1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00
23 	Abstract: rt2x00 global information.
24  */
25 
26 #ifndef RT2X00_H
27 #define RT2X00_H
28 
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41 
42 #include <net/mac80211.h>
43 
44 #include "rt2x00debug.h"
45 #include "rt2x00dump.h"
46 #include "rt2x00leds.h"
47 #include "rt2x00reg.h"
48 #include "rt2x00queue.h"
49 
50 /*
51  * Module information.
52  */
53 #define DRV_VERSION	"2.3.0"
54 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
55 
56 /* Debug definitions.
57  * Debug output has to be enabled during compile time.
58  */
59 #ifdef CONFIG_RT2X00_DEBUG
60 #define DEBUG
61 #endif /* CONFIG_RT2X00_DEBUG */
62 
63 /* Utility printing macros
64  * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
65  */
66 #define rt2x00_probe_err(fmt, ...)					\
67 	printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt,		\
68 	       __func__, ##__VA_ARGS__)
69 #define rt2x00_err(dev, fmt, ...)					\
70 	wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt,			\
71 		  __func__, ##__VA_ARGS__)
72 #define rt2x00_warn(dev, fmt, ...)					\
73 	wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt,		\
74 		   __func__, ##__VA_ARGS__)
75 #define rt2x00_info(dev, fmt, ...)					\
76 	wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt,			\
77 		   __func__, ##__VA_ARGS__)
78 
79 /* Various debug levels */
80 #define rt2x00_dbg(dev, fmt, ...)					\
81 	wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt,			\
82 		  __func__, ##__VA_ARGS__)
83 #define rt2x00_eeprom_dbg(dev, fmt, ...)				\
84 	wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt,	\
85 		  __func__, ##__VA_ARGS__)
86 
87 /*
88  * Duration calculations
89  * The rate variable passed is: 100kbs.
90  * To convert from bytes to bits we multiply size with 8,
91  * then the size is multiplied with 10 to make the
92  * real rate -> rate argument correction.
93  */
94 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
95 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
96 
97 /*
98  * Determine the number of L2 padding bytes required between the header and
99  * the payload.
100  */
101 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
102 
103 /*
104  * Determine the alignment requirement,
105  * to make sure the 802.11 payload is padded to a 4-byte boundrary
106  * we must determine the address of the payload and calculate the
107  * amount of bytes needed to move the data.
108  */
109 #define ALIGN_SIZE(__skb, __header) \
110 	(  ((unsigned long)((__skb)->data + (__header))) & 3 )
111 
112 /*
113  * Constants for extra TX headroom for alignment purposes.
114  */
115 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
116 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
117 
118 /*
119  * Standard timing and size defines.
120  * These values should follow the ieee80211 specifications.
121  */
122 #define ACK_SIZE		14
123 #define IEEE80211_HEADER	24
124 #define PLCP			48
125 #define BEACON			100
126 #define PREAMBLE		144
127 #define SHORT_PREAMBLE		72
128 #define SLOT_TIME		20
129 #define SHORT_SLOT_TIME		9
130 #define SIFS			10
131 #define PIFS			( SIFS + SLOT_TIME )
132 #define SHORT_PIFS		( SIFS + SHORT_SLOT_TIME )
133 #define DIFS			( PIFS + SLOT_TIME )
134 #define SHORT_DIFS		( SHORT_PIFS + SHORT_SLOT_TIME )
135 #define EIFS			( SIFS + DIFS + \
136 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
137 #define SHORT_EIFS		( SIFS + SHORT_DIFS + \
138 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
139 
140 enum rt2x00_chip_intf {
141 	RT2X00_CHIP_INTF_PCI,
142 	RT2X00_CHIP_INTF_PCIE,
143 	RT2X00_CHIP_INTF_USB,
144 	RT2X00_CHIP_INTF_SOC,
145 };
146 
147 /*
148  * Chipset identification
149  * The chipset on the device is composed of a RT and RF chip.
150  * The chipset combination is important for determining device capabilities.
151  */
152 struct rt2x00_chip {
153 	u16 rt;
154 #define RT2460		0x2460
155 #define RT2560		0x2560
156 #define RT2570		0x2570
157 #define RT2661		0x2661
158 #define RT2573		0x2573
159 #define RT2860		0x2860	/* 2.4GHz */
160 #define RT2872		0x2872	/* WSOC */
161 #define RT2883		0x2883	/* WSOC */
162 #define RT3070		0x3070
163 #define RT3071		0x3071
164 #define RT3090		0x3090	/* 2.4GHz PCIe */
165 #define RT3290		0x3290
166 #define RT3352		0x3352  /* WSOC */
167 #define RT3390		0x3390
168 #define RT3572		0x3572
169 #define RT3593		0x3593
170 #define RT3883		0x3883	/* WSOC */
171 #define RT5390		0x5390  /* 2.4GHz */
172 #define RT5392		0x5392  /* 2.4GHz */
173 #define RT5592		0x5592
174 
175 	u16 rf;
176 	u16 rev;
177 
178 	enum rt2x00_chip_intf intf;
179 };
180 
181 /*
182  * RF register values that belong to a particular channel.
