_set_power_state(pci, pci_choose_state(pci, state));
336 
337 	/* unlock the device pointers */
338 	mutex_unlock(&dev->dev_mutex);
339 
340 	return 0;
341 }
342 
rtsx_resume(struct pci_dev * pci)343 static int rtsx_resume(struct pci_dev *pci)
344 {
345 	struct rtsx_dev *dev = pci_get_drvdata(pci);
346 	struct rtsx_chip *chip;
347 
348 	if (!dev)
349 		return 0;
350 
351 	chip = dev->chip;
352 
353 	/* lock the device pointers */
354 	mutex_lock(&(dev->dev_mutex));
355 
356 	pci_set_power_state(pci, PCI_D0);
357 	pci_restore_state(pci);
358 	if (pci_enable_device(pci) < 0) {
359 		dev_err(&dev->pci->dev,
360 			"%s: pci_enable_device failed, disabling device\n",
361 			CR_DRIVER_NAME);
362 		/* unlock the device pointers */
363 		mutex_unlock(&dev->dev_mutex);
364 		return -EIO;
365 	}
366 	pci_set_master(pci);
367 
368 	if (chip->msi_en) {
369 		if (pci_enable_msi(pci) < 0)
370 			chip->msi_en = 0;
371 	}
372 
373 	if (rtsx_acquire_irq(dev) < 0) {
374 		/* unlock the device pointers */
375 		mutex_unlock(&dev->dev_mutex);
376 		return -EIO;
377 	}
378 
379 	rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 0x00);
380 	rtsx_init_chip(chip);
381 
382 	/* unlock the device pointers */
383 	mutex_unlock(&dev->dev_mutex);
384 
385 	return 0;
386 }
387 #endif /* CONFIG_PM */
388 
rtsx_shutdown(struct pci_dev * pci)389 static void rtsx_shutdown(struct pci_dev *pci)
390 {
391 	struct rtsx_dev *dev = pci_get_drvdata(pci);
392 	struct rtsx_chip *chip;
393 
394 	if (!dev)
395 		return;
396 
397 	chip = dev->chip;
398 
399 	rtsx_do_before_power_down(chip, PM_S1);
400 
401 	if (dev->irq >= 0) {
402 		synchronize_irq(dev->irq);
403 		free_irq(dev->irq, (void *)dev);
404 		dev->irq = -1;
405 	}
406 
407 	if (chip->msi_en)
408 		pci_disable_msi(pci);
409 
410 	pci_disable_device(pci);
411 }
412 
rtsx_control_thread(void * __dev)413 static int rtsx_control_thread(void *__dev)
414 {
415 	struct rtsx_dev *dev = __dev;
416 	struct rtsx_chip *chip = dev->chip;
417 	struct Scsi_Host *host = rtsx_to_host(dev);
418 
419 	for (;;) {
420 		if (wait_for_completion_interruptible(&dev->cmnd_ready))
421 			break;
422 
423 		/* lock the device pointers */
424 		mutex_lock(&(dev->dev_mutex));
425 
426 		/* if the device has disconnected, we are free to exit */
427 		if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
428 			dev_info(&dev->pci->dev, "-- rtsx-control exiting\n");
429 			mutex_unlock(&dev->dev_mutex);
430 			break;
431 		}
432 
433 		/* lock access to the state */
434 		scsi_lock(host);
435 
436 		/* has the command aborted ? */
437 		if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
438 			chip->srb->result = DID_ABORT << 16;
439 			goto SkipForAbort;
440 		}
441 
442 		scsi_unlock(host);
443 
444 		/* reject the command if the direction indicator
445 		 * is UNKNOWN
446 		 */
447 		if (chip->srb->sc_data_direction == DMA_BIDIRECTIONAL) {
448 			dev_err(&dev->pci->dev, "UNKNOWN data direction\n");
449 			chip->srb->result = DID_ERROR << 16;
450 		}
451 
452 		/* reject if target != 0 or if LUN is higher than
453 		 * the maximum known LUN
454 		 */
455 		else if (chip->srb->device->id) {
456 			dev_err(&dev->pci->dev, "Bad target number (%d:%d)\n",
457 				chip->srb->device->id,
