1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2010, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  */
36 /** \defgroup PtlRPC Portal RPC and networking module.
37  *
38  * PortalRPC is the layer used by rest of lustre code to achieve network
39  * communications: establish connections with corresponding export and import
40  * states, listen for a service, send and receive RPCs.
41  * PortalRPC also includes base recovery framework: packet resending and
42  * replaying, reconnections, pinger.
43  *
44  * PortalRPC utilizes LNet as its transport layer.
45  *
46  * @{
47  */
48 
49 
50 #ifndef _LUSTRE_NET_H
51 #define _LUSTRE_NET_H
52 
53 /** \defgroup net net
54  *
55  * @{
56  */
57 
58 #include "../../include/linux/libcfs/libcfs.h"
59 // #include <obd.h>
60 #include "../../include/linux/lnet/lnet.h"
61 #include "lustre/lustre_idl.h"
62 #include "lustre_ha.h"
63 #include "lustre_sec.h"
64 #include "lustre_import.h"
65 #include "lprocfs_status.h"
66 #include "lu_object.h"
67 #include "lustre_req_layout.h"
68 
69 #include "obd_support.h"
70 #include "lustre_ver.h"
71 
72 /* MD flags we _always_ use */
73 #define PTLRPC_MD_OPTIONS  0
74 
75 /**
76  * Max # of bulk operations in one request.
77  * In order for the client and server to properly negotiate the maximum
78  * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
79  * value.  The client is free to limit the actual RPC size for any bulk
80  * transfer via cl_max_pages_per_rpc to some non-power-of-two value. */
81 #define PTLRPC_BULK_OPS_BITS	2
82 #define PTLRPC_BULK_OPS_COUNT	(1U << PTLRPC_BULK_OPS_BITS)
83 /**
84  * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
85  * should not be used on the server at all.  Otherwise, it imposes a
86  * protocol limitation on the maximum RPC size that can be used by any
87  * RPC sent to that server in the future.  Instead, the server should
88  * use the negotiated per-client ocd_brw_size to determine the bulk
89  * RPC count. */
90 #define PTLRPC_BULK_OPS_MASK	(~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
91 
92 /**
93  * Define maxima for bulk I/O.
94  *
95  * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
96  * of LNET_MTU sized RDMA transfers.  Clients and servers negotiate the
97  * currently supported maximum between peers at connect via ocd_brw_size.
98  */
99 #define PTLRPC_MAX_BRW_BITS	(LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
100 #define PTLRPC_MAX_BRW_SIZE	(1 << PTLRPC_MAX_BRW_BITS)
101 #define PTLRPC_MAX_BRW_PAGES	(PTLRPC_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
102 
103 #define ONE_MB_BRW_SIZE		(1 << LNET_MTU_BITS)
104 #define MD_MAX_BRW_SIZE		(1 << LNET_MTU_BITS)
105 #define MD_MAX_BRW_PAGES	(MD_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
106 #define DT_MAX_BRW_SIZE		PTLRPC_MAX_BRW_SIZE
107 #define DT_MAX_BRW_PAGES	(DT_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
108 #define OFD_MAX_BRW_SIZE	(1 << LNET_MTU_BITS)
109 
110 /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
111 # if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
112 #  error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
113 # endif
114 # if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE))
115 #  error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE"
116 # endif
117 # if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
118 #  error "PTLRPC_MAX_BRW_SIZE too big"
119 # endif
120 # if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
121 #  error "PTLRPC_MAX_BRW_PAGES too big"
122 # endif
123 
124 #define PTLRPC_NTHRS_INIT	2
125 
126 /**
127  * Buffer Constants
128  *
129  * Constants determine how memory is used to buffer incoming service requests.
130  *
131  * ?_NBUFS	      # buffers to allocate when growing the pool
132  * ?_BUFSIZE	    # bytes in a single request buffer
133  * ?_MAXREQSIZE	 # maximum request service will receive
134  *
135  * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
136  * of ?_NBUFS is added to the pool.
137  *
138  * Messages larger than ?_MAXREQSIZE are dropped.  Request buffers are
139  * considered full when less than ?_MAXREQSIZE is left in them.
140  */
141 /**
142  * Thread Constants
143  *
144  * Constants determine how threads are created for ptlrpc service.
145  *
146  * ?_NTHRS_INIT		# threads to create for each service partition on
147  *			  initializing. If it's non-affinity service and
148  *			  there is only one partition, it's the overall #
149  *			  threads for the service while initializing.
150  * ?_NTHRS_BASE		# threads should be created at least for each
151  *			  ptlrpc partition to keep the service healthy.
152  *			  It's the low-water mark of threads upper-limit
153  *			  for each partition.
154  * ?_THR_FACTOR	 # threads can be added on threads upper-limit for
155  *			  each CPU core. This factor is only for reference,
156  *			  we might decrease value of factor if number of cores
157  *			  per CPT is above a limit.
158  * ?_NTHRS_MAX		# overall threads can be created for a service,
159  *			  it's a soft limit because if service is running
160  *			  on machine with hundreds of cores and tens of
161  *			  CPU partitions, we need to guarantee each partition
162  *			  has ?_NTHRS_BASE threads, which means total threads
163  *			  will be ?_NTHRS_BASE * number_of_cpts which can
164  *			  exceed ?_NTHRS_MAX.
165  *
166  * Examples
167  *
168  * #define MDS_NTHRS_INIT	2
169  * #define MDS_NTHRS_BASE	64
170  * #define MDS_NTHRS_FACTOR	8
171  * #define MDS_NTHRS_MAX	1024
172  *
173  * Example 1):
174  * ---------------------------------------------------------------------
175  * Server(A) has 16 cores, user configured it to 4 partitions so each
176  * partition has 4 cores, then actual number of service threads on each
177  * partition is:
178  *     MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
179  *
180  * Total number of threads for the service is:
181  *     96 * partitions(4) = 384
182  *
183  * Example 2):
184  * ---------------------------------------------------------------------
185  * Server(B) has 32 cores, user configured it to 4 partitions so each
186  * partition has 8 cores, then actual number of service threads on each
187  * partition is:
188  *     MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
189  *
190  * Total number of threads for the service is:
191  *     128 * partitions(4) = 512
192  *
193  * Example 3):
194  * ---------------------------------------------------------------------
195  * Server(B) has 96 cores, user configured it to 8 partitions so each
196  * partition has 12 cores, then actual number of service threads on each
197  * partition is:
198  *     MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
199  *
200  * Total number of threads for the service is:
201  *     160 * partitions(8) = 1280
202  *
203  * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
204  * as upper limit of threads number for each partition:
205  *     MDS_NTHRS_MAX(1024) / partitions(8) = 128
206  *
207  * Example 4):
208  * ---------------------------------------------------------------------
209  * Server(C) have a thousand of cores and user configured it to 32 partitions
210  *     MDS_NTHRS_BASE(64) * 32 = 2048
211  *
212  * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
213  * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
214  * to keep service healthy, so total number of threads will just be 2048.
215  *
216  * NB: we don't suggest to choose server with that many cores because backend
217  *     filesystem itself, buffer cache, or underlying network stack might
218  *     have some SMP scalability issues at that large scale.
219  *
220  *     If user already has a fat machine with hundreds or thousands of cores,
221  *     there are two choices for configuration:
222  *     a) create CPU table from subset of all CPUs and run Lustre on
223  *	top of this subset
224  *     b) bind service threads on a few partitions, see modparameters of
225  *	MDS and OSS for details
226 *
227  * NB: these calculations (and examples below) are simplified to help
228  *     understanding, the real implementation is a little more complex,
229  *     please see ptlrpc_server_nthreads_check() for details.
230  *
231  */
232 
233  /*
234   * LDLM threads constants:
235   *
236   * Given 8 as factor and 24 as base threads number
237   *
238   * example 1)
239   * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
240   *
241   * example 2)
242   * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
243   * threads for each partition and total threads number will be 112.
244   *
245   * example 3)
246   * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
247   * threads for each partition to keep service healthy, so total threads
248   * number should be 24 * 8 = 192.
249   *
250   * So with these constants, threads number will be at the similar level
251   * of old versions, unless target machine has over a hundred cores
252   */
253 #define LDLM_THR_FACTOR		8
254 #define LDLM_NTHRS_INIT		PTLRPC_NTHRS_INIT
255 #define LDLM_NTHRS_BASE		24
256 #define LDLM_NTHRS_MAX		(num_online_cpus() == 1 ? 64 : 128)
257 
258 #define LDLM_BL_THREADS   LDLM_NTHRS_AUTO_INIT
259 #define LDLM_CLIENT_NBUFS 1
260 #define LDLM_SERVER_NBUFS 64
261 #define LDLM_BUFSIZE      (8 * 1024)
262 #define LDLM_MAXREQSIZE   (5 * 1024)
263 #define LDLM_MAXREPSIZE   (1024)
264 
265 #define MDS_MAXREQSIZE		(5 * 1024)	/* >= 4736 */
266 
267 #define OST_MAXREQSIZE		(5 * 1024)
268 
269 /* Macro to hide a typecast. */
270 #define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
271 
272 /**
273  * Structure to single define portal connection.
274  */
275 struct ptlrpc_connection {
276 	/** linkage for connections hash table */
277 	struct hlist_node	c_hash;
278 	/** Our own lnet nid for this connection */
279 	lnet_nid_t	      c_self;
280 	/** Remote side nid for this connection */
281 	lnet_process_id_t       c_peer;
282 	/** UUID of the other side */
283 	struct obd_uuid	 c_remote_uuid;
284 	/** reference counter for this connection */
285 	atomic_t	    c_refcount;
286 };
287 
288 /** Client definition for PortalRPC */
289 struct ptlrpc_client {
290 	/** What lnet portal does this client send messages to by default */
291 	__u32		   cli_request_portal;
292 	/** What portal do we expect replies on */
293 	__u32		   cli_reply_portal;
294 	/** Name of the client */
295 	char		   *cli_name;
296 };
297 
298 /** state flags of requests */
299 /* XXX only ones left are those used by the bulk descs as well! */
300 #define PTL_RPC_FL_INTR      (1 << 0)  /* reply wait was interrupted by user */
301 #define PTL_RPC_FL_TIMEOUT   (1 << 7)  /* request timed out waiting for reply */
302 
303 #define REQ_MAX_ACK_LOCKS 8
304 
305 union ptlrpc_async_args {
306 	/**
307 	 * Scratchpad for passing args to completion interpreter. Users
308 	 * cast to the struct of their choosing, and CLASSERT that this is
309 	 * big enough.  For _tons_ of context, OBD_ALLOC a struct and store
310 	 * a pointer to it here.  The pointer_arg ensures this struct is at
311 	 * least big enough for that.
312 	 */
313 	void      *pointer_arg[11];
314 	__u64      space[7];
315 };
316 
317 struct ptlrpc_request_set;
318 typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
319 typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
320 
321 /**
322  * Definition of request set structure.
323  * Request set is a list of requests (not necessary to the same target) that
324  * once populated with RPCs could be sent in parallel.
325  * There are two kinds of request sets. General purpose and with dedicated
326  * serving thread. Example of the latter is ptlrpcd set.
327  * For general purpose sets once request set started sending it is impossible
328  * to add new requests to such set.
329  * Provides a way to call "completion callbacks" when all requests in the set
330  * returned.
331  */
332 struct ptlrpc_request_set {
333 	atomic_t	  set_refcount;
334 	/** number of in queue requests */
335 	atomic_t	  set_new_count;
336 	/** number of uncompleted requests */
337 	atomic_t	  set_remaining;
338 	/** wait queue to wait on for request events */
339 	wait_queue_head_t	   set_waitq;
340 	wait_queue_head_t	  *set_wakeup_ptr;
341 	/** List of requests in the set */
342 	struct list_head	    set_requests;
343 	/**
344 	 * List of completion callbacks to be called when the set is completed
345 	 * This is only used if \a set_interpret is NULL.
346 	 * Links struct ptlrpc_set_cbdata.
347 	 */
348 	struct list_head	    set_cblist;
349 	/** Completion callback, if only one. */
350 	set_interpreter_func  set_interpret;
351 	/** opaq argument passed to completion \a set_interpret callback. */
352 	void		 *set_arg;
353 	/**
354 	 * Lock for \a set_new_requests manipulations
355 	 * locked so that any old caller can communicate requests to
356 	 * the set holder who can then fold them into the lock-free set
357 	 */
358 	spinlock_t		set_new_req_lock;
359 	/** List of new yet unsent requests. Only used with ptlrpcd now. */
360 	struct list_head	    set_new_requests;
361 
362 	/** rq_status of requests that have been freed already */
363 	int		   set_rc;
364 	/** Additional fields used by the flow control extension */
365 	/** Maximum number of RPCs in flight */
366 	int		   set_max_inflight;
367 	/** Callback function used to generate RPCs */
368 	set_producer_func     set_producer;
369 	/** opaq argument passed to the producer callback */
370 	void		 *set_producer_arg;
371 };
372 
373 /**
374  * Description of a single ptrlrpc_set callback
375  */
376 struct ptlrpc_set_cbdata {
377 	/** List linkage item */
378 	struct list_head	      psc_item;
379 	/** Pointer to interpreting function */
380 	set_interpreter_func    psc_interpret;
381 	/** Opaq argument to pass to the callback */
382 	void		   *psc_data;
383 };
384 
385 struct ptlrpc_bulk_desc;
386 struct ptlrpc_service_part;
387 struct ptlrpc_service;
388 
389 /**
390  * ptlrpc callback & work item stuff
391  */
392 struct ptlrpc_cb_id {
393 	void   (*cbid_fn)(lnet_event_t *ev);     /* specific callback fn */
394 	void    *cbid_arg;		      /* additional arg */
395 };
396 
397 /** Maximum number of locks to fit into reply state */
398 #define RS_MAX_LOCKS 8
399 #define RS_DEBUG     0
400 
401 /**
402  * Structure to define reply state on the server
403  * Reply state holds various reply message information. Also for "difficult"
404  * replies (rep-ack case) we store the state after sending reply and wait
405  * for the client to acknowledge the reception. In these cases locks could be
406  * added to the state for replay/failover consistency guarantees.