183  */
184 struct rf_channel {
185 	int channel;
186 	u32 rf1;
187 	u32 rf2;
188 	u32 rf3;
189 	u32 rf4;
190 };
191 
192 /*
193  * Channel information structure
194  */
195 struct channel_info {
196 	unsigned int flags;
197 #define GEOGRAPHY_ALLOWED	0x00000001
198 
199 	short max_power;
200 	short default_power1;
201 	short default_power2;
202 	short default_power3;
203 };
204 
205 /*
206  * Antenna setup values.
207  */
208 struct antenna_setup {
209 	enum antenna rx;
210 	enum antenna tx;
211 	u8 rx_chain_num;
212 	u8 tx_chain_num;
213 };
214 
215 /*
216  * Quality statistics about the currently active link.
217  */
218 struct link_qual {
219 	/*
220 	 * Statistics required for Link tuning by driver
221 	 * The rssi value is provided by rt2x00lib during the
222 	 * link_tuner() callback function.
223 	 * The false_cca field is filled during the link_stats()
224 	 * callback function and could be used during the
225 	 * link_tuner() callback function.
226 	 */
227 	int rssi;
228 	int false_cca;
229 
230 	/*
231 	 * VGC levels
232 	 * Hardware driver will tune the VGC level during each call
233 	 * to the link_tuner() callback function. This vgc_level is
234 	 * is determined based on the link quality statistics like
235 	 * average RSSI and the false CCA count.
236 	 *
237 	 * In some cases the drivers need to differentiate between
238 	 * the currently "desired" VGC level and the level configured
239 	 * in the hardware. The latter is important to reduce the
240 	 * number of BBP register reads to reduce register access
241 	 * overhead. For this reason we store both values here.
242 	 */
243 	u8 vgc_level;
244 	u8 vgc_level_reg;
245 
246 	/*
247 	 * Statistics required for Signal quality calculation.
248 	 * These fields might be changed during the link_stats()
249 	 * callback function.
250 	 */
251 	int rx_success;
252 	int rx_failed;
253 	int tx_success;
254 	int tx_failed;
255 };
256 
257 /*
258  * Antenna settings about the currently active link.
259  */
260 struct link_ant {
261 	/*
262 	 * Antenna flags
263 	 */
264 	unsigned int flags;
265 #define ANTENNA_RX_DIVERSITY	0x00000001
266 #define ANTENNA_TX_DIVERSITY	0x00000002
267 #define ANTENNA_MODE_SAMPLE	0x00000004
268 
269 	/*
270 	 * Currently active TX/RX antenna setup.
271 	 * When software diversity is used, this will indicate
272 	 * which antenna is actually used at this time.
273 	 */
274 	struct antenna_setup active;
275 
276 	/*
277 	 * RSSI history information for the antenna.
278 	 * Used to determine when to switch antenna
279 	 * when using software diversity.
280 	 */
281 	int rssi_history;
282 
283 	/*
284 	 * Current RSSI average of the currently active antenna.
285 	 * Similar to the avg_rssi in the link_qual structure
286 	 * this value is updated by using the walking average.
287 	 */
288 	struct ewma rssi_ant;
289 };
290 
291 /*
292  * To optimize the quality of the link we need to store
293  * the quality of received frames and periodically
294  * optimize the link.
295  */
296 struct link {
297 	/*
298 	 * Link tuner counter
299 	 * The number of times the link has been tuned
300 	 * since the radio has been switched on.
301 	 */
302 	u32 count;
303 
304 	/*
305 	 * Quality measurement values.
306 	 */
307 	struct link_qual qual;
308 
309 	/*
310 	 * TX/RX antenna setup.
311 	 */
312 	struct link_ant ant;
313 
314 	/*
315 	 * Currently active average RSSI value
316 	 */
317 	struct ewma avg_rssi;
318 
319 	/*
320 	 * Work structure for scheduling periodic link tuning.
321 	 */
322 	struct delayed_work work;
323 
324 	/*
325 	 * Work structure for scheduling periodic watchdog monitoring.
326 	 * This work must be scheduled on the kernel workqueue, while
327 	 * all other work structures must be queued on the mac80211
328 	 * workqueue. This guarantees that the watchdog can schedule
329 	 * other work structures and wait for their completion in order
330 	 * to bring the device/driver back into the desired state.
331 	 */
332 	struct delayed_work watchdog_work;
333 
334 	/*
335 	 * Work structure for scheduling periodic AGC adjustments.
336 	 */
337 	struct delayed_work agc_work;
338 
339 	/*
340 	 * Work structure for scheduling periodic VCO calibration.
341 	 */
342 	struct delayed_work vco_work;
343 };
344 
345 enum rt2x00_delayed_flags {
346 	DELAYED_UPDATE_BEACON,
347 };
348 
349 /*
350  * Interface structure
351  * Per interface configuration details, this structure
352  * is allocated as the private data for ieee80211_vif.
353  */
354 struct rt2x00_intf {
355 	/*
356 	 * beacon->skb must be protected with the mutex.