458 				(u8)chip->srb->device->lun);
459 			chip->srb->result = DID_BAD_TARGET << 16;
460 		}
461 
462 		else if (chip->srb->device->lun > chip->max_lun) {
463 			dev_err(&dev->pci->dev, "Bad LUN (%d:%d)\n",
464 				chip->srb->device->id,
465 				(u8)chip->srb->device->lun);
466 			chip->srb->result = DID_BAD_TARGET << 16;
467 		}
468 
469 		/* we've got a command, let's do it! */
470 		else {
471 			scsi_show_command(chip);
472 			rtsx_invoke_transport(chip->srb, chip);
473 		}
474 
475 		/* lock access to the state */
476 		scsi_lock(host);
477 
478 		/* did the command already complete because of a disconnect? */
479 		if (!chip->srb)
480 			;		/* nothing to do */
481 
482 		/* indicate that the command is done */
483 		else if (chip->srb->result != DID_ABORT << 16) {
484 			chip->srb->scsi_done(chip->srb);
485 		} else {
486 SkipForAbort:
487 			dev_err(&dev->pci->dev, "scsi command aborted\n");
488 		}
489 
490 		if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
491 			complete(&(dev->notify));
492 
493 			rtsx_set_stat(chip, RTSX_STAT_IDLE);
494 		}
495 
496 		/* finished working on this command */
497 		chip->srb = NULL;
498 		scsi_unlock(host);
499 
500 		/* unlock the device pointers */
501 		mutex_unlock(&dev->dev_mutex);
502 	} /* for (;;) */
503 
504 	/* notify the exit routine that we're actually exiting now
505 	 *
506 	 * complete()/wait_for_completion() is similar to up()/down(),
507 	 * except that complete() is safe in the case where the structure
508 	 * is getting deleted in a parallel mode of execution (i.e. just
509 	 * after the down() -- that's necessary for the thread-shutdown
510 	 * case.
511 	 *
512 	 * complete_and_exit() goes even further than this -- it is safe in
513 	 * the case that the thread of the caller is going away (not just
514 	 * the structure) -- this is necessary for the module-remove case.
515 	 * This is important in preemption kernels, which transfer the flow
516 	 * of execution immediately upon a complete().
517 	 */
518 	complete_and_exit(&dev->control_exit, 0);
519 }
520 
521 
rtsx_polling_thread(void * __dev)522 static int rtsx_polling_thread(void *__dev)
523 {
524 	struct rtsx_dev *dev = __dev;
525 	struct rtsx_chip *chip = dev->chip;
526 	struct sd_info *sd_card = &(chip->sd_card);
527 	struct xd_info *xd_card = &(chip->xd_card);
528 	struct ms_info *ms_card = &(chip->ms_card);
529 
530 	sd_card->cleanup_counter = 0;
531 	xd_card->cleanup_counter = 0;
532 	ms_card->cleanup_counter = 0;
533 
534 	/* Wait until SCSI scan finished */
535 	wait_timeout((delay_use + 5) * 1000);
536 
537 	for (;;) {
538 
539 		set_current_state(TASK_INTERRUPTIBLE);
540 		schedule_timeout(POLLING_INTERVAL);
541 
542 		/* lock the device pointers */
543 		mutex_lock(&(dev->dev_mutex));
544 
545 		/* if the device has disconnected, we are free to exit */
546 		if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
547 			dev_info(&dev->pci->dev, "-- rtsx-polling exiting\n");
548 			mutex_unlock(&dev->dev_mutex);
549 			break;
550 		}
551 
552 		mutex_unlock(&dev->dev_mutex);
553 
554 		mspro_polling_format_status(chip);
555 
556 		/* lock the device pointers */
557 		mutex_lock(&(dev->dev_mutex));
558 
559 		rtsx_polling_func(chip);
560 