407  */
408 struct ptlrpc_reply_state {
409 	/** Callback description */
410 	struct ptlrpc_cb_id    rs_cb_id;
411 	/** Linkage for list of all reply states in a system */
412 	struct list_head	     rs_list;
413 	/** Linkage for list of all reply states on same export */
414 	struct list_head	     rs_exp_list;
415 	/** Linkage for list of all reply states for same obd */
416 	struct list_head	     rs_obd_list;
417 #if RS_DEBUG
418 	struct list_head	     rs_debug_list;
419 #endif
420 	/** A spinlock to protect the reply state flags */
421 	spinlock_t		rs_lock;
422 	/** Reply state flags */
423 	unsigned long	  rs_difficult:1;     /* ACK/commit stuff */
424 	unsigned long	  rs_no_ack:1;    /* no ACK, even for
425 						  difficult requests */
426 	unsigned long	  rs_scheduled:1;     /* being handled? */
427 	unsigned long	  rs_scheduled_ever:1;/* any schedule attempts? */
428 	unsigned long	  rs_handled:1;  /* been handled yet? */
429 	unsigned long	  rs_on_net:1;   /* reply_out_callback pending? */
430 	unsigned long	  rs_prealloc:1; /* rs from prealloc list */
431 	unsigned long	  rs_committed:1;/* the transaction was committed
432 						 and the rs was dispatched
433 						 by ptlrpc_commit_replies */
434 	/** Size of the state */
435 	int		    rs_size;
436 	/** opcode */
437 	__u32		  rs_opc;
438 	/** Transaction number */
439 	__u64		  rs_transno;
440 	/** xid */
441 	__u64		  rs_xid;
442 	struct obd_export     *rs_export;
443 	struct ptlrpc_service_part *rs_svcpt;
444 	/** Lnet metadata handle for the reply */
445 	lnet_handle_md_t       rs_md_h;
446 	atomic_t	   rs_refcount;
447 
448 	/** Context for the service thread */
449 	struct ptlrpc_svc_ctx *rs_svc_ctx;
450 	/** Reply buffer (actually sent to the client), encoded if needed */
451 	struct lustre_msg     *rs_repbuf;       /* wrapper */
452 	/** Size of the reply buffer */
453 	int		    rs_repbuf_len;   /* wrapper buf length */
454 	/** Size of the reply message */
455 	int		    rs_repdata_len;  /* wrapper msg length */
456 	/**
457 	 * Actual reply message. Its content is encrypted (if needed) to
458 	 * produce reply buffer for actual sending. In simple case
459 	 * of no network encryption we just set \a rs_repbuf to \a rs_msg
460 	 */
461 	struct lustre_msg     *rs_msg;	  /* reply message */
462 
463 	/** Number of locks awaiting client ACK */
464 	int		    rs_nlocks;
465 	/** Handles of locks awaiting client reply ACK */
466 	struct lustre_handle   rs_locks[RS_MAX_LOCKS];
467 	/** Lock modes of locks in \a rs_locks */
468 	ldlm_mode_t	    rs_modes[RS_MAX_LOCKS];
469 };
470 
471 struct ptlrpc_thread;
472 
473 /** RPC stages */
474 enum rq_phase {
475 	RQ_PHASE_NEW	    = 0xebc0de00,
476 	RQ_PHASE_RPC	    = 0xebc0de01,
477 	RQ_PHASE_BULK	   = 0xebc0de02,
478 	RQ_PHASE_INTERPRET      = 0xebc0de03,
479 	RQ_PHASE_COMPLETE       = 0xebc0de04,
480 	RQ_PHASE_UNREGISTERING  = 0xebc0de05,
481 	RQ_PHASE_UNDEFINED      = 0xebc0de06
482 };
483 
484 /** Type of request interpreter call-back */
485 typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
486 				    struct ptlrpc_request *req,
487 				    void *arg, int rc);
488 
489 /**
490  * Definition of request pool structure.
491  * The pool is used to store empty preallocated requests for the case
492  * when we would actually need to send something without performing
493  * any allocations (to avoid e.g. OOM).
494  */
495 struct ptlrpc_request_pool {
496 	/** Locks the list */
497 	spinlock_t prp_lock;
498 	/** list of ptlrpc_request structs */
499 	struct list_head prp_req_list;
500 	/** Maximum message size that would fit into a request from this pool */
501 	int prp_rq_size;
502 	/** Function to allocate more requests for this pool */
503 	void (*prp_populate)(struct ptlrpc_request_pool *, int);
504 };
505 
506 struct lu_context;
507 struct lu_env;
508 
509 struct ldlm_lock;
510 
511 /**
512  * \defgroup nrs Network Request Scheduler
513  * @{
514  */
515 struct ptlrpc_nrs_policy;
516 struct ptlrpc_nrs_resource;
517 struct ptlrpc_nrs_request;
518 
519 /**
520  * NRS control operations.
521  *
522  * These are common for all policies.
523  */
524 enum ptlrpc_nrs_ctl {
525 	/**
526 	 * Not a valid opcode.
527 	 */
528 	PTLRPC_NRS_CTL_INVALID,
529 	/**
530 	 * Activate the policy.
531 	 */
532 	PTLRPC_NRS_CTL_START,
533 	/**
534 	 * Reserved for multiple primary policies, which may be a possibility
535 	 * in the future.
536 	 */
537 	PTLRPC_NRS_CTL_STOP,
538 	/**
539 	 * Policies can start using opcodes from this value and onwards for
540 	 * their own purposes; the assigned value itself is arbitrary.
541 	 */
542 	PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20,
543 };
544 
545 /**
546  * ORR policy operations
547  */
548 enum nrs_ctl_orr {
549 	NRS_CTL_ORR_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
550 	NRS_CTL_ORR_WR_QUANTUM,
551 	NRS_CTL_ORR_RD_OFF_TYPE,
552 	NRS_CTL_ORR_WR_OFF_TYPE,
553 	NRS_CTL_ORR_RD_SUPP_REQ,
554 	NRS_CTL_ORR_WR_SUPP_REQ,
555 };
556 
557 /**
558  * NRS policy operations.
559  *
560  * These determine the behaviour of a policy, and are called in response to
561  * NRS core events.
562  */
563 struct ptlrpc_nrs_pol_ops {
564 	/**
565 	 * Called during policy registration; this operation is optional.
566 	 *
567 	 * \param[in,out] policy The policy being initialized
568 	 */
569 	int	(*op_policy_init) (struct ptlrpc_nrs_policy *policy);
570 	/**
571 	 * Called during policy unregistration; this operation is optional.
572 	 *
573 	 * \param[in,out] policy The policy being unregistered/finalized
574 	 */
575 	void	(*op_policy_fini) (struct ptlrpc_nrs_policy *policy);
576 	/**
577 	 * Called when activating a policy via lprocfs; policies allocate and
578 	 * initialize their resources here; this operation is optional.
579 	 *
580 	 * \param[in,out] policy The policy being started
581 	 *
582 	 * \see nrs_policy_start_locked()
583 	 */
584 	int	(*op_policy_start) (struct ptlrpc_nrs_policy *policy);
585 	/**
586 	 * Called when deactivating a policy via lprocfs; policies deallocate
587 	 * their resources here; this operation is optional
588 	 *
589 	 * \param[in,out] policy The policy being stopped
590 	 *
591 	 * \see nrs_policy_stop0()
592 	 */
593 	void	(*op_policy_stop) (struct ptlrpc_nrs_policy *policy);
594 	/**
595 	 * Used for policy-specific operations; i.e. not generic ones like
596 	 * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous
597 	 * to an ioctl; this operation is optional.
598 	 *
599 	 * \param[in,out]	 policy The policy carrying out operation \a opc
600 	 * \param[in]	  opc	 The command operation being carried out
601 	 * \param[in,out] arg	 An generic buffer for communication between the
602 	 *			 user and the control operation
603 	 *
604 	 * \retval -ve error
605 	 * \retval   0 success
606 	 *
607 	 * \see ptlrpc_nrs_policy_control()
608 	 */
609 	int	(*op_policy_ctl) (struct ptlrpc_nrs_policy *policy,
610 				  enum ptlrpc_nrs_ctl opc, void *arg);
611 
612 	/**
613 	 * Called when obtaining references to the resources of the resource
614 	 * hierarchy for a request that has arrived for handling at the PTLRPC
615 	 * service. Policies should return -ve for requests they do not wish
616 	 * to handle. This operation is mandatory.
617 	 *
618 	 * \param[in,out] policy  The policy we're getting resources for.
619 	 * \param[in,out] nrq	  The request we are getting resources for.
620 	 * \param[in]	  parent  The parent resource of the resource being
621 	 *			  requested; set to NULL if none.
622 	 * \param[out]	  resp	  The resource is to be returned here; the
623 	 *			  fallback policy in an NRS head should
624 	 *			  \e always return a non-NULL pointer value.
625 	 * \param[in]  moving_req When set, signifies that this is an attempt
626 	 *			  to obtain resources for a request being moved
627 	 *			  to the high-priority NRS head by
628 	 *			  ldlm_lock_reorder_req().
629 	 *			  This implies two things:
630 	 *			  1. We are under obd_export::exp_rpc_lock and
631 	 *			  so should not sleep.
632 	 *			  2. We should not perform non-idempotent or can
633 	 *			  skip performing idempotent operations that
634 	 *			  were carried out when resources were first
635 	 *			  taken for the request when it was initialized
636 	 *			  in ptlrpc_nrs_req_initialize().
637 	 *
638 	 * \retval 0, +ve The level of the returned resource in the resource
639 	 *		  hierarchy; currently only 0 (for a non-leaf resource)
640 	 *		  and 1 (for a leaf resource) are supported by the
641 	 *		  framework.
642 	 * \retval -ve	  error
643 	 *
644 	 * \see ptlrpc_nrs_req_initialize()
645 	 * \see ptlrpc_nrs_hpreq_add_nolock()
646 	 * \see ptlrpc_nrs_req_hp_move()
647 	 */
648 	int	(*op_res_get) (struct ptlrpc_nrs_policy *policy,
649 			       struct ptlrpc_nrs_request *nrq,
650 			       const struct ptlrpc_nrs_resource *parent,
651 			       struct ptlrpc_nrs_resource **resp,
652 			       bool moving_req);
653 	/**
654 	 * Called when releasing references taken for resources in the resource
655 	 * hierarchy for the request; this operation is optional.
656 	 *
657 	 * \param[in,out] policy The policy the resource belongs to
658 	 * \param[in] res	 The resource to be freed
659 	 *
660 	 * \see ptlrpc_nrs_req_finalize()
661 	 * \see ptlrpc_nrs_hpreq_add_nolock()
662 	 * \see ptlrpc_nrs_req_hp_move()
663 	 */
664 	void	(*op_res_put) (struct ptlrpc_nrs_policy *policy,
665 			       const struct ptlrpc_nrs_resource *res);
666 
667 	/**
668 	 * Obtains a request for handling from the policy, and optionally
669 	 * removes the request from the policy; this operation is mandatory.
670 	 *
671 	 * \param[in,out] policy The policy to poll
672 	 * \param[in]	  peek	 When set, signifies that we just want to
673 	 *			 examine the request, and not handle it, so the
674 	 *			 request is not removed from the policy.
675 	 * \param[in]	  force	 When set, it will force a policy to return a
676 	 *			 request if it has one queued.
677 	 *
678 	 * \retval NULL No request available for handling
679 	 * \retval valid-pointer The request polled for handling
680 	 *
681 	 * \see ptlrpc_nrs_req_get_nolock()
682 	 */
683 	struct ptlrpc_nrs_request *
684 		(*op_req_get) (struct ptlrpc_nrs_policy *policy, bool peek,
685 			       bool force);
686 	/**
687 	 * Called when attempting to add a request to a policy for later
688 	 * handling; this operation is mandatory.
689 	 *
690 	 * \param[in,out] policy  The policy on which to enqueue \a nrq
691 	 * \param[in,out] nrq The request to enqueue
692 	 *
693 	 * \retval 0	success
694 	 * \retval != 0	error
695 	 *
696 	 * \see ptlrpc_nrs_req_add_nolock()
697 	 */
698 	int	(*op_req_enqueue) (struct ptlrpc_nrs_policy *policy,
699 				   struct ptlrpc_nrs_request *nrq);
700 	/**
701 	 * Removes a request from the policy's set of pending requests. Normally
702 	 * called after a request has been polled successfully from the policy
703 	 * for handling; this operation is mandatory.
704 	 *
705 	 * \param[in,out] policy The policy the request \a nrq belongs to
706 	 * \param[in,out] nrq    The request to dequeue
707 	 *
708 	 * \see ptlrpc_nrs_req_del_nolock()
709 	 */
710 	void	(*op_req_dequeue) (struct ptlrpc_nrs_policy *policy,
711 				   struct ptlrpc_nrs_request *nrq);
712 	/**
713 	 * Called after the request being carried out. Could be used for
714 	 * job/resource control; this operation is optional.
715 	 *
716 	 * \param[in,out] policy The policy which is stopping to handle request
717 	 *			 \a nrq
718 	 * \param[in,out] nrq	 The request
719 	 *
720 	 * \pre assert_spin_locked(&svcpt->scp_req_lock)
721 	 *
722 	 * \see ptlrpc_nrs_req_stop_nolock()
723 	 */
724 	void	(*op_req_stop) (struct ptlrpc_nrs_policy *policy,
725 				struct ptlrpc_nrs_request *nrq);
726 	/**
727 	 * Registers the policy's lprocfs interface with a PTLRPC service.
728 	 *
729 	 * \param[in] svc The service
730 	 *
731 	 * \retval 0	success
732 	 * \retval != 0	error
733 	 */
734 	int	(*op_lprocfs_init) (struct ptlrpc_service *svc);
735 	/**
736 	 * Unegisters the policy's lprocfs interface with a PTLRPC service.
737 	 *
738 	 * In cases of failed policy registration in
739 	 * \e ptlrpc_nrs_policy_register(), this function may be called for a
740 	 * service which has not registered the policy successfully, so
741 	 * implementations of this method should make sure their operations are
742 	 * safe in such cases.