357 	 */
358 	struct mutex beacon_skb_mutex;
359 
360 	/*
361 	 * Entry in the beacon queue which belongs to
362 	 * this interface. Each interface has its own
363 	 * dedicated beacon entry.
364 	 */
365 	struct queue_entry *beacon;
366 	bool enable_beacon;
367 
368 	/*
369 	 * Actions that needed rescheduling.
370 	 */
371 	unsigned long delayed_flags;
372 
373 	/*
374 	 * Software sequence counter, this is only required
375 	 * for hardware which doesn't support hardware
376 	 * sequence counting.
377 	 */
378 	atomic_t seqno;
379 };
380 
vif_to_intf(struct ieee80211_vif * vif)381 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
382 {
383 	return (struct rt2x00_intf *)vif->drv_priv;
384 }
385 
386 /**
387  * struct hw_mode_spec: Hardware specifications structure
388  *
389  * Details about the supported modes, rates and channels
390  * of a particular chipset. This is used by rt2x00lib
391  * to build the ieee80211_hw_mode array for mac80211.
392  *
393  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
394  * @supported_rates: Rate types which are supported (CCK, OFDM).
395  * @num_channels: Number of supported channels. This is used as array size
396  *	for @tx_power_a, @tx_power_bg and @channels.
397  * @channels: Device/chipset specific channel values (See &struct rf_channel).
398  * @channels_info: Additional information for channels (See &struct channel_info).
399  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
400  */
401 struct hw_mode_spec {
402 	unsigned int supported_bands;
403 #define SUPPORT_BAND_2GHZ	0x00000001
404 #define SUPPORT_BAND_5GHZ	0x00000002
405 
406 	unsigned int supported_rates;
407 #define SUPPORT_RATE_CCK	0x00000001
408 #define SUPPORT_RATE_OFDM	0x00000002
409 
410 	unsigned int num_channels;
411 	const struct rf_channel *channels;
412 	const struct channel_info *channels_info;
413 
414 	struct ieee80211_sta_ht_cap ht;
415 };
416 
417 /*
418  * Configuration structure wrapper around the
419  * mac80211 configuration structure.
420  * When mac80211 configures the driver, rt2x00lib
421  * can precalculate values which are equal for all
422  * rt2x00 drivers. Those values can be stored in here.
423  */
424 struct rt2x00lib_conf {
425 	struct ieee80211_conf *conf;
426 
427 	struct rf_channel rf;
428 	struct channel_info channel;
429 };
430 
431 /*
432  * Configuration structure for erp settings.
433  */
434 struct rt2x00lib_erp {
435 	int short_preamble;
436 	int cts_protection;
437 
438 	u32 basic_rates;
439 
440 	int slot_time;
441 
442 	short sifs;
443 	short pifs;
444 	short difs;
445 	short eifs;
446 
447 	u16 beacon_int;
448 	u16 ht_opmode;
449 };
450 
451 /*
452  * Configuration structure for hardware encryption.
453  */
454 struct rt2x00lib_crypto {
455 	enum cipher cipher;
456 
457 	enum set_key_cmd cmd;
458 	const u8 *address;
459 
460 	u32 bssidx;
461 
462 	u8 key[16];
463 	u8 tx_mic[8];
464 	u8 rx_mic[8];
465 
466 	int wcid;
467 };
468 
469 /*
470  * Configuration structure wrapper around the
471  * rt2x00 interface configuration handler.
472  */
473 struct rt2x00intf_conf {
474 	/*
475 	 * Interface type
476 	 */
477 	enum nl80211_iftype type;
478 
479 	/*
480 	 * TSF sync value, this is dependent on the operation type.
481 	 */
482 	enum tsf_sync sync;
483 
484 	/*
485 	 * The MAC and BSSID addresses are simple array of bytes,
486 	 * these arrays are little endian, so when sending the addresses
487 	 * to the drivers, copy the it into a endian-signed variable.
488 	 *
489 	 * Note that all devices (except rt2500usb) have 32 bits
490 	 * register word sizes. This means that whatever variable we
491 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
492 	 * might not accept what we are sending to it.
493 	 * This will also make it easier for the driver to write
494 	 * the data to the device.
495 	 */
496 	__le32 mac[2];
497 	__le32 bssid[2];
498 };
499 
500 /*
501  * Private structure for storing STA details
502  * wcid: Wireless Client ID
503  */
504 struct rt2x00_sta {
505 	int wcid;
506 };
507 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)508 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
509 {
510 	return (struct rt2x00_sta *)sta->drv_priv;
511 }
512 
513 /*
514  * rt2x00lib callback functions.
515  */
516 struct rt2x00lib_ops {
517 	/*
518 	 * Interrupt handlers.
519 	 */
520 	irq_handler_t irq_handler;
521 
522 	/*
523 	 * TX status tasklet handler.
524 	 */
525 	void (*txstatus_tasklet) (unsigned long data);
526 	void (*pretbtt_tasklet) (unsigned long data);
527 	void (*tbtt_tasklet) (unsigned long data);
528 	void (*rxdone_tasklet) (unsigned long data);
529 	void (*autowake_tasklet) (unsigned long data);
530 
531 	/*
532 	 * Device init handlers.