561 		/* unlock the device pointers */
562 		mutex_unlock(&dev->dev_mutex);
563 	}
564 
565 	complete_and_exit(&dev->polling_exit, 0);
566 }
567 
568 /*
569  * interrupt handler
570  */
rtsx_interrupt(int irq,void * dev_id)571 static irqreturn_t rtsx_interrupt(int irq, void *dev_id)
572 {
573 	struct rtsx_dev *dev = dev_id;
574 	struct rtsx_chip *chip;
575 	int retval;
576 	u32 status;
577 
578 	if (dev)
579 		chip = dev->chip;
580 	else
581 		return IRQ_NONE;
582 
583 	if (!chip)
584 		return IRQ_NONE;
585 
586 	spin_lock(&dev->reg_lock);
587 
588 	retval = rtsx_pre_handle_interrupt(chip);
589 	if (retval == STATUS_FAIL) {
590 		spin_unlock(&dev->reg_lock);
591 		if (chip->int_reg == 0xFFFFFFFF)
592 			return IRQ_HANDLED;
593 		return IRQ_NONE;
594 	}
595 
596 	status = chip->int_reg;
597 
598 	if (dev->check_card_cd) {
599 		if (!(dev->check_card_cd & status)) {
600 			/* card not exist, return TRANS_RESULT_FAIL */
601 			dev->trans_result = TRANS_RESULT_FAIL;
602 			if (dev->done)
603 				complete(dev->done);
604 			goto Exit;
605 		}
606 	}
607 
608 	if (status & (NEED_COMPLETE_INT | DELINK_INT)) {
609 		if (status & (TRANS_FAIL_INT | DELINK_INT)) {
610 			if (status & DELINK_INT)
611 				RTSX_SET_DELINK(chip);
612 			dev->trans_result = TRANS_RESULT_FAIL;
613 			if (dev->done)
614 				complete(dev->done);
615 		} else if (status & TRANS_OK_INT) {
616 			dev->trans_result = TRANS_RESULT_OK;
617 			if (dev->done)
618 				complete(dev->done);
619 		} else if (status & DATA_DONE_INT) {
620 			dev->trans_result = TRANS_NOT_READY;
621 			if (dev->done && (dev->trans_state == STATE_TRANS_SG))
622 				complete(dev->done);
623 		}
624 	}
625 
626 Exit:
627 	spin_unlock(&dev->reg_lock);
628 	return IRQ_HANDLED;
629 }
630 
631 
632 /* Release all our dynamic resources */
rtsx_release_resources(struct rtsx_dev * dev)633 static void rtsx_release_resources(struct rtsx_dev *dev)
634 {
635 	dev_info(&dev->pci->dev, "-- %s\n", __func__);
636 
637 	/* Tell the control thread to exit.  The SCSI host must
638 	 * already have been removed so it won't try to queue
639 	 * any more commands.
640 	 */
641 	dev_info(&dev->pci->dev, "-- sending exit command to thread\n");
642 	complete(&dev->cmnd_ready);
643 	if (dev->ctl_thread)
644 		wait_for_completion(&dev->control_exit);
645 	if (dev->polling_thread)
646 		wait_for_completion(&dev->polling_exit);
647 
648 	wait_timeout(200);
649 
650 	if (dev->rtsx_resv_buf) {
651 		dma_free_coherent(&(dev->pci->dev), RTSX_RESV_BUF_LEN,
652 				dev->rtsx_resv_buf, dev->rtsx_resv_buf_addr);
653 		dev->chip->host_cmds_ptr = NULL;
654 		dev->chip->host_sg_tbl_ptr = NULL;
655 	}
656 
657 	if (dev->irq > 0)
658 		free_irq(dev->irq, (void *)dev);
659 	if (dev->chip->msi_en)
660 		pci_disable_msi(dev->pci);
661 	if (dev->remap_addr)
662 		iounmap(dev->remap_addr);
663 
664 	pci_disable_device(dev->pci);
665 	pci_release_regions(dev->pci);
666 
667 	rtsx_release_chip(dev->chip);
668 	kfree(dev->chip);
669 }
670 
671 /* First stage of disconnect processing: stop all commands and remove
672  * the host */
quiesce_and_remove_host(struct rtsx_dev * dev)673 static void quiesce_and_remove_host(struct rtsx_dev *dev)
674 {
675 	struct Scsi_Host *host = rtsx_to_host(dev);