743 	 *
744 	 * \param[in] svc The service
745 	 */
746 	void	(*op_lprocfs_fini) (struct ptlrpc_service *svc);
747 };
748 
749 /**
750  * Policy flags
751  */
752 enum nrs_policy_flags {
753 	/**
754 	 * Fallback policy, use this flag only on a single supported policy per
755 	 * service. The flag cannot be used on policies that use
756 	 * \e PTLRPC_NRS_FL_REG_EXTERN
757 	 */
758 	PTLRPC_NRS_FL_FALLBACK		= (1 << 0),
759 	/**
760 	 * Start policy immediately after registering.
761 	 */
762 	PTLRPC_NRS_FL_REG_START		= (1 << 1),
763 	/**
764 	 * This is a policy registering from a module different to the one NRS
765 	 * core ships in (currently ptlrpc).
766 	 */
767 	PTLRPC_NRS_FL_REG_EXTERN	= (1 << 2),
768 };
769 
770 /**
771  * NRS queue type.
772  *
773  * Denotes whether an NRS instance is for handling normal or high-priority
774  * RPCs, or whether an operation pertains to one or both of the NRS instances
775  * in a service.
776  */
777 enum ptlrpc_nrs_queue_type {
778 	PTLRPC_NRS_QUEUE_REG	= (1 << 0),
779 	PTLRPC_NRS_QUEUE_HP	= (1 << 1),
780 	PTLRPC_NRS_QUEUE_BOTH	= (PTLRPC_NRS_QUEUE_REG | PTLRPC_NRS_QUEUE_HP)
781 };
782 
783 /**
784  * NRS head
785  *
786  * A PTLRPC service has at least one NRS head instance for handling normal
787  * priority RPCs, and may optionally have a second NRS head instance for
788  * handling high-priority RPCs. Each NRS head maintains a list of available
789  * policies, of which one and only one policy is acting as the fallback policy,
790  * and optionally a different policy may be acting as the primary policy. For
791  * all RPCs handled by this NRS head instance, NRS core will first attempt to
792  * enqueue the RPC using the primary policy (if any). The fallback policy is
793  * used in the following cases:
794  * - when there was no primary policy in the
795  *   ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request
796  *   was initialized.
797  * - when the primary policy that was at the
798  *   ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
799  *   RPC was initialized, denoted it did not wish, or for some other reason was
800  *   not able to handle the request, by returning a non-valid NRS resource
801  *   reference.
802  * - when the primary policy that was at the
803  *   ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
804  *   RPC was initialized, fails later during the request enqueueing stage.
805  *
806  * \see nrs_resource_get_safe()
807  * \see nrs_request_enqueue()
808  */
809 struct ptlrpc_nrs {
810 	spinlock_t			nrs_lock;
811 	/** XXX Possibly replace svcpt->scp_req_lock with another lock here. */
812 	/**
813 	 * List of registered policies
814 	 */
815 	struct list_head			nrs_policy_list;
816 	/**
817 	 * List of policies with queued requests. Policies that have any
818 	 * outstanding requests are queued here, and this list is queried
819 	 * in a round-robin manner from NRS core when obtaining a request
820 	 * for handling. This ensures that requests from policies that at some
821 	 * point transition away from the
822 	 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained.
823 	 */
824 	struct list_head			nrs_policy_queued;
825 	/**
826 	 * Service partition for this NRS head
827 	 */
828 	struct ptlrpc_service_part     *nrs_svcpt;
829 	/**
830 	 * Primary policy, which is the preferred policy for handling RPCs
831 	 */
832 	struct ptlrpc_nrs_policy       *nrs_policy_primary;
833 	/**
834 	 * Fallback policy, which is the backup policy for handling RPCs
835 	 */
836 	struct ptlrpc_nrs_policy       *nrs_policy_fallback;
837 	/**
838 	 * This NRS head handles either HP or regular requests
839 	 */
840 	enum ptlrpc_nrs_queue_type	nrs_queue_type;
841 	/**
842 	 * # queued requests from all policies in this NRS head
843 	 */
844 	unsigned long			nrs_req_queued;
845 	/**
846 	 * # scheduled requests from all policies in this NRS head
847 	 */
848 	unsigned long			nrs_req_started;
849 	/**
850 	 * # policies on this NRS
851 	 */
852 	unsigned			nrs_num_pols;
853 	/**
854 	 * This NRS head is in progress of starting a policy
855 	 */
856 	unsigned			nrs_policy_starting:1;
857 	/**
858 	 * In progress of shutting down the whole NRS head; used during
859 	 * unregistration
860 	 */
861 	unsigned			nrs_stopping:1;
862 };
863 
864 #define NRS_POL_NAME_MAX		16
865 
866 struct ptlrpc_nrs_pol_desc;
867 
868 /**
869  * Service compatibility predicate; this determines whether a policy is adequate
870  * for handling RPCs of a particular PTLRPC service.
871  *
872  * XXX:This should give the same result during policy registration and
873  * unregistration, and for all partitions of a service; so the result should not
874  * depend on temporal service or other properties, that may influence the
875  * result.
876  */
877 typedef bool (*nrs_pol_desc_compat_t) (const struct ptlrpc_service *svc,
878 				       const struct ptlrpc_nrs_pol_desc *desc);
879 
880 struct ptlrpc_nrs_pol_conf {
881 	/**
882 	 * Human-readable policy name
883 	 */
884 	char				   nc_name[NRS_POL_NAME_MAX];
885 	/**
886 	 * NRS operations for this policy
887 	 */
888 	const struct ptlrpc_nrs_pol_ops	  *nc_ops;
889 	/**
890 	 * Service compatibility predicate
891 	 */
892 	nrs_pol_desc_compat_t		   nc_compat;
893 	/**
894 	 * Set for policies that support a single ptlrpc service, i.e. ones that
895 	 * have \a pd_compat set to nrs_policy_compat_one(). The variable value
896 	 * depicts the name of the single service that such policies are
897 	 * compatible with.
898 	 */
899 	const char			  *nc_compat_svc_name;
900 	/**
901 	 * Owner module for this policy descriptor; policies registering from a
902 	 * different module to the one the NRS framework is held within
903 	 * (currently ptlrpc), should set this field to THIS_MODULE.
904 	 */
905 	struct module			  *nc_owner;
906 	/**
907 	 * Policy registration flags; a bitmask of \e nrs_policy_flags
908 	 */
909 	unsigned			   nc_flags;
910 };
911 
912 /**
913  * NRS policy registering descriptor
914  *
915  * Is used to hold a description of a policy that can be passed to NRS core in
916  * order to register the policy with NRS heads in different PTLRPC services.
917  */
918 struct ptlrpc_nrs_pol_desc {
919 	/**
920 	 * Human-readable policy name
921 	 */
922 	char					pd_name[NRS_POL_NAME_MAX];
923 	/**
924 	 * Link into nrs_core::nrs_policies
925 	 */
926 	struct list_head				pd_list;
927 	/**
928 	 * NRS operations for this policy
929 	 */
930 	const struct ptlrpc_nrs_pol_ops	       *pd_ops;
931 	/**
932 	 * Service compatibility predicate
933 	 */
934 	nrs_pol_desc_compat_t			pd_compat;
935 	/**
936 	 * Set for policies that are compatible with only one PTLRPC service.
937 	 *
938 	 * \see ptlrpc_nrs_pol_conf::nc_compat_svc_name
939 	 */
940 	const char			       *pd_compat_svc_name;
941 	/**
942 	 * Owner module for this policy descriptor.
943 	 *
944 	 * We need to hold a reference to the module whenever we might make use
945 	 * of any of the module's contents, i.e.
946 	 * - If one or more instances of the policy are at a state where they
947 	 *   might be handling a request, i.e.
948 	 *   ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED or
949 	 *   ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING as we will have to
950 	 *   call into the policy's ptlrpc_nrs_pol_ops() handlers. A reference
951 	 *   is taken on the module when
952 	 *   \e ptlrpc_nrs_pol_desc::pd_refs becomes 1, and released when it
953 	 *   becomes 0, so that we hold only one reference to the module maximum
954 	 *   at any time.
955 	 *
956 	 *   We do not need to hold a reference to the module, even though we
957 	 *   might use code and data from the module, in the following cases:
958 	 * - During external policy registration, because this should happen in
959 	 *   the module's init() function, in which case the module is safe from
960 	 *   removal because a reference is being held on the module by the
961 	 *   kernel, and iirc kmod (and I guess module-init-tools also) will
962 	 *   serialize any racing processes properly anyway.
963 	 * - During external policy unregistration, because this should happen
964 	 *   in a module's exit() function, and any attempts to start a policy
965 	 *   instance would need to take a reference on the module, and this is
966 	 *   not possible once we have reached the point where the exit()
967 	 *   handler is called.
968 	 * - During service registration and unregistration, as service setup
969 	 *   and cleanup, and policy registration, unregistration and policy
970 	 *   instance starting, are serialized by \e nrs_core::nrs_mutex, so
971 	 *   as long as users adhere to the convention of registering policies
972 	 *   in init() and unregistering them in module exit() functions, there
973 	 *   should not be a race between these operations.
974 	 * - During any policy-specific lprocfs operations, because a reference
975 	 *   is held by the kernel on a proc entry that has been entered by a
976 	 *   syscall, so as long as proc entries are removed during unregistration time,
977 	 *   then unregistration and lprocfs operations will be properly
978 	 *   serialized.
979 	 */
980 	struct module			       *pd_owner;
981 	/**
982 	 * Bitmask of \e nrs_policy_flags
983 	 */
984 	unsigned				pd_flags;
985 	/**
986 	 * # of references on this descriptor
987 	 */
988 	atomic_t				pd_refs;
989 };
990 
991 /**
992  * NRS policy state
993  *
994  * Policies transition from one state to the other during their lifetime
995  */
996 enum ptlrpc_nrs_pol_state {
997 	/**
998 	 * Not a valid policy state.
999 	 */
1000 	NRS_POL_STATE_INVALID,
1001 	/**
1002 	 * Policies are at this state either at the start of their life, or
1003 	 * transition here when the user selects a different policy to act
1004 	 * as the primary one.
1005 	 */
1006 	NRS_POL_STATE_STOPPED,
1007 	/**
1008 	 * Policy is progress of stopping
1009 	 */
1010 	NRS_POL_STATE_STOPPING,
1011 	/**
1012 	 * Policy is in progress of starting
1013 	 */
1014 	NRS_POL_STATE_STARTING,
1015 	/**
1016 	 * A policy is in this state in two cases:
1017 	 * - it is the fallback policy, which is always in this state.
1018 	 * - it has been activated by the user; i.e. it is the primary policy,
1019 	 */
1020 	NRS_POL_STATE_STARTED,
1021 };
1022 
1023 /**
1024  * NRS policy information
1025  *
1026  * Used for obtaining information for the status of a policy via lprocfs
1027  */
1028 struct ptlrpc_nrs_pol_info {
1029 	/**
1030 	 * Policy name
1031 	 */
1032 	char				pi_name[NRS_POL_NAME_MAX];
1033 	/**
1034 	 * Current policy state
1035 	 */
1036 	enum ptlrpc_nrs_pol_state	pi_state;
1037 	/**
1038 	 * # RPCs enqueued for later dispatching by the policy
1039 	 */
1040 	long				pi_req_queued;
1041 	/**
1042 	 * # RPCs started for dispatch by the policy
1043 	 */
1044 	long				pi_req_started;
1045 	/**
1046 	 * Is this a fallback policy?
1047 	 */
1048 	unsigned			pi_fallback:1;
1049 };
1050 
1051 /**
1052  * NRS policy
1053  *
1054  * There is one instance of this for each policy in each NRS head of each
1055  * PTLRPC service partition.
1056  */
1057 struct ptlrpc_nrs_policy {
1058 	/**
1059 	 * Linkage into the NRS head's list of policies,
1060 	 * ptlrpc_nrs:nrs_policy_list
1061 	 */
1062 	struct list_head			pol_list;
1063 	/**
1064 	 * Linkage into the NRS head's list of policies with enqueued
1065 	 * requests ptlrpc_nrs:nrs_policy_queued
1066 	 */
1067 	struct list_head			pol_list_queued;
1068 	/**
1069 	 * Current state of this policy
1070 	 */
1071 	enum ptlrpc_nrs_pol_state	pol_state;
1072 	/**
1073 	 * Bitmask of nrs_policy_flags
1074 	 */
1075 	unsigned			pol_flags;
1076 	/**
1077 	 * # RPCs enqueued for later dispatching by the policy
1078 	 */
1079 	long				pol_req_queued;
1080 	/**
1081 	 * # RPCs started for dispatch by the policy
1082 	 */
1083 	long				pol_req_started;
1084 	/**
1085 	 * Usage Reference count taken on the policy instance
1086 	 */
1087 	long				pol_ref;
1088 	/**
1089 	 * The NRS head this policy has been created at
1090 	 */
1091 	struct ptlrpc_nrs	       *pol_nrs;
1092 	/**
1093 	 * Private policy data; varies by policy type
1094 	 */
1095 	void			       *pol_private;
1096 	/**
1097 	 * Policy descriptor for this policy instance.
1098 	 */
1099 	struct ptlrpc_nrs_pol_desc     *pol_desc;
1100 };
1101 
1102 /**
1103  * NRS resource
1104  *
1105  * Resources are embedded into two types of NRS entities:
1106  * - Inside NRS policies, in the policy's private data in
1107  *   ptlrpc_nrs_policy::pol_private
1108  * - In objects that act as prime-level scheduling entities in different NRS
1109  *   policies; e.g. on a policy that performs round robin or similar order
1110  *   scheduling across client NIDs, there would be one NRS resource per unique
1111  *   client NID. On a policy which performs round robin scheduling across
1112  *   backend filesystem objects, there would be one resource associated with
1113  *   each of the backend filesystem objects partaking in the scheduling
1114  *   performed by the policy.
1115  *
1116  * NRS resources share a parent-child relationship, in which resources embedded
1117  * in policy instances are the parent entities, with all scheduling entities
1118  * a policy schedules across being the children, thus forming a simple resource
1119  * hierarchy. This hierarchy may be extended with one or more levels in the
1120  * future if the ability to have more than one primary policy is added.
1121  *
1122  * Upon request initialization, references to the then active NRS policies are
1123  * taken and used to later handle the dispatching of the request with one of
1124  * these policies.