533 	 */
534 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
535 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
536 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
537 			       const u8 *data, const size_t len);
538 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
539 			      const u8 *data, const size_t len);
540 
541 	/*
542 	 * Device initialization/deinitialization handlers.
543 	 */
544 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
545 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
546 
547 	/*
548 	 * queue initialization handlers
549 	 */
550 	bool (*get_entry_state) (struct queue_entry *entry);
551 	void (*clear_entry) (struct queue_entry *entry);
552 
553 	/*
554 	 * Radio control handlers.
555 	 */
556 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
557 				 enum dev_state state);
558 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
559 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
560 			    struct link_qual *qual);
561 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
562 			     struct link_qual *qual);
563 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
564 			    struct link_qual *qual, const u32 count);
565 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
566 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
567 
568 	/*
569 	 * Data queue handlers.
570 	 */
571 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
572 	void (*start_queue) (struct data_queue *queue);
573 	void (*kick_queue) (struct data_queue *queue);
574 	void (*stop_queue) (struct data_queue *queue);
575 	void (*flush_queue) (struct data_queue *queue, bool drop);
576 	void (*tx_dma_done) (struct queue_entry *entry);
577 
578 	/*
579 	 * TX control handlers
580 	 */
581 	void (*write_tx_desc) (struct queue_entry *entry,
582 			       struct txentry_desc *txdesc);
583 	void (*write_tx_data) (struct queue_entry *entry,
584 			       struct txentry_desc *txdesc);
585 	void (*write_beacon) (struct queue_entry *entry,
586 			      struct txentry_desc *txdesc);
587 	void (*clear_beacon) (struct queue_entry *entry);
588 	int (*get_tx_data_len) (struct queue_entry *entry);
589 
590 	/*
591 	 * RX control handlers
592 	 */
593 	void (*fill_rxdone) (struct queue_entry *entry,
594 			     struct rxdone_entry_desc *rxdesc);
595 
596 	/*
597 	 * Configuration handlers.
598 	 */
599 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
600 				  struct rt2x00lib_crypto *crypto,
601 				  struct ieee80211_key_conf *key);
602 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
603 				    struct rt2x00lib_crypto *crypto,
604 				    struct ieee80211_key_conf *key);
605 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
606 			       const unsigned int filter_flags);
607 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
608 			     struct rt2x00_intf *intf,
609 			     struct rt2x00intf_conf *conf,
610 			     const unsigned int flags);
611 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
612 #define CONFIG_UPDATE_MAC		( 1 << 2 )
613 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
614 
615 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
616 			    struct rt2x00lib_erp *erp,
617 			    u32 changed);
618 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
619 			    struct antenna_setup *ant);
620 	void (*config) (struct rt2x00_dev *rt2x00dev,
621 			struct rt2x00lib_conf *libconf,
622 			const unsigned int changed_flags);
623 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
624 			struct ieee80211_vif *vif,
625 			struct ieee80211_sta *sta);
626 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
627 			   int wcid);
628 };
629 
630 /*
631  * rt2x00 driver callback operation structure.
632  */
633 struct rt2x00_ops {
634 	const char *name;
635 	const unsigned int drv_data_size;
636 	const unsigned int max_ap_intf;
637 	const unsigned int eeprom_size;
638 	const unsigned int rf_size;
639 	const unsigned int tx_queues;
640 	void (*queue_init)(struct data_queue *queue);
641 	const struct rt2x00lib_ops *lib;
642 	const void *drv;
643 	const struct ieee80211_ops *hw;
644 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
645 	const struct rt2x00debug *debugfs;
646 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
647 };
648 
649 /*
650  * rt2x00 state flags
651  */
652 enum rt2x00_state_flags {
653 	/*
654 	 * Device flags
655 	 */
656 	DEVICE_STATE_PRESENT,
657 	DEVICE_STATE_REGISTERED_HW,
658 	DEVICE_STATE_INITIALIZED,
659 	DEVICE_STATE_STARTED,
660 	DEVICE_STATE_ENABLED_RADIO,
661 	DEVICE_STATE_SCANNING,
662 
663 	/*
664 	 * Driver configuration
665 	 */
666 	CONFIG_CHANNEL_HT40,
667 	CONFIG_POWERSAVING,
668 	CONFIG_HT_DISABLED,
669 	CONFIG_QOS_DISABLED,
670 
671 	/*
672 	 * Mark we currently are sequentially reading TX_STA_FIFO register
673 	 * FIXME: this is for only rt2800usb, should go to private data
674 	 */
675 	TX_STATUS_READING,
676 };
677 
678 /*
679  * rt2x00 capability flags
680  */
681 enum rt2x00_capability_flags {
682 	/*
683 	 * Requirements
684 	 */
685 	REQUIRE_FIRMWARE,
686 	REQUIRE_BEACON_GUARD,
687 	REQUIRE_ATIM_QUEUE,
688 	REQUIRE_DMA,
689 	REQUIRE_COPY_IV,
690 	REQUIRE_L2PAD,
691 	REQUIRE_TXSTATUS_FIFO,
692 	REQUIRE_TASKLET_CONTEXT,
693 	REQUIRE_SW_SEQNO,
694 	REQUIRE_HT_TX_DESC,
695 	REQUIRE_PS_AUTOWAKE,
696 	REQUIRE_DELAYED_RFKILL,
697 
698 	/*
699 	 * Capabilities
700 	 */
701 	CAPABILITY_HW_BUTTON,
702 	CAPABILITY_HW_CRYPTO,
703 	CAPABILITY_POWER_LIMIT,
704 	CAPABILITY_CONTROL_FILTERS,
705 	CAPABILITY_CONTROL_FILTER_PSPOLL,
706 	CAPABILITY_PRE_TBTT_INTERRUPT,
707 	CAPABILITY_LINK_TUNING,
708 	CAPABILITY_FRAME_TYPE,
709 	CAPABILITY_RF_SEQUENCE,
710 	CAPABILITY_EXTERNAL_LNA_A,
711 	CAPABILITY_EXTERNAL_LNA_BG,
712 	CAPABILITY_DOUBLE_ANTENNA,
713 	CAPABILITY_BT_COEXIST,
714 	CAPABILITY_VCO_RECALIBRATION,
715 };
716 
717 /*
718  * Interface combinations
719  */
720 enum {
721 	IF_COMB_AP = 0,
722 	NUM_IF_COMB,
723 };
724 
725 /*
726  * rt2x00 device structure.