676 	struct rtsx_chip *chip = dev->chip;
677 
678 	/* Prevent new transfers, stop the current command, and
679 	 * interrupt a SCSI-scan or device-reset delay */
680 	mutex_lock(&dev->dev_mutex);
681 	scsi_lock(host);
682 	rtsx_set_stat(chip, RTSX_STAT_DISCONNECT);
683 	scsi_unlock(host);
684 	mutex_unlock(&dev->dev_mutex);
685 	wake_up(&dev->delay_wait);
686 	wait_for_completion(&dev->scanning_done);
687 
688 	/* Wait some time to let other threads exist */
689 	wait_timeout(100);
690 
691 	/* queuecommand won't accept any new commands and the control
692 	 * thread won't execute a previously-queued command.  If there
693 	 * is such a command pending, complete it with an error. */
694 	mutex_lock(&dev->dev_mutex);
695 	if (chip->srb) {
696 		chip->srb->result = DID_NO_CONNECT << 16;
697 		scsi_lock(host);
698 		chip->srb->scsi_done(dev->chip->srb);
699 		chip->srb = NULL;
700 		scsi_unlock(host);
701 	}
702 	mutex_unlock(&dev->dev_mutex);
703 
704 	/* Now we own no commands so it's safe to remove the SCSI host */
705 	scsi_remove_host(host);
706 }
707 
708 /* Second stage of disconnect processing: deallocate all resources */
release_everything(struct rtsx_dev * dev)709 static void release_everything(struct rtsx_dev *dev)
710 {
711 	rtsx_release_resources(dev);
712 
713 	/* Drop our reference to the host; the SCSI core will free it
714 	 * when the refcount becomes 0. */
715 	scsi_host_put(rtsx_to_host(dev));
716 }
717 
718 /* Thread to carry out delayed SCSI-device scanning */
rtsx_scan_thread(void * __dev)719 static int rtsx_scan_thread(void *__dev)
720 {
721 	struct rtsx_dev *dev = (struct rtsx_dev *)__dev;
722 	struct rtsx_chip *chip = dev->chip;
723 
724 	/* Wait for the timeout to expire or for a disconnect */
725 	if (delay_use > 0) {
726 		dev_info(&dev->pci->dev,
727 			 "%s: waiting for device to settle before scanning\n",
728 			 CR_DRIVER_NAME);
729 		wait_event_interruptible_timeout(dev->delay_wait,
730 				rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT),
731 				delay_use * HZ);
732 	}
733 
734 	/* If the device is still connected, perform the scanning */
735 	if (!rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) {
736 		scsi_scan_host(rtsx_to_host(dev));
737 		dev_info(&dev->pci->dev, "%s: device scan complete\n",
738 			 CR_DRIVER_NAME);
739 
740 		/* Should we unbind if no devices were detected? */
741 	}
742 
743 	complete_and_exit(&dev->scanning_done, 0);
744 }
745 
rtsx_init_options(struct rtsx_chip * chip)746 static void rtsx_init_options(struct rtsx_chip *chip)
747 {
748 	chip->vendor_id = chip->rtsx->pci->vendor;
749 	chip->product_id = chip->rtsx->pci->device;
750 	chip->adma_mode = 1;
751 	chip->lun_mc = 0;
752 	chip->driver_first_load = 1;
753 #ifdef HW_AUTO_SWITCH_SD_BUS
754 	chip->sdio_in_charge = 0;
755 #endif
756 
757 	chip->mspro_formatter_enable = 1;
758 	chip->ignore_sd = 0;
759 	chip->use_hw_setting = 0;
760 	chip->lun_mode = DEFAULT_SINGLE;
761 	chip->auto_delink_en = auto_delink_en;
762 	chip->ss_en = ss_en;
763 	chip->ss_idle_period = ss_interval * 1000;
764 	chip->remote_wakeup_en = 0;
765 	chip->aspm_l0s_l1_en = aspm_l0s_l1_en;
766 	chip->dynamic_aspm = 1;
767 	chip->fpga_sd_sdr104_clk = CLK_200;
768 	chip->fpga_sd_ddr50_clk = CLK_100;