1125  *
1126  * \see nrs_resource_get_safe()
1127  * \see ptlrpc_nrs_req_add()
1128  */
1129 struct ptlrpc_nrs_resource {
1130 	/**
1131 	 * This NRS resource's parent; is NULL for resources embedded in NRS
1132 	 * policy instances; i.e. those are top-level ones.
1133 	 */
1134 	struct ptlrpc_nrs_resource     *res_parent;
1135 	/**
1136 	 * The policy associated with this resource.
1137 	 */
1138 	struct ptlrpc_nrs_policy       *res_policy;
1139 };
1140 
1141 enum {
1142 	NRS_RES_FALLBACK,
1143 	NRS_RES_PRIMARY,
1144 	NRS_RES_MAX
1145 };
1146 
1147 /* \name fifo
1148  *
1149  * FIFO policy
1150  *
1151  * This policy is a logical wrapper around previous, non-NRS functionality.
1152  * It dispatches RPCs in the same order as they arrive from the network. This
1153  * policy is currently used as the fallback policy, and the only enabled policy
1154  * on all NRS heads of all PTLRPC service partitions.
1155  * @{
1156  */
1157 
1158 /**
1159  * Private data structure for the FIFO policy
1160  */
1161 struct nrs_fifo_head {
1162 	/**
1163 	 * Resource object for policy instance.
1164 	 */
1165 	struct ptlrpc_nrs_resource	fh_res;
1166 	/**
1167 	 * List of queued requests.
1168 	 */
1169 	struct list_head			fh_list;
1170 	/**
1171 	 * For debugging purposes.
1172 	 */
1173 	__u64				fh_sequence;
1174 };
1175 
1176 struct nrs_fifo_req {
1177 	struct list_head		fr_list;
1178 	__u64			fr_sequence;
1179 };
1180 
1181 /** @} fifo */
1182 
1183 /**
1184  * NRS request
1185  *
1186  * Instances of this object exist embedded within ptlrpc_request; the main
1187  * purpose of this object is to hold references to the request's resources
1188  * for the lifetime of the request, and to hold properties that policies use
1189  * use for determining the request's scheduling priority.
1190  * */
1191 struct ptlrpc_nrs_request {
1192 	/**
1193 	 * The request's resource hierarchy.
1194 	 */
1195 	struct ptlrpc_nrs_resource     *nr_res_ptrs[NRS_RES_MAX];
1196 	/**
1197 	 * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the
1198 	 * policy that was used to enqueue the request.
1199 	 *
1200 	 * \see nrs_request_enqueue()
1201 	 */
1202 	unsigned			nr_res_idx;
1203 	unsigned			nr_initialized:1;
1204 	unsigned			nr_enqueued:1;
1205 	unsigned			nr_started:1;
1206 	unsigned			nr_finalized:1;
1207 
1208 	/**
1209 	 * Policy-specific fields, used for determining a request's scheduling
1210 	 * priority, and other supporting functionality.
1211 	 */
1212 	union {
1213 		/**
1214 		 * Fields for the FIFO policy
1215 		 */
1216 		struct nrs_fifo_req	fifo;
1217 	} nr_u;
1218 	/**
1219 	 * Externally-registering policies may want to use this to allocate
1220 	 * their own request properties.
1221 	 */
1222 	void			       *ext;
1223 };
1224 
1225 /** @} nrs */
1226 
1227 /**
1228  * Basic request prioritization operations structure.
1229  * The whole idea is centered around locks and RPCs that might affect locks.
1230  * When a lock is contended we try to give priority to RPCs that might lead
1231  * to fastest release of that lock.
1232  * Currently only implemented for OSTs only in a way that makes all
1233  * IO and truncate RPCs that are coming from a locked region where a lock is
1234  * contended a priority over other requests.
1235  */
1236 struct ptlrpc_hpreq_ops {
1237 	/**
1238 	 * Check if the lock handle of the given lock is the same as
1239 	 * taken from the request.
1240 	 */
1241 	int  (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
1242 	/**
1243 	 * Check if the request is a high priority one.
1244 	 */
1245 	int  (*hpreq_check)(struct ptlrpc_request *);
1246 	/**
1247 	 * Called after the request has been handled.
1248 	 */
1249 	void (*hpreq_fini)(struct ptlrpc_request *);
1250 };
1251 
1252 /**
1253  * Represents remote procedure call.
1254  *
1255  * This is a staple structure used by everybody wanting to send a request
1256  * in Lustre.
1257  */
1258 struct ptlrpc_request {
1259 	/* Request type: one of PTL_RPC_MSG_* */
1260 	int rq_type;
1261 	/** Result of request processing */
1262 	int rq_status;
1263 	/**
1264 	 * Linkage item through which this request is included into
1265 	 * sending/delayed lists on client and into rqbd list on server
1266 	 */
1267 	struct list_head rq_list;
1268 	/**
1269 	 * Server side list of incoming unserved requests sorted by arrival
1270 	 * time.  Traversed from time to time to notice about to expire
1271 	 * requests and sent back "early replies" to clients to let them
1272 	 * know server is alive and well, just very busy to service their
1273 	 * requests in time
1274 	 */
1275 	struct list_head rq_timed_list;
1276 	/** server-side history, used for debugging purposes. */
1277 	struct list_head rq_history_list;
1278 	/** server-side per-export list */
1279 	struct list_head rq_exp_list;
1280 	/** server-side hp handlers */
1281 	struct ptlrpc_hpreq_ops *rq_ops;
1282 
1283 	/** initial thread servicing this request */
1284 	struct ptlrpc_thread *rq_svc_thread;
1285 
1286 	/** history sequence # */
1287 	__u64 rq_history_seq;
1288 	/** \addtogroup  nrs
1289 	 * @{
1290 	 */
1291 	/** stub for NRS request */
1292 	struct ptlrpc_nrs_request rq_nrq;
1293 	/** @} nrs */
1294 	/** the index of service's srv_at_array into which request is linked */
1295 	time_t rq_at_index;
1296 	/** Lock to protect request flags and some other important bits, like
1297 	 * rq_list
1298 	 */
1299 	spinlock_t rq_lock;
1300 	/** client-side flags are serialized by rq_lock */
1301 	unsigned int rq_intr:1, rq_replied:1, rq_err:1,
1302 		rq_timedout:1, rq_resend:1, rq_restart:1,
1303 		/**
1304 		 * when ->rq_replay is set, request is kept by the client even
1305 		 * after server commits corresponding transaction. This is
1306 		 * used for operations that require sequence of multiple
1307 		 * requests to be replayed. The only example currently is file
1308 		 * open/close. When last request in such a sequence is
1309 		 * committed, ->rq_replay is cleared on all requests in the
1310 		 * sequence.
1311 		 */
1312 		rq_replay:1,
1313 		rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
1314 		rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
1315 		rq_early:1,
1316 		rq_req_unlink:1, rq_reply_unlink:1,
1317 		rq_memalloc:1,      /* req originated from "kswapd" */
1318 		/* server-side flags */
1319 		rq_packed_final:1,  /* packed final reply */
1320 		rq_hp:1,	    /* high priority RPC */
1321 		rq_at_linked:1,     /* link into service's srv_at_array */
1322 		rq_reply_truncate:1,
1323 		rq_committed:1,
1324 		/* whether the "rq_set" is a valid one */
1325 		rq_invalid_rqset:1,
1326 		rq_generation_set:1,
1327 		/* do not resend request on -EINPROGRESS */
1328 		rq_no_retry_einprogress:1,
1329 		/* allow the req to be sent if the import is in recovery
1330 		 * status */
1331 		rq_allow_replay:1;
1332 
1333 	unsigned int rq_nr_resend;
1334 
1335 	enum rq_phase rq_phase; /* one of RQ_PHASE_* */
1336 	enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */
1337 	atomic_t rq_refcount;/* client-side refcount for SENT race,
1338 				    server-side refcount for multiple replies */
1339 
1340 	/** Portal to which this request would be sent */
1341 	short rq_request_portal;  /* XXX FIXME bug 249 */
1342 	/** Portal where to wait for reply and where reply would be sent */
1343 	short rq_reply_portal;    /* XXX FIXME bug 249 */
1344 
1345 	/**
1346 	 * client-side:
1347 	 * !rq_truncate : # reply bytes actually received,
1348 	 *  rq_truncate : required repbuf_len for resend
1349 	 */
1350 	int rq_nob_received;
1351 	/** Request length */
1352 	int rq_reqlen;
1353 	/** Reply length */
1354 	int rq_replen;
1355 	/** Request message - what client sent */
1356 	struct lustre_msg *rq_reqmsg;
1357 	/** Reply message - server response */
1358 	struct lustre_msg *rq_repmsg;
1359 	/** Transaction number */
1360 	__u64 rq_transno;
1361 	/** xid */
1362 	__u64 rq_xid;
1363 	/**
1364 	 * List item to for replay list. Not yet committed requests get linked
1365 	 * there.
1366 	 * Also see \a rq_replay comment above.
1367 	 */
1368 	struct list_head rq_replay_list;
1369 
1370 	/**
1371 	 * security and encryption data
1372 	 * @{ */
1373 	struct ptlrpc_cli_ctx   *rq_cli_ctx;     /**< client's half ctx */
1374 	struct ptlrpc_svc_ctx   *rq_svc_ctx;     /**< server's half ctx */
1375 	struct list_head	       rq_ctx_chain;   /**< link to waited ctx */
1376 
1377 	struct sptlrpc_flavor    rq_flvr;	/**< for client & server */
1378 	enum lustre_sec_part     rq_sp_from;
1379 
1380 	/* client/server security flags */
1381 	unsigned int
1382 				 rq_ctx_init:1,      /* context initiation */
1383 				 rq_ctx_fini:1,      /* context destroy */
1384 				 rq_bulk_read:1,     /* request bulk read */
1385 				 rq_bulk_write:1,    /* request bulk write */
1386 				 /* server authentication flags */
1387 				 rq_auth_gss:1,      /* authenticated by gss */
1388 				 rq_auth_remote:1,   /* authed as remote user */
1389 				 rq_auth_usr_root:1, /* authed as root */
1390 				 rq_auth_usr_mdt:1,  /* authed as mdt */
1391 				 rq_auth_usr_ost:1,  /* authed as ost */
1392 				 /* security tfm flags */
1393 				 rq_pack_udesc:1,
1394 				 rq_pack_bulk:1,
1395 				 /* doesn't expect reply FIXME */
1396 				 rq_no_reply:1,
1397 				 rq_pill_init:1;     /* pill initialized */
1398 
1399 	uid_t		    rq_auth_uid;	/* authed uid */
1400 	uid_t		    rq_auth_mapped_uid; /* authed uid mapped to */
1401 
1402 	/* (server side), pointed directly into req buffer */
1403 	struct ptlrpc_user_desc *rq_user_desc;
1404 
1405 	/* various buffer pointers */
1406 	struct lustre_msg       *rq_reqbuf;      /* req wrapper */
1407 	char		    *rq_repbuf;      /* rep buffer */
1408 	struct lustre_msg       *rq_repdata;     /* rep wrapper msg */
1409 	struct lustre_msg       *rq_clrbuf;      /* only in priv mode */
1410 	int		      rq_reqbuf_len;  /* req wrapper buf len */
1411 	int		      rq_reqdata_len; /* req wrapper msg len */
1412 	int		      rq_repbuf_len;  /* rep buffer len */
1413 	int		      rq_repdata_len; /* rep wrapper msg len */
1414 	int		      rq_clrbuf_len;  /* only in priv mode */
1415 	int		      rq_clrdata_len; /* only in priv mode */
1416 
1417 	/** early replies go to offset 0, regular replies go after that */
1418 	unsigned int	     rq_reply_off;
1419 
1420 	/** @} */
1421 
1422 	/** Fields that help to see if request and reply were swabbed or not */
1423 	__u32 rq_req_swab_mask;
1424 	__u32 rq_rep_swab_mask;
1425 
1426 	/** What was import generation when this request was sent */
1427 	int rq_import_generation;
1428 	enum lustre_imp_state rq_send_state;
1429 
1430 	/** how many early replies (for stats) */
1431 	int rq_early_count;
1432 
1433 	/** client+server request */
1434 	lnet_handle_md_t     rq_req_md_h;
1435 	struct ptlrpc_cb_id  rq_req_cbid;
1436 	/** optional time limit for send attempts */
1437 	long       rq_delay_limit;
1438 	/** time request was first queued */
1439 	unsigned long	   rq_queued_time;
1440 
1441 	/* server-side... */
1442 	/** request arrival time */
1443 	struct timeval       rq_arrival_time;
1444 	/** separated reply state */
1445 	struct ptlrpc_reply_state *rq_reply_state;
1446 	/** incoming request buffer */
1447 	struct ptlrpc_request_buffer_desc *rq_rqbd;
1448 
1449 	/** client-only incoming reply */
1450 	lnet_handle_md_t     rq_reply_md_h;
1451 	wait_queue_head_t	  rq_reply_waitq;
1452 	struct ptlrpc_cb_id  rq_reply_cbid;
1453 
1454 	/** our LNet NID */
1455 	lnet_nid_t	   rq_self;
1456 	/** Peer description (the other side) */
1457 	lnet_process_id_t    rq_peer;
1458 	/** Server-side, export on which request was received */
1459 	struct obd_export   *rq_export;
1460 	/** Client side, import where request is being sent */
1461 	struct obd_import   *rq_import;
1462 
1463 	/** Replay callback, called after request is replayed at recovery */
1464 	void (*rq_replay_cb)(struct ptlrpc_request *);
1465 	/**
1466 	 * Commit callback, called when request is committed and about to be
1467 	 * freed.
1468 	 */
1469 	void (*rq_commit_cb)(struct ptlrpc_request *);
1470 	/** Opaq data for replay and commit callbacks. */
1471 	void  *rq_cb_data;
1472 
1473 	/** For bulk requests on client only: bulk descriptor */
1474 	struct ptlrpc_bulk_desc *rq_bulk;
1475 
1476 	/** client outgoing req */
1477 	/**
1478 	 * when request/reply sent (secs), or time when request should be sent
1479 	 */
1480 	time_t rq_sent;
1481 	/** time for request really sent out */
1482 	time_t rq_real_sent;
1483 
1484 	/** when request must finish. volatile
1485 	 * so that servers' early reply updates to the deadline aren't
1486 	 * kept in per-cpu cache */
1487 	volatile time_t rq_deadline;
1488 	/** when req reply unlink must finish. */
1489 	time_t rq_reply_deadline;
1490 	/** when req bulk unlink must finish. */
1491 	time_t rq_bulk_deadline;
1492 	/**
1493 	 * service time estimate (secs)
1494 	 * If the requestsis not served by this time, it is marked as timed out.