727  */
728 struct rt2x00_dev {
729 	/*
730 	 * Device structure.
731 	 * The structure stored in here depends on the
732 	 * system bus (PCI or USB).
733 	 * When accessing this variable, the rt2x00dev_{pci,usb}
734 	 * macros should be used for correct typecasting.
735 	 */
736 	struct device *dev;
737 
738 	/*
739 	 * Callback functions.
740 	 */
741 	const struct rt2x00_ops *ops;
742 
743 	/*
744 	 * Driver data.
745 	 */
746 	void *drv_data;
747 
748 	/*
749 	 * IEEE80211 control structure.
750 	 */
751 	struct ieee80211_hw *hw;
752 	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
753 	enum ieee80211_band curr_band;
754 	int curr_freq;
755 
756 	/*
757 	 * If enabled, the debugfs interface structures
758 	 * required for deregistration of debugfs.
759 	 */
760 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
761 	struct rt2x00debug_intf *debugfs_intf;
762 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
763 
764 	/*
765 	 * LED structure for changing the LED status
766 	 * by mac8011 or the kernel.
767 	 */
768 #ifdef CONFIG_RT2X00_LIB_LEDS
769 	struct rt2x00_led led_radio;
770 	struct rt2x00_led led_assoc;
771 	struct rt2x00_led led_qual;
772 	u16 led_mcu_reg;
773 #endif /* CONFIG_RT2X00_LIB_LEDS */
774 
775 	/*
776 	 * Device state flags.
777 	 * In these flags the current status is stored.
778 	 * Access to these flags should occur atomically.
779 	 */
780 	unsigned long flags;
781 
782 	/*
783 	 * Device capabiltiy flags.
784 	 * In these flags the device/driver capabilities are stored.
785 	 * Access to these flags should occur non-atomically.
786 	 */
787 	unsigned long cap_flags;
788 
789 	/*
790 	 * Device information, Bus IRQ and name (PCI, SoC)
791 	 */
792 	int irq;
793 	const char *name;
794 
795 	/*
796 	 * Chipset identification.
797 	 */
798 	struct rt2x00_chip chip;
799 
800 	/*
801 	 * hw capability specifications.
802 	 */
803 	struct hw_mode_spec spec;
804 
805 	/*
806 	 * This is the default TX/RX antenna setup as indicated
807 	 * by the device's EEPROM.
808 	 */
809 	struct antenna_setup default_ant;
810 
811 	/*
812 	 * Register pointers
813 	 * csr.base: CSR base register address. (PCI)
814 	 * csr.cache: CSR cache for usb_control_msg. (USB)
815 	 */
816 	union csr {
817 		void __iomem *base;
818 		void *cache;
819 	} csr;
820 
821 	/*
822 	 * Mutex to protect register accesses.
823 	 * For PCI and USB devices it protects against concurrent indirect
824 	 * register access (BBP, RF, MCU) since accessing those
825 	 * registers require multiple calls to the CSR registers.
826 	 * For USB devices it also protects the csr_cache since that
827 	 * field is used for normal CSR access and it cannot support
828 	 * multiple callers simultaneously.
829 	 */
830 	struct mutex csr_mutex;
831 
832 	/*
833 	 * Current packet filter configuration for the device.
834 	 * This contains all currently active FIF_* flags send
835 	 * to us by mac80211 during configure_filter().
836 	 */
837 	unsigned int packet_filter;
838 
839 	/*
840 	 * Interface details:
841 	 *  - Open ap interface count.
842 	 *  - Open sta interface count.
843 	 *  - Association count.
844 	 *  - Beaconing enabled count.