769 	chip->fpga_sd_sdr50_clk = CLK_100;
770 	chip->fpga_sd_hs_clk = CLK_100;
771 	chip->fpga_mmc_52m_clk = CLK_80;
772 	chip->fpga_ms_hg_clk = CLK_80;
773 	chip->fpga_ms_4bit_clk = CLK_80;
774 	chip->fpga_ms_1bit_clk = CLK_40;
775 	chip->asic_sd_sdr104_clk = 203;
776 	chip->asic_sd_sdr50_clk = 98;
777 	chip->asic_sd_ddr50_clk = 98;
778 	chip->asic_sd_hs_clk = 98;
779 	chip->asic_mmc_52m_clk = 98;
780 	chip->asic_ms_hg_clk = 117;
781 	chip->asic_ms_4bit_clk = 78;
782 	chip->asic_ms_1bit_clk = 39;
783 	chip->ssc_depth_sd_sdr104 = SSC_DEPTH_2M;
784 	chip->ssc_depth_sd_sdr50 = SSC_DEPTH_2M;
785 	chip->ssc_depth_sd_ddr50 = SSC_DEPTH_1M;
786 	chip->ssc_depth_sd_hs = SSC_DEPTH_1M;
787 	chip->ssc_depth_mmc_52m = SSC_DEPTH_1M;
788 	chip->ssc_depth_ms_hg = SSC_DEPTH_1M;
789 	chip->ssc_depth_ms_4bit = SSC_DEPTH_512K;
790 	chip->ssc_depth_low_speed = SSC_DEPTH_512K;
791 	chip->ssc_en = 1;
792 	chip->sd_speed_prior = 0x01040203;
793 	chip->sd_current_prior = 0x00010203;
794 	chip->sd_ctl = SD_PUSH_POINT_AUTO |
795 		       SD_SAMPLE_POINT_AUTO |
796 		       SUPPORT_MMC_DDR_MODE;
797 	chip->sd_ddr_tx_phase = 0;
798 	chip->mmc_ddr_tx_phase = 1;
799 	chip->sd_default_tx_phase = 15;
800 	chip->sd_default_rx_phase = 15;
801 	chip->pmos_pwr_on_interval = 200;
802 	chip->sd_voltage_switch_delay = 1000;
803 	chip->ms_power_class_en = 3;
804 
805 	chip->sd_400mA_ocp_thd = 1;
806 	chip->sd_800mA_ocp_thd = 5;
807 	chip->ms_ocp_thd = 2;
808 
809 	chip->card_drive_sel = 0x55;
810 	chip->sd30_drive_sel_1v8 = 0x03;
811 	chip->sd30_drive_sel_3v3 = 0x01;
812 
813 	chip->do_delink_before_power_down = 1;
814 	chip->auto_power_down = 1;
815 	chip->polling_config = 0;
816 
817 	chip->force_clkreq_0 = 1;
818 	chip->ft2_fast_mode = 0;
819 
820 	chip->sdio_retry_cnt = 1;
821 
822 	chip->xd_timeout = 2000;
823 	chip->sd_timeout = 10000;
824 	chip->ms_timeout = 2000;
825 	chip->mspro_timeout = 15000;
826 
827 	chip->power_down_in_ss = 1;
828 
829 	chip->sdr104_en = 1;
830 	chip->sdr50_en = 1;
831 	chip->ddr50_en = 1;
832 
833 	chip->delink_stage1_step = 100;
834 	chip->delink_stage2_step = 40;
835 	chip->delink_stage3_step = 20;
836 
837 	chip->auto_delink_in_L1 = 1;
838 	chip->blink_led = 1;
839 	chip->msi_en = msi_en;
840 	chip->hp_watch_bios_hotplug = 0;
841 	chip->max_payload = 0;
842 	chip->phy_voltage = 0;
843 
844 	chip->support_ms_8bit = 1;
845 	chip->s3_pwr_off_delay = 1000;
846 }
847 
rtsx_probe(struct pci_dev * pci,const struct pci_device_id * pci_id)848 static int rtsx_probe(struct pci_dev *pci,
849 				const struct pci_device_id *pci_id)
850 {
851 	struct Scsi_Host *host;
852 	struct rtsx_dev *dev;
853 	int err = 0;
854 	struct task_struct *th;
855 
856 	dev_dbg(&pci->dev, "Realtek PCI-E card reader detected\n");
857 
858 	err = pci_enable_device(pci);
859 	if (err < 0) {
860 		dev_err(&pci->dev, "PCI enable device failed!\n");
861 		return err;
862 	}
863 
864 	err = pci_request_regions(pci, CR_DRIVER_NAME);
865 	if (err < 0) {
866 		dev_err(&pci->dev, "PCI request regions for %s failed!\n",
867 			CR_DRIVER_NAME);
868 		pci_disable_device(pci);
869 		return err;
870 	}
871 
872 	/*
873 	 * Ask the SCSI layer to allocate a host structure, with extra
874 	 * space at the end for our private rtsx_dev structure.