1495 	 */
1496 	int    rq_timeout;
1497 
1498 	/** Multi-rpc bits */
1499 	/** Per-request waitq introduced by bug 21938 for recovery waiting */
1500 	wait_queue_head_t rq_set_waitq;
1501 	/** Link item for request set lists */
1502 	struct list_head  rq_set_chain;
1503 	/** Link back to the request set */
1504 	struct ptlrpc_request_set *rq_set;
1505 	/** Async completion handler, called when reply is received */
1506 	ptlrpc_interpterer_t rq_interpret_reply;
1507 	/** Async completion context */
1508 	union ptlrpc_async_args rq_async_args;
1509 
1510 	/** Pool if request is from preallocated list */
1511 	struct ptlrpc_request_pool *rq_pool;
1512 
1513 	struct lu_context	   rq_session;
1514 	struct lu_context	   rq_recov_session;
1515 
1516 	/** request format description */
1517 	struct req_capsule	  rq_pill;
1518 };
1519 
1520 /**
1521  * Call completion handler for rpc if any, return it's status or original
1522  * rc if there was no handler defined for this request.
1523  */
ptlrpc_req_interpret(const struct lu_env * env,struct ptlrpc_request * req,int rc)1524 static inline int ptlrpc_req_interpret(const struct lu_env *env,
1525 				       struct ptlrpc_request *req, int rc)
1526 {
1527 	if (req->rq_interpret_reply != NULL) {
1528 		req->rq_status = req->rq_interpret_reply(env, req,
1529 							 &req->rq_async_args,
1530 							 rc);
1531 		return req->rq_status;
1532 	}
1533 	return rc;
1534 }
1535 
1536 /** \addtogroup  nrs
1537  * @{
1538  */
1539 int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_conf *conf);
1540 int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_conf *conf);
1541 void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req);
1542 void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy,
1543 				struct ptlrpc_nrs_pol_info *info);
1544 
1545 /*
1546  * Can the request be moved from the regular NRS head to the high-priority NRS
1547  * head (of the same PTLRPC service partition), if any?
1548  *
1549  * For a reliable result, this should be checked under svcpt->scp_req lock.
1550  */
ptlrpc_nrs_req_can_move(struct ptlrpc_request * req)1551 static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
1552 {
1553 	struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
1554 
1555 	/**
1556 	 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
1557 	 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
1558 	 * to make sure it has not been scheduled yet (analogous to previous
1559 	 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
1560 	 */
1561 	return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
1562 }
1563 /** @} nrs */
1564 
1565 /**
1566  * Returns 1 if request buffer at offset \a index was already swabbed
1567  */
lustre_req_swabbed(struct ptlrpc_request * req,int index)1568 static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index)
1569 {
1570 	LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
1571 	return req->rq_req_swab_mask & (1 << index);
1572 }
1573 
1574 /**
1575  * Returns 1 if request reply buffer at offset \a index was already swabbed
1576  */
lustre_rep_swabbed(struct ptlrpc_request * req,int index)1577 static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index)
1578 {
1579 	LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
1580 	return req->rq_rep_swab_mask & (1 << index);
1581 }
1582 
1583 /**
1584  * Returns 1 if request needs to be swabbed into local cpu byteorder
1585  */
ptlrpc_req_need_swab(struct ptlrpc_request * req)1586 static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
1587 {
1588 	return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
1589 }
1590 
1591 /**
1592  * Returns 1 if request reply needs to be swabbed into local cpu byteorder
1593  */
ptlrpc_rep_need_swab(struct ptlrpc_request * req)1594 static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
1595 {
1596 	return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
1597 }
1598 
1599 /**
1600  * Mark request buffer at offset \a index that it was already swabbed
1601  */
lustre_set_req_swabbed(struct ptlrpc_request * req,int index)1602 static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index)
1603 {
1604 	LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
1605 	LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
1606 	req->rq_req_swab_mask |= 1 << index;
1607 }
1608 
1609 /**
1610  * Mark request reply buffer at offset \a index that it was already swabbed
1611  */
lustre_set_rep_swabbed(struct ptlrpc_request * req,int index)1612 static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index)
1613 {
1614 	LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
1615 	LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
1616 	req->rq_rep_swab_mask |= 1 << index;
1617 }
1618 
1619 /**
1620  * Convert numerical request phase value \a phase into text string description
1621  */
1622 static inline const char *
ptlrpc_phase2str(enum rq_phase phase)1623 ptlrpc_phase2str(enum rq_phase phase)
1624 {
1625 	switch (phase) {
1626 	case RQ_PHASE_NEW:
1627 		return "New";
1628 	case RQ_PHASE_RPC:
1629 		return "Rpc";
1630 	case RQ_PHASE_BULK:
1631 		return "Bulk";
1632 	case RQ_PHASE_INTERPRET:
1633 		return "Interpret";
1634 	case RQ_PHASE_COMPLETE:
1635 		return "Complete";
1636 	case RQ_PHASE_UNREGISTERING:
1637 		return "Unregistering";
1638 	default:
1639 		return "?Phase?";
1640 	}
1641 }
1642 
1643 /**
1644  * Convert numerical request phase of the request \a req into text stringi
1645  * description
1646  */
1647 static inline const char *
ptlrpc_rqphase2str(struct ptlrpc_request * req)1648 ptlrpc_rqphase2str(struct ptlrpc_request *req)
1649 {
1650 	return ptlrpc_phase2str(req->rq_phase);
1651 }
1652 
1653 /**
1654  * Debugging functions and helpers to print request structure into debug log
1655  * @{
1656  */
1657 /* Spare the preprocessor, spoil the bugs. */
1658 #define FLAG(field, str) (field ? str : "")
1659 
1660 /** Convert bit flags into a string */
1661 #define DEBUG_REQ_FLAGS(req)						    \
1662 	ptlrpc_rqphase2str(req),						\
1663 	FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"),		    \
1664 	FLAG(req->rq_err, "E"),						 \
1665 	FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"),   \
1666 	FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"),		  \
1667 	FLAG(req->rq_no_resend, "N"),					   \
1668 	FLAG(req->rq_waiting, "W"),					     \
1669 	FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"),		     \
1670 	FLAG(req->rq_committed, "M")
1671 
1672 #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s"
1673 
1674 void _debug_req(struct ptlrpc_request *req,
1675 		struct libcfs_debug_msg_data *data, const char *fmt, ...)
1676 	__printf(3, 4);
1677 
1678 /**
1679  * Helper that decides if we need to print request according to current debug
1680  * level settings
1681  */
1682 #define debug_req(msgdata, mask, cdls, req, fmt, a...)			\
1683 do {									  \
1684 	CFS_CHECK_STACK(msgdata, mask, cdls);				 \
1685 									      \
1686 	if (((mask) & D_CANTMASK) != 0 ||				     \
1687 	    ((libcfs_debug & (mask)) != 0 &&				  \
1688 	     (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0))		\
1689 		_debug_req((req), msgdata, fmt, ##a);			 \
1690 } while (0)
1691 
1692 /**
1693  * This is the debug print function you need to use to print request structure
1694  * content into lustre debug log.
1695  * for most callers (level is a constant) this is resolved at compile time */
1696 #define DEBUG_REQ(level, req, fmt, args...)				   \
1697 do {									  \
1698 	if ((level) & (D_ERROR | D_WARNING)) {				\
1699 		static struct cfs_debug_limit_state cdls;			  \
1700 		LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls);	    \
1701 		debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
1702 	} else {							      \
1703 		LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL);	     \
1704 		debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
1705 	}								     \
1706 } while (0)
1707 /** @} */
1708 
1709 /**
1710  * Structure that defines a single page of a bulk transfer
1711  */
1712 struct ptlrpc_bulk_page {
1713 	/** Linkage to list of pages in a bulk */
1714 	struct list_head       bp_link;
1715 	/**
1716 	 * Number of bytes in a page to transfer starting from \a bp_pageoffset
1717 	 */
1718 	int	      bp_buflen;
1719 	/** offset within a page */
1720 	int	      bp_pageoffset;
1721 	/** The page itself */
1722 	struct page     *bp_page;
1723 };
1724 
1725 #define BULK_GET_SOURCE   0
1726 #define BULK_PUT_SINK     1
1727 #define BULK_GET_SINK     2
1728 #define BULK_PUT_SOURCE   3
1729 
1730 /**
1731  * Definition of bulk descriptor.
1732  * Bulks are special "Two phase" RPCs where initial request message
1733  * is sent first and it is followed bt a transfer (o receiving) of a large
1734  * amount of data to be settled into pages referenced from the bulk descriptors.
1735  * Bulks transfers (the actual data following the small requests) are done
1736  * on separate LNet portals.
1737  * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
1738  *  Another user is readpage for MDT.
1739  */
1740 struct ptlrpc_bulk_desc {
1741 	/** completed with failure */
1742 	unsigned long bd_failure:1;
1743 	/** {put,get}{source,sink} */
1744 	unsigned long bd_type:2;
1745 	/** client side */
1746 	unsigned long bd_registered:1;
1747 	/** For serialization with callback */
1748 	spinlock_t bd_lock;
1749 	/** Import generation when request for this bulk was sent */
1750 	int bd_import_generation;
1751 	/** LNet portal for this bulk */
1752 	__u32 bd_portal;
1753 	/** Server side - export this bulk created for */
1754 	struct obd_export *bd_export;
1755 	/** Client side - import this bulk was sent on */
1756 	struct obd_import *bd_import;
1757 	/** Back pointer to the request */
1758 	struct ptlrpc_request *bd_req;
1759 	wait_queue_head_t	    bd_waitq;	/* server side only WQ */
1760 	int		    bd_iov_count;    /* # entries in bd_iov */
1761 	int		    bd_max_iov;      /* allocated size of bd_iov */
1762 	int		    bd_nob;	  /* # bytes covered */
1763 	int		    bd_nob_transferred; /* # bytes GOT/PUT */
1764 
1765 	__u64		  bd_last_xid;
1766 
1767 	struct ptlrpc_cb_id    bd_cbid;	 /* network callback info */
1768 	lnet_nid_t	     bd_sender;       /* stash event::sender */
1769 	int			bd_md_count;	/* # valid entries in bd_mds */
1770 	int			bd_md_max_brw;	/* max entries in bd_mds */
1771 	/** array of associated MDs */
1772 	lnet_handle_md_t	bd_mds[PTLRPC_BULK_OPS_COUNT];
1773 
1774 	/*
1775 	 * encrypt iov, size is either 0 or bd_iov_count.
1776 	 */
1777 	lnet_kiov_t	   *bd_enc_iov;
1778 
1779 	lnet_kiov_t	    bd_iov[0];
1780 };
1781 
1782 enum {
1783 	SVC_STOPPED     = 1 << 0,
1784 	SVC_STOPPING    = 1 << 1,
1785 	SVC_STARTING    = 1 << 2,
1786 	SVC_RUNNING     = 1 << 3,
1787 	SVC_EVENT       = 1 << 4,
1788 	SVC_SIGNAL      = 1 << 5,
1789 };
1790 
1791 #define PTLRPC_THR_NAME_LEN		32
1792 /**
1793  * Definition of server service thread structure
1794  */
1795 struct ptlrpc_thread {
1796 	/**
1797 	 * List of active threads in svc->srv_threads
1798 	 */
1799 	struct list_head t_link;
1800 	/**
1801 	 * thread-private data (preallocated memory)
1802 	 */
1803 	void *t_data;
1804 	__u32 t_flags;
1805 	/**
1806 	 * service thread index, from ptlrpc_start_threads
1807 	 */
1808 	unsigned int t_id;
1809 	/**
1810 	 * service thread pid
1811 	 */
1812 	pid_t t_pid;
1813 	/**
1814 	 * put watchdog in the structure per thread b=14840
1815 	 *
1816 	 * Lustre watchdog is removed for client in the hope
1817 	 * of a generic watchdog can be merged in kernel.
1818 	 * When that happens, we should add below back.
1819 	 *
1820 	 * struct lc_watchdog *t_watchdog;
1821 	 */
1822 	/**
1823 	 * the svc this thread belonged to b=18582
1824 	 */
1825 	struct ptlrpc_service_part	*t_svcpt;
1826 	wait_queue_head_t			t_ctl_waitq;
1827 	struct lu_env			*t_env;
1828 	char				t_name[PTLRPC_THR_NAME_LEN];
1829 };
1830 
thread_is_init(struct ptlrpc_thread * thread)1831 static inline int thread_is_init(struct ptlrpc_thread *thread)
1832 {
1833 	return thread->t_flags == 0;
1834 }
1835 
thread_is_stopped(struct ptlrpc_thread * thread)1836 static inline int thread_is_stopped(struct ptlrpc_thread *thread)
1837 {
1838 	return !!(thread->t_flags & SVC_STOPPED);
1839 }
1840 
thread_is_stopping(struct ptlrpc_thread * thread)1841 static inline int thread_is_stopping(struct ptlrpc_thread *thread)
1842 {
1843 	return !!(thread->t_flags & SVC_STOPPING);
1844 }
1845 
thread_is_starting(struct ptlrpc_thread * thread)1846 static inline int thread_is_starting(struct ptlrpc_thread *thread)
1847 {
1848 	return !!(thread->t_flags & SVC_STARTING);
1849 }
1850 
thread_is_running(struct ptlrpc_thread * thread)1851 static inline int thread_is_running(struct ptlrpc_thread *thread)
1852 {
1853 	return !!(thread->t_flags & SVC_RUNNING);
1854 }
1855 
thread_is_event(struct ptlrpc_thread * thread)1856 static inline int thread_is_event(struct ptlrpc_thread *thread)
1857 {
1858 	return !!(thread->t_flags & SVC_EVENT);
1859 }
1860 
thread_is_signal(struct ptlrpc_thread * thread)1861 static inline int thread_is_signal(struct ptlrpc_thread *thread)
1862 {
1863 	return !!(thread->t_flags & SVC_SIGNAL);
1864 }
1865 
thread_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1866 static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
1867 {
1868 	thread->t_flags &= ~flags;
1869 }
1870 
thread_set_flags(struct ptlrpc_thread * thread,__u32 flags)1871 static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
1872 {
1873 	thread->t_flags = flags;
1874 }
1875 
thread_add_flags(struct ptlrpc_thread * thread,__u32 flags)1876 static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
1877 {
1878 	thread->t_flags |= flags;
1879 }
1880 
thread_test_and_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1881 static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
1882 					      __u32 flags)
1883 {
1884 	if (thread->t_flags & flags) {
1885 		thread->t_flags &= ~flags;
1886 		return 1;
1887 	}
1888 	return 0;
1889 }
1890 
1891 /**
1892  * Request buffer descriptor structure.