845 	 */
846 	unsigned int intf_ap_count;
847 	unsigned int intf_sta_count;
848 	unsigned int intf_associated;
849 	unsigned int intf_beaconing;
850 
851 	/*
852 	 * Interface combinations
853 	 */
854 	struct ieee80211_iface_limit if_limits_ap;
855 	struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
856 
857 	/*
858 	 * Link quality
859 	 */
860 	struct link link;
861 
862 	/*
863 	 * EEPROM data.
864 	 */
865 	__le16 *eeprom;
866 
867 	/*
868 	 * Active RF register values.
869 	 * These are stored here so we don't need
870 	 * to read the rf registers and can directly
871 	 * use this value instead.
872 	 * This field should be accessed by using
873 	 * rt2x00_rf_read() and rt2x00_rf_write().
874 	 */
875 	u32 *rf;
876 
877 	/*
878 	 * LNA gain
879 	 */
880 	short lna_gain;
881 
882 	/*
883 	 * Current TX power value.
884 	 */
885 	u16 tx_power;
886 
887 	/*
888 	 * Current retry values.
889 	 */
890 	u8 short_retry;
891 	u8 long_retry;
892 
893 	/*
894 	 * Rssi <-> Dbm offset
895 	 */
896 	u8 rssi_offset;
897 
898 	/*
899 	 * Frequency offset.
900 	 */
901 	u8 freq_offset;
902 
903 	/*
904 	 * Association id.
905 	 */
906 	u16 aid;
907 
908 	/*
909 	 * Beacon interval.
910 	 */
911 	u16 beacon_int;
912 
913 	/**
914 	 * Timestamp of last received beacon
915 	 */
916 	unsigned long last_beacon;
917 
918 	/*
919 	 * Low level statistics which will have
920 	 * to be kept up to date while device is running.
921 	 */
922 	struct ieee80211_low_level_stats low_level_stats;
923 
924 	/**
925 	 * Work queue for all work which should not be placed
926 	 * on the mac80211 workqueue (because of dependencies
927 	 * between various work structures).
928 	 */
929 	struct workqueue_struct *workqueue;
930 
931 	/*
932 	 * Scheduled work.
933 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
934 	 * which means it cannot be placed on the hw->workqueue
935 	 * due to RTNL locking requirements.
936 	 */
937 	struct work_struct intf_work;
938 
939 	/**
940 	 * Scheduled work for TX/RX done handling (USB devices)
941 	 */
942 	struct work_struct rxdone_work;
943 	struct work_struct txdone_work;
944 
945 	/*
946 	 * Powersaving work
947 	 */
948 	struct delayed_work autowakeup_work;
949 	struct work_struct sleep_work;
950 
951 	/*
952 	 * Data queue arrays for RX, TX, Beacon and ATIM.
953 	 */
954 	unsigned int data_queues;
955 	struct data_queue *rx;
956 	struct data_queue *tx;
957 	struct data_queue *bcn;
958 	struct data_queue *atim;
959 
960 	/*
961 	 * Firmware image.
962 	 */
963 	const struct firmware *fw;
964 
965 	/*
966 	 * FIFO for storing tx status reports between isr and tasklet.
967 	 */
968 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
969 
970 	/*
971 	 * Timer to ensure tx status reports are read (rt2800usb).
972 	 */
973 	struct hrtimer txstatus_timer;
974 
975 	/*
976 	 * Tasklet for processing tx status reports (rt2800pci).
977 	 */
978 	struct tasklet_struct txstatus_tasklet;
979 	struct tasklet_struct pretbtt_tasklet;
980 	struct tasklet_struct tbtt_tasklet;
981 	struct tasklet_struct rxdone_tasklet;
982 	struct tasklet_struct autowake_tasklet;
983 
984 	/*
985 	 * Used for VCO periodic calibration.
986 	 */
987 	int rf_channel;
988 
989 	/*
990 	 * Protect the interrupt mask register.
991 	 */
992 	spinlock_t irqmask_lock;
993 
994 	/*
995 	 * List of BlockAckReq TX entries that need driver BlockAck processing.
996 	 */
997 	struct list_head bar_list;
998 	spinlock_t bar_list_lock;
999 
1000 	/* Extra TX headroom required for alignment purposes. */
1001 	unsigned int extra_tx_headroom;
1002 };
1003 
1004 struct rt2x00_bar_list_entry {
1005 	struct list_head list;
1006 	struct rcu_head head;
1007 
1008 	struct queue_entry *entry;
1009 	int block_acked;
1010 
1011 	/* Relevant parts of the IEEE80211 BAR header */
1012 	__u8 ra[6];
1013 	__u8 ta[6];
1014 	__le16 control;
1015 	__le16 start_seq_num;
1016 };
1017 
1018 /*
1019  * Register defines.
1020  * Some registers require multiple attempts before success,
1021  * in those cases REGISTER_BUSY_COUNT attempts should be
1022  * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1023  * bus delays, we do not have to loop so many times to wait
1024  * for valid register value on that bus.
1025  */
1026 #define REGISTER_BUSY_COUNT	100
1027 #define REGISTER_USB_BUSY_COUNT 20
1028 #define REGISTER_BUSY_DELAY	100
1029 
1030 /*
1031  * Generic RF access.