875 	 */
876 	host = scsi_host_alloc(&rtsx_host_template, sizeof(*dev));
877 	if (!host) {
878 		dev_err(&pci->dev, "Unable to allocate the scsi host\n");
879 		pci_release_regions(pci);
880 		pci_disable_device(pci);
881 		return -ENOMEM;
882 	}
883 
884 	dev = host_to_rtsx(host);
885 	memset(dev, 0, sizeof(struct rtsx_dev));
886 
887 	dev->chip = kzalloc(sizeof(struct rtsx_chip), GFP_KERNEL);
888 	if (dev->chip == NULL) {
889 		err = -ENOMEM;
890 		goto errout;
891 	}
892 
893 	spin_lock_init(&dev->reg_lock);
894 	mutex_init(&(dev->dev_mutex));
895 	init_completion(&dev->cmnd_ready);
896 	init_completion(&dev->control_exit);
897 	init_completion(&dev->polling_exit);
898 	init_completion(&(dev->notify));
899 	init_completion(&dev->scanning_done);
900 	init_waitqueue_head(&dev->delay_wait);
901 
902 	dev->pci = pci;
903 	dev->irq = -1;
904 
905 	dev_info(&pci->dev, "Resource length: 0x%x\n",
906 		 (unsigned int)pci_resource_len(pci, 0));
907 	dev->addr = pci_resource_start(pci, 0);
908 	dev->remap_addr = ioremap_nocache(dev->addr, pci_resource_len(pci, 0));
909 	if (dev->remap_addr == NULL) {
910 		dev_err(&pci->dev, "ioremap error\n");
911 		err = -ENXIO;
912 		goto errout;
913 	}
914 
915 	/*
916 	 * Using "unsigned long" cast here to eliminate gcc warning in
917 	 * 64-bit system
918 	 */
919 	dev_info(&pci->dev, "Original address: 0x%lx, remapped address: 0x%lx\n",
920 		 (unsigned long)(dev->addr), (unsigned long)(dev->remap_addr));
921 
922 	dev->rtsx_resv_buf = dma_alloc_coherent(&(pci->dev), RTSX_RESV_BUF_LEN,
923 			&(dev->rtsx_resv_buf_addr), GFP_KERNEL);
924 	if (dev->rtsx_resv_buf == NULL) {
925 		dev_err(&pci->dev, "alloc dma buffer fail\n");
926 		err = -ENXIO;
927 		goto errout;
928 	}
929 	dev->chip->host_cmds_ptr = dev->rtsx_resv_buf;
930 	dev->chip->host_cmds_addr = dev->rtsx_resv_buf_addr;
931 	dev->chip->host_sg_tbl_ptr = dev->rtsx_resv_buf + HOST_CMDS_BUF_LEN;
932 	dev->chip->host_sg_tbl_addr = dev->rtsx_resv_buf_addr +
933 				      HOST_CMDS_BUF_LEN;
934 
935 	dev->chip->rtsx = dev;
936 
937 	rtsx_init_options(dev->chip);
938 
939 	dev_info(&pci->dev, "pci->irq = %d\n", pci->irq);
940 
941 	if (dev->chip->msi_en) {
942 		if (pci_enable_msi(pci) < 0)
943 			dev->chip->msi_en = 0;
944 	}
945 
946 	if (rtsx_acquire_irq(dev) < 0) {
947 		err = -EBUSY;
948 		goto errout;
949 	}
950 
951 	pci_set_master(pci);
952 	synchronize_irq(dev->irq);
953 
954 	rtsx_init_chip(dev->chip);
955 
956 	/* set the supported max_lun and max_id for the scsi host