1893  * This is a structure that contains one posted request buffer for service.
1894  * Once data land into a buffer, event callback creates actual request and
1895  * notifies wakes one of the service threads to process new incoming request.
1896  * More than one request can fit into the buffer.
1897  */
1898 struct ptlrpc_request_buffer_desc {
1899 	/** Link item for rqbds on a service */
1900 	struct list_head	     rqbd_list;
1901 	/** History of requests for this buffer */
1902 	struct list_head	     rqbd_reqs;
1903 	/** Back pointer to service for which this buffer is registered */
1904 	struct ptlrpc_service_part *rqbd_svcpt;
1905 	/** LNet descriptor */
1906 	lnet_handle_md_t       rqbd_md_h;
1907 	int		    rqbd_refcount;
1908 	/** The buffer itself */
1909 	char		  *rqbd_buffer;
1910 	struct ptlrpc_cb_id    rqbd_cbid;
1911 	/**
1912 	 * This "embedded" request structure is only used for the
1913 	 * last request to fit into the buffer
1914 	 */
1915 	struct ptlrpc_request  rqbd_req;
1916 };
1917 
1918 typedef int  (*svc_handler_t)(struct ptlrpc_request *req);
1919 
1920 struct ptlrpc_service_ops {
1921 	/**
1922 	 * if non-NULL called during thread creation (ptlrpc_start_thread())
1923 	 * to initialize service specific per-thread state.
1924 	 */
1925 	int		(*so_thr_init)(struct ptlrpc_thread *thr);
1926 	/**
1927 	 * if non-NULL called during thread shutdown (ptlrpc_main()) to
1928 	 * destruct state created by ->srv_init().
1929 	 */
1930 	void		(*so_thr_done)(struct ptlrpc_thread *thr);
1931 	/**
1932 	 * Handler function for incoming requests for this service
1933 	 */
1934 	int		(*so_req_handler)(struct ptlrpc_request *req);
1935 	/**
1936 	 * function to determine priority of the request, it's called
1937 	 * on every new request
1938 	 */
1939 	int		(*so_hpreq_handler)(struct ptlrpc_request *);
1940 	/**
1941 	 * service-specific print fn
1942 	 */
1943 	void		(*so_req_printer)(void *, struct ptlrpc_request *);
1944 };
1945 
1946 #ifndef __cfs_cacheline_aligned
1947 /* NB: put it here for reducing patche dependence */
1948 # define __cfs_cacheline_aligned
1949 #endif
1950 
1951 /**
1952  * How many high priority requests to serve before serving one normal
1953  * priority request
1954  */
1955 #define PTLRPC_SVC_HP_RATIO 10
1956 
1957 /**
1958  * Definition of PortalRPC service.
1959  * The service is listening on a particular portal (like tcp port)
1960  * and perform actions for a specific server like IO service for OST
1961  * or general metadata service for MDS.
1962  */
1963 struct ptlrpc_service {
1964 	/** serialize /proc operations */
1965 	spinlock_t			srv_lock;
1966 	/** most often accessed fields */
1967 	/** chain thru all services */
1968 	struct list_head		      srv_list;
1969 	/** service operations table */
1970 	struct ptlrpc_service_ops	srv_ops;
1971 	/** only statically allocated strings here; we don't clean them */
1972 	char			   *srv_name;
1973 	/** only statically allocated strings here; we don't clean them */
1974 	char			   *srv_thread_name;
1975 	/** service thread list */
1976 	struct list_head		      srv_threads;
1977 	/** threads # should be created for each partition on initializing */
1978 	int				srv_nthrs_cpt_init;
1979 	/** limit of threads number for each partition */
1980 	int				srv_nthrs_cpt_limit;
1981 	/** Root of /proc dir tree for this service */
1982 	struct proc_dir_entry	   *srv_procroot;
1983 	/** Pointer to statistic data for this service */
1984 	struct lprocfs_stats	   *srv_stats;
1985 	/** # hp per lp reqs to handle */
1986 	int			     srv_hpreq_ratio;
1987 	/** biggest request to receive */
1988 	int			     srv_max_req_size;
1989 	/** biggest reply to send */
1990 	int			     srv_max_reply_size;
1991 	/** size of individual buffers */
1992 	int			     srv_buf_size;
1993 	/** # buffers to allocate in 1 group */
1994 	int			     srv_nbuf_per_group;
1995 	/** Local portal on which to receive requests */
1996 	__u32			   srv_req_portal;
1997 	/** Portal on the client to send replies to */
1998 	__u32			   srv_rep_portal;
1999 	/**
2000 	 * Tags for lu_context associated with this thread, see struct
2001 	 * lu_context.
2002 	 */
2003 	__u32			   srv_ctx_tags;
2004 	/** soft watchdog timeout multiplier */
2005 	int			     srv_watchdog_factor;
2006 	/** under unregister_service */
2007 	unsigned			srv_is_stopping:1;
2008 
2009 	/** max # request buffers in history per partition */
2010 	int				srv_hist_nrqbds_cpt_max;
2011 	/** number of CPTs this service bound on */
2012 	int				srv_ncpts;
2013 	/** CPTs array this service bound on */
2014 	__u32				*srv_cpts;
2015 	/** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
2016 	int				srv_cpt_bits;
2017 	/** CPT table this service is running over */
2018 	struct cfs_cpt_table		*srv_cptable;
2019 	/**
2020 	 * partition data for ptlrpc service
2021 	 */
2022 	struct ptlrpc_service_part	*srv_parts[0];
2023 };
2024 
2025 /**
2026  * Definition of PortalRPC service partition data.
2027  * Although a service only has one instance of it right now, but we
2028  * will have multiple instances very soon (instance per CPT).
2029  *
2030  * it has four locks:
2031  * \a scp_lock
2032  *    serialize operations on rqbd and requests waiting for preprocess
2033  * \a scp_req_lock
2034  *    serialize operations active requests sent to this portal
2035  * \a scp_at_lock
2036  *    serialize adaptive timeout stuff
2037  * \a scp_rep_lock
2038  *    serialize operations on RS list (reply states)
2039  *
2040  * We don't have any use-case to take two or more locks at the same time
2041  * for now, so there is no lock order issue.
2042  */
2043 struct ptlrpc_service_part {
2044 	/** back reference to owner */
2045 	struct ptlrpc_service		*scp_service __cfs_cacheline_aligned;
2046 	/* CPT id, reserved */
2047 	int				scp_cpt;
2048 	/** always increasing number */
2049 	int				scp_thr_nextid;
2050 	/** # of starting threads */
2051 	int				scp_nthrs_starting;
2052 	/** # of stopping threads, reserved for shrinking threads */
2053 	int				scp_nthrs_stopping;
2054 	/** # running threads */
2055 	int				scp_nthrs_running;
2056 	/** service threads list */
2057 	struct list_head			scp_threads;
2058 
2059 	/**
2060 	 * serialize the following fields, used for protecting
2061 	 * rqbd list and incoming requests waiting for preprocess,
2062 	 * threads starting & stopping are also protected by this lock.
2063 	 */
2064 	spinlock_t			scp_lock  __cfs_cacheline_aligned;
2065 	/** total # req buffer descs allocated */
2066 	int				scp_nrqbds_total;
2067 	/** # posted request buffers for receiving */
2068 	int				scp_nrqbds_posted;
2069 	/** in progress of allocating rqbd */
2070 	int				scp_rqbd_allocating;
2071 	/** # incoming reqs */
2072 	int				scp_nreqs_incoming;
2073 	/** request buffers to be reposted */
2074 	struct list_head			scp_rqbd_idle;
2075 	/** req buffers receiving */
2076 	struct list_head			scp_rqbd_posted;
2077 	/** incoming reqs */
2078 	struct list_head			scp_req_incoming;
2079 	/** timeout before re-posting reqs, in tick */
2080 	long			scp_rqbd_timeout;
2081 	/**
2082 	 * all threads sleep on this. This wait-queue is signalled when new
2083 	 * incoming request arrives and when difficult reply has to be handled.
2084 	 */
2085 	wait_queue_head_t			scp_waitq;
2086 
2087 	/** request history */
2088 	struct list_head			scp_hist_reqs;
2089 	/** request buffer history */
2090 	struct list_head			scp_hist_rqbds;
2091 	/** # request buffers in history */
2092 	int				scp_hist_nrqbds;
2093 	/** sequence number for request */
2094 	__u64				scp_hist_seq;
2095 	/** highest seq culled from history */
2096 	__u64				scp_hist_seq_culled;
2097 
2098 	/**
2099 	 * serialize the following fields, used for processing requests
2100 	 * sent to this portal
2101 	 */
2102 	spinlock_t			scp_req_lock __cfs_cacheline_aligned;
2103 	/** # reqs in either of the NRS heads below */
2104 	/** # reqs being served */
2105 	int				scp_nreqs_active;
2106 	/** # HPreqs being served */
2107 	int				scp_nhreqs_active;
2108 	/** # hp requests handled */
2109 	int				scp_hreq_count;
2110 
2111 	/** NRS head for regular requests */
2112 	struct ptlrpc_nrs		scp_nrs_reg;
2113 	/** NRS head for HP requests; this is only valid for services that can
2114 	 *  handle HP requests */
2115 	struct ptlrpc_nrs	       *scp_nrs_hp;
2116 
2117 	/** AT stuff */
2118 	/** @{ */
2119 	/**
2120 	 * serialize the following fields, used for changes on
2121 	 * adaptive timeout
2122 	 */
2123 	spinlock_t			scp_at_lock __cfs_cacheline_aligned;
2124 	/** estimated rpc service time */
2125 	struct adaptive_timeout		scp_at_estimate;
2126 	/** reqs waiting for replies */
2127 	struct ptlrpc_at_array		scp_at_array;
2128 	/** early reply timer */
2129 	struct timer_list		scp_at_timer;
2130 	/** debug */
2131 	unsigned long			scp_at_checktime;
2132 	/** check early replies */
2133 	unsigned			scp_at_check;
2134 	/** @} */
2135 
2136 	/**
2137 	 * serialize the following fields, used for processing
2138 	 * replies for this portal
2139 	 */
2140 	spinlock_t			scp_rep_lock __cfs_cacheline_aligned;
2141 	/** all the active replies */
2142 	struct list_head			scp_rep_active;
2143 	/** List of free reply_states */
2144 	struct list_head			scp_rep_idle;
2145 	/** waitq to run, when adding stuff to srv_free_rs_list */
2146 	wait_queue_head_t			scp_rep_waitq;
2147 	/** # 'difficult' replies */
2148 	atomic_t			scp_nreps_difficult;
2149 };
2150 
2151 #define ptlrpc_service_for_each_part(part, i, svc)			\
2152 	for (i = 0;							\
2153 	     i < (svc)->srv_ncpts &&					\
2154 	     (svc)->srv_parts != NULL &&				\
2155 	     ((part) = (svc)->srv_parts[i]) != NULL; i++)
2156 
2157 /**
2158  * Declaration of ptlrpcd control structure
2159  */
2160 struct ptlrpcd_ctl {
2161 	/**
2162 	 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
2163 	 */
2164 	unsigned long			pc_flags;
2165 	/**
2166 	 * Thread lock protecting structure fields.
2167 	 */
2168 	spinlock_t			pc_lock;
2169 	/**
2170 	 * Start completion.
2171 	 */
2172 	struct completion		pc_starting;
2173 	/**
2174 	 * Stop completion.
2175 	 */
2176 	struct completion		pc_finishing;
2177 	/**
2178 	 * Thread requests set.
2179 	 */
2180 	struct ptlrpc_request_set  *pc_set;
2181 	/**
2182 	 * Thread name used in cfs_daemonize()
2183 	 */
2184 	char			pc_name[16];
2185 	/**
2186 	 * Environment for request interpreters to run in.
2187 	 */
2188 	struct lu_env	       pc_env;
2189 	/**
2190 	 * Index of ptlrpcd thread in the array.
2191 	 */
2192 	int			 pc_index;
2193 	/**
2194 	 * Number of the ptlrpcd's partners.
2195 	 */
2196 	int			 pc_npartners;
2197 	/**
2198 	 * Pointer to the array of partners' ptlrpcd_ctl structure.
2199 	 */
2200 	struct ptlrpcd_ctl	**pc_partners;
2201 	/**
2202 	 * Record the partner index to be processed next.
2203 	 */
2204 	int			 pc_cursor;
2205 };
2206 
2207 /* Bits for pc_flags */
2208 enum ptlrpcd_ctl_flags {
2209 	/**
2210 	 * Ptlrpc thread start flag.
2211 	 */
2212 	LIOD_START       = 1 << 0,
2213 	/**
2214 	 * Ptlrpc thread stop flag.
2215 	 */
2216 	LIOD_STOP	= 1 << 1,
2217 	/**
2218 	 * Ptlrpc thread force flag (only stop force so far).
2219 	 * This will cause aborting any inflight rpcs handled
2220 	 * by thread if LIOD_STOP is specified.
2221 	 */
2222 	LIOD_FORCE       = 1 << 2,
2223 	/**
2224 	 * This is a recovery ptlrpc thread.
2225 	 */
2226 	LIOD_RECOVERY    = 1 << 3,
2227 	/**
2228 	 * The ptlrpcd is bound to some CPU core.
2229 	 */
2230 	LIOD_BIND	= 1 << 4,
2231 };
2232 
2233 /**
2234  * \addtogroup nrs
2235  * @{
2236  *
2237  * Service compatibility function; the policy is compatible with all services.
2238  *
2239  * \param[in] svc  The service the policy is attempting to register with.