1032  * The RF is being accessed by word index.
1033  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 * data)1034 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1035 				  const unsigned int word, u32 *data)
1036 {
1037 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1038 	*data = rt2x00dev->rf[word - 1];
1039 }
1040 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1041 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1042 				   const unsigned int word, u32 data)
1043 {
1044 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1045 	rt2x00dev->rf[word - 1] = data;
1046 }
1047 
1048 /*
1049  * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1050  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1051 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1052 				       const unsigned int word)
1053 {
1054 	return (void *)&rt2x00dev->eeprom[word];
1055 }
1056 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 * data)1057 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1058 				      const unsigned int word, u16 *data)
1059 {
1060 	*data = le16_to_cpu(rt2x00dev->eeprom[word]);
1061 }
1062 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1063 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1064 				       const unsigned int word, u16 data)
1065 {
1066 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1067 }
1068 
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1069 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1070 				    const unsigned int byte)
1071 {
1072 	return *(((u8 *)rt2x00dev->eeprom) + byte);
1073 }
1074 
1075 /*
1076  * Chipset handlers
1077  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1078 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1079 				   const u16 rt, const u16 rf, const u16 rev)
1080 {
1081 	rt2x00dev->chip.rt = rt;
1082 	rt2x00dev->chip.rf = rf;
1083 	rt2x00dev->chip.rev = rev;
1084 
1085 	rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1086 		    rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1087 		    rt2x00dev->chip.rev);
1088 }
1089 
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1090 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1091 				 const u16 rt, const u16 rev)
1092 {
1093 	rt2x00dev->chip.rt = rt;
1094 	rt2x00dev->chip.rev = rev;
1095 
1096 	rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1097 		    rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1098 }
1099 
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1100 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1101 {
1102 	rt2x00dev->chip.rf = rf;
1103 
1104 	rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1105 		    rt2x00dev->chip.rf);
1106 }
1107 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1108 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1109 {
1110 	return (rt2x00dev->chip.rt == rt);
1111 }
1112 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1113 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1114 {
1115 	return (rt2x00dev->chip.rf == rf);
1116 }
1117 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1118 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1119 {
1120 	return rt2x00dev->chip.rev;
1121 }
1122 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1123 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1124 				 const u16 rt, const u16 rev)
1125 {
1126 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1127 }
1128 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1129 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1130 				    const u16 rt, const u16 rev)
1131 {
1132 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1133 }
1134 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1135 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1136 				     const u16 rt, const u16 rev)
1137 {
1138 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1139 }
1140 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1141 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1142 					enum rt2x00_chip_intf intf)
1143 {
1144 	rt2x00dev->chip.intf = intf;
1145 }
1146 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1147 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1148 			       enum rt2x00_chip_intf intf)
1149 {
1150 	return (rt2x00dev->chip.intf == intf);
1151 }
1152 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1153 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1154 {
1155 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1156 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1157 }
1158 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1159 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1160 {
1161 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1162 }
1163 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1164 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1165 {
1166 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1167 }
1168 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1169 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1170 {
1171 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1172 }
1173 
1174 /* Helpers for capability flags */
1175 
1176 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1177 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1178 		    enum rt2x00_capability_flags cap_flag)
1179 {
1180 	return test_bit(cap_flag, &rt2x00dev->cap_flags);
1181 }
1182 
1183 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1184 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1185 {
1186 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1187 }
1188 
1189 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1190 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1191 {
1192 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1193 }
1194 
1195 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1196 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1197 {
1198 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1199 }
1200 
1201 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1202 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1203 {
1204 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1205 }
1206 
1207 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1208 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1209 {
1210 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1211 }
1212 
1213 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1214 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1215 {
1216 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1217 }
1218 
1219 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1220 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1221 {
1222 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1223 }
1224 
1225 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1226 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1227 {
1228 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1229 }
1230 
1231 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1232 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1233 {
1234 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1235 }
1236 
1237 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1238 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1239 {
1240 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1241 }
1242 
1243 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1244 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1245 {
1246 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1247 }
1248 
1249 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1250 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1251 {
1252 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1253 }
1254 
1255 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1256 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1257 {
1258 	return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1259 }
1260 
1261 /**
1262  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1263  * @entry: Pointer to &struct queue_entry
1264  *
1265  * Returns -ENOMEM if mapping fail, 0 otherwise.
1266  */
1267 int rt2x00queue_map_txskb(struct queue_entry *entry);
1268 
1269 /**
1270  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1271  * @entry: Pointer to &struct queue_entry
1272  */
1273 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1274 
1275 /**
1276  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1277  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1278  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1279  *
1280  * Returns NULL for non tx queues.
1281  */
1282 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1283 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1284 			 const enum data_queue_qid queue)
1285 {
1286 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1287 		return &rt2x00dev->tx[queue];
1288 
1289 	if (queue == QID_ATIM)
1290 		return rt2x00dev->atim;
1291 
1292 	return NULL;
1293 }
1294 
1295 /**
1296  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1297  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1298  * @index: Index identifier for obtaining the correct index.