957 	 * NOTE: the minimal value of max_id is 1 */
958 	host->max_id = 1;
959 	host->max_lun = dev->chip->max_lun;
960 
961 	/* Start up our control thread */
962 	th = kthread_run(rtsx_control_thread, dev, CR_DRIVER_NAME);
963 	if (IS_ERR(th)) {
964 		dev_err(&pci->dev, "Unable to start control thread\n");
965 		err = PTR_ERR(th);
966 		goto errout;
967 	}
968 	dev->ctl_thread = th;
969 
970 	err = scsi_add_host(host, &pci->dev);
971 	if (err) {
972 		dev_err(&pci->dev, "Unable to add the scsi host\n");
973 		goto errout;
974 	}
975 
976 	/* Start up the thread for delayed SCSI-device scanning */
977 	th = kthread_run(rtsx_scan_thread, dev, "rtsx-scan");
978 	if (IS_ERR(th)) {
979 		dev_err(&pci->dev, "Unable to start the device-scanning thread\n");
980 		complete(&dev->scanning_done);
981 		quiesce_and_remove_host(dev);
982 		err = PTR_ERR(th);
983 		goto errout;
984 	}
985 
986 	/* Start up the thread for polling thread */
987 	th = kthread_run(rtsx_polling_thread, dev, "rtsx-polling");
988 	if (IS_ERR(th)) {
989 		dev_err(&pci->dev, "Unable to start the device-polling thread\n");
990 		quiesce_and_remove_host(dev);
991 		err = PTR_ERR(th);
992 		goto errout;
993 	}
994 	dev->polling_thread = th;
995 
996 	pci_set_drvdata(pci, dev);
997 
998 	return 0;
999 
1000 	/* We come here if there are any problems */
1001 errout:
1002 	dev_err(&pci->dev, "rtsx_probe() failed\n");
1003 	release_everything(dev);
1004 
1005 	return err;
1006 }
1007 
1008 
rtsx_remove(struct pci_dev * pci)1009 static void rtsx_remove(struct pci_dev *pci)
1010 {
1011 	struct rtsx_dev *dev = pci_get_drvdata(pci);
1012 
1013 	dev_info(&pci->dev, "rtsx_remove() called\n");
1014 
1015 	quiesce_and_remove_host(dev);
1016 	release_everything(dev);
1017 
1018 	pci_set_drvdata(pci, NULL);
1019 }
1020 
1021 /* PCI IDs */
1022 static const struct pci_device_id rtsx_ids[] = {
1023 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5208),
1024 		PCI_CLASS_OTHERS << 16, 0xFF0000 },
1025 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5288),
1026 		PCI_CLASS_OTHERS << 16, 0xFF0000 },
1027 	{ 0, },
1028 };
1029 
1030 MODULE_DEVICE_TABLE(pci, rtsx_ids);
1031 
1032 /* pci_driver definition */
1033 static struct pci_driver rtsx_driver = {
1034 	.name = CR_DRIVER_NAME,
1035 	.id_table = rtsx_ids,
1036 	.probe = rtsx_probe,
1037 	.remove = rtsx_remove,
1038 #ifdef CONFIG_PM
1039 	.suspend = rtsx_suspend,
1040 	.resume = rtsx_resume,
1041 #endif
1042 	.shutdown = rtsx_shutdown,
1043 };
1044 
1045 module_pci_driver(rtsx_driver);
1046