2240  * \param[in] desc The policy descriptor
2241  *
2242  * \retval true The policy is compatible with the service
2243  *
2244  * \see ptlrpc_nrs_pol_desc::pd_compat()
2245  */
nrs_policy_compat_all(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)2246 static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
2247 					 const struct ptlrpc_nrs_pol_desc *desc)
2248 {
2249 	return true;
2250 }
2251 
2252 /**
2253  * Service compatibility function; the policy is compatible with only a specific
2254  * service which is identified by its human-readable name at
2255  * ptlrpc_service::srv_name.
2256  *
2257  * \param[in] svc  The service the policy is attempting to register with.
2258  * \param[in] desc The policy descriptor
2259  *
2260  * \retval false The policy is not compatible with the service
2261  * \retval true	 The policy is compatible with the service
2262  *
2263  * \see ptlrpc_nrs_pol_desc::pd_compat()
2264  */
nrs_policy_compat_one(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)2265 static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
2266 					 const struct ptlrpc_nrs_pol_desc *desc)
2267 {
2268 	LASSERT(desc->pd_compat_svc_name != NULL);
2269 	return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
2270 }
2271 
2272 /** @} nrs */
2273 
2274 /* ptlrpc/events.c */
2275 extern lnet_handle_eq_t ptlrpc_eq_h;
2276 extern int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
2277 			       lnet_process_id_t *peer, lnet_nid_t *self);
2278 /**
2279  * These callbacks are invoked by LNet when something happened to
2280  * underlying buffer
2281  * @{
2282  */
2283 extern void request_out_callback(lnet_event_t *ev);
2284 extern void reply_in_callback(lnet_event_t *ev);
2285 extern void client_bulk_callback(lnet_event_t *ev);
2286 extern void request_in_callback(lnet_event_t *ev);
2287 extern void reply_out_callback(lnet_event_t *ev);
2288 /** @} */
2289 
2290 /* ptlrpc/connection.c */
2291 struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer,
2292 						lnet_nid_t self,
2293 						struct obd_uuid *uuid);
2294 int ptlrpc_connection_put(struct ptlrpc_connection *c);
2295 struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
2296 int ptlrpc_connection_init(void);
2297 void ptlrpc_connection_fini(void);
2298 extern lnet_pid_t ptl_get_pid(void);
2299 
2300 /* ptlrpc/niobuf.c */
2301 /**
2302  * Actual interfacing with LNet to put/get/register/unregister stuff
2303  * @{
2304  */
2305 
2306 int ptlrpc_register_bulk(struct ptlrpc_request *req);
2307 int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
2308 
ptlrpc_client_bulk_active(struct ptlrpc_request * req)2309 static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
2310 {
2311 	struct ptlrpc_bulk_desc *desc;
2312 	int		      rc;
2313 
2314 	LASSERT(req != NULL);
2315 	desc = req->rq_bulk;
2316 
2317 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) &&
2318 	    req->rq_bulk_deadline > get_seconds())
2319 		return 1;
2320 
2321 	if (!desc)
2322 		return 0;
2323 
2324 	spin_lock(&desc->bd_lock);
2325 	rc = desc->bd_md_count;
2326 	spin_unlock(&desc->bd_lock);
2327 	return rc;
2328 }
2329 
2330 #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
2331 #define PTLRPC_REPLY_EARLY	   0x02
2332 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
2333 int ptlrpc_reply(struct ptlrpc_request *req);
2334 int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
2335 int ptlrpc_error(struct ptlrpc_request *req);
2336 void ptlrpc_resend_req(struct ptlrpc_request *request);
2337 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
2338 int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
2339 int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
2340 /** @} */
2341 
2342 /* ptlrpc/client.c */
2343 /**
2344  * Client-side portals API. Everything to send requests, receive replies,
2345  * request queues, request management, etc.
2346  * @{
2347  */
2348 void ptlrpc_request_committed(struct ptlrpc_request *req, int force);
2349 
2350 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
2351 			struct ptlrpc_client *);
2352 void ptlrpc_cleanup_client(struct obd_import *imp);
2353 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
2354 
2355 int ptlrpc_queue_wait(struct ptlrpc_request *req);
2356 int ptlrpc_replay_req(struct ptlrpc_request *req);
2357 int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async);
2358 void ptlrpc_restart_req(struct ptlrpc_request *req);
2359 void ptlrpc_abort_inflight(struct obd_import *imp);
2360 void ptlrpc_cleanup_imp(struct obd_import *imp);
2361 void ptlrpc_abort_set(struct ptlrpc_request_set *set);
2362 
2363 struct ptlrpc_request_set *ptlrpc_prep_set(void);
2364 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
2365 					     void *arg);
2366 int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
2367 		      set_interpreter_func fn, void *data);
2368 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *);
2369 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
2370 int ptlrpc_set_wait(struct ptlrpc_request_set *);
2371 int ptlrpc_expired_set(void *data);
2372 void ptlrpc_interrupted_set(void *data);
2373 void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
2374 void ptlrpc_set_destroy(struct ptlrpc_request_set *);
2375 void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
2376 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
2377 			    struct ptlrpc_request *req);
2378 
2379 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
2380 void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
2381 
2382 struct ptlrpc_request_pool *
2383 ptlrpc_init_rq_pool(int, int,
2384 		    void (*populate_pool)(struct ptlrpc_request_pool *, int));
2385 
2386 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
2387 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
2388 					    const struct req_format *format);
2389 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
2390 					    struct ptlrpc_request_pool *,
2391 					    const struct req_format *format);
2392 void ptlrpc_request_free(struct ptlrpc_request *request);
2393 int ptlrpc_request_pack(struct ptlrpc_request *request,
2394 			__u32 version, int opcode);
2395 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
2396 						const struct req_format *format,
2397 						__u32 version, int opcode);
2398 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
2399 			     __u32 version, int opcode, char **bufs,
2400 			     struct ptlrpc_cli_ctx *ctx);
2401 struct ptlrpc_request *ptlrpc_prep_req(struct obd_import *imp, __u32 version,
2402 				       int opcode, int count, __u32 *lengths,
2403 				       char **bufs);
2404 struct ptlrpc_request *ptlrpc_prep_req_pool(struct obd_import *imp,
2405 					     __u32 version, int opcode,
2406 					    int count, __u32 *lengths, char **bufs,
2407 					    struct ptlrpc_request_pool *pool);
2408 void ptlrpc_req_finished(struct ptlrpc_request *request);
2409 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request);
2410 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
2411 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
2412 					      unsigned npages, unsigned max_brw,
2413 					      unsigned type, unsigned portal);
2414 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin);
ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc * bulk)2415 static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk)
2416 {
2417 	__ptlrpc_free_bulk(bulk, 1);
2418 }
ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc * bulk)2419 static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk)
2420 {
2421 	__ptlrpc_free_bulk(bulk, 0);
2422 }
2423 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
2424 			     struct page *page, int pageoffset, int len, int);
ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)2425 static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
2426 					     struct page *page, int pageoffset,
2427 					     int len)
2428 {
2429 	__ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
2430 }
2431 
ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)2432 static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
2433 					       struct page *page, int pageoffset,
2434 					       int len)
2435 {
2436 	__ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
2437 }
2438 
2439 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2440 				      struct obd_import *imp);
2441 __u64 ptlrpc_next_xid(void);
2442 __u64 ptlrpc_sample_next_xid(void);
2443 __u64 ptlrpc_req_xid(struct ptlrpc_request *request);
2444 
2445 /* Set of routines to run a function in ptlrpcd context */
2446 void *ptlrpcd_alloc_work(struct obd_import *imp,
2447 			 int (*cb)(const struct lu_env *, void *), void *data);
2448 void ptlrpcd_destroy_work(void *handler);
2449 int ptlrpcd_queue_work(void *handler);
2450 
2451 /** @} */
2452 struct ptlrpc_service_buf_conf {
2453 	/* nbufs is buffers # to allocate when growing the pool */
2454 	unsigned int			bc_nbufs;
2455 	/* buffer size to post */
2456 	unsigned int			bc_buf_size;
2457 	/* portal to listed for requests on */
2458 	unsigned int			bc_req_portal;
2459 	/* portal of where to send replies to */
2460 	unsigned int			bc_rep_portal;
2461 	/* maximum request size to be accepted for this service */
2462 	unsigned int			bc_req_max_size;
2463 	/* maximum reply size this service can ever send */
2464 	unsigned int			bc_rep_max_size;
2465 };
2466 
2467 struct ptlrpc_service_thr_conf {
2468 	/* threadname should be 8 characters or less - 6 will be added on */
2469 	char				*tc_thr_name;
2470 	/* threads increasing factor for each CPU */
2471 	unsigned int			tc_thr_factor;
2472 	/* service threads # to start on each partition while initializing */
2473 	unsigned int			tc_nthrs_init;
2474 	/*
2475 	 * low water of threads # upper-limit on each partition while running,
2476 	 * service availability may be impacted if threads number is lower
2477 	 * than this value. It can be ZERO if the service doesn't require
2478 	 * CPU affinity or there is only one partition.
2479 	 */
2480 	unsigned int			tc_nthrs_base;
2481 	/* "soft" limit for total threads number */
2482 	unsigned int			tc_nthrs_max;
2483 	/* user specified threads number, it will be validated due to
2484 	 * other members of this structure. */
2485 	unsigned int			tc_nthrs_user;
2486 	/* set NUMA node affinity for service threads */
2487 	unsigned int			tc_cpu_affinity;
2488 	/* Tags for lu_context associated with service thread */
2489 	__u32				tc_ctx_tags;
2490 };
2491 
2492 struct ptlrpc_service_cpt_conf {
2493 	struct cfs_cpt_table		*cc_cptable;
2494 	/* string pattern to describe CPTs for a service */
2495 	char				*cc_pattern;
2496 };
2497 
2498 struct ptlrpc_service_conf {
2499 	/* service name */
2500 	char				*psc_name;
2501 	/* soft watchdog timeout multiplifier to print stuck service traces */
2502 	unsigned int			psc_watchdog_factor;
2503 	/* buffer information */
2504 	struct ptlrpc_service_buf_conf	psc_buf;
2505 	/* thread information */
2506 	struct ptlrpc_service_thr_conf	psc_thr;
2507 	/* CPU partition information */
2508 	struct ptlrpc_service_cpt_conf	psc_cpt;
2509 	/* function table */
2510 	struct ptlrpc_service_ops	psc_ops;
2511 };
2512 
2513 /* ptlrpc/service.c */
2514 /**
2515  * Server-side services API. Register/unregister service, request state
2516  * management, service thread management
2517  *
2518  * @{
2519  */
2520 void ptlrpc_save_lock(struct ptlrpc_request *req,
2521 		      struct lustre_handle *lock, int mode, int no_ack);
2522 void ptlrpc_commit_replies(struct obd_export *exp);
2523 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
2524 void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
2525 int ptlrpc_hpreq_handler(struct ptlrpc_request *req);
2526 struct ptlrpc_service *ptlrpc_register_service(
2527 				struct ptlrpc_service_conf *conf,
2528 				struct proc_dir_entry *proc_entry);
2529 void ptlrpc_stop_all_threads(struct ptlrpc_service *svc);
2530 
2531 int ptlrpc_start_threads(struct ptlrpc_service *svc);
2532 int ptlrpc_unregister_service(struct ptlrpc_service *service);
2533 int liblustre_check_services(void *arg);
2534 void ptlrpc_daemonize(char *name);
2535 int ptlrpc_service_health_check(struct ptlrpc_service *);
2536 void ptlrpc_server_drop_request(struct ptlrpc_request *req);
2537 void ptlrpc_request_change_export(struct ptlrpc_request *req,
2538 				  struct obd_export *export);
2539 
2540 int ptlrpc_hr_init(void);
2541 void ptlrpc_hr_fini(void);
2542 
2543 /** @} */
2544 
2545 /* ptlrpc/import.c */
2546 /**
2547  * Import API
2548  * @{
2549  */
2550 int ptlrpc_connect_import(struct obd_import *imp);
2551 int ptlrpc_init_import(struct obd_import *imp);
2552 int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
2553 int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
2554 void deuuidify(char *uuid, const char *prefix, char **uuid_start,
2555 	       int *uuid_len);
2556 
2557 /* ptlrpc/pack_generic.c */
2558 int ptlrpc_reconnect_import(struct obd_import *imp);
2559 /** @} */
2560 
2561 /**
2562  * ptlrpc msg buffer and swab interface
2563  *
2564  * @{
2565  */
2566 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
2567 			 int index);
2568 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
2569 				int index);
2570 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
2571 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
2572 
2573 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version);
2574 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
2575 			char **bufs);
2576 int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
2577 			__u32 *lens, char **bufs);
2578 int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
2579 		      char **bufs);
2580 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
2581 			 __u32 *lens, char **bufs, int flags);
2582 #define LPRFL_EARLY_REPLY 1
2583 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
2584 			    char **bufs, int flags);
2585 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
2586 		      unsigned int newlen, int move_data);
2587 void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
2588 int __lustre_unpack_msg(struct lustre_msg *m, int len);
2589 int lustre_msg_hdr_size(__u32 magic, int count);
2590 int lustre_msg_size(__u32 magic, int count, __u32 *lengths);
2591 int lustre_msg_size_v2(int count, __u32 *lengths);
2592 int lustre_packed_msg_size(struct lustre_msg *msg);
2593 int lustre_msg_early_size(void);
2594 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size);
2595 void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen);
2596 int lustre_msg_buflen(struct lustre_msg *m, int n);
2597 void lustre_msg_set_buflen(struct lustre_msg *m, int n, int len);
2598 int lustre_msg_bufcount(struct lustre_msg *m);
2599 char *lustre_msg_string(struct lustre_msg *m, int n, int max_len);
2600 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
2601 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
2602 __u32 lustre_msg_get_flags(struct lustre_msg *msg);
2603 void lustre_msg_add_flags(struct lustre_msg *msg, int flags);
2604 void lustre_msg_set_flags(struct lustre_msg *msg, int flags);
2605 void lustre_msg_clear_flags(struct lustre_msg *msg, int flags);
2606 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
2607 void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags);
2608 void lustre_msg_set_op_flags(struct lustre_msg *msg, int flags);
2609 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
2610 __u32 lustre_msg_get_type(struct lustre_msg *msg);
2611 __u32 lustre_msg_get_version(struct lustre_msg *msg);
2612 void lustre_msg_add_version(struct lustre_msg *msg, int version);
2613 __u32 lustre_msg_get_opc(struct lustre_msg *msg);
2614 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg);
2615 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
2616 __u64 *lustre_msg_get_versions(struct lustre_msg *msg);
2617 __u64 lustre_msg_get_transno(struct lustre_msg *msg);
2618 __u64 lustre_msg_get_slv(struct lustre_msg *msg);
2619 __u32 lustre_msg_get_limit(struct lustre_msg *msg);
2620 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
2621 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
2622 int lustre_msg_get_status(struct lustre_msg *msg);
2623 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
2624 int lustre_msg_is_v1(struct lustre_msg *msg);
2625 __u32 lustre_msg_get_magic(struct lustre_msg *msg);
2626 __u32 lustre_msg_get_timeout(struct lustre_msg *msg);
2627 __u32 lustre_msg_get_service_time(struct lustre_msg *msg);
2628 char *lustre_msg_get_jobid(struct lustre_msg *msg);
2629 __u32 lustre_msg_get_cksum(struct lustre_msg *msg);
2630 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
2631 void lustre_msg_set_handle(struct lustre_msg *msg,
2632 			   struct lustre_handle *handle);
2633 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
2634 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
2635 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid);
2636 void lustre_msg_set_last_committed(struct lustre_msg *msg,
2637 				   __u64 last_committed);
2638 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
2639 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
2640 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
2641 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
2642 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *sizes);
2643 void ptlrpc_request_set_replen(struct ptlrpc_request *req);
2644 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
2645 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
2646 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
2647 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
2648 
2649 static inline void
lustre_shrink_reply(struct ptlrpc_request * req,int segment,unsigned int newlen,int move_data)2650 lustre_shrink_reply(struct ptlrpc_request *req, int segment,
2651 		    unsigned int newlen, int move_data)
2652 {
2653 	LASSERT(req->rq_reply_state);
2654 	LASSERT(req->rq_repmsg);
2655 	req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
2656 					   newlen, move_data);
2657 }
2658 
2659 #ifdef CONFIG_LUSTRE_TRANSLATE_ERRNOS
2660 
ptlrpc_status_hton(int h)2661 static inline int ptlrpc_status_hton(int h)
2662 {
2663 	/*
2664 	 * Positive errnos must be network errnos, such as LUSTRE_EDEADLK,
2665 	 * ELDLM_LOCK_ABORTED, etc.