1299  */
1300 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1301 					  enum queue_index index);
1302 
1303 /**
1304  * rt2x00queue_pause_queue - Pause a data queue
1305  * @queue: Pointer to &struct data_queue.
1306  *
1307  * This function will pause the data queue locally, preventing
1308  * new frames to be added to the queue (while the hardware is
1309  * still allowed to run).
1310  */
1311 void rt2x00queue_pause_queue(struct data_queue *queue);
1312 
1313 /**
1314  * rt2x00queue_unpause_queue - unpause a data queue
1315  * @queue: Pointer to &struct data_queue.
1316  *
1317  * This function will unpause the data queue locally, allowing
1318  * new frames to be added to the queue again.
1319  */
1320 void rt2x00queue_unpause_queue(struct data_queue *queue);
1321 
1322 /**
1323  * rt2x00queue_start_queue - Start a data queue
1324  * @queue: Pointer to &struct data_queue.
1325  *
1326  * This function will start handling all pending frames in the queue.
1327  */
1328 void rt2x00queue_start_queue(struct data_queue *queue);
1329 
1330 /**
1331  * rt2x00queue_stop_queue - Halt a data queue
1332  * @queue: Pointer to &struct data_queue.
1333  *
1334  * This function will stop all pending frames in the queue.
1335  */
1336 void rt2x00queue_stop_queue(struct data_queue *queue);
1337 
1338 /**
1339  * rt2x00queue_flush_queue - Flush a data queue
1340  * @queue: Pointer to &struct data_queue.
1341  * @drop: True to drop all pending frames.
1342  *
1343  * This function will flush the queue. After this call
1344  * the queue is guaranteed to be empty.
1345  */
1346 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1347 
1348 /**
1349  * rt2x00queue_start_queues - Start all data queues
1350  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1351  *
1352  * This function will loop through all available queues to start them
1353  */
1354 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1355 
1356 /**
1357  * rt2x00queue_stop_queues - Halt all data queues
1358  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1359  *
1360  * This function will loop through all available queues to stop
1361  * any pending frames.
1362  */
1363 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1364 
1365 /**
1366  * rt2x00queue_flush_queues - Flush all data queues
1367  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1368  * @drop: True to drop all pending frames.
1369  *
1370  * This function will loop through all available queues to flush
1371  * any pending frames.
1372  */
1373 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1374 
1375 /*
1376  * Debugfs handlers.
1377  */
1378 /**
1379  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1380  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1381  * @type: The type of frame that is being dumped.
1382  * @skb: The skb containing the frame to be dumped.
1383  */
1384 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1385 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1386 			    enum rt2x00_dump_type type, struct sk_buff *skb);
1387 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct sk_buff * skb)1388 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1389 					  enum rt2x00_dump_type type,
1390 					  struct sk_buff *skb)
1391 {
1392 }
1393 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1394 
1395 /*
1396  * Utility functions.
1397  */
1398 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1399 			 struct ieee80211_vif *vif);
1400 
1401 /*
1402  * Interrupt context handlers.
1403  */
1404 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1405 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1406 void rt2x00lib_dmastart(struct queue_entry *entry);
1407 void rt2x00lib_dmadone(struct queue_entry *entry);
1408 void rt2x00lib_txdone(struct queue_entry *entry,
1409 		      struct txdone_entry_desc *txdesc);
1410 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1411 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1412 
1413 /*
1414  * mac80211 handlers.
1415  */
1416 void rt2x00mac_tx(struct ieee80211_hw *hw,
1417 		  struct ieee80211_tx_control *control,
1418 		  struct sk_buff *skb);
1419 int rt2x00mac_start(struct ieee80211_hw *hw);
1420 void rt2x00mac_stop(struct ieee80211_hw *hw);
1421 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1422 			    struct ieee80211_vif *vif);
1423 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1424 				struct ieee80211_vif *vif);
1425 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1426 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1427 				unsigned int changed_flags,
1428 				unsigned int *total_flags,
1429 				u64 multicast);
1430 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1431 		      bool set);
1432 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1433 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1434 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1435 		      struct ieee80211_key_conf *key);
1436 #else
1437 #define rt2x00mac_set_key	NULL
1438 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1439 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1440 		      struct ieee80211_sta *sta);
1441 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1442 			 struct ieee80211_sta *sta);
1443 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1444 			     struct ieee80211_vif *vif,
1445 			     const u8 *mac_addr);
1446 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1447 				struct ieee80211_vif *vif);
1448 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1449 			struct ieee80211_low_level_stats *stats);
1450 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1451 				struct ieee80211_vif *vif,
1452 				struct ieee80211_bss_conf *bss_conf,
1453 				u32 changes);
1454 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1455 		      struct ieee80211_vif *vif, u16 queue,
1456 		      const struct ieee80211_tx_queue_params *params);
1457 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1458 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1459 		     u32 queues, bool drop);
1460 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1461 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1462 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1463 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1464 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1465 
1466 /*
1467  * Driver allocation handlers.
1468  */
1469 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1470 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1471 #ifdef CONFIG_PM
1472 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1473 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1474 #endif /* CONFIG_PM */
1475 
1476 #endif /* RT2X00_H */
1477