2666 	 */
2667 	if (h < 0)
2668 		return -lustre_errno_hton(-h);
2669 	else
2670 		return h;
2671 }
2672 
ptlrpc_status_ntoh(int n)2673 static inline int ptlrpc_status_ntoh(int n)
2674 {
2675 	/*
2676 	 * See the comment in ptlrpc_status_hton().
2677 	 */
2678 	if (n < 0)
2679 		return -lustre_errno_ntoh(-n);
2680 	else
2681 		return n;
2682 }
2683 
2684 #else
2685 
2686 #define ptlrpc_status_hton(h) (h)
2687 #define ptlrpc_status_ntoh(n) (n)
2688 
2689 #endif
2690 /** @} */
2691 
2692 /** Change request phase of \a req to \a new_phase */
2693 static inline void
ptlrpc_rqphase_move(struct ptlrpc_request * req,enum rq_phase new_phase)2694 ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
2695 {
2696 	if (req->rq_phase == new_phase)
2697 		return;
2698 
2699 	if (new_phase == RQ_PHASE_UNREGISTERING) {
2700 		req->rq_next_phase = req->rq_phase;
2701 		if (req->rq_import)
2702 			atomic_inc(&req->rq_import->imp_unregistering);
2703 	}
2704 
2705 	if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
2706 		if (req->rq_import)
2707 			atomic_dec(&req->rq_import->imp_unregistering);
2708 	}
2709 
2710 	DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
2711 		  ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
2712 
2713 	req->rq_phase = new_phase;
2714 }
2715 
2716 /**
2717  * Returns true if request \a req got early reply and hard deadline is not met
2718  */
2719 static inline int
ptlrpc_client_early(struct ptlrpc_request * req)2720 ptlrpc_client_early(struct ptlrpc_request *req)
2721 {
2722 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2723 	    req->rq_reply_deadline > get_seconds())
2724 		return 0;
2725 	return req->rq_early;
2726 }
2727 
2728 /**
2729  * Returns true if we got real reply from server for this request
2730  */
2731 static inline int
ptlrpc_client_replied(struct ptlrpc_request * req)2732 ptlrpc_client_replied(struct ptlrpc_request *req)
2733 {
2734 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2735 	    req->rq_reply_deadline > get_seconds())
2736 		return 0;
2737 	return req->rq_replied;
2738 }
2739 
2740 /** Returns true if request \a req is in process of receiving server reply */
2741 static inline int
ptlrpc_client_recv(struct ptlrpc_request * req)2742 ptlrpc_client_recv(struct ptlrpc_request *req)
2743 {
2744 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2745 	    req->rq_reply_deadline > get_seconds())
2746 		return 1;
2747 	return req->rq_receiving_reply;
2748 }
2749 
2750 static inline int
ptlrpc_client_recv_or_unlink(struct ptlrpc_request * req)2751 ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
2752 {
2753 	int rc;
2754 
2755 	spin_lock(&req->rq_lock);
2756 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2757 	    req->rq_reply_deadline > get_seconds()) {
2758 		spin_unlock(&req->rq_lock);
2759 		return 1;
2760 	}
2761 	rc = req->rq_receiving_reply;
2762 	rc = rc || req->rq_req_unlink || req->rq_reply_unlink;
2763 	spin_unlock(&req->rq_lock);
2764 	return rc;
2765 }
2766 
2767 static inline void
ptlrpc_client_wake_req(struct ptlrpc_request * req)2768 ptlrpc_client_wake_req(struct ptlrpc_request *req)
2769 {
2770 	if (req->rq_set == NULL)
2771 		wake_up(&req->rq_reply_waitq);
2772 	else
2773 		wake_up(&req->rq_set->set_waitq);
2774 }
2775 
2776 static inline void
ptlrpc_rs_addref(struct ptlrpc_reply_state * rs)2777 ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
2778 {
2779 	LASSERT(atomic_read(&rs->rs_refcount) > 0);
2780 	atomic_inc(&rs->rs_refcount);
2781 }
2782 
2783 static inline void
ptlrpc_rs_decref(struct ptlrpc_reply_state * rs)2784 ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
2785 {
2786 	LASSERT(atomic_read(&rs->rs_refcount) > 0);
2787 	if (atomic_dec_and_test(&rs->rs_refcount))
2788 		lustre_free_reply_state(rs);
2789 }
2790 
2791 /* Should only be called once per req */
ptlrpc_req_drop_rs(struct ptlrpc_request * req)2792 static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
2793 {
2794 	if (req->rq_reply_state == NULL)
2795 		return; /* shouldn't occur */
2796 	ptlrpc_rs_decref(req->rq_reply_state);
2797 	req->rq_reply_state = NULL;
2798 	req->rq_repmsg = NULL;
2799 }
2800 
lustre_request_magic(struct ptlrpc_request * req)2801 static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
2802 {
2803 	return lustre_msg_get_magic(req->rq_reqmsg);
2804 }
2805 
ptlrpc_req_get_repsize(struct ptlrpc_request * req)2806 static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
2807 {
2808 	switch (req->rq_reqmsg->lm_magic) {
2809 	case LUSTRE_MSG_MAGIC_V2:
2810 		return req->rq_reqmsg->lm_repsize;
2811 	default:
2812 		LASSERTF(0, "incorrect message magic: %08x\n",
2813 			 req->rq_reqmsg->lm_magic);
2814 		return -EFAULT;
2815 	}
2816 }
2817 
ptlrpc_send_limit_expired(struct ptlrpc_request * req)2818 static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
2819 {
2820 	if (req->rq_delay_limit != 0 &&
2821 	    time_before(cfs_time_add(req->rq_queued_time,
2822 				     cfs_time_seconds(req->rq_delay_limit)),
2823 			cfs_time_current())) {
2824 		return 1;
2825 	}
2826 	return 0;
2827 }
2828 
ptlrpc_no_resend(struct ptlrpc_request * req)2829 static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
2830 {
2831 	if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
2832 		spin_lock(&req->rq_lock);
2833 		req->rq_no_resend = 1;
2834 		spin_unlock(&req->rq_lock);
2835 	}
2836 	return req->rq_no_resend;
2837 }
2838 
2839 static inline int
ptlrpc_server_get_timeout(struct ptlrpc_service_part * svcpt)2840 ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
2841 {
2842 	int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
2843 
2844 	return svcpt->scp_service->srv_watchdog_factor *
2845 	       max_t(int, at, obd_timeout);
2846 }
2847 
2848 static inline struct ptlrpc_service *
ptlrpc_req2svc(struct ptlrpc_request * req)2849 ptlrpc_req2svc(struct ptlrpc_request *req)
2850 {
2851 	LASSERT(req->rq_rqbd != NULL);
2852 	return req->rq_rqbd->rqbd_svcpt->scp_service;
2853 }
2854 
2855 /* ldlm/ldlm_lib.c */
2856 /**
2857  * Target client logic
2858  * @{
2859  */
2860 int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
2861 int client_obd_cleanup(struct obd_device *obddev);
2862 int client_connect_import(const struct lu_env *env,
2863 			  struct obd_export **exp, struct obd_device *obd,
2864 			  struct obd_uuid *cluuid, struct obd_connect_data *,
2865 			  void *localdata);
2866 int client_disconnect_export(struct obd_export *exp);
2867 int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
2868 			   int priority);
2869 int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
2870 int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
2871 			    struct obd_uuid *uuid);
2872 int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
2873 void client_destroy_import(struct obd_import *imp);
2874 /** @} */
2875 
2876 
2877 /* ptlrpc/pinger.c */
2878 /**
2879  * Pinger API (client side only)
2880  * @{
2881  */
2882 enum timeout_event {
2883 	TIMEOUT_GRANT = 1
2884 };
2885 struct timeout_item;
2886 typedef int (*timeout_cb_t)(struct timeout_item *, void *);
2887 int ptlrpc_pinger_add_import(struct obd_import *imp);
2888 int ptlrpc_pinger_del_import(struct obd_import *imp);
2889 int ptlrpc_add_timeout_client(int time, enum timeout_event event,
2890 			      timeout_cb_t cb, void *data,
2891 			      struct list_head *obd_list);
2892 int ptlrpc_del_timeout_client(struct list_head *obd_list,
2893 			      enum timeout_event event);
2894 struct ptlrpc_request *ptlrpc_prep_ping(struct obd_import *imp);
2895 int ptlrpc_obd_ping(struct obd_device *obd);
2896 void ping_evictor_start(void);
2897 void ping_evictor_stop(void);
2898 void ptlrpc_pinger_ir_up(void);
2899 void ptlrpc_pinger_ir_down(void);
2900 /** @} */
2901 int ptlrpc_pinger_suppress_pings(void);
2902 
2903 /* ptlrpc daemon bind policy */
2904 typedef enum {
2905 	/* all ptlrpcd threads are free mode */
2906 	PDB_POLICY_NONE	  = 1,
2907 	/* all ptlrpcd threads are bound mode */
2908 	PDB_POLICY_FULL	  = 2,
2909 	/* <free1 bound1> <free2 bound2> ... <freeN boundN> */
2910 	PDB_POLICY_PAIR	  = 3,
2911 	/* <free1 bound1> <bound1 free2> ... <freeN boundN> <boundN free1>,
2912 	 * means each ptlrpcd[X] has two partners: thread[X-1] and thread[X+1].
2913 	 * If kernel supports NUMA, pthrpcd threads are binded and
2914 	 * grouped by NUMA node */
2915 	PDB_POLICY_NEIGHBOR      = 4,
2916 } pdb_policy_t;
2917 
2918 /* ptlrpc daemon load policy
2919  * It is caller's duty to specify how to push the async RPC into some ptlrpcd
2920  * queue, but it is not enforced, affected by "ptlrpcd_bind_policy". If it is
2921  * "PDB_POLICY_FULL", then the RPC will be processed by the selected ptlrpcd,
2922  * Otherwise, the RPC may be processed by the selected ptlrpcd or its partner,
2923  * depends on which is scheduled firstly, to accelerate the RPC processing. */
2924 typedef enum {
2925 	/* on the same CPU core as the caller */
2926 	PDL_POLICY_SAME	 = 1,
2927 	/* within the same CPU partition, but not the same core as the caller */
2928 	PDL_POLICY_LOCAL	= 2,
2929 	/* round-robin on all CPU cores, but not the same core as the caller */
2930 	PDL_POLICY_ROUND	= 3,
2931 	/* the specified CPU core is preferred, but not enforced */
2932 	PDL_POLICY_PREFERRED    = 4,
2933 } pdl_policy_t;
2934 
2935 /* ptlrpc/ptlrpcd.c */
2936 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
2937 void ptlrpcd_free(struct ptlrpcd_ctl *pc);
2938 void ptlrpcd_wake(struct ptlrpc_request *req);
2939 void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx);
2940 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set);
2941 int ptlrpcd_addref(void);
2942 void ptlrpcd_decref(void);
2943 
2944 /* ptlrpc/lproc_ptlrpc.c */
2945 /**
2946  * procfs output related functions
2947  * @{
2948  */
2949 const char *ll_opcode2str(__u32 opcode);
2950 #if defined (CONFIG_PROC_FS)
2951 void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
2952 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
2953 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
2954 #else
ptlrpc_lprocfs_register_obd(struct obd_device * obd)2955 static inline void ptlrpc_lprocfs_register_obd(struct obd_device *obd) {}
ptlrpc_lprocfs_unregister_obd(struct obd_device * obd)2956 static inline void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd) {}
ptlrpc_lprocfs_brw(struct ptlrpc_request * req,int bytes)2957 static inline void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes) {}
2958 #endif
2959 /** @} */
2960 
2961 /* ptlrpc/llog_client.c */
2962 extern struct llog_operations llog_client_ops;
2963 
2964 /** @} net */
2965 
2966 #endif
2967 /** @} PtlRPC */
2968